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Abstract

The spread of fake news through social media
poses significant threats. Recent models using
text and graph features have shown promising
results in specific fake news detection scenarios.
However, these data-driven models heavily rely
on training data that share similar distribution
with inference data, limiting their applicabil-
ity to fake news from emerging or previously
unseen domains, known as out-of-distribution
(OOD) data. Tackling OOD fake news is a
challenging yet critical task. To address the
challenge, we propose the Causal Subgraph-
oriented Domain Adaptive Fake News Detec-
tion (CSDA) model. CSDA extracts causal sub-
structures from news propagation graphs that
generalise to OOD data, using a graph neu-
ral network-based mask generation process. It
uses refined training objectives to ensure high-
quality subgraphs. It is further powered by con-
trastive learning for few-shot scenarios, where
a limited amount of OOD data is available for
training. Extensive experiments on public so-
cial media datasets demonstrate the effective-
ness of CSDA effectively handles OOD fake
news detection, achieving a 1.23%~12.23% ac-
curacy improvement over other state-of-the-art
models.

1 Introduction

The popularity of social media has enabled rapid
news dissemination, for both true and fake news.
Given the potential impact of fake news, robust
methods are urgently needed to debunk such misin-
formation in a timely manner. In real-world scenar-
10s, out-of-distribution news from unseen domains
emerges over time. This brings substantial chal-
lenges to fake news detection models.
Graph-based fake news detection methods us-
ing graph neural networks (GNN) have garnered
much attention recently for modelling news propa-
gation patterns (Gong et al., 2023a). Despite their
success, existing GNN-based methods are gener-
ally built upon the assumption that both training
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Figure 1: Illustration of causal subgraphs and our casual
subgraph-based model (bottom).

and testing data are independently sampled from
an identical data distribution (i.i.d.), which often
does not hold true nor reflect the real challenges of
fake news detection in practical scenarios (Li et al.,
2022). Emerging and hitherto unseen fake news
and their associated propagation graphs can and do
arise. From an empirical perspective, these meth-
ods focus on minimising the average training errors
and incorporating correlations within the training
data (which is considered to be in-distribution) to
improve fake news detection accuracy (Liu et al.,
2021). However, real-world graph-based fake news
data is often mixed with biased domain-specific in-
formation in the training data. For example, Zhang
et al. observed that the veracity of some political
news is strongly correlated with specific keywords
(e.g., most news propagation involving the terms
“White House" and “rainbow" are classified as true).
The detection models trained from such data may
thus learn domain-specific biases resulting in poor
generalisation (Li et al., 2022).

To detect fake news across different domains
(e.g., sports and politics), early studies (Ma et al.,
2018; Bian et al., 2020) focused on capturing
content-independent propagation patterns. How-
ever, it has been shown (Min et al., 2022) that not
only the news content but also the propagation pat-



terns can vary across different domains. Such cross-
domain fake news detection method have limited
success. To tackle this, recent methods (Lin et al.,
2022; Li et al., 2023) utilise domain adaptation to
transfer trained models to emerging news domains
with a small amount of data from the emerging
domains. However, these methods require labelled
data from emerging domains which is typically un-
available. More related works are in Appendix.B.

To address these limitations, we focus on ex-
tracting causal subgraphs from news propagation
graphs whilst aiming to mitigate domain biases for
fake news detection in emerging domains. News
from an emerging domain is treated as out-of-
distribution (OOD) data when its distribution shifts
significantly from the in-distribution data. Our
model generalises to OOD data by capturing causal
subgraphs in an unsupervised manner. From a
causal analysis standpoint, each propagation graph
comprises a causal subgraph and a domain biased
subgraph, which are initially entangled. Our key
insight is that not all nodes in propagation graphs
contribute to generalisation across unseen domains.
Instead, only the causal subgraphs carry critical in-
formation should be used for identifying fake news
in OOD settings, as illustrated in Fig 1. By identi-
fying and capturing these causal subgraphs, we can
enhance the model’s generalisation capabilities.

Based on this intuition, our model, the Causal
Subgraph Oriented Domain Adaptive Fake News
Detection model (CSDA), is proposed. CSDA extracts
subgraphs from propagation graphs and performs
classification based on particular subgraphs, which
are referred to as the casual subgraphs. In CSDA, a
binary mask is learned for each node and edge of
the propagation graph to classify them into causal
or biased elements. For the subgraph formed by
each type of element, a graph encoder and a multi-
layer perceptron (MLP) classifier together encode
the subgraphs and classify the news items accord-
ing to the subgraph embeddings. The classifier
predictions of the causal elements are regarded as
the domain-invariant predictions. For the biased
elements, they are expected to be biased to the train-
ing data’s domains and harm the generalisation to
unseen domains. Since the subgraph of the biased
elements can be biased to specific domains, in the
training process, we design training objectives to
optimise the subgraph split whilst restricting the
influence of the biased elements.

Following recent works such as (Lin et al., 2022;
Li et al., 2023), we also consider a scenario where

limited OOD data becomes available, e.g., through
manual labelling. In this scenario, CSDA’s perfor-
mance is further enhanced with a supervised con-
trastive learning-based approach and achieves state-
of-the-art (SOTA) classification accuracy.

In summary, our contributions include:

* We propose a zero-shot unseen domain fake
news detection model named CSDA based on
domain-invariant causal subgraphs from news
propagation patterns.

* We further explore a few-shot scenario where
a small number of OOD examples are avail-
able, and utilise contrastive learning to en-
hance CSDA’s cross-domain fake news detec-
tion performance.

» Extensive experiments are conducted on four
real datasets. The results confirm the effec-
tiveness of CSDA for cross-domain fake news
detection, outperforming SOTA models by
1.23%~12.23% in terms of accuracy.

2 Preliminaries

Unseen domain fake news detection aims to trans-
fer a model trained on a labelled (in-distribution)
dataset to an OOD dataset that is unlabelled or with
a few labelled samples.

Given a set of news items D;;,, = {(G}", yi")}
(k € [1, ni,)) that comes from some latent distribu-
tion P, we aim to train a model to detect fake news
in another dataset Doy = {(G2*)} (k € [1, nout))
that contains data from an unknown distribution P’
that is different from . Here, we refer to data D;,,
from P as in-distribution data and those D ,; from
P as 00D data. Nin and n,,; refer to the number
of news items in D;,, and D, respectively. Our
goal is to train a classifier f using the training set
D;,, to determine whether news items in another
non-overlapping set D,,; contains fake news. We
assume that both D,,, and D,,; share the same la-
bel space (i.e. they are labelled as either true news
and fake news).

Causal Analysis As shown in Fig 1, we use vari-
ables C, B, G and Y to represent the casual sub-
graph (C), the biased subgraph (B), the observed
propagation graph (G), and the news label (Y),
according to the recent advances in causal invari-
ant learning (Fan et al., 2022a; Chen et al., 2022).
Each link denotes a causal relationship (Fan et al.,
2022b). With traditional graph-based models, the



propagation graphs are encoded directly, and hence
spurious correlations between C and B are ignored
and fused into the graph embedding, leading to in-
accurate fake news predictions. In our approach,
the causal and biased subgraphs are disentangled,
and the prediction improved by referring solely to
the causal information.

Data Preparation For each news item from
both D;, and D,,;, the propagation graph G;, =
(X, Ay) is extracted and modelled as an undi-
rected acyclic graph. The node set X; =
{71, 22,...,7%,|} contains all posts including
the source news posts and all associated com-
ments/reposts which can be used to provide sup-
portive information regarding the post veracity.
Each post’s embedding is initialised using a pre-
trained BERT model (Devlin et al., 2019) to com-
pute the text embeddings.

The adjacency matrix Ay, = {oyj,4,j €
[1,|Ck|]} is the set of propagation behaviours
where an edge exists (i.e., a;; = 1) between node
¢ and node j if there is a reply/repost relationship.

3 Proposed Model

In the section, we detail the CSDA model used for un-
seen fake news detection tasks. CSDA is designed to
extract and capitalise on subgraphs from the news
propagation graph. The architecture of CSDA is
illustrated in Fig 2.

In CSDA, we take a small batch of propagation
graphs and apply a mask generator on them to split
each propagation graph into a causal subgraph and
a biased subgraph. The causal and the biased sub-
graphs are encoded using two individual graph en-
coders to produce two separate embeddings. The
training objective is to emphasise the impact of the
casual subgraphs while eliminating the impact of
the biased subgraphs on the classification output.

CSDA is trained on D;,, and tested on D,,; in a
zero-shot manner. When a few labelled samples are
available from D, they can also be incorporated
into the training process to further enhance the
model performance on D,,;.

3.1 Mask Generator

Our mask generator learns a mask to help split each
propagation graph G (i.e., G, — now we further drop
the subscript ‘k’ as long as the context is clear) into
a causal subgraph G, and a biased subgraph Gp.
This is achieved by computing node importance

scores (denoted as «; for node ¢) and edge impor-
tance scores (denoted as 3;; for the edge between
nodes ¢ and j) in the propagation graph G. The aim
is to measure the probability of a node or an edge
belonging to a causal subgraph.

The mask generator takes graph G (i.e., its fea-
tures) as input and outputs the importance of its
nodes and edges. A Graph Isomorphism Network
(GIN) (Xu et al., 2018) is utilised to encode the
graph and map the node features X to node em-
beddings H for the model’s graph structure learn-
ing capability. After obtaining the graph features
H = {hj,ha,... , hyx}, where N is the size of the
node set and h; represents the embedding for the
i-th node, the node and edge importance scores are
computed using an MLP:

a; = o(MLP([hy])), By = o(MLP([h;, hy])).
ey
where o is the activation function.

Since the causal and the biased subgraphs are
defined as two non-overlapping substructures of G,
the probability of a node and an edge belonging to
a biased subgraph can be established by (1 — «;)
and (1 — f;;), respectively.

Using the importance scores, we construct a
causal graph mask M, = [«, 3] and a biased graph
mask My = [(1 — «), (1 — )]. Finally, the input
propagation graph G is decomposed into a causal
subgraph G. = {M,. ® G} and a biased subgraph
Gy = {M} ® G}, where © is the filtering operation
on graph G with the corresponding masks. The
masks emphasise distinct regions of the propaga-
tion graphs, enabling subsequent GNN-based graph
encoders to concentrate on different segments of
the graphs.

3.2 Graph Encoder

Two subgraph encoders realised as a 2-layer of
stacked GCNII (Chen et al., 2020) are used to en-
code the causal and the biased subgraphs. Given a
graph’s node features X = {x1,X2,...,xx} and
its adjacency matrix A, the graph embeddings are
computed through GCNII by:

ZU+) _ o ((]5*1/21&]5*1/22(1) + Z(O))(In + W(l))) ’

?
wherel =0orl, Z (0) is the initial node features
X, A is the adjacent matrix of the graph with self-
loops, D is the degree matrix of A, I, is the iden-
tity mappig from GCNII, W) is the learnable
parameter matrix, and o is the activation function.
2(0) is initiated as the node feature input X.
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Figure 2: Architecture of CSDA, which is trained with batches of news propagation graphs. A mini-batch of
propagation graphs are masked by the Mask Generator and divided into causal and biased subgraphs. Then, the two
branches of subgraphs are encoded using two independent graph encoders to produce causal and biased embeddings.
Afterwards, the causal embedding is forwarded to an MLP classifier for causal veracity prediction. Meanwhile, the
biased embedding is utilised as part of model optimisation for accurate subgraph extraction.

As shown in Fig 2, two parallel subgraph en-
coders are used to encode the causal subgraph G,
and the biased subgraph G into a causal embedding
z. and a biased embedding z;. These embeddings
will subsequently be fed into news classifiers for
loss calculation and fake news prediction.

3.3 Classification Module

The classification module (CM) is responsible for
predicting the news veracity based on the extracted
graph embeddings. It is composed of an MLP that
uses a softmax function. Given the graph embed-
ding Z, e.g. the causal graph embedding z., the
CM computes the prediction through:

pred = softmaxz(MLP(Z2)). 3)

Since CSDA focuses on classifying news accord-
ing to causal features, we design a causal CM and
a biased CM in the model. They do not share the
parameters and have different input dimensions
according to model design. During model train-
ing, these two CMs are jointly trained to optimise
CSDA to capture causal information accurately. For
model inference, only the prediction results from
the causal CM are used to detect fake news. More
details about the use of the outputs of these two
CMs are presented in the next subsection.

3.4 Disentangling Training Objectives

As described, the causal and the biased subgraphs
are initially entangled. If a model is optimised
only by the prediction results, the model could be

trained to extract trivial patterns (e.g. treating the
whole graph as the causal subgraph) leading to sub-
optimal generalisation outcomes. To disentangle
the causal and the biased subgraphs while optimis-
ing the prediction results, contrastive learning, data
augmentation and hinge loss are utilised in addition
to traditional cross-entropy loss.

Loss of the Causal Model Branch The cross-
entropy of the causal prediction is established by:

Lie = CE(ye,y), 4)

where y. and y are the causal prediction result and
the ground truth labels. Training with L¢, only can-
not guarantee the accurate extraction of the causal
and biased subgraphs.

To enhance the quality of the extracted causal
subgraphs, a contrastive loss is introduced due to
its data distribution capabilities. The intuition is
that since the causal subgraph is based on the di-
rect causality of news labels, the data samples that
share the same labels tend to have similar causal
subgraph embeddings. Therefore, for two samples
n and m sharing the same label in a batch, a con-
trastive loss can be defined based on:

' 1 Nin 1 N’in
L= Nin Z N oin Z Lppstm) Lyin—yin
n=1""Yn m=1

exp(sim(o™, oﬁ,’f)/T)

Og N1n . . in 9
D k=1 Lppsn exp(sim(o, O )/T)

&)

1




where N is the number of in-distribution data
samples in a batch, N i. is the number of in-
dlstrlbutlon data samples ‘Which share the same la-
bel y%* with sample C'", 1 is the indicator function,
oi", o, and oy" are the corresponding extracted
casual representatlons from CSDA, sim(-) is the co-
sine similarity function, and 7 is a hyperparameter
that controls the temperature.

The contrastive loss enhances the quality of the
extracted causal subgraph. However, the model
could still predict the whole input graph as the
causal subgraph. Therefore, the biased subgraph
also needs to be optimised.

Loss of the Biased Model Branch To emphasise
the causal subgraph and restrict the biased sub-
graph, we allow the causal subgraph to include the
biased subgraph, but not versa. To achieve this,
we create two embeddings Z and Z by concate-
nating the causal subgraph embedding z. and the
biased subgraph embedding z;. To prevent back-
propagation from the biased classification loss from
affecting the causal model branch, the gradients
from the causal embedding is detached before con-
catenation, as shown in Fig. 2. Then we forward
the Z to the biased classifier to output prediction
Yo-

In addition, the biased graph embedding z; is
permuted and concatenated with the causal graph
embedding z. to form Z. The labels y are also
permuted to ¢ in the same order as z; to encourage
the biased classification module to focus only on
the biased embeddings. The output of this module
is ?jb.

Lastly, vy, is the prediction on both of the causal
and biased subgraphs, ¥, is the prediction only on
biased subgraphs. Inspired by (Chen et al., 2022),
a restricted hinge loss (Crammer and Singer, 2001)
is utilised to ensure that the biased subgraph does
not include the causal subgraphs:

£&=—chwm> [CE(ys,y) < CE(g, )],
(6)
Here, 1]-] denotes the indicator function, which
outputs 1 when the specified condition is satisfied.
The hinge loss is designed to back-propagate only
when the predictions based on both causal sub-
graphs and biased subgraphs are no worse (i.e.,
result in a lower or equal loss) than the predictions
based solely on the biased subgraphs.
The overall loss £ of CSDA is given as the sum

of the loss terms above:
L= Lo+ Lo+ L, )

where 7 is a hyperparameter to adjust the con-
trastive loss.

3.5 Model Fine-tuning with OOD Data

CSDA can be trained using just in-distribution data
D;,,. We can also use a few labelled OOD samples
to further fine-tune CSDA on a target domain. In this
subsection, we discuss model optimisation given a
few OOD samples using contrastive learning.

When OOD samples are available, we can fur-
ther improve the model performance via align-
ing the representation space of the data. This
is achieved by bringing the representations of in-
distribution and OOD samples from the same ve-
racity class together while keeping representations
from different classes apart. We use contrastive
learning for this purpose.

To fine-tune CSDA with OOD data, another su-
pervised contrastive learning objective is proposed.
Here, we aim to draw the embedding space of sam-
ples with the same label but from different distribu-
tions closer based on:

Nout Nm
t
EOU Nout Z N oot Z ]l[youtfyzn
s m=1 (®)

exp(szm( s om)/T)

>y exp(sim(og, of") /7)

where N°“ is the number of OOD samples in a
training batch, N*" is the number of in-distribution
samples in the batch, N ou is the number of in-
distribution samples which share the same label
y2t with sample C“*, and 02", o', and o{" are
the corresponding extracted causal representations
from CSDA, respectively.

The overall loss £’ of CSDA now becomes:

log

L=LS+ L0 4+~ (L8, + L2 9)

, where +y is the same hyperparameter used in Equa-
tion. 7.

4 Experiment

4.1 Experimental Settings

Datasets Four public datasets collected from
Twitter (now called X) and Weibo (a Chi-
nese social media platform like Twitter) are



utilised in the experiments: (1) Twitter (Ma
et al., 2017), (2) Weibo (Ma et al.,, 2016),
(3) Twitter-COVID19 (Lin et al.,, 2022) and
(4) Weibo-COVID19 (Lin et al., 2022). The statis-
tics of the datasets are shown in Appendix. D,
Table 4. Twitter and Weibo are open-domain
datasets. They cover a variety of topics except
COVID-19 and are used as the main training set.
Twitter-COVID19 and Weibo-COVID19 only con-
tain news related to COVID-19, which represent
the OOD data.

To showcase the effectiveness of CSDA, two sets
of experiments are designed. In the first set of ex-
periments, the models are trained on in-distribution
data (e.g., Twitter) and tested on OOD data (e.g.,
Twitter-COVID19), to simulate the scenario where
no prior knowledge about the OOD data is avail-
able. In the second set of experiments, a few
OOD samples (e.g., 20% of Twitter-COVID19)
are utilised to help optimise the models together
with in-distribution data (e.g., Twitter), to simu-
late the scenario where we have a small number
of manually labelled OOD samples. The remain-
ing OOD data (e.g, 80% of Twitter-COVID19) are
used for model testing.

Baselines We compare with 14 models includ-
ing recent models UCD-RD (Ran and Jia, 2023),
CADA (Li et al.,, 2023), DELL (Wan et al.,
2024) and graph OOD generalisation methods G-
mixup (Han et al., 2022), CIGA (Chen et al., 2022).

Baseline models that are trained with in-
distribution data only include: LSTM (Ma et al.,
2016) which uses an LSTM-based model to learn
feature representations of relevant posts over
time;CNN (Yu et al., 2017) uses a CNN model
for misinformation identification by modelling the
relevant posts as a fixed-length sequence; RvNN
(Ma et al., 2018) which learns the propagation of
news by exploiting a tree structured recursive neu-
ral network; PLAN (Khoo et al., 2020) which uses
a Transformer (Vaswani et al., 2017)-based model
for fake news detection by capturing long-distance
interactions between tweets (source posts and as-
sociated comments); ROBERTa (Liu et al., 2019)
which encodes the text information of a news item
and classifies the news based on the text classi-
fication; BiGCN (Bian et al., 2020) which mod-
els news propagation by representing social media
posts as nodes in a graph, and then it utilises a
GCN-based model to encode the graph and clas-
sifies whether a given news item is true or fake;

GACL (Sun et al., 2022) which enhances BiGCN
by generating adversarial training samples and
training with contrastive learning; SEAGEN (Gong
et al., 2023b) which models the news propaga-
tion process by encoding the temporal propaga-
tion graph with a temporal graph network (TGN)
and a neural Hawkes process; UCD-RD (Ran and
Jia, 2023) which uses prototype-based contrastive
learning to initialise prototypes via in-distribution
samples, and then it aligns the OOD data features
with the corresponding prototypes. In addition to
these traditional fake news detection methods, we
also compare with graph OOD methods including
G-mixup (Han et al., 2022), CIGA (Chen et al.,
2022).

Baseline models trained with both in-distribution
and low-resource OOD data include: ACLR (Lin
et al., 2022) which utilises adversarial contrastive
learning to transfer pre-trained BiGCN (Bian et al.,
2020) models from a source domain to a target
domain for fake news detection; CADA (Li et al.,
2023) which serves as a plug-in module that adapts
pre-trained models from a source domains to a
target domain based on label-aware domain ad-
versarial neural networks (Ganin and Lempitsky,
2015). In our experiments, CADA uses BiGCN,
RoBERTa, SEAGEN and GACL as the pre-trained
models. The web-retrieval and Large Language
Model (LLM) prompt-based method DELL (Wan
et al., 2024) is also compared.

All baselines and CSDA are implemented in Py-
torch! and trained using an A100 GPU. The base-
line models use the default hyperparameter settings
from their original papers. Hyperparameter y, 7 of
the CSDA model are set to 0.2, 0.1 respectively in
the experiments. The hyperparameters are selected
empirically based on a grid search shown in Fig 3c.
The best parameters are selected on the training
of Twitter dataset and applied to the training of
Weibo dataset.

4.2 Results

Table 1 and Table 2 present the model performance
on the four dataset settings (from Twitter, Weibo
to Twitter-COVID19, Weibo-COVID192.

In Table 1, the models are categorized into two
groups. The upper group consists of sequence-
based models (LSTM, CNN, RvNN, PLAN, and
RoBERTa2), while the bottom group includes graph-

'https://pytorch.org/
2All reported results are averaged of five runs



Table 1: Zero-shot Fake News Detection on Twitter-COVID19 and Weibo-COVID19 (Acc: Accuracy score on fake
news detection; F-F1: F1 score on fake news detection; T-F1: F1 score on true news detection).

Source | Twitter | Weibo

Target ‘ Twitter-COVID19 ‘ Weibo-COVID19 ‘ Twitter-COVID19 ‘ Weibo-COVID19

Method | Acc T-F1 F-Fl| Acc TFl FFl1| Acc TF1 FFl| Acc TF1 F-Fl

LSTM 0.412 0426 0.340|0.463 0.329 0.498 | 0.510 0.243 0.533|0.416 0.428 0.416

CNN 0.406 0.450 0.285|0.445 0.328 0476 | 0498 0.249 0.528 | 0.421 0.438 0.382

RvNN 0.436 0.458 0.401|0.514 0.426 0.538 | 0.540 0.247 0.534|0.479 0.548 0.437

PLAN 0.455 0432 0476(0.532 0414 0578 | 0.573 0.298 0.549 | 0.384 0.283 0.461

RoBERTa | 0.479 0.430 0.531]0.623 0.459 0.711| 0.603 0.585 0.619|0.680 0.714 0.637

BiGCN 0.468 0.546 0.356|0.569 0.429 0.586 | 0.616 0.252 0.577 | 0.612 0.681 0.441

SEAGEN | 0.494 0.448 0.494]0.555 0.406 0.583 | 0.578 0.320 0.650 | 0.586 0.613 0.424

GACL 0.541 0.545 0.536|0.601 0.410 0.616 | 0.621 0.345 0.666 | 0.688 0.635 0.727

UCD-RD | 0.665 0.453 0.767 | 0.631 0.510 0.621 | 0.591 0.371 0.583|0.689 0.451 0.783

G-mixup 0.395 0.319 0.259|0.549 0.530 0.555| 0.388 0.319 0.263 | 0.431 0.375 0.324

CIGA-gen | 0.492 0.476 0.500|0.672 0.648 0.672 | 0.542 0.542 0.539|0.694 0.669 0.693

CIGA-gin | 0.475 0471 0.459]0.627 0.544 0.596 | 0.450 0.418 0.382]0.732 0.685 0.718

CSDA (ours) | 0.713 0.556 0.763 | 0.701 0.586 0.723 | 0.697 0.651 0.732 | 0.741 0.721 0.809

T (%) +7.21 +1.83 -0.52 | +4.32 -9.57 +1.69 | +12.23 +11.28 +9.91 | +1.23 +5.26 +3.32
Tal?le 2: Few-shot Fake News Detection on  tion method, CIGA, demonstrates significant im-
Twitter-COVID19  (trained on Twitter) and ., ements only on the Weibo-COVID19 dataset,
Weibo-COVID19 (trained on Weibo) (Acc: Accu-

racy score on fake news detection; F-F1: F1 score
on fake news detection; T-F1: F1 score on true news
detection).

Method Twitter-COVID19 | Weibo-COVID19

Acc T-F1 F-F1| Acc T-FlI F-Fl
CADABigen | 0.681  0.621 0.725|0.716 0.552 0.792
CADAReBERT: | 0.711  0.540 0.790|0.839 0.783 0.878
CADAGggaGeN | 0.669 0.383 0.785|0.662 0.471 0.752
CADAgacL. |0.641 0.511 0.716|0.684 0.402 0.786
ACLR 0.741 0.607 0.799|0.897 0.847 0.917
DELL 0.446 0.384 0.497|0.800 0.743 0.852
CSDAFine-Tunea | 0.772 0.767 0.797 | 0.922 0.884 0.940
1T (%) +4.18 +26.36 -0.25 | +2.79 +4.37 +2.51

based models (BiGCN, SEAGEN, GACL, UCD-
RD, G-Mixup, CIGA, and CSDA). Overall, the
graph-based models outperform the sequence-
based ones, underscoring the effectiveness of lever-
aging propagation graphs for fake news detection.
Among the graph-based models, CSDA consistently
achieves the best performance across both datasets
in terms of accuracy and F1 scores.

Baseline models that do not account for OOD
data generally exhibit poor performance. These
models are trained on open-domain in-distribution
datasets and are therefore biased by domain-
specific information. UCD-RD seeks to align the
representations of in-distribution and OOD news
samples belonging to the same class. However,
it fails to address domain biases, making it less
effective than CSDA. The graph OOD generalisa-

whereas G-Mixup fails to deliver any notable im-
provements. The reason can be these methods are
designed for more sophisticated graph structures
and are less suited to news propagation graphs,
which feature simpler structures but more complex
node attributes.

As shown in Table 2, when labelled OOD data is
available, the baseline models (BiGCN, RoBERT3,
SEAGEN and GACL) powered by CADA can learn
features from the OOD data and achieve better ac-
curacy than their vanilla versions. ACLR, which
is designed for domain adaptation, achieves even
better performance. However, these models are still
outperformed by CSDA using fine-tuning with a per-
formance improvement of 2.79 ~ 4.18%. DELL
has good performance on Weibo-COVID19 dataset
but performs poorly on Twitter-COVID19, show-
ing both promising results and limitations of LLMs
in fake news detection, which could provide some
inspirations for future work.

4.3 Ablation Study

To show the effectiveness of the causal subgraph
extraction module and impact on the loss functions,

four variants of CSDA are trained and the aver-
aged results are shown in Fig 3a and Fig 3b. In the
first variant "Only L¢.", the subgraph extraction
and classification module are trained purely based
on the prediction loss. The remaining three vari-
ants all use causal subgraph extraction. They each
add one additional loss component, with the final
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Figure 3: Ablation experiment and parameter sensitivity.

Table 3: Examples from Twitter-COVID19.

News, Comments, Node Scores and Edge Scores

Source news 1: The World Health Organization confirmed
that Covid-19 is deadlier than the seasonal flu, but does not
transmit as flu... [Node Score: <0.001] [Label: FAKE]
Comment 1 on source news: Need to buy a lot of masks
contact me. [Node Score: 0.154] [Edge 0—1 Score: 0.152]
Comment 2 on source news: Because of their more rigorous
testing protocols, South Korea’s mortality rate of 0.6% is
the most accurate. [Node Score: 0.393] [Edge 0—2 Score:
0.515]

Comment 3 on source news: why don’t you look at im-
plementing #Covid_19 travel health cards that confirm the
person has been. .. [Node Score: 0.514] [Edge 0—3 Score:
0.462]

Comment 4 on source news: WHO is also omitting mild
cases from their stats. [Node Score: 0.556] [Edge 0—4
Score: 0.574]

Source news 2: Rumours are no less infectious than #coron-
avirus! This looks like a meticulous list, but a fake one too...
URL [Node Score: 0.1] [Label: True]

Comment 1 on source news: Yeah, this is fake coz you guys
have totally disallowed stores from delivering essent... URL
[Node Score: 0.446] [Edge Score: 0.554]

Comment 2 on source news: Why are police personnel beat-
ing up vegetable vendors and delivery guys... URL [Node
Score: <0.01] [Edge Score: 0.036]

Comment 3 on comment 2: We have forwarded your query
to the xxx. You can contact them on xxx-xxxxxx. [Node
Score: 0.190] [Edge Score: 0.809]

model being the complete CSDA model. The results
show the importance of each model component, es-
pecially the disentangling training objectives which
guide the causal subgraph extraction module.

4.4 Case Study

The effectiveness of the CSDA model is further
demonstrated through a case study using the
Twitter and Twitter-COVID19 datasets. The
mask generator, trained on Twitter, is applied to
Twitter-COVID19 to filter out biased subgraphs

while preserving causal ones. As shown in Ta-
ble 3, source news with an official tone receives low
node scores, indicating limited standalone value for
classification (The indexes of news/comments are
specified by the index number. The node and edge
scores are calculated by CSDA’s mask generator). In
contrast, comments revealing the news veracity are
scored higher, while irrelevant or propagandistic
content is down-weighted. This allows the Graph
Encoder to focus on causal signals, enhancing de-
tection.

This case study highlights a latent link between
graph OOD generalisation and semantic reasoning:
semantically meaningful content tends to receive
higher scores, suggesting the model implicitly cap-
tures domain-invariant, informative semantics.

5 Conclusions

We presented the CSDA model for detecting fake
news across domains by extracting and leverag-
ing causal substructures in new propagation graphs.
CSDA addresses the limitations of existing models
in handling domain biases and OOD data, high-
lighting the importance of causal elements in news
propagation graphs. Through extensive experi-
ments, we show that CSDA outperforms not only
sequence-based models but also other graph-based
models, achieving higher accuracy, particularly in
cross-domain scenarios. We also show that the inte-
gration of a fine-tuning process with low-resource
OOD data further enhances CSDA’s robustness and
adaptability. Interestingly, the indicated connection
between graph OOD generalisation and semantic
reasoning revealed in the case study also points fu-
ture direction to reason on the propagation graph.



Limitations

While the paper introduces a novel and effective
approach, it lacks concrete validation of the causal
subgraph assumptions. Further work needs to be
done to prove the identified subgraphs are truly
causal rather than robust correlates. More inter-
pretability could be gained. Furthermore, the evalu-
ation is limited to propagation graphs from Twitter
and Weibo, leaving open the question of generalis-
ability to other domains or platforms.

Besides, in the era of large language models
(LLMs), many fake news detection systems lever-
age powerful language understanding and retrieval
capabilities, often without relying on propagation
structures. This poses a limitation for CSDA,
which requires structured propagation graphs, po-
tentially making it less applicable when only raw
text is available. However, CSDA’s causal subgraph
approach can complement LLLMs by serving as a
structure-aware module—for instance, its causal
masks can be used to select or highlight informative
user comments for LLMs to summarize or verify,
which could be promising future work.
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A Domain Difference

The domain differences between the in-distribution
data and the out-of-distribution data are examined
from two perspectives: text content and graph

statistics.
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Figure 4: Visualisation of domain differences.

As illustrated in Fig. 4, the Word Clouds of the
Twitter and Twitter-COVID19 datasets highlight
the text content disparities between the two do-
mains. Consequently, it is challenging to transfer
linguistic-based models from Twitter to Twitter-
COVID19. In addition to text content, we also
analyse the statistics of the propagation graph, fo-
cusing on the number of nodes and the heights of
the propagation trees. The results reveal that true
news on Twitter generally exhibits larger propa-
gation, whereas fake news on Twitter-COVID19
shows greater propagation, posing challenges for
traditional graph-based fake news detection mod-
els. To address these issues, we propose our model,
CSDA, designed to capture the causal aspects of
propagation.

B Related Work

Fake News Detection Traditional fake news de-
tection methods have explored news content, social
context and social environment aspects. Content-
based methods learn content or style features from
the text or multi-media content (Feng et al., 2012).
They may also leverage external knowledge for fact
checking (Samarinas et al., 2021). Social context-
based methods exploit user features (Shu et al.,
2019) and user interactions that occur in news prop-
agation. They use both sequence modelling (Ma
et al., 2016; Khoo et al., 2020) and graph mod-
elling (Bian et al., 2020; Gong et al., 2023b)models.
Environment-based methods (Nguyen et al., 2020)
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consider associations across multiple news do-
mains to extract broader contextual information.

Cross-domain fake news detection aims to train
a model in one domain (the source domain) and
apply the model to a different domain (the target
domain). This is achieved using sample-level and
feature-level methods. Sample-level methods iden-
tify domain-invariant samples in the training set
and assign larger weights to them (Silvaet al., 2021;
Yue et al., 2022). Feature-level methods focus on
weighting or extracting domain-independent fea-
tures. For example, Mosallanezhad et al. utilise
reinforcement learning to select domain-invariant
attributes from news features. Inspired by domain-
adaptive neural networks (Ganin and Lempitsky,
2015), studies such as (Min et al., 2022; Li et al.,
2023) train an additional domain discriminator ad-
versarially by attempting to generate news embed-
dings that cannot be recognised by a domain dis-
criminator. However, these works require knowl-
edge of the target domains and they have not ex-
plored the challenges in fake news detection from
unseen news domains.

Graph Out-of-Distribution Generalisation De-
spite the success of graph machine learning, most
methods assume that training and testing data share
the same distribution (the in-distribution hypothe-
sis). In practice, this assumption is often unrealis-
tic, especially for nascent fake news. Traditional
graph methods struggle with OOD generalisation,
causing performance degradation. Recent advance-
ments improve OOD generalisation through two
main strategies: data-centric methods (Feng et al.,
2020; Park et al., 2022; Wu et al., 2022a; Zhao
et al., 2022; Li et al., 2024), which modify the
training graph data to improve robustness, and in-
variant learning (Chen et al., 2022; Miao et al.,
2022; Wu et al., 2022b; Liu et al., 2023; Yu et al.,
2023; Gui et al., 2024), which focus on identify-
ing consistent feature-label relationships across dis-
tributions while eliminating environment-specific
correlations.

However, to the best of our knowledge, no exist-
ing graph-based OOD generalisation methods have
been successfully adapted to fake news, because of
the complex language semantics in the news prop-
agation graph. Our experiments have shown that
the direct application of graph OOD generalisation
methods leads to low fake news detection accuracy.



C Causal Analysis

In this paper, Structural Causal Models (SCMs) are
employed to characterize the key features of the
fake news detection problem and to elucidate the
interactions among these features. We conduct a
causal analysis of several variables to assess the
differences and effectiveness of our CSDA model.

As depicted in Fig.5a, we consider five variables:
the unobserved causal subgraph variable C, the un-
observed biased subgraph variable B, the observed
graph G, the graph embedding F, and the ground
truth or prediction Y. Since the prediction is opti-
mized to match the ground truth, we use the same
variable to represent both. Fig.5a illustrates the
SCM, where each link denotes a causal relation-
ship.

The link C' — Y indicates that C' is the sole
endogenous parent responsible for generating the
ground truth label Y. For instance, C' represents
the oracle propagation subgraph, which precisely
explains why the label is assigned as Y. However,
the observed graph data G is generated by both the
causal variable C' and the bias variable B, leading
to the fusion of biased subgraph information into
the embedding E/, which can result in incorrect
predictions.

Our objective, therefore, is to decompose the ob-
served graph G to uncover the unobserved variables
C and B, and to utilize only the causal subgraph C'
to generate a causal embedding E’, as illustrated in
Fig. 5b. This approach ensures that the prediction
Y is uncorrelated with the biased information B.

(a) Structural Causal Model of the union of the data generation
process and the prediction process of traditional graph-based
fake news detection methods. The grey and white variables
represent unobserved and observed variables.

96@3

(b) Structural Causal Model of our CSDA model.

Figure 5: Structural Causal Models.
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Table 4: Experimental Dataset Statistics (“Avg. depth”
refers to the average number of layers of the news prop-
agation graphs, i.e., trees)

Twitter Twi-COVID Weibo Wei-COVID

# news 1,154 400 4,649 399

# graph nodes 60,409 406,185 1,956,449 26,687

# true news 579 148 2,336 146

# fake news 575 252 2,313 253
Avg. depth 11.67 143.03 49.85 4.31
Avg. # posts 52 1,015 420 67
Domain Open COVID-19 Open COVID-19
Language English  English  Chinese = Chinese

D Data Statistics

The statistics of the datasets are shown in Table. 4.
E Training Algorithm

To give more details about the training process, the
pseudo code of the training is given in the following
Algorithm 1. The training algorithm is discussed
from two aspects: With the low-resource OOD
data available in training (few-shot) and only in-
distribution data available in training (zero-shot).

F Feature Visualisation

Fig. 6 shows the T-SNE (Van der Maaten and Hin-
ton, 2008) visualisation of learned news embed-
dings from three representative models: BiGCN,
UCD-RD and our CSDA. These models are utilised
to learn embeddings for news items from Twitter
and Twitter-COVID datasets. The computed em-
beddings are visualised through T-SNE under the
same settings.

From Fig. 6, we observe that CSDA learns more
discriminative representations, leading to better
separations between the clusters of fake news and
true news. This reaffirms that CSDA can effectively
extract the causal information from the news prop-
agation graphs for fake news detection.
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(a) BiGCN representation. (b) UCD-RD representation. (c) CSDA representation.

Figure 6: TSNE feature visualisation of three representative models.
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Algorithm 1 CSDA Training Algorithm

1: Input: A set of in-distribution (ID) news Cf”;

2: Optional Input: A set of out-of-distribution
(OOD) news C.

3: Output: Assign news veracity labels y &
{0,1} to given unlabelled test data samples.

4: if OOD data is provided then
5:  for each mini-batch N°* from the OOD

data do
6: for each mini-batch N from the ID data
do

7: Combine the N°“ and the N, to a
integrated mini-batch as C

8: Pass C7 to the Mask Generator to get
the causal subgraph G, and the biased
subgraph G, ;

9: Encode G;. and G} to embedding Z.

and Zp by corresponding causal and
biased graph encoders;

10 Permute the Z;, and the corresponding
label y to Z and v/;

11: Calculate the label predictions through
causal MLP and biased MLP;

12: Calculate the enhanced overall loss

with £ with contrastive learning loss
L, based on the embedding Z, pre-
dictions and training labels;

13: Jointly optimize parameters given loss
L'

14: end for

15:  end for

16: else

17:  for each mini-batch N*" from the ID data

do

18: Treat N;;, as a mini-batch C

19: Pass C}" to the Mask Generator to get the
causal subgraph G, and the biased sub-
graph G}, ;

20: Encode G}, and G}, to embedding Z. and

Zy, by corresponding causal and biased
graph encoders;

21: Permute the Z;, and the corresponding la-
bel y to Zp and ¥;

22: Calculate the label predictions through
causal MLP and biased MLP;

23: Calculate the enhanced overall loss loss
L based on the predictions and training
labels;

24: Jointly optimize parameters given loss £;

25:  end for

26: end if
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