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Abstract. Synthetic data has recently reached a level of visual fidelity
that makes it nearly indistinguishable from real data, offering great
promise for privacy-preserving data sharing in medical imaging. How-
ever, fully synthetic datasets still suffer from significant limitations: First
and foremost, the legal aspect of sharing synthetic data is often neglected
and data regulations, such as the GDPR, are largley ignored. Secondly,
synthetic models fall short of matching the performance of real data,
even for in-domain downstream applications. Recent methods for image
generation have focused on maximising image diversity instead of fidelity
solely to improve the mode coverage and therefore the downstream per-
formance of synthetic data. In this work, we shift perspective and high-
light how maximizing diversity can also be interpreted as protecting nat-
ural persons from being singled out, which leads to predicate singling-out
(PSO) secure synthetic datasets. Specifically, we propose a generalisable
framework for training diffusion models on personal data which leads to
unpersonal synthetic datasets achieving performance within one percent-
age point of real-data models while significantly outperforming state-of-
the-art methods that do not ensure privacy. Our code is available at
https://anonymous.4open.science/r/Trichotomy-C02B.
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fusion Models

1 Introduction

Generative models have recently gained significant attention for their ability
to produce highly realistic images, sometimes even deceiving trained clinicians
[34]. This opens the possibility of generating synthetic datasets that can be
openly shared without the legal constraints of real medical data [33]. However,
this potential raises important legal and practical questions. Primarily, these
concern (1) the privacy of patients whose data were used during training and
(2) the performance of synthetic datasets on downstream tasks.

To address privacy, we consider the General Data Protection Regulation
(GDPR), one of the most comprehensive legal frameworks for data protection
worldwide. Its central goal is “to protect the fundamental rights and freedoms
of natural persons, and in particular their right to privacy, with regard to the
processing of personal data” [2]. Importantly, the GDPR applies only if the data
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Fig. 1. Illustration of PSO-secure dataset generation. A diffusion model, guided by
pre-computed features, generates synthetic images that preserve specific predicates
(e.g., color) while altering identity. A re-identification model ensures that identities are
not retained. As a result, the synthetic dataset maintains relevant attributes of the real
data without revealing personal information, making it non-personal under GDPR and
suitable for sharing.

in question are considered personal data. The regulation intentionally leaves
key terms, including personal, broadly defined to allow case-by-case interpreta-
tion. This flexibility enables courts and regulators to balance individual privacy
against legitimate public interests [1].

Recital 26 of the GDPR specifies that “the principles of data protection should
not apply to anonymous information”, meaning data that do not relate to an
identified or identifiable person [3]. Therefore, a central legal question becomes
whether a given dataset can be considered anonymous. Recital 26 further clarifies
that identifiability should be assessed in terms of all means reasonably likely to
be used” for identification, including the possibility of singling out an individual
[3]. This notion of singling out refers to the use of a combination of observable
predicates to uniquely identify a person. Such predicates might include attributes
like gender, medical conditions, height, or more context-specific features, for
example, the presence of a ring in a radiograph [8].

To formalize this legal concept, Cohen et al. [6] propose a mathematical
definition of singling out. They introduce the notion of Predicate Singling-Out
security (PSO-security) to describe datasets where such identification is impos-
sible. This framework defines a practical threshold for when synthetic data can
be considered legally anonymous under the GDPR. However, identifying all rel-
evant predicates a priori is infeasible in practice, making PSO-secure generation
a technically and legally challenging problem.

Even if privacy were fully assured, another fundamental issue remains: the
performance of synthetic data. Despite recent advances, generative models have
not yet been shown to match real data in downstream tasks. Their primary ap-
plications remain in augmentation, imputation, and balancing of real datasets
[12,37,40,27,29,7,5,39,26,41,36,34]. If synthetic images were truly equivalent to
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real ones, we would not require real data for model training. However, attempts
to fully replace real datasets with synthetic counterparts have consistently re-
sulted in performance degradation [9,33,28,31,19,14,17,13,10].

Recent research has therefore focused on evaluating synthetic data quality
using metrics beyond image fidelity. Some studies use re-identification models to
evaluate temporal consistency in videos [10]. Others emphasize sample diversity
as a core metric for synthetic dataset quality [17,10,11]. Despite its relevance,
diversity remains under-optimized in current generative approaches.
Contribution: We present a framework for generating synthetic datasets that
are both PSO-secure and competitive with real data in downstream tasks. Our
approach extracts learned predicates from training data and conditions gener-
ation on these predicates. By explicitly ensuring that the generated images do
not preserve the identity of training samples, we produce synthetic counterparts
that share predicates but differ in identity. As a result, singling out is no longer
possible, rendering the synthetic data PSO-secure under the GDPR framework.
We empirically demonstrate that our method outperforms the current state-of-
the-art in downstream performance. Furthermore, we show that models trained
exclusively on our synthetic data generalize better than those trained on real
data alone. The full pipeline is illustrated in Figure 1.

2 Related Work

Privacy-Preserving Techniques: Privacy preservation remains a critical chal-
lenge in image generation and has been addressed in several studies. Although
generative models are designed to avoid the direct replication of real samples,
recent work has shown that diffusion models may memorize and inadvertently
leak private information if not trained with care [33]. This raises serious con-
cerns for medical data sharing, where regulations such as HIPAA and GDPR
mandate strict privacy safeguards. A potential mitigation strategy involves us-
ing re-identification models trained to determine whether two samples originate
from the same individual [30]. Such models leverage subject labels in the training
data to perform re-identification, as demonstrated in [33,10]. While these meth-
ods address the technical aspect of privacy and incorporate filtering mechanisms
to enforce it, they do not account for the associated legal considerations.
Image Generation: Diffusion models have become the leading approach for im-
age generation following their reintroduction with improved noise schedules and
architectural enhancements [15]. A major breakthrough was the development of
latent diffusion models, which significantly reduced training and sampling times,
enabling large-scale commercialization [35]. Subsequent work further optimized
schedules and architectures to improve training stability [23,25]. The guidance
network is an auxiliary denoising model and has been shown to play a key role
in tuning and enhancing generation quality [16]. State-of-the-art methods now
employ a less-trained version of the same model to balance efficiency and per-
formance [24]. Despite these advances, class-conditional diffusion models often
suffer from limited diversity [11]. To address this, [11] introduced DiADM, a
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diversity-aware diffusion model guided by precomputed pseudo-conditional fea-
tures from a pre-trained network. Using an Inception network as a feature extrac-
tor, DiADM separates image quality from diversity, aiming to generate realistic
yet varied datasets. However, their evaluation does not consider downstream
task performance or privacy implications.

3 Methods

Fig. 2. Method illustraction: We adapt recently established diversity aware diffusion
models (DiADM) [11] to generate multiple images that share the same predicates ac-
cording to the SwAV feature encoder. A privacy filter ensures that the identity is not
preserved. Finally, the images are ranked according to how well they preserve the pred-
icates.

Formally, we aim to generate a synthetic dataset D′ of the same size and the
same label distribution as the real dataset D that achieves comparable perfor-
mance on a downstream task of predicting cd, while at the same time staying
PSO-secure. The labels shall only be used for downstream evaluation, but not
for conditioning, to remain generalizable to cases where no data is present. To
compare real and synthetic performance, we assume that sharing classifiers is
always possible, regardless of their train set. Classification models trained in
real data are called Cr(x), and those trained in synthetic data are called Cs(x).
In practice, hospitals often rely on locally trained models, limiting their ability
to benefit from external datasets. Our approach mimics the case, where PSO-
secure datasets can be shared across instituations. Therefore, we train a model
Cs(x) on the combined synthetic datasets to demonstrate the potential of using
synthetic datasets for the purpose of data sharing. To ensure privacy, we use a
re-identification filter which removes privacy violating samples following [10,33].
Image Generation: For image generation, we introduce a novel sampling strat-
egy, unique to DiADM-based models. DiADM leverages a knowledge database
to improve generative performance by conditioning on pre-trained feature vec-
tors. Inspired by this concept, we adopt a similar approach and observe that the
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method proposed by [11] applies the same principle to enhance sample diversity
through pseudo-conditional features, denoted as cs. Unlike [11], we use features
extracted by a pre-trained SwAV model [4], as we believe these visual features
better align with the reconstruction loss of the diffusion model.

Our approach allows us to take the pseudo-label cs of a real image x which was
used to generate the corresponding synthetic image x′ and assess memorization
by evaluating the prediction of P(x, x′). For each x ∈ D, we extract cs and
generate a batch of synthetic images D′

x of size b = 32. We then apply a privacy
filter to identify and remove any synthetic images that exhibit excessive similarity
to real training samples, ensuring that memorization is mitigated. Finally, we
select the most suitable synthetic sample by computing the alignment between
the real and generated images. This alignment ensures that the predicates of the
real image are equal to the predicates of the synthetic image. Specifically, we
choose the synthetic image that minimizes the binary cross-entropy (BCE) loss
between the predictions of Cr(x) on the real image x and the synthetic candidate
x′. Formally, this selection process is defined as:

x′ = arg min
x′∈D−

x

BCE(Cr(x), Cr(x′)) for D−
x := {x′|P(x, x′) = 0} (1)

where P(x, x′) = 0 ensures that knowing predicates cs does not imply knowledge
of the identity. In rare cases where all generated samples are flagged as privacy
risks, we reduce the classifier guidance strength by 0.1 and re-sample. The entire
sampling process is also visualised in Fig. 2.

4 Experiments

Dataset: We use MIMIC-CXR (CXR) [22], CheXpert (CXP) [20], and ChestX-
ray8 (NIH) [38] focussing on the eight shared disease classes. We use a train,
validation, test split of (70, 10, 20). For training and validation, we filter out
images with multiple pathology labels to enable a comparison with SOTA ap-
proaches like EDM-2 and EDM-2-AG.
Metrics: To assess the quality of image generation we use the Fréchet Inception
distance (FID) that compares features extracted from a pre-trained Inception
model between real and synthetic data. To assess diversity we use image retrieval
score (IRS), a recently proposed method, that treats image generation as an
image retrieval problem and measures how many images of the real dataset
can be retrieved using synthetic samples [11]. Finally, to assess utilization, we
train a downstream model for multi-class classification and report the AUCROC
score on real data, selecting the best model using a validation set. Specifically,
we use DenseNet-121 [18], following the approach suggested by [32]. We train
models on real data Cr(x) and compare them to models trained on synthetic data
Cs(x). All models are trained for 100 epochs with annealing learning rate. The
best checkpoint is chosen based on the validation loss on real data (mimicing
a scenario where one hospital has access to all synthetic data and one in-house
validation dataset).
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Image Generation Benchmark: For benchmarking, we use the recently es-
tablished EDM [25] and its autoguidance extension EDM-AG [24], along with
DiADM, a diversity-aware diffusion model designed to improve diversity over
the unconditional baseline [11]. We set the learning rate to 0.0003, apply decay
after 17,000 steps, and disable half-precision training due to observed inaccura-
cies. All models are trained for two days on four Nvidia H100 GPUs, selecting
the best EDM-2 and EDM-2 AG models based on FID. For compression, we
use the VAE from Stable Diffusion v2 (SDv2) without fine-tuning but compute
dataset-specific latent statistics following [25]. Conditional models are trained
for 83 886 steps, and unconditional models for 100 663 steps. DiADM does not
use guidance (equivalent to a strength of 1.0), but we observe that adding guid-
ance improves IRS and FID scores. We compare guidance strategies using an
unconditional model [25], an earlier checkpoint of the same model [24], and a
combination of both.
Results: First we investigate our proposed changes to the general architecture
and sampling of DiADM introduced in Section 3. Our best-performing model
uses a fully trained unconditional model with a guidance strength of 1.2. The
results are shown in Tab. 1. While previous methods exhibit a gap of more
than three percentage points in downstream AUCROC, our method reduces
this gap to below one percentage point compared to real data. Our approach
achieves the best performance in both image fidelity and diversity. Notably, it
even surpasses an IRS value of one, indicating that conditioning on cs is effective,
as the sampling exceeds the expected diversity of a perfect unconditional model.

Table 1. IRS and FID scores for D′ generated from different state of the art class-
conditional approaches without ensuring PSO-secure synthetic data. No augmentation
or balancing technique was used.

Name FID ↓ IRS∞,a ↑ Real-Snth Gap (AUCROC ↑)

EDM-2 (CVPR24) [25] 15.0 0.19 -4.49 (80.44)
EDM-2 AG (T/10) (Neurips24) [24] 14.7 0.23 -3.50 (81.49)
DiADM (CVPR25) [11] 8.9 0.33 -3.68 (81.31)

DiADM + SwAV (Ours) 5.0 1.58 -0.95 (84.04)

Real — — 84.99

Now, to investigate how our PSO-secure sampling impacts model perfor-
mance, we examine the results of downstream models trained on all three datasets
separately and on a combination of them. The results are shown in Tab. 2. We
observe that our model outperforms all others by a large margin. To statisti-
cally verify our results, we perform a ten-fold cross-validation using the training
dataset. Each generative model samples one synthetic dataset, D′, which is then
split according to the ten-fold cross-validation. We ignore subject overlap for
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Table 2. Generalization to new datasets. Data sharing (DS) means we combine
privacy-preserving synthetic datasets to a large synthetic dataset.

Test PSO-s. NIH CXR CXP

Train NIH CXR CXP NIH CXR CXP NIH CXR CXP

Real 85.41 81.78 79.62 77.07 82.71 76.98 74.18 76.23 79.99
Rec. (SDv2) 85.38 82.47 81.61 77.82 82.89 77.85 74.45 76.21 79.90

EDM-2 80.44 77.89 77.23 73.85 80.31 75.81 67.56 70.74 73.94
EDM-2 AG 81.49 73.17 76.24 74.90 76.12 74.46 68.21 70.59 75.02
DiADM 81.31 78.52 74.97 72.88 80.41 73.12 67.40 73.97 73.97

Ours ✓ 83.65 79.60 76.16 75.98 80.92 74.12 72.57 74.88 77.87

Ours + DS. ✓ 83.83 81.31 77.94

this experiment, which results in higher scores for real data. The results are pre-
sented in Fig. 3. Importantly, we see a significant improvement in our method
compared to all previously proposed methods. However, the model is still not
on par with real data. We believe this may be because pseudo-conditional labels
capture visual features well but do not fully represent the underlying distribution
of the diseases.

Fig. 3. Critical difference diagram of
different generation methods [21].

To better understand why this works
so well, we visualize the generated sam-
ples in Fig. 4 together with their privacy
prediction and their predicate alignment.
As we can see, all samples share key vi-
sual characteristics but differ in smaller
details such as ribs, support devices, or
heart shape. Clearly, the model does not
memorize entire samples, but the visual
appearance is very similar across all sam-
ples. While different memorization detec-
tion methods might lead to different results, the privacy filter we use achieves
a combined test performance of 96% AUCROC on re-identification, which is
much harder than simple memorization detection. Visual inspection also gives
us insight how this method ensures PSO-secure datasharing. Despite knowing all
predicates about the patient (such as gender, size, existence of support devices,
presence of a disease etc.) it is impossible to say which image comes from the
real patient.

Given the promising results of using domain-agnostic feature encoders for
pseudo-conditional generation we also experiment with using models trained on
medical data. Specifically, we experiment with using Cr(x) as feature extractor.
Suprisingly, the model does not properly learn to generate images from these
features. Both IRS and FID increase by a magnitude and the downstream per-
formance is worse than all the results presented in 1. We believe that this is
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Fig. 4. Two random examples of four generated samples using our proposed genera-
tion method. The left-most image shows the training image. All other images have a
boundary indicating the prediction of P(x, x′), with red indicating privacy issues. The
scores indicate the agreement of real and PSO-secure image according to 1.

because the pseudo-conditional features extracted by this domain-specific model
are visually not meaningful enough for the diffusion model.
Limitations: Using our framework could lead to synthetic datasets that are as
good as real datasets. However, we did not demonstrate how a generative model
can outperform real data, limiting the impact of our approach in typical applica-
tions of generative models, such as data augmentation. Additionally, the results
highly depend on the privacy filters. Nevertheless, we have successfully shown
that our filtering approach can generate images that are sufficiently different to
achieve generalization according to a privacy filter. Sampling time when using
filtering increases by a factor of b. We believe this is acceptable if it results in
privacy-preserving datasets.

5 Conclusion

We propose a method for generating synthetic, privacy-preserving datasets that
retain competitive downstream performance on image classification tasks com-
pared to real data. Our approach outperforms state-of-the-art class-conditional
methods across multiple metrics and datasets. To ensure privacy, we formalize
the concept of “singling-out”, i.e., the risk of identifying individuals based solely
on predicates, and explicitly prevent it, paving the way for a new paradigm in
secure data sharing.
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