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ABSTRACT
In this work, we propose a pruning-based model compression
scheme, aiming at achieving an efficient model that has strength
in both accuracy and inference time on an embedded device envi-
ronment with limited resources. The proposed scheme consists of
(1) pruning profiling and (2) iterative pruning via knowledge distil-
lation. With the scheme, we develop a resource-efficient 2D pose
estimation model using HRNet and evaluate the model on NVIDA
JetsonNano with the Microsoft COCO keypoint dataset. Specifi-
cally, our compressed model obtains the fast pose estimation of
20.3 FPS on NVIDA JetsonNano, while maintaining a high accuracy
of 74.1 AP. Compared to the conventional HRNet model without
compression, the proposed compression technique achieves 33 %
improvement in FPS with only 0.4 % degradation in AP.
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1 INTRODUCTION
Recently, various applications and systems have utilized deep learn-
ing methodologies as solutions, and deep learning for pose esti-
mation is coming close to our daily life by commercialization, e.g.,
activity recognition and motion capture. Deep learning models for
pose estimation generally require a lot of computing power for
high accuracy. Thus, it is difficult for the models to be deployed in
resource-constrained devices such as IoT, mobile, and embedded
devices. To address the issue, several studies [1, 2] have investigated
lightweight models for pose estimation in resource-constrained de-
vices. However, these studies only focused on reducing the model
size while rarely focusing on optimizing the performance of pose
estimation on target devices.

In this paper, we present an iTerative pRuning-based modEl
comprEssion with profiliNg (TREEN) scheme for 2D single human
pose estimation, aiming to optimize not only inference time but
also accuracy in resource-constrained environments. For achieving
a lightweight model optimized on a target resource-constrained
condition, we specifically explore the procedure of pruning profiling
and iterative pruning with knowledge distillation (KD) methods.

1. The pruning profiling determines the backbone model by
evaluating the trade-offs between AP and FPS in a given
resource-constrained condition. It also determines two pa-
rameter settings required for the iterative pruning on the
backbone model. The two parameters such as the iterative
threshold and depth pruning priority confines the pruning
space to a low complexity range, while performing iterative
pruning.

2. Given the confined pruning space on the backbone model,
the iterative pruning efficiently performs width- and depth-
wise pruning to establish a lightweight yet high-performance
model. Each pruning step leverages KD to minimize the
performance degradation.

Through various experiments on the JetsonNano embedded
board, we demonstrate that the TREEN scheme can generate a
resource-efficient pose estimation model based on HRNet [3], show-
ing that the model achieves the fast pose estimation of 20.3 FPS
and maintains a high accuracy of 74.1 AP. Compared to the HRNet
model without the TREEN’s compression, our technique achieves
33 % improvement in FPS with only 0.4 % degradation in AP.

The rest of the paper is organized as follows. Section 2 and
Section 3 present related works and the overall architecture of
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Figure 1: The model compression scheme TREEN with pruning profiling and iterative pruning

TREEN. The pruning profiling and iterative pruning modules in
TREEN are detailed in Section 4 and 5, respectively. Then, Section
6 discusses the pose estimation performance by the TREEN-based
model.

2 RELATEDWORKS
To compress and accelerate a deep learning model, pruning is com-
monly used, which removes less important and redundant neurons
from a neural network. Pruning can reduce the model size and
shorten the inference time. As a large CNN model tends to be over-
parameterized [4], pruning for a CNN-based pose estimation model
is considered feasible in model compression. For pruning CNN
models, structure pruning [5, 6] are used with two types such as
filter pruning (width-wise) and layer-wise pruning (depth-wise). It
has been also proven that iterative pruning [7, 8] is more effective
than one-shot pruning for CNNs, as a pruned model can maintain
accuracy through fine-tuning procedures.

KD in computer vision transforms teachers’ features of images
such as attention [9], activation [10, 11], or loss [12] into effective
forms for students’ learning. Xu et al. [13] used KD to compress
existing 2D multi-person pose estimation models. Similarly, Wang
et al. [14] and Hwang et al [15] used KD to generate efficient models
for 3D pose estimation. Our work incorporates KD into iterative
pruning on pose estimation models.

3 OVERALL ARCHITECTURE
In this section, we introduce ourmodel compression scheme TREEN.
Figure 1 shows the architecture of TREEN where the pruning pro-
filing and iterative pruning modules are connected.

In the pruning profiling, a backbone model is first determined
according to the designed backbone score evaluated among the
backbone model candidates, given a target device resource con-
dition. Then, the pruning space parameters (iterative thresholds
(thw,d) and depth pruning priority (Ld)) are determined according
to the designed pruning score evaluated over pruned model can-
didates. Each pruning result is evaluated and scored according to
the trade-off between accuracy and inference speed achieved by
that pruning operation. The backbone model is then compressed

through the iterative pruning procedure of width-wise (depth-wise)
pruning, KD, and estimation.

1. Pruning: Two types of pruning performed sequentially with
obtained pruning space parameters

2. KD: Transferring knowledge of the backbone model to the
pruned model to minimize performance degradation

3. Estimation: Determining the optimal pruning iteration stage
by calculating the pruning score

4 PRUNING PROFILING
In this section, we describe the pruning profiling with the backbone
model and pruning space searches.

4.1 Backbone Model Search
To determine the most robust and high-performing model as our
backbone model, we define and utilize the backbone score. Specif-
ically, we consider the trade-off between accuracy and inference
speed of a model on a given resource-constrained condition. The
backbone score Sbone is defined as

Sbone = α ×
(
FPS − FPS

)
+ (1 − α) ×

(
AP −AP

)
(1)

where FPS and AP denote inference time and accuracy on the condi-
tion, respectively. α denotes the control parameter for the trade-off
between FPS and AP. In addition, (·) denotes the average value of
(·).

Table 1 presents the pose estimation performance of the back
model candidates evaluated on a sever and a JetsonNano embedded
board, where GFLOPs denotes the number of floating computations
in model inference. The performance metric definitions are given
in Section 6.1. We consider Hourglass [16], Simplebaselines [17],
and HRNet [3] as our backbone model candidates. As expected,
we observe that the large models generally obtain high accuracy
and slow inference. Specifically, the HRNet-w32 model outperforms
other models on JetsonNano, showing the highest AP value and fast
FPS. Furthermore, regarding the difference between FPSbase (FPS on
a Server) and FPS (FPS on JetsonNano), the HRNet models yield 66%
in degradationwhile the Simplebaseline andHourglass models yield
86 and 78%, respectively. The HRNet-w32 model yields the highest
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Table 1: Performance of the backbone model candidates

Model #Params GFLOPs FPSbase FPS AP Sbone

Hourglass-1 3.6M 4.1 96.6 21.0 66.5 1.23
Hourglass-2 6.7M 6.3 66.7 15.1 71.2 0.63
Hourglass-4 13.0M 10.7 41.5 8.7 73.0 -1.67
Simplebaselines-18 15.4M 5.8 150.8 22.5 66.0 1.73
Simplebaselines-34 25.5M 7.5 118.8 18.8 69.4 1.58
Simplebaselines-50 34.0M 9.0 104.6 14.0 70.5 -0.27
Simplebaselines-101 53.0M 12.4 73.7 10.0 71.3 -1.87
Simplebaselines-152 68.6M 15.8 56.0 8.0 72.0 -2.52
HRNet-w32 28.5M 7.1 33.9 15.0 74.4 2.18
HRNet-w48 68.6M 14.6 33.5 8.0 75.0 -1.02

Figure 2: Accuracy by different pruned layers

Sbone score (set to α =0.5). Therefore, we use the HRNet-w32 model
as our backbone model.

4.2 Pruning Space Search
To determine the pruning space parameter values such as the depth
pruning priority Ld and the iterative thresholds thw , thd , we eval-
uate both the impact of individual depth-wise pruning and (con-
ventional) depth-wise and width-wise pruning. The width- and
depth-wise pruning methods are explained in Section 5.1.

We first investigate which layers have less (or more) impact on
the performance upon the depth-wise pruning. Figure 2 presents
the accuracy of the backbone model, when the depth-wise pruning
is adopted only for an individual layer. The x-axis denotes the
location (index) of layers pruned. We observe that AP decreases
significantly for the layer of larger indices, e.g., from 21. As such, we
can prioritize the layers for depth-wise pruning in that removing
the backward layers is more critical. This is consistent that the
backbone model HRNet is structed with more parallel layers in
backward than forward ones. Given this observation, we sort the
layer indices in the order of being least influenced, and use them in
Algorithm 1 as input, depth pruning priority Ld .

We also analyze the pruning space of the backbone model by
depth and width side separately. Figure 3 presents the performance
by each pruning, and the first row corresponds to the width-wise
pruning space search and the other corresponds to the depth-wise

Figure 3: Profiling results of pruning

pruning space search. We evaluate the performance using FPS, AP
and Sprun . The metric Sprun is defined as

Sprun = α ×
(
APprun −APbone

)
+(1 − α) ×

(
FPSprun − FPSbone

)
(2)

where (·)prunand (·)bonedenote the performance of the pruned and
backbone models, respectively. We implement Algorithm 1 that
performs the width- and depth-wise pruning sequentially. In Figure
3 (a.1, b.1), we investigate the aspects of performance-complexity
relation, and find that the width-wise pruning shows large fluctu-
ation than the depth-wise pruning as the iteration continues. In
Figure 3 (a.2, b.2), Sprunvisualizes the trade-off, indicating the most
appropriate setting for the target environment. In Figure 3 (a.2),
Sprun is the highest at the ratio of 50% on the width side. In Figure
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3 (b.2), the layer index 9 shows the highest. We set the iterative
threshold thw , thd to the highest Sprun at each pruning side by
using the result of these pruning space searches, expecting that
Algorithm 1 can get higher Sprunat the iterative pruning process.

5 ITERATIVE PRUNINGWITH KNOWLEDGE
DISTILLATION

Algorithm 1 The procedure of TREEN
Models:M
Iterative thresholds thw , thd
List of priority layer indices Ld
/* From Profiling module */
thw , thd, Ld← Profiling(M)
i, j = 0
/* Width-wise Pruning */
while True do
WidthPruning(Mi, j )
Training(M ,Mi, j )
Sprun ← Estimation(Mi, j )

if ∆Sprun < 0 and Sprun > thw then
break

end if
i += 1

end while
/* Depth-wise Pruning */
while True do

DepthPruning(Mi, j , Ld[j] )
Training(M ,Mi, j )
Sprun ← Estimation(Mi, j )

if ∆Sprun < 0 and Sprun > thd then
break

end if
j += 1

end while
return M_(i,j)

5.1 Pruning
In the pruning stage of iterative pruning, the model weights are
progressively removed in the width- or depth-wise aspects. Mi, j
represent the compressed model obtained by i-th width- and j-th
depth-wise pruning iterations. The width-wise pruning removes
nonessential filters, rendering an effect of achieving regular sparsity.
At each iteration, the least nonessential filter is chosen according
to the lowest L1 loss value. The L1 loss for the m-th filter inMi, j is
computed by

Nw
m∑

k=1
|Wm,k | (3)

whereWm,k denotes the k-th weight value in the m-th filter, and
Nw
m denotes the total number of weight values in the m-th filter. In

our implementation, 10% of the whole filters are removed at each
iteration.

The depth-wise pruning is a sort of layer-wise structure pruning
that removes the whole layers in parallel. As the backbone model

(HRNet) consists of parallel blocks with various sizes layers, it is less
effective to apply general layer-wise pruning in terms of inference
speed. Thus, we use the depth-wise pruning to remove a set of layers
that are in parallel at j-th iteration. As the depth-wise pruningmight
cause unexpected accuracy degradation or structural disruption
issues, we exploit the depth pruning priority Ld (obtained by the
previous pruning profiling) to avoid such unpredictable results.

5.2 Fine-tuning via Knowledge Distillation
After the width- or depth-wise pruning, the weights of Mi, j are
updated by the previous iteration. According to the lottery ticket
hypothesis [18], fine-tuning a pruned model converges to high
accuracy with the initial weights of the original model. Thus, we
initialize Mi, j using the initial weights of the original model M .
In our implementation, approximately 120 epochs are required
for model convergence; that corresponds to 4 hours by our GPU
server. Experimentally, we confirm the accuracy approaches close
to the convergence after 30 epochs, so we normally conduct model
training up to 30 epochs. We also adapt KD for fine-tuning to
minimize degradation and earlier convergence for accuracy. Similar
to [19], our loss function for this fine-tuning is defined as

α × lKD + (1 − α) × lmse (4)

where lKD denotes loss between our prediction and the teacher
model’s prediction, lmse denotes loss between our prediction and
the ground truth labels, and α is set to 0.5.

5.3 Estimation
We evaluate allMi, j after training using Sprun in Eq. 2) which takes
account of FPS and AP. The iteration is continuously performed
until the following termination condition is satisfied

∆Sprun< 0 and Sprun > th (5)

where ∆Sprun denotes the change of Sprun, and th is thw or thd.

6 EVALUATION
In this section, we evaluate the performance of TREEN-based mod-
els in terms of accuracy AP and inference time FPS, and analyze
the effects of iterative pruning and KD.

6.1 Experiment Environment
We evaluate our models learned on the Microsoft COCO [20] key-
points 2017 dataset. We train the models on the train2017 set (57 K
images), validated on the val2017 set (5 K images), and evaluated
on the test-dev2017 set (20 K images). Here, we test the models on
resource-sufficient (Server) and resource-constrained (JetsonNano)
environments in Table 2. The computing power of the JetsonNano
board is about seven times lower than that of the server in terms
of the inference performance for ResNet-50.

For comparison, we use the following metrics: #Params (The
number of model parameters), FPSbase (The inference speed on the
server), FPS (The inference speed on JetsonNano), AP (The accuracy
on JetsonNano). Note that AP is computed over 10 OKSs (object
keypoints similarity in [21]) and APk represents the AP score for
OKS larger than k. We set k = {0.50, 0.55, . . ., 0.95}.
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Table 2: Test Environments

Environment CPU GPU Memory

Server Intel(R) Core(TM) i9-10940X NVIDIA 2080Ti 32 G
JetsonNano Quad-core ARM A57 128-core Maxwell 4 G

Table 3: Overall performance comparison (on JetsonNano with COCO test-dev2017)

Server JetsonNano
F PSbase F PS AP AP 50 AP 75 AR APM APL

DSPNet 14.8M 47.0 7.6 66.8 88.4 74.1 70.1 64.1 71.2
LPN-50 2.9M 73.0 15.2 59.4 84.3 65.4 67.1 56.6 65.9
LPN-101 5.3M 42.8 13.5 69.5 88.2 77.5 75.4 66.2 76.1
LPN-152 7.4M 28.0 11.9 67.5 88.0 74.6 73.6 64.2 74.1
EfficientPose-A 1.3M 104.1 20.4 66.5 87.0 74.3 72.5 63.1 73.3
EfficientPose-B 3.3M 84.7 12.4 71.1 89.1 79.0 76.7 67.4 77.9
EfficientPose-C 5.0M 80.2 11.3 71.2 89.1 79.0 76.9 67.5 78.1
TREEN 15.0M 34.9 20.3 74.1 89.9 81.2 79.6 70.3 81.1

6.2 Models in Comparison
For comparison, we implement several models including DSPNet
[22], LPN [23], and EfficientPose [24] for pose estimation, in addi-
tion to our model.

1. DSPNet: The EfficientNet [25] model is compressed by using
separable transposed convolution, channel-wise attention,
and attention mechanism. DSPNet is obtained by using the
EfficientNet-B2 model as a backbone model.

2. LPN: The Simplebaseline [17] model is accelerated by using
depth-wise convolution and attention mechanism. The mod-
els are categorized into LPN-x with respect to the backbone
model ResNet-x of the Simplebaseline model, e.g., ResNet-50,
ResNet-101, and ResNet-152.

3. EfficientPose: The MobileNet [26] model is compressed by
the differentiable NAS (Neural Architecture Search) accord-
ing to the pre-defined search space, i.e., EfficientPose-A,
EfficientPose-B, and EfficientPose-C. The model parameter
size increases from EfficientPose-A to EfficientPose-C.

4. TREEN: The HRNet [3] model with 32 channels is pruned
by our TREEN scheme.

6.3 TREEN Performance
The performance is evaluated on JetsonNano after TensorRT [27]
optimization is applied.

Table 3 represents the performance of TREEN and other models.
The TREEN model on JetsonNano obtains a fastest inference of
20.3 FPS in most cases, and it achieves a higher accuracy of 4.1 ∼
24.7 AP than others. The TREEN model also maintains the best
accuracy of 70.3 AP M and 81.1 AP L regardless of the object size of
input images. AP M and AP L denote AP over input images with
the medium (1,024 9,216 pixels) and large (9,126 1010 pixels) objects,
respectively. Furthermore, it shows the least drop of 14.3 FPS from
server to JetsonNano while the EfficientPose-A model experiences
the worst performance degradation of 83.7 FPS on JetsonNano. This

is consistent with our expectation since our TREEN scheme utilizes
the optimal backbone model and pruning space that are obtained
by pruning profiling.

To evaluate the individual effect of iterative pruning and KD, we
test the TREENone-shot model that uses only one-shot pruning, and
the TREENKD model uses KD and one-shot pruning. The TREENKD
model shows a higher accuracy of 0.4 AP than the TREENone-shot
model, and the TREEN model shows a higher accuracy of 0.6 AP
than the TREENKD model. As a result, the TREEN model has only
0.4 % accuracy degradation in comparison to the backbone HRNet
model.

7 CONCLUSION
In this paper, we presented the iterative pruning-based model com-
pression scheme and applied the scheme for pose estimation, con-
sidering resource-constrained device conditions where a real-time
pose estimation application runs. Specifically, we developed the
pruning profiling and iterative pruning; the pruning profiling deter-
mines the best backbone model and pruning space, and the iterative
pruning effectively compresses the backbone model according to a
given resource-constrained condition. We demonstrated that the
compressed pose estimation model by our scheme achieved the
fast inference of 20.3 FPS and high accuracy of 74.1 AP on NVIDA
JetsonNano.
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Table 4: The effect of iterative pruning and KD in TREEN

In TREEN Performance
Pruning KD FPS AP

HRNet - False 15.0 74.4
TREENone-shot One-shot False 20.3 73.1
TREENKD One-shot True 20.3 73.5
TREEN Iterative True 20.3 74.1
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