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Abstract

Large language models (LLMs) increasingly operate as au-
tonomous agents that reason over external APIs to perform
complex tasks. However, their reliability and agreement re-
main poorly characterized. We present a unified benchmark-
ing framework to quantify inter-LLM divergence—the extent
to which models differ in API discovery and ranking under
identical tasks. Across 15 canonical API domains and 5 major
model families, we measure pairwise and group-level agree-
ment using set-, rank-, and consensus-based metrics: Average
Overlap, Jaccard, Rank-Biased Overlap, Kendall’s ©/W, and
Cronbach’s a. Results show moderate overall alignment (AO
~ 0.50, T = 0.45) but strong domain dependence: structured
tasks (Weather, Speech-to-Text) are stable, while open-ended
ones (Sentiment Analysis) diverge sharply. Volatility and
consensus analyses reveal that coherence clusters around
data-bound domains and degrades for abstract reasoning.
These insights enable reliability-aware orchestration in multi-
agent systems, where consensus weighting can improve co-
ordination among heterogeneous LLMs.

Introduction

Large Language Models (LLMs) are increasingly deployed
as autonomous agents that plan, reason, and act within com-
plex environments through external tool invocation (Yao et
al., 2023; Schick et al., 2023). This agentic paradigm ena-
bles tasks requiring real-time data access, structured compu-
tation, and interaction with digital systems, shifting the
LLM’s role from text generation to action orchestration
through tool and API calls (Tzachristas et al., 2023; Li et al.,
2023). Recent orchestration frameworks now connect mul-
tiple LLMs that communicate, critique, and coordinate,
forming the foundation of emerging multi-agent reasoning
systems (Li et al., 2024a).

The enhanced utility of these agents stems from Tool
Learning, where LLMs extend beyond pre-trained
knowledge by dynamically discovering and invoking exter-
nal APIs (Schick et al., 2023; Xu et al., 2025). This enables
models to transform natural-language goals into executable
API workflows involving discovery, parameter generation,
and multi-step composition (Huang et al., 2024; Morais et
al., 2025). However, mapping natural instructions to struc-
tured API calls remains fragile—highly sensitive to prompt-
ing strategies and configuration choices (Sheng et al., 2024).

Within multi-agent settings, this fragility manifests as in-
ter-LLM divergence: when presented with identical tasks
and toolsets, different models frequently disagree on which
APIs are relevant and how they should be prioritized (Al-
Masri et al., 2025). This phenomenon—inter-LLM API
ranking divergence—represents inconsistency in the reason-
ing process that precedes any downstream execution. Such
disagreement undermines coordinated planning, reproduci-
bility, and verifiable action among autonomous agents.

We hypothesize that this divergence is structured rather
than random—that is, LLMs exhibit domain-dependent re-
liability patterns, converging on well-defined, data-bound
tasks and diverging on creative or semantically open ones.
To test this, we systematically benchmark the extent and
structure of inter-LLM divergence in API retrieval and rank-
ing across multiple model families and task domains.

Understanding how and when LLMs diverge provides a
basis for designing coordination strategies among agents
that rely on shared tool-use and retrieval pipelines. Quanti-
fying divergence clarifies the limits of reproducibility and
stability in reasoning-driven orchestration. This study for-
malizes divergence as an observable reliability dimension
within multi-agent reasoning pipelines. Specifically, this pa-
per makes the following contributions:

* Quantitative Benchmarking Framework: We develop
a reproducible pipeline using the AutoGen multi-agent
library (Wu et al., 2024) to evaluate inter-LLM diver-
gence in API retrieval under uniform conditions.

* Comprehensive Cross-Model Evaluation: Using fif-
teen canonical API-discovery tasks and five major LLM
families (ChatGPT, Claude, Gemini, DeepSeek, and
Mistral), we generate 750 ranked lists and assess con-
sistency through multi-level agreement metrics.

* Reliability and Consensus Metrics: We integrate set-
based, rank-based, and group reliability measures—Av-
erage Overlap, Jaccard, Rank-Biased Overlap, Kendall’s
/W, and Cronbach’s a—to quantify pairwise and collec-
tive coherence.

* Divergence Structure and Latent Analysis: We extend
evaluation with ANOVA and Kruskal-Wallis signifi-
cance testing, and volatility—agreement regression to val-
idate inter-model patterns.



This study introduces a unified empirical basis for evalu-
ating reliability and coherence in LLM-based API reason-
ing. By quantifying how model agreement varies across task
domains and ranking depths, it establishes a benchmark for
analyzing reasoning stability in multi-agent systems. The
framework bridges prior work on tool learning and service
discovery with emerging research on agent consistency—
providing a reproducible foundation for examining when,
and why, large language models converge or diverge in their
interpretation of shared tasks.

Related Work

Research on the automated discovery of network-accessible
functionalities originated in the web service era, where
crawlers indexed and benchmarked SOAP-based services
for quality and structure (Benatallah et al., 2005; Al-Masri
et al., 2010). This foundational work established the need
for large-scale observation and evaluation of distributed ser-
vices. The transition to lightweight, RESTful architectures
marked a major shift, extending discovery to developer-fo-
cused web APIs exposed over HTTP (Richardson et al.,
2013). In this phase, web search engines became the de facto
mechanism for locating APIs, relying on keyword matching
of documentation—a process later enhanced by structured
specifications such as OpenAPI (Ponelat et al., 2022).

Building on these advances, researchers have increas-
ingly investigated how large language models (LLMs) en-
hance API discovery, selection, and composition, moving
from keyword-based retrieval toward semantic and reason-
ing-driven automation (Bianchini et al., 2025; Pesl et al.,
2023). LLMs interpret natural-language goals and infer suit-
able APIs, acting as intelligent intermediaries between in-
tent and execution. To address sparsity in service networks,
several studies apply LLM-based semantic enrichment
(Peng et al., 2025) or integrate graph neural networks for
improved alignment between textual and structural data
(Feng et al., 2025), though such methods remain domain-
limited and data-dependent.

Parallel work explores LLM-based service composition
and validation, where models autonomously generate, test,
and execute API workflows. Examples include decision-tree
reasoning for API selection (Zhang et al., 2024), conversa-
tional DevOps automation through ChatOps4Msa (Wang et
al., 2024), automated logical testing with multi-agent LLMs
(Zhang et al., 2025), and API-first specification generation
(Chauhan et al., 2025). Additional studies extend LLMs to
API testing and specification synthesis, improving automa-
tion and coverage in service-oriented architectures (Altin et
al., 2025; Zheng et al., 2024; Smardas et al., 2025; Deng et
al., 2025).

Despite this progress, prior research has largely focused
on what LLMs can produce—discovering, composing, or
validating APIs—without assessing how consistently they

reason or converge across model families (Al-Masri et al.,
2025). This gap becomes critical as LLMs evolve into au-
tonomous agents operating across domains such as IoT,
edge computing, and machine learning (Aiello et al., 2023;
Aiello, 2025). In multi-agent contexts, the reliability of API-
driven reasoning determines whether agents can coordinate
actions, maintain shared world models, and yield stable col-
lective outcomes. This study addresses that gap by sys-
tematically benchmarking inter-LLM divergence in API
ranking and selection, providing the first empirical assess-
ment of reliability and agreement in LLM-based multi-agent
reasoning—a step toward verifiable and cooperative agent
ecosystems.

Benchmarking Framework for
Inter-LLM Divergence

To quantify reasoning consistency across large language

models (LLMs), we developed an automated benchmarking

framework using the AutoGen multi-agent orchestration li-

brary (Wu et al., 2024). The system enables concurrent que-

rying and analysis of multiple model APIs under uniform
conditions, ensuring that observed differences reflect model
reasoning rather than prompt variation.

The framework operates through six sequential modules:

(1) Query Generation — Encodes canonical task templates
and dispatches them with fixed temperature and reason-
ing depth.

(2) Model Execution — Runs each LLM agent on identical
API-ranking prompts and records structured JSON out-
puts.

(3) Validation — Normalizes field names, removes dupli-
cates, and ensures schema compliance.

(4) Scoring — Extracts rank order, relevance percentage, and
justification text.

(5) Summarization — Consolidates outputs into unified ta-
bles for statistical and comparative analysis.

(6) Agreement Analysis — Computes similarity, reliability,
and consensus metrics across model pairs and groups.

All analyses were implemented in Python 3.11 using
NumPy and Pandas, ensuring replicability of all metric com-
putations. This modular design enables reproducible, large-
scale comparison across LLM families while preserving se-
mantic interpretability. Unlike prior work that evaluates
models in isolation, our approach emphasizes cross-model
relational reliability—how consistently different LLMs
identify and prioritize the same APIs under identical condi-
tions. To assess statistical significance across metrics and
model families, we applied one-way ANOVA, Kruskal—

Wallis, and Levene’s tests; no post-hoc comparisons were

required, as no significant group-level differences were ob-

served.



Dataset and Prompt Construction

The benchmark encompasses fifteen canonical API-discov-
ery tasks drawn from the Postman 2025 State of the API Re-
port (Postman, 2025). These tasks span diverse domains
such as image generation, speech-to-text, event discovery,
weather forecasting, and financial data access. Each task
was encoded as a canonical query template defining both
format and content expectations. For instance:
"Return exactly 10 hosted web APIs for discovering up-
coming events. Each must accept search parameters such
as location, date, or category and return JSON with event
name, date, venue, location, and description."

Each model received the same prompt and produced a
structured JSON response containing ten ranked APIs per
query. Each entry included nineteen attributes—covering
structural metadata (e.g., endpoints, authentication, rate lim-
its), functional metadata (e.g., pricing, response schema),
and semantic reasoning fields (e.g., rationale, evidence, lim-
itations).

In total, the dataset comprises 14,250 atomic data points
(15 queries x 5 LLMs x 10 APIs x 19 attributes), forming a
unified basis for large-scale quantitative analysis of reason-
ing consistency. All benchmark scripts, analysis notebooks,
and aggregated datasets are publicly available on
https://github.com/aeris-lab/llmrank to support replication
and further research. The processed dataset was then used
for quantitative and semantic analysis, enabling consistent
comparison across LLM families and task domains.

Quantitative and Semantic Data Representation

All model outputs were flattened and merged into a compar-
ative analytical dataset using Python-based preprocessing in
Jupyter. Each record was annotated by model family, task
domain, and rank position, enabling pairwise and group-
level comparisons across LLMs. The evaluated models—
OpenAl ChatGPT-5, Anthropic Claude 4.5 Sonnet, Google
Gemini 2.5 Flash, DeepSeek, and Mistral Large 2—were se-
lected to represent both proprietary and open-source model
families widely used in multi-agent systems.

We computed a suite of complementary metrics capturing
different layers of inter-model consistency:

Set-Based Similarity

o Average Overlap (AO): Measures the mean cumulative
agreement depth between two ranked lists 4 and B up to
position k. At each rank depth d, the overlap between the
top-d items of both lists is computed and averaged across
all depths. Higher AO values indicate stronger overlap
throughout the ranking, not just in the top results. (Web-
ber et al., 2010).
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where:
* A,B - ranked lists of APIs produced by two LLMs;

* A1.4,B1.q - subsets of A and B containing top-d APIs;
* k - total ranking depth considered (here, k=10);
* |A1.dNBy.dl - count overlapping APIs up to depth d.

o Jaccard Similarity (J): Measures the proportion of shared
APIs between two ranked lists A and B. It computes the
ratio of the intersection to the union of the sets, repre-
senting how frequently both models identify the same
APIs as relevant, regardless of order (Jaccard, 1901;
Costa, 2021). Higher Jaccard values indicate greater re-
trieval overlap and shared coverage of the API space.
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where 4, B represent sets of APIs retrieved by LLMs for
same task; |[ANB| represents the number of APIs com-
mon to both models; |[AUB| represents the total number
of distinct APIs retrieved; and J(A, B) represents a range
from 0 (no overlap) to 1 (full overlap).

Rank-Sensitive Similarity

o Rank-Biased Overlap: Extends the Average Overlap
measure by incorporating a top-weighting parameter p
that emphasizes agreement near the top of ranked lists.
(Webber et al., 2010; Corsi et al., 2024). The score de-
cays geometrically with depth, giving higher importance
to early ranks—an essential property when top APIs
drive execution success. RBO captures both the extent of
overlap and how early in the ranking that overlap occurs.
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where A, B represent ranked lists of APIs from two
LLMs; Ai.4,Bi.a prefixes of the lists up to depth d;
k represents the maximum rank depth considered (here,
10); p represents the persistence or top-weighting param-
eter (0 < p < 1); |IA1.«NB.4l represent the number of
shared items among the top-d APIs; and RBO(4, B, p)
ranges from 0 (no overlap) to 1 (identical ranked lists).
o Kendall’s t (Tau) Rank Correlation: Measures the ordi-
nal agreement between two ranked lists by comparing
the number of concordant and discordant API pairs
(Kendall, 1938; McLeod et al., 2005). A concordant pair
preserves the same order across both lists, while a dis-
cordant pair inverts it. Higher t values indicate stronger
consistency in ranking structure, whereas negative val-
ues signal rank inversions. Unlike RBO, which empha-
sizes early ranks, t treats all positions equally and cap-
tures global rank correlation.
C-D
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where C represents the number of concordant pairs of
APIs (ordered identically in both lists); D represents the
number of discordant pairs (order reversed between
lists); n represents the total number of ranked items
(here, n=10); 0.5 n(n—1) represents the total number of



possible pairwise comparisons; and T ranges from —1
(complete inversion) to +1 (perfect agreement), with 0
representing random ordering.

Group Reliability and Internal Consistency

o Kendall’s W (Coefficient of Concordance): Extends
Kendall’s t to multiple raters (here, LLMs) and measures
the overall strength of agreement among all models.
(Kendall et al., 1939; Abdi et al., 2007). It quantifies how
consistently m models rank n items, producing a single
group-level reliability score. W=1 indicates perfect con-
sensus among models, while W=0 represents complete
independence of rankings.

n R)2
— 12 Zl;l(fl R) (5)
m2(n3 — n)
where R: represents the sum of ranks assigned to item
i across all m models; R™ represents the mean of all R;
values; m represents the number of raters or models
(here, 5 LLMs); n represents the number of ranked
APIs per task (10); and W is the coefficient of concord-
ance representing group-level ranking agreement.

o Cronbach’s a (Alpha): Measures the internal consistency
or reliability of a group of models treated as raters
(Cronbach, 1951; Cho et al., 2015). It assesses how
closely related their rankings are as a group—higher o
values indicate that models behave coherently when
evaluating API relevance. In this study, o complements
Kendall’s W by providing a variance-based measure of
inter-model cohesion.
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where k represents the number of items or models
(here, k=5); o:* represents the variance of each model’s
assigned relevance scores across APIs; a¢? represents the
total variance of the combined scores across all models;
and a is an internal consistency coefficient (0 < o < 1).
Values above 0.8 typically indicate strong reliability,
while lower values suggest inconsistency in model rea-
soning.

Uncertainty and Consensus Metrics

o Volatility Score (V(a)): Quantifies the dispersion of
ranks assigned to the same API ag; across all m models,
following the approach for measuring model uncertainty
in ranking (Cohen et al., 2021). A high V(a;) indicates
significant disagreement and high uncertainty among
models about an API's true rank/importance, while a low
V(a)) suggests stable confidence in its ranking.

V(aj) =Var (rankaj (m)) (7)

where aj represents the j API; rank,j(m) is the rank as-
signed by model m; Var(-) captures the spread of as-
signed ranks; m is the number of models; and V(a;) is
rank variance. To aggregate these uncertainties at the

query level, we define the Average Ranking Volatility
(ARV) as the mean of the Volatility Scores of all unique
APIs (Aq) for that query, providing an overall measure
of rank stability for the search domain:

1
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o Kemeny—Young Consensus Distance (Dx): Measures
the degree of global disagreement among all model rank-
ings (Kemeny, 1959; Young et al., 1978; Azzini et al.,
2020). Dk is the normalized distance between the ob-
served rankings and the consensus ranking that mini-
mizes total pairwise discord. It is practically computed
as the normalized difference between the average ranks
of all API pairs. Lower Dx values indicate strong cross-
model consensus, while higher values reflect fragmented
or contradictory ranking preferences.

De=1-— ! z (1_M> 9)
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where 1;, 1j represents the average ranks of APIs i and j
across all models; n number of ranked APIs (here, n=10);
Npairs=(0.5(n(n—1)) represents the total number of API
pairs compared; |ri—1;| represents the absolute rank dif-
ference between APIs i and j; Dk represents the consensus
distance ranging from 0 (perfect agreement) to 1 (maxi-
mal disagreement). In practice, Dk can be approximated
as 1-t, where T is the mean pairwise Kendall correla-
tion.

We next evaluate inter-LLM divergence across fifteen

API-discovery tasks and five model families.

Results and Evaluation

We evaluated inter-LLM API ranking divergence across 15
canonical tasks and five model families (ChatGPT-5,
Claude 4.5 Sonnet, Gemini 2.5 Flash, DeepSeek, and Mis-
tral-Large 2). Each model generated ten ranked APIs per
task, producing 750 ranked lists analyzed through our
benchmarking pipeline. Pairwise agreement was measured
using Jaccard, RBO, and Kendall’s t; group reliability via
Kendall’s W and Cronbach’s «; and reasoning uncertainty
through Volatility—Agreement regression and statistical
tests (ANOVA, Kruskal-Wallis, Levene).

Pairwise Agreement and Divergence Patterns

Table 1 summarizes the quantitative agreement across all
large language models (LLMs) and evaluation metrics—
Average Overlap (AO), Jaccard Similarity, Rank-Biased
Overlap (RBO, p = 0.9), and Kendall’s t—computed over
fifteen API discovery tasks. Figure 1 visualizes the pairwise
similarity matrix complementing Table 1, while Figure 2 ag-
gregates them into a cumulative view of similarity strength
by model pair. Collectively, these reveal a structured but
asymmetric reliability landscape in inter-LLM reasoning.



Metric Claude Claude Claude Claude | DeepSeek | DeepSeek DeepSeek Gemini Gemini ChatGPT
DeepSeek | Gemini | ChatGPT | Mistral Gemini ChatGPT Mistral ChatGPT | Mistral Mistral
Average | oo 0.56 0.46 0.56 047 053 0.50 047 0.40
Overlap
Jaccard 0.42 0.40 0.36 0.36 0.39 0.34 0.35 0.29 0.30
Rank-Biased | 59 036 0.29 037 030 0.36 032 031 0.26
Overlap
Kendall Tau 0.65 0.41 0.34 0.62 0.43 0.62 0.40 0.43 0.15

Table 1. Mean pairwise agreement scores across LLMs and metrics.

Across metrics, agreement remains moderate overall
(mean AO = 0.50, Jaccard = 0.36, RBO = 0.33, 1 = 0.45),
confirming that LLMs partially converge on retrieved APIs
but diverge in rank prioritization. The highest overall stabil-
ity occurs between Claude—DeepSeek (AO = 0.58, 1= 0.65),
followed by Claude—Mistral (AO = 0.56, t = 0.62) and
DeepSeek—Mistral (AO = 0.53, t = 0.62). Claude—Gemini
also shows high retrieval overlap (AO = 0.56) but lower
rank-order correlation (t = 0.41), indicating agreement in
discovery yet divergence in prioritization. In these pairs,
both overlap and ordering are strong, implying aligned rea-
soning heuristics and similar criteria for API relevance. The
T values above 0.60 indicate that over 60% of pairwise API
orderings are concordant—approaching the inter-annotator
reliability typically observed in information-retrieval bench-
marks.

A one-way ANOVA, Kruskal-Wallis, and Levene’s tests
confirmed no statistically significant differences across
model pairs for any metric (all p > 0.4). This supports that
inter-LLM variation arises from structured reasoning behav-
ior rather than random noise, forming a continuous reliabil-
ity gradient across models.

In contrast, Gemini—Mistral (t = 0.43) and ChatGPT—
Mistral (t = 0.15) show the weakest alignments. The latter
indicates near-random rank correlation—despite some over-
lap (AO = 0.40, Jaccard = 0.30)—as both differ sharply in
how they prioritize APIs. Such divergence likely stems from
differences in fine-tuning data and optimization goals rather
than task framing. Metric-specific patterns further explain
this heterogeneity.

Cross-Model Agreement Strength by Metric and LLM Pair
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Figure 1: Cumulative agreement across LLM pairs combining
AO, Jaccard, RBO, and Kendall’s t; peaks for Claude—
DeepSecek, dips for ChatGPT-Mistral.

» Average Overlap (0.40—0.58) captures shared discovery
space: models tend to identify roughly half of the same
APIs, consistent with partial semantic convergence.

 Jaccard Similarity (0.29-0.42) normalizes for set size,
revealing that beyond this shared core, each model still
introduces a distinct portion of the API space.

» Rank-Biased Overlap (0.26-0.38) drops significantly
relative to AO, confirming that agreement declines for
top-ranked items—the decisions most critical for exe-
cution in multi-agent systems.

» Kendall’s 7 (0.15-0.65) offers the clearest ordering sig-
nal: high-t pairs (> 0.6) show coherent ranking logic,
while low-t ones (< 0.3) reflect stochastic prioritization.

The combined metrics reveal a three-tier reliability hier-

archy based on joint thresholds of AO and Kendall’s t.

+ High-stability pairs: Claude—DeepSeek, Claude—Mis-
tral, and DeepSeek—Mistral—exhibit strong convergence
in both retrieval and ranking (AO > 0.53, t > 0.60).

* Moderate-stability pairs: Claude—Gemini, DeepSeek—
Gemini, Gemini—ChatGPT, DeepSeek—ChatGPT, and
Gemini—Mistral—show consistent overlap (AO = 0.47—
0.56) but weaker rank alignment (t = 0.40-0.43).

* Lower-stability pairs, Claude—ChatGPT and ChatGPT—
Mistral, fall below these thresholds (AO < 0.46, T < 0.35),
with both retrieval and order coherence breaking down.

This pattern shows a clustered reliability structure, with

Claude bridging proprietary models (ChatGPT, Gemini) and

open-source ones (DeepSeek, Mistral). Figure 1 underscores

this contrast—Claude pairs dominate the upper range, while

ChatGPT—Mistral anchors the lowest tier.

Domain-Level Agreement Patterns Across Tasks and Metrics
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Figure 2: Figure 2: Domain-level agreement across AO, Jac-
card, RBO, and Kendall t; structured tasks show higher con-
sistency, while open-ended tasks exhibit greater variability.



Domain-Level Reliability Trends

Following pairwise comparisons, Figure 2 extends the eval-
uation to the domain level, showing how reasoning con-
sistency varies across fifteen canonical task categories. Each
stacked bar aggregates the four normalized metrics (AO,
Jaccard, RBO, 1) per domain.

Structured, well-defined domains—such as Geocoding,
SMS, Speech-to-Text, and Weather—demonstrate the high-
est cumulative reliability (total =~ 2.1-2.4). These tasks pro-
vide clear functional constraints and consistent documenta-
tion patterns, enabling LLMs to converge on similar API
endpoints and ranking orders. For example, weather and ge-
ocoding APIs share predictable parameters (e.g., location,
units, coordinates), minimizing interpretive variability.

Conversely, semantically open or creative domains—AlI
Face Generator and Sentiment Analysis—show the weakest
overall agreement (total < 1.0). In these tasks, LLMs diverge
widely both in which APIs they retrieve and in how they
justify their selections. The extremely low RBO and 1 values
(£ 0.35) confirm that top-ranked APIs vary substantially, re-
flecting unstable reasoning heuristics when explicit task
constraints are absent.

Low- to moderate-stability domains—such as Health,
Payments, and Flight Tracker—exhibit partial convergence
(AO = 0.31-0.41) but weak rank consistency (t = 0.15—
0.46). Models tend to agree on the broad service category
yet differ in ranking emphasis—for instance, prioritizing
free versus commercial APIs or structured versus unstruc-
tured data sources.

Intermediate domains—including Music, Movie, and
Events—show higher stability (total = 2.1-2.25) than the
low group but remain slightly below infrastructure tasks.
These categories benefit from standardized media formats
and widely adopted API conventions, fostering more coher-
ent reasoning across models.

3D AO Similarity Landscape — Across Queries & LLM Pairs

AD Score

The average bar at the top of Figure 2 provides a concise
meta-summary, indicating that while the average collective
agreement across all tasks is approximately 2.0, high-stabil-
ity domains can score significantly higher (up to ~2.4). This
aligns with the moderate cross-pair correlations observed
earlier and underscores that inter-LLM reasoning variability
persists even in standardized task templates. These system-
atic variations suggest that model coordination should be
domain-adaptive—structured domains enable consistent
collaboration, while abstract domains may require consen-
sus filtering or selective routing among agents.

Cross-Metric Synthesis and Observations

Collectively, the quantitative results from Table 1 and Fig-
ures 1-2 establish that inter-LLM divergence is systematic,
domain-sensitive, and cluster-dependent. Proprietary mod-
els—ChatGPT, Claude, and Gemini—show moderate inter-
nal alignment, while open-source counterparts—DeepSeek
and Mistral—exhibit broader variability. Cross-model clus-
ters such as Claude—DeepSeek—ChatGPT achieve the high-
est overall stability (t~ 0.62—0.65), whereas ChatGPT—M is-
tral (t = 0.15) and Gemini—Mistral (t = 0.43) illustrate di-
vergent reasoning paths. The domain-level results further
confirm that reasoning coherence improves when external
structure constrains interpretation and declines when tasks
require subjective or creative inference.

From a systems perspective, these findings indicate that
reliable multi-agent orchestration cannot depend on naive
majority voting or pairwise consensus alone. Instead,
weighted consensus mechanisms that emphasize high-relia-
bility clusters (e.g., Claude—DeepSeek—ChatGPT) and
down-weight volatile domains can enhance coordinated de-
cision-making. This evidence-based mapping of reasoning
coherence offers a quantitative foundation for consensus
calibration and trust-aware orchestration in LLM-driven
multi-agent frameworks.

3D RBO Similarity Landscape — Acrass Queries & LLM Pairs

RBO Score

(b)
Figure 3. 3D similarity landscapes across domains. (a) Average Overlap shows shared API retrieval. (b) Rank-Biased Overlap (p = 0.9)
highlights rank volatility. Structured domains form peaks; open-ended ones show deeper valleys and divergence.



Similarity Landscape Analysis

To assess cross-model reliability, we visualize 3D similarity
landscapes using Average Overlap (AO) and Rank-Biased
Overlap (RBO) (Figures 3a-b). These topographical sur-
faces show agreement peaks and divergence valleys across
task domains. The AO landscape highlights structured tasks
(Weather, Speech-to-Text, Flight Tracker) with broad
agreement and creative domains (Al Face Generator, Senti-
ment Analysis) with lower overlap. Its smooth surface sug-
gests models share a common retrieval base despite differ-
ing rank priorities.

The RBO landscape (Figure 3b) shows sharper peaks and
troughs, reflecting stronger variation in rank-order stability.
High RBO regions coincide with structured domains, while
deeper troughs mark areas where LLMs disagree on API or-
dering despite partial overlap. Notably, pairs involving Mis-
tral and Gemini form consistently lower RBO regions, con-
firming that rank-sensitive disagreement is concentrated
among models with greater exploratory or generative vari-
ance.

Together, the two surfaces illustrate that inter-LLM relia-
bility is both domain-dependent and rank-sensitive: struc-
tured tasks promote consistent API retrieval, whereas sub-
jective or open-ended domains amplify ranking divergence
across models.

Rank-Depth Evolution of Model Agreement

To complement the 3D landscapes, Figure 4 illustrates how
Average Overlap (AO) evolves across rank depths for all
LLM pairs. Similarity peaks in the top-rank region (k < 3),
where models most strongly agree on the most salient APIs,
and gradually stabilizes near 0.5 as depth increases. The
narrowing £1 SD band indicates convergence in lower
ranks, suggesting that once peripheral APIs are reached,
outputs become more uniform despite early-rank
disagreement.

Claude—DeepSeek maintain the highest overlap (AO =
0.58), and Claude-Gemini shows high overlap (AO=0.56),
implying consistent retrieval preferences in these pairs.
Conversely, ChatGPT—Mistral shows the greatest volatility.

Average Overlap Evolution Across Rank Depths
(All 10 LLM pairs, Top-10 ranked APIs, averaged over queries)

similarity Score
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Figure 4: Evolution of Average Overlap across rank depths.

This trend reinforces the landscape findings: strong early-
rank alignment in structured tasks (e.g., Weather, Speech-
to-Text) and increasing divergence in creative or loosely de-
fined domains.

The findings indicate that inter-LLM variability is pri-
marily driven by a split between retrieval agreement and
rank dependency. While models share a common pool of re-
trieved items, their disagreement in prioritizing the top ranks
explains the majority of the observed divergence.

Stability and Consensus Analysis

To assess how consistently large language models (LLMs)
prioritize APIs across domains, we analyzed ranking vola-
tility and global consensus (Figures 5-6).

Ranking volatility (Figure 5) quantifies how much API
positions fluctuate across models for each domain. Struc-
tured tasks such as Weather, Speech-to-Text, and Events ex-
hibit the lowest variance (= 3—4), reflecting stable reasoning
and consistent prioritization. In contrast, open-ended do-
mains such as Sentiment Analysis, Health, and Al Face Gen-
erator show the highest volatility (> 7), revealing greater in-
terpretive diversity and model-specific sensitivity to prompt
formulation.

Volatility and consensus distance are inversely related,
confirming that greater dispersion directly translates into
weaker global agreement. The Kemeny—Young consensus
distance (Figure 6) aggregates all pairwise rankings into a
single consensus order to quantify overall alignment. Lower
distances (< 0.6) in tasks such as Geocoding and Speech-to-
Text reflect cohesive ranking behavior, whereas higher val-
ues (> 0.9) for Sentiment Analysis and Health indicate frag-
mented reasoning and limited agreement among LLMs.
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In combination, these analyses confirm that cross-model
stability is strongly domain-dependent—LLMs converge in
structured, data-driven contexts but diverge sharply in tasks
requiring subjective interpretation or semantic abstraction.
Taken as a whole, the findings reveal a structured reliability
landscape, where agreement patterns mirror the broader
trends discussed later on reasoning coherence and reliability
in multi-agent systems.

Discussion

The analyses provide a comprehensive view of how LLMs
diverge and converge when reasoning over identical API-
discovery tasks. Across all metrics, consistent patterns clar-
ify reliability limits. The most critical finding is the signifi-
cant rank instability: while models show moderate retrieval
overlap (Mean AO = 0.50), this drops sharply for top-ranked
items (Mean RBO ~ 0.33). This gap proves that models
agree on what APIs are relevant but strongly disagree on
which should be executed first. The results point to an
emerging taxonomy of agreement shaped jointly by domain
structure and each model’s internal ranking logic.

At the global level, the pairwise heatmap (Figure 1) and
summary table (Table 1) show moderate overall agreement,
with mean AO clustering around 0.50 and Jaccard around
0.36. These values indicate partial but not complete align-
ment: LLMs select overlapping API sets yet differ in fine-
grained ordering. The reliability landscape is defined by
clear clusters: the Claude-DeepSeek pair achieves the high-
est rank correlation (AO =~ 0.60, T = 0.65), forming a high-
trust cluster4. Conversely, the ChatGPT-Mistral pair exhib-
its near-random ranking (AO = 0.40, T = 0.15), representing
a persistent structural divergence5.

A one-way ANOVA and Kruskal-Wallis test found no
statistically significant differences across model pairs for
any metric (all p > 0.4), confirming that observed variations
in similarity are structural rather than random. This supports
the interpretation that inter-LLM divergence follows a con-
tinuous reliability gradient rather than discrete performance
clusters.

Figure 1 further confirms that correlation-based measures
(t) are generally higher than set-based ones (Jaccard), indi-
cating that inter-model disagreement is largely ordinal ra-
ther than categorical. While pairwise patterns outline aggre-
gate reliability, the domain-level view reveals how struc-
tural constraints drive convergence.

Figures 1 and 2 expose strong domain-specific variation.
Structured, data-driven tasks such as Weather, Speech-to-
Text, and Flight Tracker achieve the highest cumulative
similarity (total > 2.0 across metrics), reflecting clear func-
tional boundaries that limit interpretive variance. In con-
trast, open-ended tasks like Al Face Generator, Sentiment
Analysis, and Quotes yield the lowest combined similarity

(< 1.3), showing that creative reasoning amplifies diver-
gence. The composition plot indicates that AO contributes ~
31 % and 1~ 27 % of total similarity, underscoring that rank-
order stability rivals retrieval overlap in shaping reliability.

The 3D landscapes (Figures 3a—b) show peaks for struc-
tured tasks and valleys for abstract ones. The smoother AO
surface indicates greater stability in top-ranked APIs, align-
ing with cognitive patterns where LLMs agree on salient as-
sociations but diverge on marginal cases.

Volatility and consensus results (Figures 5-6) quantify
stability across domains. Low variance in Weather and
Speech-to-Text (02 =~ 3—4) reflects deterministic reasoning,
while high variance in Health and Sentiment (62 > 7) shows
sensitivity to sampling and phrasing. The Kemeny—Young
distance follows this trend: volatility above 7 yields dis-
tances > 0.9, confirming that dispersion weakens agreement.
These measures show domain structure as the key factor in
inter-LLM stability—models align on objective tasks but di-
verge on semantic or affective ones.

Beyond metrics, the findings guide multi-agent coordina-
tion. Reliable tool use—e.g., in planning or reasoning—re-
quires emphasizing stable clusters (Claude—DeepSeek—
ChatGPT) and de-emphasizing volatile ones. Metrics like
AO and Kemeny distance support this weighting, while high
disagreement reveals overfitting or bias (e.g., ChatGPT—
Mistral). Improving consistency demands aligned data, uni-
fied objectives, and systematic reliability benchmarking.

Overall, the study demonstrates that inter-LLM diver-
gence is structured rather than random. Similarities cluster
around well-defined tasks, while discrepancies arise system-
atically in ambiguous reasoning contexts. Improving cross-
model consistency will therefore require not only better-
aligned training data but also harmonized ranking objectives
and calibration strategies—reinforcing the importance of
systematic benchmarking for reliability-aware orchestration
in multi-agent systems.

Conclusion

This study introduced a unified framework for analyzing in-
ter-LLM divergence in API discovery and ranking across
fifteen tasks and five model families. Results show moder-
ate overall agreement (AO =~ 0.50, T = 0.45) but strong do-
main effects—structured tasks remain consistent, while
open-ended ones diverge. Combining overlap, correlation,
and consensus metrics reveals that reasoning stability de-
creases with abstraction and task complexity. These insights
guide domain-adaptive orchestration, emphasizing trust in
high-correlation clusters (t > 0.6) and verification in volatile
domains (e.g., Sentiment Analysis). Future work will extend
this framework to multimodal and temporal analyses, incor-
porating adaptive consensus mechanisms for dynamic
multi-agent coordination.
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