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Abstract001

The spread of fake news through social media002
poses significant threats. Recent models using003
text and graph features have shown promising004
results in specific fake news detection scenarios.005
However, these data-driven models heavily rely006
on training data that share similar distribution007
with inference data, limiting their applicabil-008
ity to fake news from emerging or previously009
unseen domains, known as out-of-distribution010
(OOD) data. Tackling OOD fake news is a011
challenging yet critical task. To address the012
challenge, we propose the Causal Subgraph-013
oriented Domain Adaptive Fake News Detec-014
tion (CSDA) model. CSDA extracts causal sub-015
structures from news propagation graphs that016
generalise to OOD data, using a graph neu-017
ral network-based mask generation process. It018
uses refined training objectives to ensure high-019
quality subgraphs. It is further powered by con-020
trastive learning for few-shot scenarios, where021
a limited amount of OOD data is available for022
training. Extensive experiments on public so-023
cial media datasets demonstrate the effective-024
ness of CSDA effectively handles OOD fake025
news detection, achieving a 1.23%∼12.23% ac-026
curacy improvement over other state-of-the-art027
models.028

1 Introduction029

The popularity of social media has enabled rapid030

news dissemination, for both true and fake news.031

Given the potential impact of fake news, robust032

methods are urgently needed to debunk such misin-033

formation in a timely manner. In real-world scenar-034

ios, out-of-distribution news from unseen domains035

emerges over time. This brings substantial chal-036

lenges to fake news detection models.037

Graph-based fake news detection methods us-038

ing graph neural networks (GNN) have garnered039

much attention recently for modelling news propa-040

gation patterns (Gong et al., 2023a). Despite their041

success, existing GNN-based methods are gener-042

ally built upon the assumption that both training043
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Figure 1: Illustration of causal subgraphs and our casual
subgraph-based model (bottom).

and testing data are independently sampled from 044

an identical data distribution (i.i.d.), which often 045

does not hold true nor reflect the real challenges of 046

fake news detection in practical scenarios (Li et al., 047

2022). Emerging and hitherto unseen fake news 048

and their associated propagation graphs can and do 049

arise. From an empirical perspective, these meth- 050

ods focus on minimising the average training errors 051

and incorporating correlations within the training 052

data (which is considered to be in-distribution) to 053

improve fake news detection accuracy (Liu et al., 054

2021). However, real-world graph-based fake news 055

data is often mixed with biased domain-specific in- 056

formation in the training data. For example, Zhang 057

et al. observed that the veracity of some political 058

news is strongly correlated with specific keywords 059

(e.g., most news propagation involving the terms 060

“White House" and “rainbow" are classified as true). 061

The detection models trained from such data may 062

thus learn domain-specific biases resulting in poor 063

generalisation (Li et al., 2022). 064

To detect fake news across different domains 065

(e.g., sports and politics), early studies (Ma et al., 066

2018; Bian et al., 2020) focused on capturing 067

content-independent propagation patterns. How- 068

ever, it has been shown (Min et al., 2022) that not 069

only the news content but also the propagation pat- 070
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terns can vary across different domains. Such cross-071

domain fake news detection method have limited072

success. To tackle this, recent methods (Lin et al.,073

2022; Li et al., 2023) utilise domain adaptation to074

transfer trained models to emerging news domains075

with a small amount of data from the emerging076

domains. However, these methods require labelled077

data from emerging domains which is typically un-078

available. More related works are in Appendix.B.079

To address these limitations, we focus on ex-080

tracting causal subgraphs from news propagation081

graphs whilst aiming to mitigate domain biases for082

fake news detection in emerging domains. News083

from an emerging domain is treated as out-of-084

distribution (OOD) data when its distribution shifts085

significantly from the in-distribution data. Our086

model generalises to OOD data by capturing causal087

subgraphs in an unsupervised manner. From a088

causal analysis standpoint, each propagation graph089

comprises a causal subgraph and a domain biased090

subgraph, which are initially entangled. Our key091

insight is that not all nodes in propagation graphs092

contribute to generalisation across unseen domains.093

Instead, only the causal subgraphs carry critical in-094

formation should be used for identifying fake news095

in OOD settings, as illustrated in Fig 1. By identi-096

fying and capturing these causal subgraphs, we can097

enhance the model’s generalisation capabilities.098

Based on this intuition, our model, the Causal099

Subgraph Oriented Domain Adaptive Fake News100

Detection model (CSDA), is proposed. CSDA extracts101

subgraphs from propagation graphs and performs102

classification based on particular subgraphs, which103

are referred to as the casual subgraphs. In CSDA, a104

binary mask is learned for each node and edge of105

the propagation graph to classify them into causal106

or biased elements. For the subgraph formed by107

each type of element, a graph encoder and a multi-108

layer perceptron (MLP) classifier together encode109

the subgraphs and classify the news items accord-110

ing to the subgraph embeddings. The classifier111

predictions of the causal elements are regarded as112

the domain-invariant predictions. For the biased113

elements, they are expected to be biased to the train-114

ing data’s domains and harm the generalisation to115

unseen domains. Since the subgraph of the biased116

elements can be biased to specific domains, in the117

training process, we design training objectives to118

optimise the subgraph split whilst restricting the119

influence of the biased elements.120

Following recent works such as (Lin et al., 2022;121

Li et al., 2023), we also consider a scenario where122

limited OOD data becomes available, e.g., through 123

manual labelling. In this scenario, CSDA’s perfor- 124

mance is further enhanced with a supervised con- 125

trastive learning-based approach and achieves state- 126

of-the-art (SOTA) classification accuracy. 127

In summary, our contributions include: 128

• We propose a zero-shot unseen domain fake 129

news detection model named CSDA based on 130

domain-invariant causal subgraphs from news 131

propagation patterns. 132

• We further explore a few-shot scenario where 133

a small number of OOD examples are avail- 134

able, and utilise contrastive learning to en- 135

hance CSDA’s cross-domain fake news detec- 136

tion performance. 137

• Extensive experiments are conducted on four 138

real datasets. The results confirm the effec- 139

tiveness of CSDA for cross-domain fake news 140

detection, outperforming SOTA models by 141

1.23%∼12.23% in terms of accuracy. 142

2 Preliminaries 143

Unseen domain fake news detection aims to trans- 144

fer a model trained on a labelled (in-distribution) 145

dataset to an OOD dataset that is unlabelled or with 146

a few labelled samples. 147

Given a set of news items Din = {(Gin
k , yink )} 148

(k ∈ [1, nin]) that comes from some latent distribu- 149

tion P , we aim to train a model to detect fake news 150

in another dataset Dout = {(Gout
k )} (k ∈ [1, nout]) 151

that contains data from an unknown distribution P ′
152

that is different from P . Here, we refer to data Din 153

from P as in-distribution data and those Dout from 154

P ′
as OOD data. nin and nout refer to the number 155

of news items in Din and Dout, respectively. Our 156

goal is to train a classifier f using the training set 157

Din to determine whether news items in another 158

non-overlapping set Dout contains fake news. We 159

assume that both Din and Dout share the same la- 160

bel space (i.e. they are labelled as either true news 161

and fake news). 162

Causal Analysis As shown in Fig 1, we use vari- 163

ables C, B, G and Y to represent the casual sub- 164

graph (C), the biased subgraph (B), the observed 165

propagation graph (G), and the news label (Y), 166

according to the recent advances in causal invari- 167

ant learning (Fan et al., 2022a; Chen et al., 2022). 168

Each link denotes a causal relationship (Fan et al., 169

2022b). With traditional graph-based models, the 170
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propagation graphs are encoded directly, and hence171

spurious correlations between C and B are ignored172

and fused into the graph embedding, leading to in-173

accurate fake news predictions. In our approach,174

the causal and biased subgraphs are disentangled,175

and the prediction improved by referring solely to176

the causal information.177

Data Preparation For each news item from178

both Din and Dout, the propagation graph Gk =179

⟨Xk,Ak⟩ is extracted and modelled as an undi-180

rected acyclic graph. The node set Xk =181

{x1, x2, . . . , x|Xk|} contains all posts including182

the source news posts and all associated com-183

ments/reposts which can be used to provide sup-184

portive information regarding the post veracity.185

Each post’s embedding is initialised using a pre-186

trained BERT model (Devlin et al., 2019) to com-187

pute the text embeddings.188

The adjacency matrix Ak = {αij , i, j ∈189

[1, |Ck|]} is the set of propagation behaviours190

where an edge exists (i.e., αij = 1) between node191

i and node j if there is a reply/repost relationship.192

3 Proposed Model193

In the section, we detail the CSDA model used for un-194

seen fake news detection tasks. CSDA is designed to195

extract and capitalise on subgraphs from the news196

propagation graph. The architecture of CSDA is197

illustrated in Fig 2.198

In CSDA, we take a small batch of propagation199

graphs and apply a mask generator on them to split200

each propagation graph into a causal subgraph and201

a biased subgraph. The causal and the biased sub-202

graphs are encoded using two individual graph en-203

coders to produce two separate embeddings. The204

training objective is to emphasise the impact of the205

casual subgraphs while eliminating the impact of206

the biased subgraphs on the classification output.207

CSDA is trained on Din and tested on Dout in a208

zero-shot manner. When a few labelled samples are209

available from Dout, they can also be incorporated210

into the training process to further enhance the211

model performance on Dout.212

3.1 Mask Generator213

Our mask generator learns a mask to help split each214

propagation graph G (i.e., Gk – now we further drop215

the subscript ‘k’ as long as the context is clear) into216

a causal subgraph Gc and a biased subgraph Gb.217

This is achieved by computing node importance218

scores (denoted as αi for node i) and edge impor- 219

tance scores (denoted as βij for the edge between 220

nodes i and j) in the propagation graph G. The aim 221

is to measure the probability of a node or an edge 222

belonging to a causal subgraph. 223

The mask generator takes graph G (i.e., its fea- 224

tures) as input and outputs the importance of its 225

nodes and edges. A Graph Isomorphism Network 226

(GIN) (Xu et al., 2018) is utilised to encode the 227

graph and map the node features X to node em- 228

beddings H for the model’s graph structure learn- 229

ing capability. After obtaining the graph features 230

H = {h1,h2, . . . ,hN}, where N is the size of the 231

node set and hi represents the embedding for the 232

i-th node, the node and edge importance scores are 233

computed using an MLP: 234

αi = σ(MLP([hi])), βij = σ(MLP([hi,hj ])).
(1) 235

where σ is the activation function. 236

Since the causal and the biased subgraphs are 237

defined as two non-overlapping substructures of G, 238

the probability of a node and an edge belonging to 239

a biased subgraph can be established by (1 − αi) 240

and (1− βij), respectively. 241

Using the importance scores, we construct a 242

causal graph mask Mc = [α, β] and a biased graph 243

mask Mb = [(1− α), (1− β)]. Finally, the input 244

propagation graph G is decomposed into a causal 245

subgraph Gc = {Mc ⊙ G} and a biased subgraph 246

Gb = {Mb⊙G}, where ⊙ is the filtering operation 247

on graph G with the corresponding masks. The 248

masks emphasise distinct regions of the propaga- 249

tion graphs, enabling subsequent GNN-based graph 250

encoders to concentrate on different segments of 251

the graphs. 252

3.2 Graph Encoder 253

Two subgraph encoders realised as a 2-layer of 254

stacked GCNII (Chen et al., 2020) are used to en- 255

code the causal and the biased subgraphs. Given a 256

graph’s node features X = {x1,x2, . . . ,xN} and 257

its adjacency matrix A, the graph embeddings are 258

computed through GCNII by: 259

Z(l+1) = σ
(
(D̃−1/2ÃD̃−1/2Z(l) + Z(0))(In +W(l))

)
,

(2) 260

where l = 0 or 1, Z(0) is the initial node features 261

X, Ã is the adjacent matrix of the graph with self- 262

loops, D̃ is the degree matrix of Ã, In is the iden- 263

tity mappig from GCNII, W(l) is the learnable 264

parameter matrix, and σ is the activation function. 265

Z(0) is initiated as the node feature input X. 266
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Figure 2: Architecture of CSDA, which is trained with batches of news propagation graphs. A mini-batch of
propagation graphs are masked by the Mask Generator and divided into causal and biased subgraphs. Then, the two
branches of subgraphs are encoded using two independent graph encoders to produce causal and biased embeddings.
Afterwards, the causal embedding is forwarded to an MLP classifier for causal veracity prediction. Meanwhile, the
biased embedding is utilised as part of model optimisation for accurate subgraph extraction.

As shown in Fig 2, two parallel subgraph en-267

coders are used to encode the causal subgraph Gc268

and the biased subgraph Gb into a causal embedding269

zc and a biased embedding zb. These embeddings270

will subsequently be fed into news classifiers for271

loss calculation and fake news prediction.272

3.3 Classification Module273

The classification module (CM) is responsible for274

predicting the news veracity based on the extracted275

graph embeddings. It is composed of an MLP that276

uses a softmax function. Given the graph embed-277

ding Z , e.g. the causal graph embedding zc, the278

CM computes the prediction through:279

pred = softmax(MLP(Z)). (3)280

Since CSDA focuses on classifying news accord-281

ing to causal features, we design a causal CM and282

a biased CM in the model. They do not share the283

parameters and have different input dimensions284

according to model design. During model train-285

ing, these two CMs are jointly trained to optimise286

CSDA to capture causal information accurately. For287

model inference, only the prediction results from288

the causal CM are used to detect fake news. More289

details about the use of the outputs of these two290

CMs are presented in the next subsection.291

3.4 Disentangling Training Objectives292

As described, the causal and the biased subgraphs293

are initially entangled. If a model is optimised294

only by the prediction results, the model could be295

trained to extract trivial patterns (e.g. treating the 296

whole graph as the causal subgraph) leading to sub- 297

optimal generalisation outcomes. To disentangle 298

the causal and the biased subgraphs while optimis- 299

ing the prediction results, contrastive learning, data 300

augmentation and hinge loss are utilised in addition 301

to traditional cross-entropy loss. 302

Loss of the Causal Model Branch The cross- 303

entropy of the causal prediction is established by: 304

Lc
ce = CE(yc, y), (4) 305

where yc and y are the causal prediction result and 306

the ground truth labels. Training with Lc
ce only can- 307

not guarantee the accurate extraction of the causal 308

and biased subgraphs. 309

To enhance the quality of the extracted causal 310

subgraphs, a contrastive loss is introduced due to 311

its data distribution capabilities. The intuition is 312

that since the causal subgraph is based on the di- 313

rect causality of news labels, the data samples that 314

share the same labels tend to have similar causal 315

subgraph embeddings. Therefore, for two samples 316

n and m sharing the same label in a batch, a con- 317

trastive loss can be defined based on: 318

Lin
CL = − 1

N in

N in∑
n=1

1

Nyinn

N in∑
m=1

1[n ̸=m]1[yinn =yinm ]

log
exp(sim(oinn , oinm)/τ)∑N in

k=1 1[n̸=k] exp(sim(oinn , oink )/τ)
,

(5) 319
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where N in is the number of in-distribution data320

samples in a batch, Nyinn
is the number of in-321

distribution data samples which share the same la-322

bel yinn with sample Cin
n , 1 is the indicator function,323

oinn , oinm , and oink are the corresponding extracted324

casual representations from CSDA, sim(·) is the co-325

sine similarity function, and τ is a hyperparameter326

that controls the temperature.327

The contrastive loss enhances the quality of the328

extracted causal subgraph. However, the model329

could still predict the whole input graph as the330

causal subgraph. Therefore, the biased subgraph331

also needs to be optimised.332

Loss of the Biased Model Branch To emphasise333

the causal subgraph and restrict the biased sub-334

graph, we allow the causal subgraph to include the335

biased subgraph, but not versa. To achieve this,336

we create two embeddings Z and Ẑ by concate-337

nating the causal subgraph embedding zc and the338

biased subgraph embedding zb. To prevent back-339

propagation from the biased classification loss from340

affecting the causal model branch, the gradients341

from the causal embedding is detached before con-342

catenation, as shown in Fig. 2. Then we forward343

the Z to the biased classifier to output prediction344

yb.345

In addition, the biased graph embedding zb is346

permuted and concatenated with the causal graph347

embedding zc to form Ẑ . The labels y are also348

permuted to ŷ in the same order as zb to encourage349

the biased classification module to focus only on350

the biased embeddings. The output of this module351

is ŷb.352

Lastly, yb is the prediction on both of the causal353

and biased subgraphs, ŷb is the prediction only on354

biased subgraphs. Inspired by (Chen et al., 2022),355

a restricted hinge loss (Crammer and Singer, 2001)356

is utilised to ensure that the biased subgraph does357

not include the causal subgraphs:358

Lb
ce =

1

N
CE(ŷb, ŷ) 1[CE(yb, y) ≤ CE(ŷb, ŷ)],

(6)359

Here, 1[·] denotes the indicator function, which360

outputs 1 when the specified condition is satisfied.361

The hinge loss is designed to back-propagate only362

when the predictions based on both causal sub-363

graphs and biased subgraphs are no worse (i.e.,364

result in a lower or equal loss) than the predictions365

based solely on the biased subgraphs.366

The overall loss L of CSDA is given as the sum367

of the loss terms above: 368

L = Lc
ce + Lb

ce + γ · Lin
CL, (7) 369

where γ is a hyperparameter to adjust the con- 370

trastive loss. 371

3.5 Model Fine-tuning with OOD Data 372

CSDA can be trained using just in-distribution data 373

Din. We can also use a few labelled OOD samples 374

to further fine-tune CSDA on a target domain. In this 375

subsection, we discuss model optimisation given a 376

few OOD samples using contrastive learning. 377

When OOD samples are available, we can fur- 378

ther improve the model performance via align- 379

ing the representation space of the data. This 380

is achieved by bringing the representations of in- 381

distribution and OOD samples from the same ve- 382

racity class together while keeping representations 383

from different classes apart. We use contrastive 384

learning for this purpose. 385

To fine-tune CSDA with OOD data, another su- 386

pervised contrastive learning objective is proposed. 387

Here, we aim to draw the embedding space of sam- 388

ples with the same label but from different distribu- 389

tions closer based on: 390

Lout
CL = − 1

Nout

Nout∑
n=1

1

Nyoutn

N in∑
m=1

1[youtn =yinm ]·

log
exp(sim(ooutn , oinm)/τ)∑N in

k=1 exp(sim(ooutn , oink )/τ)

(8) 391

where Nout is the number of OOD samples in a 392

training batch, N in is the number of in-distribution 393

samples in the batch, Nyoutn
is the number of in- 394

distribution samples which share the same label 395

youtn with sample Cout
n , and ooutn , oinm , and oink are 396

the corresponding extracted causal representations 397

from CSDA, respectively. 398

The overall loss L′ of CSDA now becomes: 399

L′ = Lc
ce + Lb

ce + γ · (Lin
CL + Lout

CL) (9) 400

, where γ is the same hyperparameter used in Equa- 401

tion. 7. 402

4 Experiment 403

4.1 Experimental Settings 404

Datasets Four public datasets collected from 405

Twitter (now called X) and Weibo (a Chi- 406

nese social media platform like Twitter) are 407
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utilised in the experiments: (1) Twitter (Ma408

et al., 2017), (2) Weibo (Ma et al., 2016),409

(3) Twitter-COVID19 (Lin et al., 2022) and410

(4) Weibo-COVID19 (Lin et al., 2022). The statis-411

tics of the datasets are shown in Appendix. D,412

Table 4. Twitter and Weibo are open-domain413

datasets. They cover a variety of topics except414

COVID-19 and are used as the main training set.415

Twitter-COVID19 and Weibo-COVID19 only con-416

tain news related to COVID-19, which represent417

the OOD data.418

To showcase the effectiveness of CSDA, two sets419

of experiments are designed. In the first set of ex-420

periments, the models are trained on in-distribution421

data (e.g., Twitter) and tested on OOD data (e.g.,422

Twitter-COVID19), to simulate the scenario where423

no prior knowledge about the OOD data is avail-424

able. In the second set of experiments, a few425

OOD samples (e.g., 20% of Twitter-COVID19)426

are utilised to help optimise the models together427

with in-distribution data (e.g., Twitter), to simu-428

late the scenario where we have a small number429

of manually labelled OOD samples. The remain-430

ing OOD data (e.g, 80% of Twitter-COVID19) are431

used for model testing.432

Baselines We compare with 14 models includ-433

ing recent models UCD-RD (Ran and Jia, 2023),434

CADA (Li et al., 2023), DELL (Wan et al.,435

2024) and graph OOD generalisation methods G-436

mixup (Han et al., 2022), CIGA (Chen et al., 2022).437

Baseline models that are trained with in-438

distribution data only include: LSTM (Ma et al.,439

2016) which uses an LSTM-based model to learn440

feature representations of relevant posts over441

time;CNN (Yu et al., 2017) uses a CNN model442

for misinformation identification by modelling the443

relevant posts as a fixed-length sequence; RvNN444

(Ma et al., 2018) which learns the propagation of445

news by exploiting a tree structured recursive neu-446

ral network; PLAN (Khoo et al., 2020) which uses447

a Transformer (Vaswani et al., 2017)-based model448

for fake news detection by capturing long-distance449

interactions between tweets (source posts and as-450

sociated comments); RoBERTa (Liu et al., 2019)451

which encodes the text information of a news item452

and classifies the news based on the text classi-453

fication; BiGCN (Bian et al., 2020) which mod-454

els news propagation by representing social media455

posts as nodes in a graph, and then it utilises a456

GCN-based model to encode the graph and clas-457

sifies whether a given news item is true or fake;458

GACL (Sun et al., 2022) which enhances BiGCN 459

by generating adversarial training samples and 460

training with contrastive learning; SEAGEN (Gong 461

et al., 2023b) which models the news propaga- 462

tion process by encoding the temporal propaga- 463

tion graph with a temporal graph network (TGN) 464

and a neural Hawkes process; UCD-RD (Ran and 465

Jia, 2023) which uses prototype-based contrastive 466

learning to initialise prototypes via in-distribution 467

samples, and then it aligns the OOD data features 468

with the corresponding prototypes. In addition to 469

these traditional fake news detection methods, we 470

also compare with graph OOD methods including 471

G-mixup (Han et al., 2022), CIGA (Chen et al., 472

2022). 473

Baseline models trained with both in-distribution 474

and low-resource OOD data include: ACLR (Lin 475

et al., 2022) which utilises adversarial contrastive 476

learning to transfer pre-trained BiGCN (Bian et al., 477

2020) models from a source domain to a target 478

domain for fake news detection; CADA (Li et al., 479

2023) which serves as a plug-in module that adapts 480

pre-trained models from a source domains to a 481

target domain based on label-aware domain ad- 482

versarial neural networks (Ganin and Lempitsky, 483

2015). In our experiments, CADA uses BiGCN, 484

RoBERTa, SEAGEN and GACL as the pre-trained 485

models. The web-retrieval and Large Language 486

Model (LLM) prompt-based method DELL (Wan 487

et al., 2024) is also compared. 488

All baselines and CSDA are implemented in Py- 489

torch1 and trained using an A100 GPU. The base- 490

line models use the default hyperparameter settings 491

from their original papers. Hyperparameter γ, τ of 492

the CSDA model are set to 0.2, 0.1 respectively in 493

the experiments. The hyperparameters are selected 494

empirically based on a grid search shown in Fig 3c. 495

The best parameters are selected on the training 496

of Twitter dataset and applied to the training of 497

Weibo dataset. 498

4.2 Results 499

Table 1 and Table 2 present the model performance 500

on the four dataset settings (from Twitter, Weibo 501

to Twitter-COVID19, Weibo-COVID192. 502

In Table 1, the models are categorized into two 503

groups. The upper group consists of sequence- 504

based models (LSTM, CNN, RvNN, PLAN, and 505

RoBERTa), while the bottom group includes graph- 506

1https://pytorch.org/
2All reported results are averaged of five runs
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Table 1: Zero-shot Fake News Detection on Twitter-COVID19 and Weibo-COVID19 (Acc: Accuracy score on fake
news detection; F-F1: F1 score on fake news detection; T-F1: F1 score on true news detection).

Source Twitter Weibo

Target Twitter-COVID19 Weibo-COVID19 Twitter-COVID19 Weibo-COVID19

Method Acc T-F1 F-F1 Acc T-F1 F-F1 Acc T-F1 F-F1 Acc T-F1 F-F1

LSTM 0.412 0.426 0.340 0.463 0.329 0.498 0.510 0.243 0.533 0.416 0.428 0.416
CNN 0.406 0.450 0.285 0.445 0.328 0.476 0.498 0.249 0.528 0.421 0.438 0.382
RvNN 0.436 0.458 0.401 0.514 0.426 0.538 0.540 0.247 0.534 0.479 0.548 0.437
PLAN 0.455 0.432 0.476 0.532 0.414 0.578 0.573 0.298 0.549 0.384 0.283 0.461
RoBERTa 0.479 0.430 0.531 0.623 0.459 0.711 0.603 0.585 0.619 0.680 0.714 0.637
BiGCN 0.468 0.546 0.356 0.569 0.429 0.586 0.616 0.252 0.577 0.612 0.681 0.441
SEAGEN 0.494 0.448 0.494 0.555 0.406 0.583 0.578 0.320 0.650 0.586 0.613 0.424
GACL 0.541 0.545 0.536 0.601 0.410 0.616 0.621 0.345 0.666 0.688 0.635 0.727
UCD-RD 0.665 0.453 0.767 0.631 0.510 0.621 0.591 0.371 0.583 0.689 0.451 0.783
G-mixup 0.395 0.319 0.259 0.549 0.530 0.555 0.388 0.319 0.263 0.431 0.375 0.324
CIGA-gcn 0.492 0.476 0.500 0.672 0.648 0.672 0.542 0.542 0.539 0.694 0.669 0.693
CIGA-gin 0.475 0.471 0.459 0.627 0.544 0.596 0.450 0.418 0.382 0.732 0.685 0.718
CSDA (ours) 0.713 0.556 0.763 0.701 0.586 0.723 0.697 0.651 0.732 0.741 0.721 0.809
↑ (%) +7.21 +1.83 -0.52 +4.32 -9.57 +1.69 +12.23 +11.28 +9.91 +1.23 +5.26 +3.32

Table 2: Few-shot Fake News Detection on
Twitter-COVID19 (trained on Twitter) and
Weibo-COVID19 (trained on Weibo) (Acc: Accu-
racy score on fake news detection; F-F1: F1 score
on fake news detection; T-F1: F1 score on true news
detection).

Method Twitter-COVID19 Weibo-COVID19
Acc T-F1 F-F1 Acc T-F1 F-F1

CADABiGCN 0.681 0.621 0.725 0.716 0.552 0.792
CADARoBERTa 0.711 0.540 0.790 0.839 0.783 0.878
CADASEAGEN 0.669 0.383 0.785 0.662 0.471 0.752
CADAGACL 0.641 0.511 0.716 0.684 0.402 0.786
ACLR 0.741 0.607 0.799 0.897 0.847 0.917
DELL 0.446 0.384 0.497 0.800 0.743 0.852
CSDAFine-Tuned 0.772 0.767 0.797 0.922 0.884 0.940
↑ (%) +4.18 +26.36 -0.25 +2.79 +4.37 +2.51

based models (BiGCN, SEAGEN, GACL, UCD-507

RD, G-Mixup, CIGA, and CSDA). Overall, the508

graph-based models outperform the sequence-509

based ones, underscoring the effectiveness of lever-510

aging propagation graphs for fake news detection.511

Among the graph-based models, CSDA consistently512

achieves the best performance across both datasets513

in terms of accuracy and F1 scores.514

Baseline models that do not account for OOD515

data generally exhibit poor performance. These516

models are trained on open-domain in-distribution517

datasets and are therefore biased by domain-518

specific information. UCD-RD seeks to align the519

representations of in-distribution and OOD news520

samples belonging to the same class. However,521

it fails to address domain biases, making it less522

effective than CSDA. The graph OOD generalisa-523

tion method, CIGA, demonstrates significant im- 524

provements only on the Weibo-COVID19 dataset, 525

whereas G-Mixup fails to deliver any notable im- 526

provements. The reason can be these methods are 527

designed for more sophisticated graph structures 528

and are less suited to news propagation graphs, 529

which feature simpler structures but more complex 530

node attributes. 531

As shown in Table 2, when labelled OOD data is 532

available, the baseline models (BiGCN, RoBERTa, 533

SEAGEN and GACL) powered by CADA can learn 534

features from the OOD data and achieve better ac- 535

curacy than their vanilla versions. ACLR, which 536

is designed for domain adaptation, achieves even 537

better performance. However, these models are still 538

outperformed by CSDA using fine-tuning with a per- 539

formance improvement of 2.79 ∼ 4.18%. DELL 540

has good performance on Weibo-COVID19 dataset 541

but performs poorly on Twitter-COVID19, show- 542

ing both promising results and limitations of LLMs 543

in fake news detection, which could provide some 544

inspirations for future work. 545

4.3 Ablation Study 546

To show the effectiveness of the causal subgraph 547

extraction module and impact on the loss functions, 548

four variants of CSDA are trained and the aver- 549

aged results are shown in Fig 3a and Fig 3b. In the 550

first variant "Only Lc
ce", the subgraph extraction 551

and classification module are trained purely based 552

on the prediction loss. The remaining three vari- 553

ants all use causal subgraph extraction. They each 554

add one additional loss component, with the final 555
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Figure 3: Ablation experiment and parameter sensitivity.

Table 3: Examples from Twitter-COVID19.

News, Comments, Node Scores and Edge Scores

Source news 1: The World Health Organization confirmed
that Covid-19 is deadlier than the seasonal flu, but does not
transmit as flu... [Node Score: <0.001] [Label: FAKE]
Comment 1 on source news: Need to buy a lot of masks
contact me. [Node Score: 0.154] [Edge 0→1 Score: 0.152]
Comment 2 on source news: Because of their more rigorous
testing protocols, South Korea’s mortality rate of 0.6% is
the most accurate. [Node Score: 0.393] [Edge 0→2 Score:
0.515]
Comment 3 on source news: why don’t you look at im-
plementing #Covid_19 travel health cards that confirm the
person has been. . . [Node Score: 0.514] [Edge 0→3 Score:
0.462]
Comment 4 on source news: WHO is also omitting mild
cases from their stats. [Node Score: 0.556] [Edge 0→4
Score: 0.574]

Source news 2: Rumours are no less infectious than #coron-
avirus! This looks like a meticulous list, but a fake one too...
URL [Node Score: 0.1] [Label: True]
Comment 1 on source news: Yeah, this is fake coz you guys
have totally disallowed stores from delivering essent. . . URL
[Node Score: 0.446] [Edge Score: 0.554]
Comment 2 on source news: Why are police personnel beat-
ing up vegetable vendors and delivery guys... URL [Node
Score: <0.01] [Edge Score: 0.036]
Comment 3 on comment 2: We have forwarded your query
to the xxx. You can contact them on xxx-xxxxxx. [Node
Score: 0.190] [Edge Score: 0.809]

model being the complete CSDA model. The results556

show the importance of each model component, es-557

pecially the disentangling training objectives which558

guide the causal subgraph extraction module.559

4.4 Case Study560

The effectiveness of the CSDA model is further561

demonstrated through a case study using the562

Twitter and Twitter-COVID19 datasets. The563

mask generator, trained on Twitter, is applied to564

Twitter-COVID19 to filter out biased subgraphs565

while preserving causal ones. As shown in Ta- 566

ble 3, source news with an official tone receives low 567

node scores, indicating limited standalone value for 568

classification (The indexes of news/comments are 569

specified by the index number. The node and edge 570

scores are calculated by CSDA’s mask generator). In 571

contrast, comments revealing the news veracity are 572

scored higher, while irrelevant or propagandistic 573

content is down-weighted. This allows the Graph 574

Encoder to focus on causal signals, enhancing de- 575

tection. 576

This case study highlights a latent link between 577

graph OOD generalisation and semantic reasoning: 578

semantically meaningful content tends to receive 579

higher scores, suggesting the model implicitly cap- 580

tures domain-invariant, informative semantics. 581

5 Conclusions 582

We presented the CSDA model for detecting fake 583

news across domains by extracting and leverag- 584

ing causal substructures in new propagation graphs. 585

CSDA addresses the limitations of existing models 586

in handling domain biases and OOD data, high- 587

lighting the importance of causal elements in news 588

propagation graphs. Through extensive experi- 589

ments, we show that CSDA outperforms not only 590

sequence-based models but also other graph-based 591

models, achieving higher accuracy, particularly in 592

cross-domain scenarios. We also show that the inte- 593

gration of a fine-tuning process with low-resource 594

OOD data further enhances CSDA’s robustness and 595

adaptability. Interestingly, the indicated connection 596

between graph OOD generalisation and semantic 597

reasoning revealed in the case study also points fu- 598

ture direction to reason on the propagation graph. 599
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Limitations600

While the paper introduces a novel and effective601

approach, it lacks concrete validation of the causal602

subgraph assumptions. Further work needs to be603

done to prove the identified subgraphs are truly604

causal rather than robust correlates. More inter-605

pretability could be gained. Furthermore, the evalu-606

ation is limited to propagation graphs from Twitter607

and Weibo, leaving open the question of generalis-608

ability to other domains or platforms.609

Besides, in the era of large language models610

(LLMs), many fake news detection systems lever-611

age powerful language understanding and retrieval612

capabilities, often without relying on propagation613

structures. This poses a limitation for CSDA,614

which requires structured propagation graphs, po-615

tentially making it less applicable when only raw616

text is available. However, CSDA’s causal subgraph617

approach can complement LLMs by serving as a618

structure-aware module—for instance, its causal619

masks can be used to select or highlight informative620

user comments for LLMs to summarize or verify,621

which could be promising future work.622
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A Domain Difference794

The domain differences between the in-distribution795

data and the out-of-distribution data are examined796

from two perspectives: text content and graph797

statistics.798

59.72

Word Clouds of Twitter Dataset. Word Clouds of Twitter-COVID19 dataset.
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Figure 4: Visualisation of domain differences.

As illustrated in Fig. 4, the Word Clouds of the799

Twitter and Twitter-COVID19 datasets highlight800

the text content disparities between the two do-801

mains. Consequently, it is challenging to transfer802

linguistic-based models from Twitter to Twitter-803

COVID19. In addition to text content, we also804

analyse the statistics of the propagation graph, fo-805

cusing on the number of nodes and the heights of806

the propagation trees. The results reveal that true807

news on Twitter generally exhibits larger propa-808

gation, whereas fake news on Twitter-COVID19809

shows greater propagation, posing challenges for810

traditional graph-based fake news detection mod-811

els. To address these issues, we propose our model,812

CSDA, designed to capture the causal aspects of813

propagation.814

B Related Work815

Fake News Detection Traditional fake news de-816

tection methods have explored news content, social817

context and social environment aspects. Content-818

based methods learn content or style features from819

the text or multi-media content (Feng et al., 2012).820

They may also leverage external knowledge for fact821

checking (Samarinas et al., 2021). Social context-822

based methods exploit user features (Shu et al.,823

2019) and user interactions that occur in news prop-824

agation. They use both sequence modelling (Ma825

et al., 2016; Khoo et al., 2020) and graph mod-826

elling (Bian et al., 2020; Gong et al., 2023b)models.827

Environment-based methods (Nguyen et al., 2020)828

consider associations across multiple news do- 829

mains to extract broader contextual information. 830

Cross-domain fake news detection aims to train 831

a model in one domain (the source domain) and 832

apply the model to a different domain (the target 833

domain). This is achieved using sample-level and 834

feature-level methods. Sample-level methods iden- 835

tify domain-invariant samples in the training set 836

and assign larger weights to them (Silva et al., 2021; 837

Yue et al., 2022). Feature-level methods focus on 838

weighting or extracting domain-independent fea- 839

tures. For example, Mosallanezhad et al. utilise 840

reinforcement learning to select domain-invariant 841

attributes from news features. Inspired by domain- 842

adaptive neural networks (Ganin and Lempitsky, 843

2015), studies such as (Min et al., 2022; Li et al., 844

2023) train an additional domain discriminator ad- 845

versarially by attempting to generate news embed- 846

dings that cannot be recognised by a domain dis- 847

criminator. However, these works require knowl- 848

edge of the target domains and they have not ex- 849

plored the challenges in fake news detection from 850

unseen news domains. 851

Graph Out-of-Distribution Generalisation De- 852

spite the success of graph machine learning, most 853

methods assume that training and testing data share 854

the same distribution (the in-distribution hypothe- 855

sis). In practice, this assumption is often unrealis- 856

tic, especially for nascent fake news. Traditional 857

graph methods struggle with OOD generalisation, 858

causing performance degradation. Recent advance- 859

ments improve OOD generalisation through two 860

main strategies: data-centric methods (Feng et al., 861

2020; Park et al., 2022; Wu et al., 2022a; Zhao 862

et al., 2022; Li et al., 2024), which modify the 863

training graph data to improve robustness, and in- 864

variant learning (Chen et al., 2022; Miao et al., 865

2022; Wu et al., 2022b; Liu et al., 2023; Yu et al., 866

2023; Gui et al., 2024), which focus on identify- 867

ing consistent feature-label relationships across dis- 868

tributions while eliminating environment-specific 869

correlations. 870

However, to the best of our knowledge, no exist- 871

ing graph-based OOD generalisation methods have 872

been successfully adapted to fake news, because of 873

the complex language semantics in the news prop- 874

agation graph. Our experiments have shown that 875

the direct application of graph OOD generalisation 876

methods leads to low fake news detection accuracy. 877
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C Causal Analysis878

In this paper, Structural Causal Models (SCMs) are879

employed to characterize the key features of the880

fake news detection problem and to elucidate the881

interactions among these features. We conduct a882

causal analysis of several variables to assess the883

differences and effectiveness of our CSDA model.884

As depicted in Fig.5a, we consider five variables:885

the unobserved causal subgraph variable C, the un-886

observed biased subgraph variable B, the observed887

graph G, the graph embedding E, and the ground888

truth or prediction Y . Since the prediction is opti-889

mized to match the ground truth, we use the same890

variable to represent both. Fig.5a illustrates the891

SCM, where each link denotes a causal relation-892

ship.893

The link C → Y indicates that C is the sole894

endogenous parent responsible for generating the895

ground truth label Y . For instance, C represents896

the oracle propagation subgraph, which precisely897

explains why the label is assigned as Y . However,898

the observed graph data G is generated by both the899

causal variable C and the bias variable B, leading900

to the fusion of biased subgraph information into901

the embedding E, which can result in incorrect902

predictions.903

Our objective, therefore, is to decompose the ob-904

served graph G to uncover the unobserved variables905

C and B, and to utilize only the causal subgraph C906

to generate a causal embedding E′, as illustrated in907

Fig. 5b. This approach ensures that the prediction908

Y is uncorrelated with the biased information B.

(a) Structural Causal Model of the union of the data generation
process and the prediction process of traditional graph-based
fake news detection methods. The grey and white variables
represent unobserved and observed variables.

(b) Structural Causal Model of our CSDA model.

Figure 5: Structural Causal Models.

909

Table 4: Experimental Dataset Statistics (“Avg. depth”
refers to the average number of layers of the news prop-
agation graphs, i.e., trees)

Twitter Twi-COVID Weibo Wei-COVID

# news 1,154 400 4,649 399
# graph nodes 60,409 406,185 1,956,449 26,687
# true news 579 148 2,336 146
# fake news 575 252 2,313 253
Avg. depth 11.67 143.03 49.85 4.31
Avg. # posts 52 1,015 420 67
Domain Open COVID-19 Open COVID-19
Language English English Chinese Chinese

D Data Statistics 910

The statistics of the datasets are shown in Table. 4. 911

E Training Algorithm 912

To give more details about the training process, the 913

pseudo code of the training is given in the following 914

Algorithm 1. The training algorithm is discussed 915

from two aspects: With the low-resource OOD 916

data available in training (few-shot) and only in- 917

distribution data available in training (zero-shot). 918

F Feature Visualisation 919

Fig. 6 shows the T-SNE (Van der Maaten and Hin- 920

ton, 2008) visualisation of learned news embed- 921

dings from three representative models: BiGCN, 922

UCD-RD and our CSDA. These models are utilised 923

to learn embeddings for news items from Twitter 924

and Twitter-COVID datasets. The computed em- 925

beddings are visualised through T-SNE under the 926

same settings. 927

From Fig. 6, we observe that CSDA learns more 928

discriminative representations, leading to better 929

separations between the clusters of fake news and 930

true news. This reaffirms that CSDA can effectively 931

extract the causal information from the news prop- 932

agation graphs for fake news detection. 933
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(a) BiGCN representation. (b) UCD-RD representation. (c) CSDA representation.

Figure 6: TSNE feature visualisation of three representative models.
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Algorithm 1 CSDA Training Algorithm

1: Input: A set of in-distribution (ID) news Cin
i ;

2: Optional Input: A set of out-of-distribution
(OOD) news Cout

i .
3: Output: Assign news veracity labels y ∈

{0, 1} to given unlabelled test data samples.

4: if OOD data is provided then
5: for each mini-batch Nout from the OOD

data do
6: for each mini-batch N in from the ID data

do
7: Combine the Nout and the Nin to a

integrated mini-batch as C∗
i

8: Pass C∗
i to the Mask Generator to get

the causal subgraph G∗
ic and the biased

subgraph G∗
ib;

9: Encode G∗
ic and G∗

ib to embedding Zc

and Zb by corresponding causal and
biased graph encoders;

10: Permute the Zb and the corresponding
label y to Z̃b and ỹ;

11: Calculate the label predictions through
causal MLP and biased MLP;

12: Calculate the enhanced overall loss
with L′

with contrastive learning loss
LCL based on the embedding Z, pre-
dictions and training labels;

13: Jointly optimize parameters given loss
L′

;
14: end for
15: end for
16: else
17: for each mini-batch N in from the ID data

do
18: Treat Nin as a mini-batch C∗

i

19: Pass C∗
i to the Mask Generator to get the

causal subgraph G∗
ic and the biased sub-

graph G∗
ib;

20: Encode G∗
ic and G∗

ib to embedding Zc and
Zb by corresponding causal and biased
graph encoders;

21: Permute the Zb and the corresponding la-
bel y to Z̃b and ỹ;

22: Calculate the label predictions through
causal MLP and biased MLP;

23: Calculate the enhanced overall loss loss
L based on the predictions and training
labels;

24: Jointly optimize parameters given loss L;
25: end for
26: end if
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