
LEARNING TO GENERATE PREDICTOR FOR LONG-
TERM TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-term time series forecasting (LTSF) is a significant challenge in machine
learning with numerous real-world applications. Although transformer architecture
have shown promising performance in the LTSF task, recent research suggests that
they are not suitable for time series forecasting due to their permutation invariant
characteristic, and proposes a simple linear predictor which outperforms all existing
transformer architectures. However, the linear predictor is inflexible and cannot
reflect the characteristics of the time series for prediction due to its simple architec-
ture. In this paper, we introduce a novel Learning to Generate Predictor (LGPred)
framework, which generates a linear predictor adaptively to the given input time
series by leveraging time series decomposition. LGPred obtains representations
from the decomposed time series and generates a predictor suitable for the given
time series from these representations. Our extensive experiments demonstrate that
LGPred achieves state-of-the-art performance for both multivariate and univariate
forecasting tasks.

1 INTRODUCTION

Forecasting the future is one of the most important goal of the artificial intelligence. Time series
forecasting (TSF) has been extensively studied as a means of forecasting the future by using past
values to predict future values of a time series. The prediction capability of TSF models can be applied
to diverse real-world applications, such as weather forecasting, traffic control, energy management,
and financial investment. Among the time series forecasting methods, transformer-based approaches
have shown great successes in more challenging long-term time series forecasting (LTSF) problem.
Transformer (Vaswani et al., 2017) models have achieved great success in many areas such as
natural language processing (Devlin et al., 2018) and computer vision (Dosovitskiy et al., 2020),
demonstrating remarkable ability in capturing long-term dependencies in sequential data. Inspired by
the success of transformer models on sequential data, there have been many approaches to utilize
transformer architecture for the LTSF problem (Wu et al., 2021; Zhou et al., 2021; 2022). Among
them, Informer (Zhou et al., 2021) focuses on reducing computation cost of transformer to handle
long time series. On the other hand, Autoformer (Wu et al., 2021) and Fedformer (Zhou et al., 2022)
try to apply time series decomposition to better capture the characteristics of the time series.

Despite of its remarkable achievements on LTSF problem, the effectiveness of the transformer
architecture for LTSF remains controversial. A recent study (Zeng et al., 2023) argues that the self-
attention mechanism of transformer is unsuitable for time series forecasting due to its permutation-
invariant characteristics. Since each timestamp of time series contains only a small amount of
semantic information, it is crucial to capture temporal relationship among the consecutive timestamps
for time series forecasting, which is a lacking ability in self attention. In the paper, the authors
propose a simple baseline utilizing only a single linear layer as a predictor and show that the proposed
linear model outperforms the complicated transformer-based predictors. Nevertheless, the linear
predictor is also not an optimal solution. Due to its simplistic architecture, it is difficult for the
linear predictor to capture the characteristics of a dynamically changing time series and reflect them
in prediction. While the characteristics of the time series vary dynamically across different time
points, the linear model exclusively encodes the temporal dependencies commonly shared across
the entire time series within the fixed parameters of the linear layer, failing to capture the distinct
characteristics of each input time series individually. We experimentally confirm that the limitation

1

of linear predictor actually exists and the linear predictor can not learn to predict the time series with
diverse trends and seasonalities.

To address the limitation of linear predictor, we propose a new framework called Learning to Generate
Predictor (LGPred) which enables the dynamic adaptation for the linear predictor to a given time
series by adaptively generating a linear predictor based on the characteristics of time series. Learning
to generate model parameters is a useful technique that allows a model to adapt itself to a given task,
proven to be effective in fields such as meta learning (Munkhdalai & Yu, 2017; Rusu et al.) or language
modeling (Üstün et al., 2020; Mahabadi et al., 2021). Inspired by meta-learning models, each time
series is treated as an individual task, allowing the model to adapt to the specific characteristics of each
time series for more accurate predictions within our LGPred framework. LGPred adopts time series
decomposition to better capture and utilize the characteristics of the time series, dividing it into trend
and seasonality components. We extract features through an architecture suited to each component
and generate the predictor based on these features. Furthermore, to leverage shared information
across various time series and efficiently generate the predictor, we use a template predictor trained
across multiple time series with a bottleneck architecture, generating only the necessary part of
the linear predictor. Our extensive experiments demonstrate that LGPred achieves state-of-the-art
performance on six benchmarks. The contributions of the paper are summarized as follows:

• We introduce LGPred which generates the linear predictor adaptively to the given time series
to overcome the limitation of linear time series predictor which fail to predict time series
with varying trend and seasonality characteristics.

• To the best of our knowledge, our LGPred is the first attempt at adaptively generating a
predictor reflecting the characteristics of the each time series. This approach enables the
explicit adaptation of the model to characteristics of the each time series. We believe that our
methodology for adaptively generating predictors can be extended to various architectures
for time series prediction, further advancing the prediction capability.

• Our empirical studies show that proposed LGPred achieves the state-of-the-art performance
on six different benchmarks covering various real-world domains of disease, economics,
energy, traffic, and weather.

2 PRELIMINARY

In this section, we define the long-term time series forecasting (LTSF) problem and provide the
necessary notation to describe it. Given the time series with the number of features or channels m, let
xt ∈ Rm as the t-th timestamp of a time series. The objective of time series forecasting is to predict
future values of time series Xt:t+H = [xt, · · · ,xt+H−1] ∈ RH×m given the look-back window
Xt−L:t = [xt−L, · · · ,xt−1] ∈ RL×m where L is the look-back window size and H is the length of
forecasting horizon. When the number of variates m = 1, we refer the problem as a univariate time
series forecasting. On the other hand, when m > 1, we denote the problem as a multivariate time
series forecasting. LTSF refers the special case of time series forecasting with large T . In general,
time series forecasting with T > 48 is considered as LTSF. For simplicity, we denote lookback
window Xt−L:t and forecasting horizon Xt:t+H as X and Y in the following sections.

3 METHOD

In this section, we provide a detailed explanation of the LGPred model. The architecture of the
proposed LGPred framework is illustrated in Figure 1. LGPred is designed to identify the underlying
characteristics of a given time series and generate an appropriate predictor. We use a time series
decomposition technique and extract representations using networks tailored for each decomposed
component to better capture the unique characteristics of each time series. Using the extracted
representations of all components,the predictor suitable for a given time series is derived from the
predictor generator. The generated predictor is applied independently to all channels of the time series,
without considering any interdependence between them, similar to the linear predictor proposed in
(Zeng et al., 2023). To leverage common knowledge that can be shared for all time series, we utilize a
template predictor that is trained across various time series, with the generated predictor reflecting the
specific characteristics of the given time series. To cope with distribution shift and further enhance

2

Down-Project
Template
Weight

Up-Project
Template
Weight

Decomposition
Module

Template Bias 𝑏

𝑏!"#

Trend
Representation

Module

Seasonality
Representation

Module

Predictor Generator

𝑊!"#

Predictor Generation Path

Prediction Path

Figure 1: LGPred architecture overview. LGPred consists of decomposition module, representation
modules, predictor generator, and template predictor. The decomposition module decomposes the
input time series into trend and seasonality. Representation modules extract the corresponding
representation from each trend and seasonality. The predictor generator generates weight and bias
from the representations. Template predictor leverages the common knowledge shared across all time
series, and a weight generated by the predictor generator is applied between the down-project and
up-project weights of the template predictor.

the performance, we employ a normalization technique that subtracts the last value of the input from
the input time series and adds it to the output prediction, as proposed in (Zeng et al., 2023). Note
that we only apply normalization only for prediction, and using the original time series for predictor
generation. LGPred is trained using mean-squared error (MSE).

Decomposition module We use time series decomposition, a standard technique for time series
analysis (Cleveland et al., 1990), to easily identify the characteristics of the time series. Through this
process, a complex time series can be decomposed into more understandable components. We adopt
the commonly used time series decomposition scheme found in various prior works (Wu et al., 2021;
Zeng et al., 2023; Zhou et al., 2022). Specifically, we first decompose the trend T component using
a moving average kernel with the padding, and then use the remainder obtained by subtracting the
trend from the original series as the seasonality component S.

Representation module To extract representations from the trend and seasonality, we utilize networks
specifically designed to capture the characteristics of each component. Our design objective is to
employ a network that is tailored to the specific attributes of each component. Given that a trend
component encompasses long-term tendencies and a seasonality component encompasses repetitive
short-term patterns, a network dedicated to a trend should be capable of capturing global long-range
dependencies, while a network for a seasonality should emphasize short-term local dependencies.
For the trend component, we firstly explore three architectures that have the capability to capture
global dependencies: fully connected network, recurrent neural network (RNN), and transformer.
However, transformers are not well-suited for modeling sequential relationships in time series (Zeng
et al., 2023), and RNNs have limitations in effectively handling long-term dependencies. As a result,
we use a fully-connected network as a representation extraction module for trend component. We
believe that a fully-connected layer that allows for interaction between all timestamps is appropriate
for extracting representation from the trend component. However for multivariate time series, we also
need to consider the interaction between different features. To address the issue of interaction between
different features in multivariate time series, we draw inspiration from MLP-mixer (Tolstikhin et al.,
2021) and introduce another fully-connected layer that operates on the feature dimension. The left
side of Figure. 2 depicts the network architecture of the fully-connected block with our time and
channel fully-connected layers.

For the seasonality component, we employ a convolutional neural network which is designed to
capture the local patterns from the data by exploiting the locality properties of data (Krizhevsky et al.,
2017). Since the seasonality exhibits locality by containing repeated short-term patterns, the temporal
convolutional network is well-suited for effectively capturing the characteristics of the seasonality
component. Our assumption is that the temporal convolution network using the filter shared across

3

Dilated convolution block for seasonalityFully connected block for trend

Temporal convolution to capture local relation

Time
FC Layer

(6 → 6)

Channel
FC Layer

(3 → 4)
T T

Temporal interaction with time domain FC layer Feature interaction with channel domain FC layer

Time domain
(6 timestamps) Channel domain

(3 features)

Time domain
(6 timestamps) Channel domain

(4 features)

+Padding

Dilation ratio d=2

Dilated
1D Conv

Dilated
Conv

Dilated
Conv

Tim
e

dom
ain

(7 tim
estam

ps)

Channel domain
(4 features)

Figure 2: Network architecture of building blocks of trend (left) and seasonality (right) representation
module. The trend representation module uses fully-connected layers as building blocks, operating
in both the time and feature dimensions. The seasonality representation module uses a dilated
convolution layer as a building block. Both building blocks use the GeLU activation function to
introduce nonlinearity in each layer.

the time windows is useful for capturing the seasonal component, where similar patterns appear
repeatedly. We utilize a dilated temporal convolutional network that introduces gaps between kernel
elements of temporal convolutional networks shown on the right side of Figure. 2 to extract the
representation. Dilated convolution helps our seasonality module to capture the patterns with various
lengths. Note that for both trend and seasonality, our building blocks do not change the length of
feature; Only the number of channels changes as the feature passes through a block. The work of
representation modules can be expressed by:

HT = fT (T) HS = fS(S),
where fT denotes the network consists of fully-connected layers and fS denotes the network com-
posed by dilated convolution layers with increasing dilation ratios. The extracted representationsHT
andHS are in RL×drep , where drep is the dimension of representation.

Predictor generator We use the trend and seasonality representations, HT and HS , to compute
the weight and bias of the predictor. To generate these parameters, we first flattenHT andHS into
vectors with a length of L×drep. Since L×drep is usually very large in LTSF situation, we compress
the representations into the feature hT and hS with a length of dfeat.

hT = fT
feat(HT) hS = fS

feat(HS).

Here, fT
feat and fS

feat are fully-connected layers with GeLU activation. Using the compressed
features, we generate the weights and biases with the linear layers. The process can be displayed as:

W T
gen = gTW (hT) bTgen = gTb (hT)

WS
gen = gSW (hS) bSgen = gSb (hS),

where gTW and gSW are linear layers whose output size is the number of parameters of the weight,
while gTb and gSb are linear layers with an output size of H for the bias. The final weight and bias are
obtained by summing the weights and biases generated from the trend and seasonality, respectively.

Wgen = W T
gen +WS

gen bgen = bTgen + bSgen.

Template predictor Although the predictor generator in LGPred aims to leverage the specific
characteristics of a given time series, it is important to consider the commonalities that many time
series share. Therefore, we introduce a template predictor that is trained across the all time series in
the training set. Inspired by the adapter (Houlsby et al., 2019), we utilize the template predictor in
the form of a bottleneck architecture. Within the bottleneck architecture, we employ two template
predictor weights: down-project weight that projects the input series with length L into latent feature
with a smaller dimension of dlatent, and up-project weight which predicts the output series of length
H based on the latent feature. The weight Wgen from the weight generator is applied to the latent
feature obtained from the down-project weight, and the result is subsequently passed to the up-project
template weight. While Wgen is generated reflecting the characteristics of each specific time series,
the up-project and down-project template weights learn the common characteristics shared by various
time series. By utilizing the template predictor, we can leverage the knowledge shared across various
time series instead of generating a predictor containing the same information every time.

Another advantage of our template predictor is that it prevents the huge computational and memory
cost due to generate the entire predictor weight directly. In the case of directly generating the weight of

4

size L×H , the scalability of the predictor generation is usually limited by inefficiently huge number
of weight parameter, which involves training two linear weights gTW and gSW with approximately
133M parameters when L = 720, H = 720, and dfeat = 256, given by L×H × dfeat. When the
template predictor with the bottleneck architecture is adopted, on the other hand, we only generate
Wgen, a square matrix with dimensions dlatent×dlatent instead of generating the entire weight matrix
of size L×H . This reduction in the number of generated weight parameters leads to a significant
decrease in the cost of weight generation; the number of parameters in the weight generator gW is
reduced from L × H × dfeat to dlatent × dlatent × dfeat. For example, if we use dlatent = 128
in aforementioned L = 720, H = 720, dfeat = 256 situation, the number of parameters in weight
generator gW is reduced from 133M to 4M. We incorporate the bias of the template predictor by
adding it to the generated bias.

4 RELATED WORK

4.1 TIME SERIES FORECASTING

Time series forecasting has been an important task of artificial intelligence in that it could assist
important decision making processes by predicting future. To solve the TSF problem, various
approaches from statistical methods such as ARIMA (Ariyo et al., 2014; Box & Jenkins, 1968; Box
& Pierce, 1970) to deep learning methods (Bai et al., 2018; Challu et al., 2023; Lai et al., 2018;
Oreshkin et al., 2020; Salinas et al., 2020) have been proposed. Moreover, there have been recent
efforts to utilize the transformer architecture (Vaswani et al., 2017) that shows good performances in
sequence modeling for time series forecasting. The biggest challenge in applying the transformer to
time series forecasting is quadratic computational complexity of self-attention process, and many
works have tried to reduce the cost of transformer (Li et al., 2019; Liu et al., 2021; Zhou et al.,
2021). Although there have been many studies to utilize deep neural networks and transformer
architectures as above, one recent study argues that the transformer architectures are not suitable for
time series forecasting due to their permutation invariant characteristic (Zeng et al., 2023). Instead
of predictor with deep networks, they propose a simple baseline consists of a single linear layer
and show that the linear baseline outperforms all the deep learning based forecasting methods. In
contrast to the perspective of Zeng et al. (2023), PatchTST (Nie et al., 2022) presents a transformer-
based architecture that surpasses the efficacy of a linear predictor. PatchTST utilizes the temporal
information of time series by partitioning it into multiple subseries or patches, which serve as input
tokens for the transformer. TimesNet (Wu et al., 2022) divides time series into multiple subseries
characterized by varying temporal periods, and utilizes the convolution-based inception blocks to
effectively capture relationships both within and between these periods. DeepTime (Woo et al.,
2023) embraces the concept of implicit neural representation (INR) and meta learning to time series
forecasting. DeepTime introduces a novel differentiable closed form solver to facilitate efficient meta
learning for the INR model. TSMixer Chen et al. (2023) utilizes a mixer architecture Tolstikhin
et al. (2021) to leverage cross variate correlation in multivariate time series. Inspired by Zeng et al.
(Zeng et al., 2023), our LGPred incorporates the linear layer for time series forecasting. However,
instead of utilizing the fixed linear predictor for all time series, LGPred adaptively generates the linear
predictor tailored for the given time series. Moreover, similar to DeepTime, LGPred incorporates a
mechanism for adapting to the given time series. While DeepTime achieves this adaptation through
the mathematical resolution of a closed-form equation, our approach, LGPred, employs a distinct
network that generates the model parameters reflecting the distinct characteristics of each time series.
Our LGPred also bears some resemblence with TSMixer, in terms of utilizing the mixer architecture
to capture cross-variate correlation.

Meanwhile, there have been studies to utilize the time series decomposition technique with deep neural
networks. Autoformer (Wu et al., 2021) adopts time series decomposition to handle complicated
temporal pattern and proposes auto-correlation attention to utilize the repeating patterns for time
series forecasting. Fedformer (Zhou et al., 2022) utilizes mixture of experts decomposition to better
capture the characteristics of time series, and leverage frequency domain information using Fourier
enhanced block or wavelet enhanced block. ETSformer (Woo et al., 2022) integrates a time series
decomposition technique of exponential smoothing into the transformer architecture by introducing
exponential smoothing attention and frequency attention mechanisms. While these methods adopt
the decomposition through moving average kernel, there exists some other methods that decompose
the time series by passing through stacked learnable layers. N-BEATS (Oreshkin et al., 2020)

5

proposes a hierarchical doubly residual stacking method which conducts forecast of future time
series and backcast of input time series at the same time. The doubly residual architecture provides
hierarchical decomposition based on trained neural basis. Built upon N-BEATS, N-HiTS (Challu
et al., 2023) provides an interpretable decomposition via multi-rate data sampling on input time
series, and enhances forecasting performance by effectively combining the forecasting outputs from
different sampling rates using the hierarchical interpolation. Time series decomposition also produces
favorable outcomes when applied to linear predictor. DLinear is a variant of linear predictor applying
time series decomposition proposed in (Zeng et al., 2023), and the experiments show that DLinear
outperforms the pure linear predictor in most cases. Our LGPred relies on time series decomposition
as done in prior works (Wu et al., 2021; Zhou et al., 2022; Zeng et al., 2023). The prior works utilizes
the decomposed trend and seasonality directly for time series forecasting. However, we believe the
time series decomposition could be more useful in analyzing and understanding the characteristics of
time series rather than directly using the decomposed trend and seasonality as input for the forecasting
model. Therefore, we only use the decomposed time series to identify the characteristics of the time
series and generate a predictor based on them, instead of using them directly for prediction.

4.2 LEARNING TO GENERATE NETWORK

Learning to generate the parameters of the network based on the input is the way for the model to
obtain good flexibility and adaptability (Denil et al., 2013; Schmidhuber, 1992). Since Schmidhuber
(1992) first introduced the idea of learning to generating input-adaptive parameter, this methodology
has spread to various tasks (Jia et al., 2016; Ha et al., 2016). For computer vision tasks, DFN (Jia et al.,
2016) proposes a filter-generating network which adaptively generates the filters of a convolutional
layer. Hypernetwork (Ha et al., 2016) introduces the concept of genotype (the hypernetwork) and
phenotype (the main network) utilizing a small hypernetwork to generate parameters of main network.
The concept of hypernetwork has applied to various tasks such as visual reasoning (Perez et al., 2018),
zero-shot image classification (Jin et al., 2020), and language model (Üstün et al., 2020; Mahabadi
et al., 2021). Learning to generate the network parameters is also closely related to meta learning
(Munkhdalai & Yu, 2017; Oreshkin et al., 2018; Rusu et al.). These works utilize a few labeled
samples for generating the network parameter to adapt to the given task. For example, meta network
(Munkhdalai & Yu, 2017) generates the weights using the meta-learner for fast adaptation to the new
task. TADAM (Oreshkin et al., 2018) adopts the concept of FiLM (Perez et al., 2018) to generate the
conditioning parameters that modifies the feature extractor to obtain a task-adaptive representation.
LEO (Rusu et al.) generates the high-dimensional initial parameters of the output linear layer from
low dimensional latent feature. While the concept of learning to generate parameters are widely
applied to various tasks, our LGPred is the first work to adopt the concept of learning to generate in
time series forecasting. Specifically, our LGPred is inspired by Hyperformer (Mahabadi et al., 2021)
and Udapter (Üstün et al., 2020) in terms of utilizing the bottleneck architecture, and LEO (Rusu
et al.) in terms of generating the high-dimensional parameter from low-dimensional latent.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Dataset For experiments, we use following 6 datasets. 1) Electricity Transformer Temperature
(ETT) dataset (Zhou et al., 2021) contains the data from electricity transformer such as load and
oil temperature recorded every 15 minutes from July 2016 to July 2018. ETT dataset contains
two 15-minute-level datasets (ETTm1, ETTm2) and two hourly-level datasets (ETTh1, ETTh2). 2)
Electricity is a dataset of hourly electricity consumption of 321 different clients, collected from 2012
to 2014. 3) Exchange (Lai et al., 2018) collects the daily exchange rates of 8 different countries, from
1990 to 2016. 4) ILI dataset is a weekly record of number of influenza-like illness patients collected
by Centers for Disease Control and Prevention of United States, from 2002 to 2021. 5) Traffic dataset
is an hourly dataset of the road occupancy rates of 862 different points in San Francisco Bay area
freeways, collected by California Department of Transportation from 2015 to 2016. 6) Weather
dataset contains 21 meteorological indicators such as air temperature and humidity, recorded every
10 minutes for 2020 whole year. For all datasets, we split the dataset into training, validation, and test
set in chronological order, following standard split used in prior works (Wu et al., 2021; Zeng et al.,
2023; Zhou et al., 2021; 2022).

6

Implementation details We implement our method using Pytorch, and the experiments are conducted
on a single NVIDIA RTX 3090 24GB GPU. We train our LGPred with Mean Squared Error (MSE)
loss using Adam optimzier (Kingma & Ba, 2015). See appendix for detailed hyperparameter settings.

Baselines We compare our LGPred with six transformer-based methods of Informer (Zhou et al.,
2021), Autoformer (Wu et al., 2021), Fedformer (Zhou et al., 2022), ETSformer (Woo et al., 2022),
Non-stationary Transformer (Liu et al., 2022), and PatchTST (Nie et al., 2022), the linear predictor
combined with decomposition scheme (DLinear) (Zeng et al., 2023), INR-based method of DeepTime
(Woo et al., 2023), and convolution-based method of TimesNet (Wu et al., 2022). We evaluate the
forecasting models using Mean Squared Error(MSE) and Mean Absolute Error (MAE), following
previous works (Wu et al., 2021; Zeng et al., 2023; Zhou et al., 2021; 2022).

5.2 RESULTS

Table 1 shows the experiment results on multivariate long-term forecasting. Our LGPred shows
the best or the second best MSE and MAE performances in most cases. LGPred achieves the best
and second best performance for the MSE metric in 20 and 16 out of 36 experiments, and for the
MAE metric in 16 and 16 out of 36 experiments. In Table 2, univariate forecasting experiment
results on ETT dataset are displayed. In this experiment, LGPred achieves the best MSE and MAE
performances in all experiments except one case on the ETTh2 dataset.

Method LGPred PatchTST† TimesNet DeepTime DLinear ETSformer FEDformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.129 0.229 0.129 0.222 0.168 0.272 0.137 0.238 0.140 0.237 0.187 0.304 0.193 0.308 0.201 0.317 0.274 0.368

192 0.143 0.243 0.147 0.240 0.184 0.289 0.152 0.252 0.153 0.249 0.199 0.315 0.201 0.315 0.222 0.334 0.296 0.386
336 0.157 0.257 0.163 0.259 0.198 0.300 0.166 0.268 0.169 0.267 0.212 0.329 0.214 0.329 0.231 0.338 0.300 0.394
720 0.189 0.290 0.197 0.290 0.220 0.320 0.201 0.302 0.203 0.301 0.233 0.345 0.246 0.355 0.254 0.361 0.373 0.439

E
T

T
h1

96 0.373 0.395 0.370 0.400 0.384 0.402 - - 0.375 0.399 - - 0.376 0.419 0.449 0.459 0.865 0.713
192 0.408 0.417 0.413 0.429 0.436 0.429 - - 0.405 0.416 - - 0.420 0.448 0.500 0.482 1.008 0.792
336 0.431 0.430 0.422 0.440 0.491 0.469 - - 0.434 0.450 - - 0.459 0.465 0.521 0.496 1.107 0.809
720 0.442 0.460 0.447 0.468 0.521 0.500 - - 0.472 0.490 - - 0.506 0.507 0.514 0.512 1.181 0.865

E
T

T
h2

96 0.271 0.336 0.274 0.336 0.340 0.374 - - 0.289 0.353 - - 0.346 0.388 0.358 0.397 3.755 1.525
192 0.333 0.378 0.339 0.379 0.402 0.414 - - 0.383 0.418 - - 0.429 0.439 0.456 0.452 5.602 1.931
336 0.351 0.399 0.329 0.384 0.452 0.452 - - 0.448 0.465 - - 0.496 0.487 0.482 0.486 4.721 1.835
720 0.388 0.425 0.379 0.422 0.462 0.468 - - 0.605 0.551 - - 0.463 0.474 0.515 0.511 3.647 1.625

E
T

T
m

1 96 0.296 0.346 0.290 0.342 0.338 0.375 - - 0.299 0.343 - - 0.379 0.419 0.505 0.475 0.672 0.571
192 0.330 0.363 0.332 0.369 0.374 0.387 - - 0.335 0.365 - - 0.426 0.441 0.553 0.496 0.795 0.669
336 0.369 0.391 0.366 0.392 0.410 0.411 - - 0.369 0.386 - - 0.445 0.459 0.621 0.537 1.212 0.871
720 0.420 0.420 0.416 0.420 0.478 0.450 - - 0.425 0.421 - - 0.543 0.490 0.671 0.561 1.166 0.823

E
T

T
m

2 96 0.162 0.252 0.165 0.255 0.187 0.267 0.166 0.257 0.167 0.260 0.189 0.280 0.203 0.287 0.255 0.339 0.365 0.453
192 0.217 0.289 0.220 0.292 0.249 0.309 0.225 0.302 0.224 0.303 0.253 0.319 0.269 0.328 0.281 0.340 0.533 0.563
336 0.274 0.327 0.274 0.329 0.321 0.351 0.277 0.336 0.281 0.342 0.314 0.357 0.325 0.366 0.339 0.372 1.363 0.887
720 0.358 0.389 0.362 0.385 0.408 0.403 0.383 0.409 0.397 0.421 0.414 0.413 0.421 0.415 0.433 0.432 3.379 1.338

E
xc

ha
ng

e 96 0.078 0.195 - - 0.107 0.234 0.081 0.205 0.081 0.203 0.085 0.204 0.148 0.278 0.197 0.323 0.847 0.752
192 0.145 0.278 - - 0.226 0.344 0.151 0.284 0.157 0.293 0.182 0.303 0.271 0.380 0.300 0.369 1.204 0.895
336 0.219 0.348 - - 0.367 0.448 0.314 0.412 0.305 0.414 0.348 0.428 0.460 0.500 0.509 0.524 1.672 1.036
720 0.426 0.515 - - 0.964 0.746 0.856 0.663 0.643 0.601 1.025 0.774 1.195 0.841 1.447 0.941 2.478 1.310

IL
I

24 1.754 0.885 1.319 0.754 2.317 0.934 2.425 1.086 2.215 1.081 2.527 1.020 3.228 1.260 3.483 1.287 5.764 1.677
36 1.702 0.835 1.430 0.834 1.972 0.920 2.231 1.008 1.963 0.963 2.615 1.007 2.679 1.080 3.103 1.148 4.755 1.467
48 1.792 0.924 1.553 0.815 2.238 0.940 2.230 1.016 2.130 1.024 2.359 0.972 2.622 1.078 2.669 1.085 4.763 1.469
60 1.862 0.941 1.470 0.788 2.027 0.928 2.143 0.985 2.368 1.096 2.487 1.016 2.857 1.157 2.770 1.125 5.264 1.564

Tr
af

fic

96 0.355 0.269 0.360 0.249 0.593 0.321 0.390 0.275 0.410 0.282 0.607 0.392 0.587 0.366 0.613 0.388 0.719 0.391
192 0.376 0.279 0.379 0.256 0.617 0.336 0.402 0.278 0.423 0.287 0.621 0.399 0.604 0.373 0.616 0.382 0.696 0.379
336 0.393 0.292 0.392 0.264 0.629 0.336 0.415 0.288 0.436 0.296 0.622 0.396 0.621 0.383 0.622 0.337 0.777 0.420
720 0.430 0.301 0.432 0.286 0.640 0.350 0.449 0.307 0.466 0.315 0.632 0.396 0.626 0.382 0.660 0.408 0.864 0.472

W
ea

th
er 96 0.158 0.211 0.149 0.198 0.172 0.220 0.166 0.221 0.176 0.237 0.197 0.281 0.217 0.296 0.266 0.336 0.300 0.384

192 0.204 0.251 0.194 0.241 0.219 0.261 0.207 0.261 0.220 0.282 0.237 0.312 0.276 0.336 0.307 0.367 0.598 0.544
336 0.249 0.290 0.245 0.282 0.280 0.306 0.251 0.298 0.265 0.319 0.298 0.353 0.339 0.380 0.359 0.395 0.578 0.523
720 0.313 0.335 0.314 0.334 0.365 0.359 0.301 0.338 0.323 0.362 0.352 0.388 0.403 0.428 0.419 0.428 1.059 0.741

† For PatchTST, we choose the model showing the best MSE across PatchTST/64 and PatcthTST/42.

Table 1: Multivariate long-term forecasting MSE and MAE. Forecasting horizon H ∈
{24, 36, 48, 60} for ILI dataset and H ∈ {96, 192, 336, 720} for the other datasets. The look-
back window size L is set differently for each model, following the original setting of each model.
The best results and the second best results are highlighted in bold and underlined, respectively.

While the look-back window serves as a crucial factor in providing information about the time series,
the performances of the models has often been compared without accounting for variations in input
length. For example, In Table 1, Informer, Autoformer, and FEDformer employ an input length of
96, DLinear utilizes an input length of 336, and PatchTST/64 employs an input length of 512 in all

7

Method LGPred PatchTST† DeepTime DLinear ETSformer FEDformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.052 0.175 0.055 0.179 - - 0.056 0.180 - - 0.079 0.215 0.071 0.206 0.193 0.377
192 0.065 0.196 0.071 0.205 - - 0.071 0.204 - - 0.104 0.245 0.114 0.262 0.217 0.395
336 0.076 0.219 0.076 0.220 - - 0.098 0.244 - - 0.119 0.270 0.107 0.258 0.202 0.381
720 0.079 0.224 0.087 0.232 - - 0.189 0.359 - - 0.142 0.299 0.126 0.283 0.183 0.355

E
T

T
h2

96 0.125 0.268 0.129 0.282 - - 0.131 0.279 - - 0.128 0.271 0.153 0.306 0.213 0.373
192 0.162 0.320 0.168 0.328 - - 0.176 0.329 - - 0.185 0.330 0.204 0.351 0.227 0.387
336 0.173 0.337 0.171 0.336 - - 0.209 0.367 - - 0.231 0.378 0.246 0.389 0.242 0.401
720 0.217 0.376 0.223 0.380 - - 0.276 0.426 - - 0.278 0.420 0.268 0.409 0.291 0.439

E
T

T
m

1 96 0.026 0.121 0.026 0.121 - - 0.028 0.123 - - 0.033 0.140 0.056 0.183 0.109 0.277
192 0.038 0.149 0.039 0.150 - - 0.045 0.156 - - 0.058 0.186 0.081 0.216 0.151 0.310
336 0.051 0.172 0.053 0.173 - - 0.061 0.182 - - 0.084 0.231 0.076 0.218 0.427 0.591
720 0.067 0.196 0.073 0.206 - - 0.080 0.210 - - 0.102 0.250 0.110 0.267 0.438 0.586

E
T

T
m

2 96 0.062 0.183 0.065 0.186 0.065 0.186 0.063 0.183 0.080 0.212 0.067 0.198 0.065 0.189 0.088 0.225
192 0.088 0.227 0.093 0.231 0.096 0.234 0.092 0.227 0.150 0.302 0.102 0.245 0.118 0.256 0.132 0.283
336 0.114 0.260 0.120 0.265 0.138 0.285 0.119 0.261 0.175 0.334 0.130 0.279 0.154 0.305 0.180 0.336
720 0.144 0.303 0.171 0.322 0.186 0.338 0.175 0.320 0.224 0.379 0.178 0.325 0.182 0.335 0.300 0.435

† For PatchTST, we choose the model showing the best MSE across PatchTST/64 and PatcthTST/42.

Table 2: Univariate long-term forecasting MSE and MAE. Forecasting horizon H ∈
{96, 192, 336, 720} for all ETT variants. The look-back window size L is set differently for each
model, following the original setting of each model. The best results and the second best results are
highlighted in bold and underlined, respectively.

datasets except ILI. In case of DeepTime, ETSformer and our LGPred in Table 1, the input length is
treated as a hyperparameter.Table 3 presents the long-term forecasting performance assessed with a
fixed input length (36 for ILI, 96 for the others), averaged over four distinct forecasting horizons,
consistent with a recent paper of (Wu et al., 2022). In this experimental setup, our LGPred achieves
the best performances in 7 and 6 out of 9 datasets for MSE and MAE metric each, reaffirming the
effectiveness of LGPred even in scenarios where the input length is limited.

Method LGPred PatchTST TimesNet ETSformer DLinear FEDformer NSformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.188 0.279 0.204 0.291 0.192 0.295 0.208 0.323 0.212 0.300 0.214 0.327 0.193 0.296 0.227 0.338 0.311 0.397
ETTh1 0.438 0.429 0.447 0.442 0.458 0.450 0.542 0.510 0.456 0.452 0.440 0.460 0.570 0.537 0.496 0.487 1.040 0.795
ETTh2 0.370 0.395 0.377 0.403 0.414 0.427 0.439 0.452 0.559 0.515 0.437 0.449 0.526 0.516 0.450 0.459 4.431 1.729
ETTm1 0.398 0.402 0.391 0.402 0.400 0.406 0.429 0.425 0.403 0.407 0.448 0.452 0.481 0.456 0.588 0.517 0.961 0.734
ETTm2 0.280 0.329 0.283 0.327 0.291 0.333 0.293 0.342 0.350 0.401 0.305 0.349 0.306 0.347 0.327 0.371 1.410 0.810

Exchange 0.223 0.338 0.372 0.407 0.416 0.443 0.410 0.427 0.354 0.414 0.519 0.500 0.461 0.454 0.613 0.539 1.550 0.998
ILI 1.974 0.905 2.206 0.913 2.139 0.931 2.497 1.004 2.616 1.090 2.847 1.144 2.077 0.914 3.006 1.161 5.137 1.544

Traffic 0.469 0.325 0.481 0.304 0.620 0.336 0.621 0.396 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.764 0.416
Weather 0.259 0.290 0.258 0.280 0.259 0.287 0.271 0.334 0.265 0.317 0.309 0.360 0.288 0.314 0.338 0.382 0.634 0.548

Table 3: Multivariate long-term forecasting comparison with the fixed look-back window size.
MSE and MAE scores are averaged from 4 different forecasting horizons. Forecasting horizon
H ∈ {24, 36, 48, 60} for ILI dataset and H ∈ {96, 192, 336, 720} for the other datasets. Look-back
window size L is fixed to 36 for ILI dataset and 96 for the other datasets. The best results and the
second best results are highlighted in bold and underlined, respectively.

5.3 EXPERIMENT WITH SYNTHETIC DATA

We mention that the LGPred enables the dynamic adaptation for the linear predictor, which is an
inherent limitation of the linear predictor. To verify our claim, we conduct an additional experiment
with synthetic data generated with TimeSynth (Maat et al., 2017). We randomly generate the multiple
synthetic time series data with diverse trends and seasonalities, and train the predictor across the
various synthetic time series. For trend, we generate a sinusoidal time series with a fixed amplitude of
1.0, and a frequency sampled uniformly from low frequency range of [10−5, 10−4]. The seasonality is
generated as a combination of two sinusoidal time series with varying amplitudes sampled from range
of [0.02, 0.1] and frequencies sampled from the high frequency range of [0.01, 1]. For experiment,
we generate 20 different time series with varying trends and seasonalities. Each time series comprises
10,000 timestamps, partitioned into training, validation, and test sets in a 7:1:2 ratio. Since no noise
is added to our synthetic data, the linear predictor can easily forecast individual time series. However,
when presented with multiple time series exhibiting distinct characteristics, the linear predictor fails to
learn the characteristic of the multiple time series. In contrast, our LGPred is able to adapt to diverse
characterics of the time series, enabling accurate predictions across multiple time series. Experimental
results in Table 4 clearly show that Linear models fails in forecasting synthetic data with varying
characteristics, while LGPred successfully forecasts the synthetic data showing extremely low errors.

8

Figure 3: Visualization of prediction results from synthetic data experiments. The blue line indicates
the input look-back window, the orange line is the groundtruth of the forecasting horizon, and the
green line is the prediction result of each model.

In Figure 3, we visualize the forecasting result of Linear models and LGPred. Despite clear trends
and seasonalities in the input data, Linear models fail to predict the future values. LGPred, on the
other hand, provides precise future predictions, accurately identifying trends and seasonalities. From
this experiment, we can clearly see that our LGPred framework effectively addresses the limitation of
the Linear model, enhancing its adaptability to dynamic time series.

Method LGPred Linear DLinear NLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.00047 0.016 0.097 0.248 0.087 0.233 0.019 0.108
192 0.0019 0.031 0.125 0.284 0.122 0.280 0.055 0.167
336 0.0056 0.053 0.161 0.331 0.157 0.326 0.111 0.237
720 0.030 0.118 0.225 0.379 0.220 0.375 0.298 0.401

Table 4: Experiment results from synthetic data. Forecasting Horizon H ∈ {96, 192, 336, 720}.
Look-back window size L is equal to H . The best results are highlighted in bold

.

6 DISCUSSION

This paper proposes the LGPred framework as an innovative approach to generate network parameters
for time series forecasting. While our experiments demonstrate state-of-the-art performance, our
approach has some limitations. In this paper, we focus solely on linear predictors, which lack the
capability for multivariate forecasting, predicting different channels independently instead of utilizing
all available information. As a result, LGPred does not fully utilize the potential of multivariate
information, leaving room for further improvement in forecasting performance. We believe that to
overcome this limitation, it is necessary to explore the potential of our methodology by integrating it
with predictor architectures that support multivariate forecasting capabilities, and future works can be
made to leverage the LGPred framework in various architectures for better forecasting results.

7 CONCLUSION

In this paper, we introduce LGPred, a novel framework for time series forecasting that can generate a
predictor adaptively to the given time series. Proposed LGPred incorporates time series decompo-
sition and representation modules tailored to each component to capture the characteristics of time
series more effectively. We adopt a template predictor with a bottleneck architecture to efficiently
generate the predictor as well as leveraging the shared information across time series. Our extensive
experiments demonstrate that LGPred outperforms existing state-of-the-art forecasting methods on
six benchmark datasets. Moreover, we believe that our predictor generation method can be applied to
various forecasting architectures and can lead to valuable future works.

9

REFERENCES

Adebiyi A Ariyo, Adewumi O Adewumi, and Charles K Ayo. Stock price prediction using the
arima model. In 2014 UKSim-AMSS 16th international conference on computer modelling and
simulation, pp. 106–112. IEEE, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 17(2):91–109, 1968.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association, 65
(332):1509–1526, 1970.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur
Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. 2023.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning. Stl: A seasonal-trend
decomposition. J. Off. Stat, 6(1):3–73, 1990.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predicting
parameters in deep learning. Advances in neural information processing systems, 26, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. Advances
in neural information processing systems, 29, 2016.

Tian Jin, Zhun Liu, Shengjia Yan, Alexandre Eichenberger, and Louis-Philippe Morency. Language
to network: Conditional parameter adaptation with natural language descriptions. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pp. 95–104, 2018.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

10

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking
the stationarity in time series forecasting. Advances in neural information processing systems,
2022.

J. R. Maat, A. Malali, and P. Protopapas. Timesynth: A multipurpose library for synthetic time series
in python. 2017. URL http://github.com/TimeSynth/TimeSynth.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565–576, 2021.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International conference on machine
learning, pp. 2554–2563. PMLR, 2017.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information processing systems, 31,
2018.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2020.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In International Conference
on Learning Representations.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181–1191, 2020.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan van Noord. Udapter: Language adaptation
for truly universal dependency parsing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 2302–2315, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022.

11

http://github.com/TimeSynth/TimeSynth

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Deeptime: Deep time-
index meta-learning for non-stationary time-series forecasting. In International Conference on
Machine Learning. PMLR, 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In The Eleventh International
Conference on Learning Representations, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

12

A EXPERIMENTAL DETAILS

A.1 DATASET DESCRIPTION

In Table 5, we present a more comprehensive overview of the ECL 1, ETT 2, Exchange3, ILI4, Traffic5,
and Weather6 datasets utilized in our experiments. The "Length" column denotes the total number of
timestamps in each dataset, while the "Dimension" column indicates the number of features present
in the dataset. Additionally, the "Unit" column represents the time interval at which each timestamp
is collected. For the experiment, we divide each dataset into training, validation, and test sets by the
ratio of 7:1:2.

Dataset Length Dimension Unit
ECL 26304 321 1 Hour

ETTh1 17420 7 1 Hour
ETTh2 17420 7 1 Hour
ETTm1 69680 7 15 Minutes
ETTm2 69680 7 15 Minutes

Exchange 7588 8 1 Day
ILI 966 7 1 Week

Traffic 17544 862 1 Hour
Weather 52696 21 10 Minutes

Table 5: Dataset Description

A.2 HYPERPARAMETER DETAILS

Here, we present the hyperparameter settings of the proposed LGPred for the experiments discussed
in Section 5 of the main paper. We consider following 8 hyperparameters; the input sequence length
L, latent dimension size dlatent for Wgen, feature size dfeat for predictor generation, representation
dimension size dfeat, kernel size of convolution layers k in seasonality representation module,
number of layers NL in trend and seasonality representation modules, learning rate lr and dropout
ratio dr.

It is importrant to note that the same number of layers is used for both trend and seasonality represen-
tation modules. For regularization purpose, we apply dropout with a ratio dr on the generated weight
Wgen and bias bgen. In Table 6, we report the search range for each hyperparameter. Hyperparameter
tuning is performed using a grid search methodology, where we systematically explore the reported
search ranges for each hyperparameter. By evaluating the performance of the model using the Mean
Squared Error (MSE) metric, we identify the hyperparameter set that achieves the best MSE score for
each experiment. This process allows us to optimize the model’s performance and select the most
suitable hyperparameters for our experiments.

B ADDITIONAL EXPERIMENT RESULTS

B.1 ABLATION STUDY

In this section, we conduct an ablation study to investigate the individual contributions and significance
of the component modules within our LGPred framework. The study involves examining the
effects of the decomposition module, representation module, and template predictor. First, to
ablate decomposition module, we evaluate the variant of LGPred generating the predictor using the
representation obtained from the original input time series. This variant utilizes the original time

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://github.com/zhouhaoyi/ETDataset
3https://github.com/laiguokun/multivariate-time-series-data
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
5https://pems.dot.ca.gov/
6https://www.bgc-jena.mpg.de/wetter/

13

Hyperparameter Range
General ILI

Sequence Length L {96, 192, 336, 720} {24, 36, 48, 60, 104}
Latent Dimension dlatent {16, 32, 64, 128, 256} {8, 16, 32, 64}
Feature Dimension dfeat {32, 64, 128, 256, 512, 1024}

Representation Dimension drep {4, 8, 16, 32, 64, 128, 256, 512}
Convolution kernel size k {3, 5, 7, 9, 11}

Number of Layers NL {1, 2, 3, 4, 5}
Learning Rate lr {10−2, 10−3, 3× 10−4, 10−4, 3× 10−5, 10−5}
Dropout Ratio dr {0.0, 0.1, 0.2, 0.3, 0.4}

Table 6: Ranges of hyperparameters in LGPred

series as input for both the trend and seasonality representation modules. Second, to investigate
the contribution of the representation module, we isolate the representation module and directly
generate predictors from the decomposed trend and seasonality components using the predictor
generator. Lastly, we analyze the influence of the template predictor by generating a full predictor
using the predictor generator, thereby evaluating its effects. Table 7 displays the results of ablation
experiments, with the DLinear baseline results. From the experiment results, one can observe that
all the components play an important roles in forecasting performance. Notably, the removal of
the representation modules results in a significant degradation of performance, highlighting the
importance of obtaining proper representations for effectively capturing the characteristics of a time
series. Regarding the impact of the decomposition module and template predictor, our ablation
experiments demonstrate varying effects across different datasets. While the decomposition module
exhibits a more pronounced influence in enhancing performance compared to the baseline for the
Exchange and Traffic datasets, the template predictor proves to be more significant in the ILI and
Weather datasets.

Dataset Electricity Exchange ILI Traffic Weather
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear 0.203 0.301 0.643 0.6011 2.368 1.096 0.466 0.315 0.323 0.362
LGPred w/o D 0.201 0.296 1.132 0.796 1.790 0.926 0.630 0.442 0.323 0.343
LGPred w/o R 3.065 1.329 1.729 1.701 2.408 1.104 6.277 1.304 0.507 0.447
LGPred w/o T 0.201 0.300 0.540 0.564 3.738 1.306 0.465 0.324 0.334 0.352

LGPred 0.189 0.290 0.387 0.493 1.549 0.853 0.430 0.301 0.313 0.335

Table 7: Ablation studies for component modules of LGPred on multivariate long-term forecasting.
Forecasting horizon H = 60 for ILI dataset and H = 720 for the other datasets. D, R, and T
denotes decomposition module, representation module, and template predictor. The best results are
highlighted in bold.

In order to examine the impact of each decomposed component time series in LGPred, we further
conduct another ablation experiment. In Table 8, the performance of LGPred generating predictors
using either only the trend or only the seasonality component, is evaluated and presented. Our findings
reveal that the contributions of the different components primarily depend on the characteristics of
the dataset. For instance, in the ECL dataset where a clear trend is absent and seasonal patterns are
prominent as illustrated in Figure 4, LGPred utilizing only the seasonality component outperforms
LGPred utilizing the trend component. Conversely, in the Exchange dataset characterized by a distinct
tendency and low periodicity as depicted in Figure 4, LGPred employing only the trend component
exhibits better performance than LGPred using seasonality component.

Dataset Electricity Exchange ILI Traffic Weather
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

LGPred Trend only 0.209 0.302 0.425 0.506 2.189 1.058 0.444 0.317 0.320 0.340
LGPred Seasonality only 0.191 0.290 0.999 0.757 1.897 0.964 0.470 0.318 0.319 0.341

LGPred 0.189 0.290 0.387 0.493 1.549 0.853 0.430 0.301 0.313 0.335

Table 8: Ablation studies for decomposed component time series on multivariate long-term forecasting.
Forecasting horizon H = 60 for ILI dataset and H = 720 for the other datasets. The best results are
highlighted in bold.

14

Figure 4: Visualization of ECL (left) and Exchange (right) datasets

B.2 APPLYING LGPRED TO EXISTING FORECASTING MODELS

In Section 3 of main paper, we introduce the LGPred framework, which dynamically generates a linear
predictor tailored to the input data. While the generation of the linear predictor alone achieves state-of-
the-art forecasting performance, the efficacy of the proposed LGPred framweork is not limited to the
linear predictors only. Given that the fully-connected layer serves as a fundamental component widely
employed in numerous forecasting models, our LGPred framework can be easily integrated with
existing forecasting models to enhance their forecasting capabilities. To demonstrate the applicability
of LGPred, we incorporate it into two state-of-the-art forecasting models, PatchTST (Nie et al., 2022)
and TimesNet (Wu et al., 2022). PatchTST utilizes a transformer backbone for feature extraction
and employs a linear head for final forecasting. We apply LGPred into PatchTST by generating the
final linear head using LGPred. On the other hand, TimesNet conducts prediction from the input
window to the output horizon at the first fully-connected predictor, followed by a refinement step
using TimesBlocks designed with Inception blocks. In the case of TimesNet, we apply our LGPred by
generating the first predictor. The performance comparison between the original forecasting models
and the combinations with LGPred is presented in Table 9, utilizing official implementation codes,
original scripts and hyperparameters provided by the authors 78. For PatchTST, the combination with
LGPred yields performance levels similar to the base model. However, in experiments with a long
horizon (H = 720), the combined model clearly outperforms the base PatchTST. On the other hand,
when integrated with TimesNet, LGPred consistently enhances the performance of the base model.
Particularly in the Exchange dataset, the combination with LGPred reduces the Mean Squared Error
(MSE) by approximately 20% in H = 192 (0.240 → 0.185, -22.92%), H = 336 (0.362 → 0.296,
-18.23%), and H = 720 (0.930→ 0.741, -20.32%) cases.

Method PatchTST LGPred+PatchTST TimesNet LGPred+TimesNet
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 96 0.130 0.222 0.129 0.228 0.168 0.272 0.163 0.267

192 0.148 0.240 0.145 0.244 0.189 0.291 0.172 0.275
336 0.165 0.259 0.160 0.261 0.205 0.306 0.186 0.290
720 0.210 0.298 0.186 0.283 0.214 0.313 0.213 0.311

E
xc

ha
ng

e 96 - - - - 0.105 0.235 0.093 0.218
192 - - - - 0.240 0.356 0.185 0.312
336 - - - - 0.362 0.438 0.296 0.394
720 - - - - 0.930 0.734 0.741 0.660

Tr
af

fic

96 0.365 0.250 0.369 0.268 0.589 0.315 0.589 0.320
192 0.383 0.258 0.385 0.270 0.616 0.323 0.607 0.325
336 0.396 0.264 0.397 0.286 0.634 0.340 0.630 0.333
720 0.435 0.287 0.428 0.306 0.660 0.350 0.652 0.350

W
ea

th
er 96 0.150 0.198 0.147 0.196 0.170 0.220 0.163 0.218

192 0.196 0.242 0.193 0.241 0.226 0.265 0.214 0.259
336 0.250 0.284 0.243 0.286 0.281 0.304 0.268 0.300
720 0.318 0.335 0.312 0.333 0.359 0.354 0.340 0.348

Table 9: Multivariate long-term forecasting MSE and MAE comparison between base forecasting
models and LGPred-integrated forecasting models. Forecasting horizon H ∈ {96, 192, 336, 720}

.

7https://github.com/yuqinie98/PatchTST
8https://github.com/thuml/TimesNet

15

Figure 5: Visualization of prediction results using modified trends with increasing (2nd row) and
decreasing (3rd row) tendency on ECL (left) and Exchange (right) datasets

B.3 EXPERIMENT WITH MODIFIED TREND

In the main paper, we argue that the proposed LGPred framework can reflect the characteristics of
the dynamically changing time series to prediction. To validate our claim, we conduct experiments to
assess the capabilities of LGPred by introducing modified trends or seasonality to the representation
modules and observing the resulting impact on predictions. Among trend and seasonality, we choose
to focus on trend as it allows for a clearer demonstration of how modifications affect predictions.
The results of our experiments on the ECL and Exchange datasets, involving two distinct types of
modified trends (one increasing and the other decreasing), are presented in Figure 5. In the case of
ECL dataset where the LGPred with original trend yields a relatively flat prediction, we observe that
introducing an increasing trend leads to an upward prediction, while injecting a decreasing trend
results in a downward prediction. For Exchange dataset, the prediction with original trend descends
at first and starts to rise at the end. In this case, incorporating an increasing trend induces an earlier
ascent, whereas employing a decreasing trend prolongs the monotonous descent until the end. These
results affirm that the proposed LGPred is able to effectively capture the characteristics of the time
series and reflect them in the prediction process.

B.4 FULL RESULTS OF TABLE 3

In Table 10, we display the full results of multivariate long-term forecasting experiments with fixed
look-back window size. We can see that our LGPred achieves the best performances in 21 and 20
cases out of 36 experiments for MSE and MAE metric each, reaffirming that our LGPred performs
better than the baselines such as PatchTST and TimesNet.

B.5 RANDOM CONTROL EXPERIMENTS

In the main paper, we report the experiment results measured with the fixed random seed. To
verify the robustness of our LGPred against randomness, we conduct additional experiments with 3
different seeds. Table 11, shows the experiment results on multivaraite long-term forecasting. We
display the mean and the standard deviation of MSE and MAE scores, calculated from 3 experiments
with different random seeds. The results confirm that proposed LGPred shows good performances
regardless of initialization.

B.6 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we analyze proposed LGPred to figure out which hyperparameter affects the perfor-
mance of LGPred. We conducts an experiments with 4 hyperparameters related to prediction and
predictor generation; sequence length L, latent dimension dlatent, representation dimension drep,

16

Method LGPred PatchTST TimesNet ETSformer DLinear FEDformer NSformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty

96 0.167 0.257 0.181 0.271 0.168 0.272 0.187 0.304 0.197 0.282 0.193 0.308 0.169 0.273 0.201 0.317 0.274 0.368
192 0.174 0.267 0.187 0.276 0.184 0.289 0.199 0.315 0.196 0.285 0.201 0.315 0.182 0.286 0.222 0.334 0.296 0.386
336 0.185 0.280 0.204 0.292 0.198 0.300 0.212 0.329 0.209 0.301 0.214 0.329 0.200 0.304 0.231 0.338 0.300 0.394
720 0.224 0.313 0.245 0.325 0.220 0.320 0.233 0.345 0.245 0.333 0.246 0.355 0.222 0.321 0.254 0.361 0.373 0.439
Avg 0.188 0.279 0.204 0.291 0.192 0.295 0.208 0.323 0.212 0.300 0.214 0.327 0.193 0.296 0.227 0.338 0.311 0.397

E
T

T
h1

96 0.381 0.393 0.376 0.395 0.384 0.402 0.494 0.479 0.386 0.400 0.376 0.419 0.513 0.491 0.449 0.459 0.865 0.713
192 0.431 0.421 0.425 0.427 0.436 0.429 0.538 0.504 0.437 0.432 0.420 0.448 0.534 0.504 0.500 0.482 1.008 0.792
336 0.470 0.441 0.460 0.447 0.491 0.469 0.574 0.521 0.481 0.459 0.459 0.465 0.588 0.535 0.521 0.496 1.107 0.809
720 0.469 0.461 0.527 0.498 0.521 0.500 0.562 0.535 0.519 0.516 0.506 0.507 0.643 0.616 0.514 0.512 1.181 0.865
Avg 0.438 0.429 0.447 0.442 0.458 0.450 0.542 0.510 0.456 0.452 0.440 0.460 0.570 0.537 0.496 0.487 1.040 0.795

E
T

T
h2

96 0.289 0.336 0.291 0.342 0.340 0.374 0.340 0.391 0.333 0.387 0.358 0.397 0.476 0.458 0.346 0.388 3.755 1.525
192 0.366 0.384 0.377 0.398 0.402 0.414 0.430 0.439 0.477 0.476 0.429 0.439 0.512 0.493 0.456 0.452 5.602 1.931
336 0.406 0.420 0.414 0.427 0.452 0.452 0.486 0.479 0.594 0.541 0.496 0.487 0.552 0.551 0.482 0.486 4.721 1.835
720 0.418 0.438 0.424 0.443 0.462 0.468 0.500 0.497 0.831 0.657 0.463 0.474 0.562 0.560 0.515 0.511 3.647 1.625
Avg 0.370 0.395 0.377 0.403 0.414 0.427 0.439 0.452 0.559 0.515 0.437 0.449 0.526 0.516 0.450 0.459 4.431 1.729

E
T

T
m

1

96 0.345 0.369 0.339 0.372 0.338 0.375 0.375 0.398 0.345 0.372 0.379 0.419 0.386 0.398 0.505 0.475 0.672 0.571
192 0.352 0.377 0.369 0.387 0.374 0.387 0.408 0.410 0.380 0.389 0.426 0.441 0.459 0.444 0.553 0.496 0.795 0.669
336 0.413 0.412 0.397 0.405 0.410 0.411 0.435 0.428 0.413 0.413 0.445 0.459 0.495 0.464 0.621 0.537 1.212 0.871
720 0.480 0.449 0.459 0.443 0.478 0.450 0.499 0.462 0.474 0.453 0.543 0.490 0.585 0.516 0.671 0.561 1.166 0.823
Avg 0.398 0.402 0.391 0.402 0.400 0.406 0.429 0.425 0.403 0.407 0.448 0.452 0.481 0.456 0.588 0.517 0.961 0.734

E
T

T
m

2

96 0.180 0.264 0.178 0.259 0.187 0.267 0.189 0.280 0.193 0.292 0.203 0.287 0.192 0.274 0.255 0.339 0.365 0.453
192 0.242 0.303 0.242 0.301 0.249 0.309 0.253 0.319 0.284 0.362 0.269 0.328 0.280 0.339 0.281 0.340 0.533 0.563
336 0.293 0.342 0.304 0.344 0.321 0.351 0.314 0.357 0.369 0.427 0.325 0.366 0.334 0.361 0.339 0.372 1.363 0.887
720 0.404 0.406 0.407 0.402 0.408 0.403 0.414 0.413 0.554 0.522 0.421 0.415 0.417 0.413 0.433 0.432 3.379 1.338
Avg 0.280 0.329 0.283 0.327 0.291 0.333 0.293 0.342 0.350 0.401 0.305 0.349 0.306 0.347 0.327 0.371 1.410 0.810

E
xc

ha
ng

e 96 0.078 0.195 0.087 0.205 0.107 0.234 0.085 0.204 0.088 0.218 0.148 0.278 0.111 0.237 0.197 0.323 0.847 0.752
192 0.157 0.288 0.179 0.301 0.226 0.344 0.182 0.303 0.176 0.315 0.271 0.380 0.219 0.335 0.300 0.369 1.204 0.895
336 0.230 0.355 0.316 0.407 0.367 0.448 0.348 0.428 0.313 0.427 0.460 0.500 0.421 0.476 0.509 0.524 1.672 1.036
720 0.426 0.515 0.903 0.714 0.964 0.746 1.025 0.774 0.839 0.695 1.195 0.841 1.092 0.769 1.447 0.941 2.478 1.310
Avg 0.223 0.338 0.372 0.407 0.416 0.443 0.410 0.427 0.354 0.414 0.519 0.500 0.461 0.454 0.613 0.539 1.550 0.998

IL
I

96 1.916 0.867 2.202 0.889 2.317 0.934 2.527 1.020 2.398 1.040 3.228 1.260 2.294 0.945 3.483 1.287 5.764 1.677
192 1.878 0.880 2.330 0.930 1.972 0.920 2.615 1.007 2.646 1.088 2.679 1.080 1.825 0.848 3.103 1.148 4.755 1.467
336 1.952 0.908 2.258 0.924 2.238 0.940 2.359 0.972 2.614 1.086 2.622 1.078 2.010 0.900 2.669 1.085 4.763 1.469
720 2.151 0.966 2.035 0.908 2.027 0.928 2.487 1.016 2.804 1.146 2.857 1.157 2.178 0.963 2.770 1.125 5.264 1.564
Avg 1.974 0.905 2.206 0.913 2.139 0.931 2.497 1.004 2.616 1.090 2.847 1.144 2.077 0.914 3.006 1.161 5.137 1.544

Tr
af

fic

96 0.434 0.305 0.460 0.296 0.593 0.321 0.607 0.392 0.650 0.396 0.587 0.366 0.612 0.338 0.613 0.388 0.719 0.391
192 0.443 0.305 0.466 0.296 0.617 0.336 0.621 0.399 0.598 0.370 0.604 0.373 0.613 0.340 0.616 0.382 0.696 0.379
336 0.475 0.330 0.481 0.304 0.629 0.336 0.622 0.396 0.605 0.373 0.621 0.383 0.618 0.328 0.622 0.337 0.777 0.420
720 0.524 0.358 0.515 0.321 0.640 0.350 0.632 0.396 0.645 0.394 0.626 0.382 0.653 0.355 0.660 0.408 0.864 0.472
Avg 0.469 0.325 0.481 0.304 0.620 0.336 0.621 0.396 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.764 0.416

W
ea

th
er

96 0.178 0.225 0.178 0.219 0.172 0.220 0.197 0.281 0.196 0.255 0.217 0.296 0.173 0.223 0.266 0.336 0.300 0.384
192 0.227 0.269 0.221 0.256 0.219 0.261 0.237 0.312 0.237 0.296 0.276 0.336 0.245 0.285 0.307 0.367 0.598 0.544
336 0.280 0.309 0.279 0.297 0.280 0.306 0.298 0.353 0.283 0.335 0.339 0.380 0.321 0.338 0.359 0.395 0.578 0.523
720 0.349 0.358 0.356 0.349 0.365 0.359 0.352 0.288 0.345 0.381 0.403 0.428 0.414 0.410 0.419 0.428 1.059 0.741
Avg 0.259 0.290 0.258 0.280 0.259 0.287 0.271 0.334 0.265 0.317 0.309 0.360 0.288 0.314 0.338 0.382 0.634 0.548

1st count 41 21 5 0 1 3 3 0 0

Table 10: Multivariate long-term forecasting MSE and MAE. Forecasting horizon H ∈
{24, 36, 48, 60} for ILI dataset and H ∈ {96, 192, 336, 720} for the other datasets. Look-back
window size L is fixed to 36 for ILI dataset and 96 for the other datasets. The best results and the
second best results are highlighted in bold and underlined, respectively. Avg is averaged from all 4
forecasting horizons.

and feature dimension dfeat. In Figure. 6, we display experiment results on ECL dataset. In each
figure, we measure the MSE by changing only one type of hyperparameter while fixing the rest
hyperparameters. The result indicates that our LGPred is sensitive to latent dimension dlatent and
sequence length L, while it is relatively insensitive to representation dimension drep and feature
dimension dfeat.

B.7 COMPLEXITY ANALYSIS

In this section, we conduct an analysis on the complexity of LGPred based on the number of trainable
parameters. The number of model parameters undergoes significantly variation depending on the
hyperparameters such as dlatent, dfeat, drep, k, and NL. For instance, in the models used in the
experiments of Table 1, the number of model parameters fluctuates considerably, ranging from as low

17

Figure 6: Visualization of hyperparameter sensitivity analysis results on ECL datasets.

18

Method LGPred
Metric MSE MAE

Electricity

96 0.130 ± 0.001 0.230 ± 0.001
192 0.144 ± 0.002 0.245 ± 0.002
336 0.158 ± 0.001 0.260 ± 0.002
720 0.190 ± 0.001 0.290 ± 0.001

ETTh1

96 0.375 ± 0.002 0.397 ± 0.002
192 0.408 ± 0.001 0.417 ± 0.001
336 0.437 ± 0.005 0.435 ± 0.005
720 0.445 ± 0.005 0.461 ± 0.002

ETTh2

96 0.273 ± 0.002 0.337 ± 0.001
192 0.339 ± 0.004 0.380 ± 0.002
336 0.362 ± 0.008 0.403 ± 0.003
720 0.400 ± 0.013 0.442 ± 0.008

ETTm1

96 0.305 ± 0.007 0.351 ± 0.003
192 0.340 ± 0.007 0.369 ± 0.004
336 0.384 ± 0.014 0.400 ± 0.007
720 0.425 ± 0.003 0.423 ± 0.001

ETTm2

96 0.165 ± 0.002 0.256 ± 0.003
192 0.221 ± 0.003 0.295 ± 0.003
336 0.275 ± 0.001 0.328 ± 0.001
720 0.367 ± 0.007 0.392 ± 0.003

Exchange

96 0.079 ± 0.001 0.195 ± 0.001
192 0.150 ± 0.008 0.288 ± 0.006
336 0.261 ± 0.002 0.378 ± 0.006
720 0.421 ± 0.004 0.516 ± 0.002

ILI

96 1.707 ± 0.046 0.861 ± 0.020
192 1.717 ± 0.013 0.845 ± 0.007
336 1.727 ± 0.050 0.883 ± 0.029
720 1.935 ± 0.058 0.941 ± 0.017

Traffic

96 0.362 ± 0.006 0.271 ± 0.002
192 0.377 ± 0.002 0.281 ± 0.003
336 0.394 ± 0.003 0.294 ± 0.005
720 0.433 ± 0.004 0.308 ± 0.003

Weather

96 0.162 ± 0.003 0.217 ± 0.001
192 0.208 ± 0.001 0.256 ± 0.002
336 0.253 ± 0.004 0.293 ± 0.005
720 0.320 ± 0.003 0.343 ± 0.003

Method LGPred
Metric MSE MAE

ETTh1

96 0.053 ± 0.001 0.177 ± 0.001
192 0.068 ± 0.001 0.203 ± 0.002
336 0.077 ± 0.001 0.221 ± 0.002
720 0.079 ± 0.000 0.224 ± 0.000

ETTh2

96 0.125 ± 0.000 0.268 ± 0.000
192 0.165 ± 0.013 0.323 ± 0.012
336 0.179 ± 0.007 0.343 ± 0.006
720 0.222 ± 0.001 0.380 ± 0.001

ETTm1

96 0.026 ± 0.000 0.121 ± 0.000
192 0.039 ± 0.001 0.150 ± 0.001
336 0.051 ± 0.001 0.172 ± 0.001
720 0.072 ± 0.003 0.206 ± 0.004

ETTm2

96 0.062 ± 0.001 0.185 ± 0.001
192 0.090 ± 0.003 0.229 ± 0.003
336 0.114 ± 0.003 0.263 ± 0.003
720 0.155 ± 0.006 0.312 ± 0.006

Table 11: Multivariate (left) and Univariate (right) long-term forecasting MSE and MAE with different
random seeds. Forecasting horizon H ∈ {24, 36, 48, 60} for ILI dataset and H ∈ {96, 192, 336, 720}
for the other datasets.

as 300k to as high as to 900M. We display the number of parameters of the models used in Table 1
as a histogram in Figure. 7. This variance in parameters counts is much larger than that of baseline
model, PatchTST, which spans from 900k to 4M. Note that the majority of the model parameters of
LGPred stem from the fully connected layers within ffeat and gW of the predictor generator. Taking
the models used in Table 1 again as an example, these layers account for an average 94.37% of the
parameters. For the broad application of LGPred across diverse scenarios, it is important to reduce
the complexity of LGPred by refining the structure of the predictor generator. However, we leave this
problem for future works.

B.8 ARCHITECTURE OF REPRESENTATION MODULE

In the main paper, we utilize the mixer-like fully connected layer for the trend representation module,
and dilated temporal convolution layer for the seasonality representation module. In this section,
we test various architectures for trend and seasonality representation modules and compare the
performance with our original choices. We display in Table 12 the experiment results with various
architectures for the representation modules using ECL and Exchange datasets. In Table 12, FC and
CNN denote the mixer-like fully connected layer and dilated temporal convolution layer that we
adopt in main paper respectively. RNN and Attn mean the standard LSTM layer and Transformer
layer each. The experiment results indicate that our original combination utilizing FC layer for trend
representation and CNN for seasonality representation shows the best performance. The results in
Exchange dataset also confirm that our assumption that RNN, FC, and transformer layer is more
suitable for capturing the trend characteristics compared to CNN is correct.

19

Figure 7: Histogram of the number of trainable parameters of the models used in Table 1.

Trend RNN CNN FC Attn
Seasonal RNN CNN FC Attn RNN CNN FC Attn RNN CNN FC Attn RNN CNN FC Attn

E
le

ct
ri

ci
ty 96 0.132 0.131 0.133 0.132 0.133 0.132 0.132 0.131 0.134 0.130 0.139 0.136 0.133 0.133 0.133 0.132

192 0.145 0.144 0.144 0.144 0.146 0.147 0.147 0.147 0.151 0.144 0.156 0.154 0.147 0.156 0.148 0.144
336 0.161 0.161 0.162 0.159 0.163 0.162 0.163 0.162 0.166 0.158 0.171 0.163 0.163 0.162 0.164 0.164
720 0.204 0.199 0.204 0.201 0.198 0.202 0.202 0.205 0.197 0.190 0.201 0.198 0.200 0.200 0.200 0.202

E
xc

ha
ng

e 96 0.092 0.091 0.091 0.091 0.094 0.094 0.094 0.094 0.079 0.079 0.079 0.079 0.096 0.096 0.096 0.096
192 0.174 0.283 0.175 0.203 0.312 0.336 0.281 0.441 0.192 0.152 0.218 0.255 0.272 0.740 0.400 0.236
336 0.516 0.556 0.496 0.527 0.811 0.993 0.810 0.847 0.279 0.261 0.272 0.297 0.881 0.858 0.743 0.773
720 0.800 0.670 0.489 0.687 6.306 8.324 8.000 3.376 0.528 0.422 0.492 0.537 0.973 0.907 0.589 1.053

Table 12: Multivariate long-term forecasting MSE with various network architecture for representation
module. The best results are highlighted in bold.

C DETAILED PROCEDURE OF LGPRED

In this section, we provide more detailed explanation on the prediction procedure of LGPred with a
pseudo-code presented in Algorithm 1. TimeSeriesDecomposition denotes the decomposition
module decomposing time series into trend T and seasonality S using the moving average kernel
(line 1). The representation modules fT and fS extracts representation from trend T and seasonality
S (line 2-3), and the fully-connected layers fT

feat and fS
feat compress the representations into features

hT and hS (line 4-5). Using the weight generators [gTW , gSW] and bias generators [gTb , gSb], LGPred
generates weight Wgen by adding trend weight and seasonality weight and bias bgen by adding trend
and seasonality biases (line 6-11). The prediction for the input time series is then conducted based
on the generated weight and bias. First, the input is normalized by subtracting the last value xt−1

from the input Xt−L:t (line 12). Using down-project template weight Wdown, the normalized input
Xnorm is projected into latent feature Xlatent (line 13). Then, we multiply the generated weight
Wgen to Xlatent (line 14), and then multiply product X̂latent with the up-project template weight
Wup to get the prediction X̂up with length H (line 15). The generated bias and template bias are

20

added to the X̂up (line 16), and the final prediction X̂t:t+H is obtained by denormalizing X̂up by
adding the last value of input xt−1 to X̂up (line 17).

Algorithm 1 Prediction Procedure of LGPred
Input : Xt−L:t = [xt−L, · · · ,xt−1] ∈ RL×m where L is the look-back window size
Output : X̂t:t+H = [x̂t, · · · , x̂t+H−1] ∈ RH×m where H is the length of forecasting horizon.

1: T ,S ← TimeSeriesDecomposition(Xt−L:t)
2: HT ← fT (T) ▷ Extract Representation
3: HS ← fS(S)
4: hT ← fT

feat(HT) ▷ Compress Representation into Feature
5: hS ← fS

feat(HS)

6: W T
gen ← gTW (hT) ▷ Predictor Generation Start

7: bTgen ← gTb (hT)

8: WS
gen ← gSW (hS)

9: bSgen ← gSb (hS)

10: Wgen ←W T
gen +WS

gen

11: bgen ← bTgen + bSgen ▷ Predictor Generation End
12: Xnorm ←Normalize(Xt−L:t) ▷ Prediction Start
13: Xlatent ←Wdown ∗Xnorm

14: X̂latent ←Wgen ∗Xlatent

15: X̂up ←Wup ∗ X̂latent

16: X̂up ← X̂up + bgen + b

17: X̂t:t+H ← DeNormalize(X̂up) ▷ Prediction End

21

	Introduction
	Preliminary
	Method
	Related Work
	Time series Forecasting
	Learning to Generate Network

	Experiments
	Experimental Settings
	Results
	Experiment with Synthetic Data

	Discussion
	Conclusion
	Experimental Details
	Dataset Description
	Hyperparameter Details

	Additional Experiment Results
	Ablation Study
	Applying LGPred to Existing Forecasting Models
	Experiment with Modified Trend
	Full Results of Table 3
	Random Control Experiments
	Hyperparameter Sensitivity Analysis
	Complexity Analysis
	Architecture of Representation Module

	Detailed Procedure of LGPred

