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Abstract

Transformers have a remarkable ability to learn and execute tasks based on exam-1

ples provided within the input itself, without explicit prior training. It has been2

argued that this capability, known as in-context learning (ICL), is a cornerstone of3

Transformers’ success, yet questions about the necessary sample complexity, pre-4

training task diversity, and context length for successful ICL remain unresolved. In5

this work, we provide precise answers to these questions using a solvable model of6

ICL for a linear regression task with linear attention. We derive asymptotics for the7

learning curve in a regime where token dimension, context length, and pretraining8

diversity scale proportionally, and pretraining examples scale quadratically. Our9

analysis reveals a double-descent learning curve and a transition between low and10

high task diversity, which is empirically validated with experiments on realistic11

Transformer architectures.12

1 Introduction13

Since their introduction by Vaswani et al. in 2017 [1], Transformers have become a cornerstone of14

modern artificial intelligence (AI). Transformers achieve state-of-the art performance across many15

domains, even those that are not inherently sequential [2] as originally intended. Strikingly, they16

underpin breakthroughs achieved by large language models (LLMs) such as BERT [3], LLaMA17

[4], and the GPT series [5–8]. The advancements enabled by Transformers have inspired much18

research aimed at understanding their working principles. One key observation is that LLMs gain19

new behaviors and skills as their number of parameters and the size of their training datasets grow20

[7, 9–11]. A particularly important emergent skill is in-context learning (ICL), which describes the21

model’s ability to learn and execute tasks based on the context provided within the input itself, without22

the need for explicit prior training on those specific tasks. ICL enables language models to perform23

new, specialized tasks without retraining, which is arguably a key reason for their general-purpose24

abilities.25

Despite many recent studies on understanding ICL, important questions about how and when ICL26

emerges in LLMs are still mostly open. LLMs are trained (or pretrained) with a next token prediction27

objective. How do the different algorithmic and hyperparameter choices that go into the pretraining28

procedure affect ICL performance? What algorithms do Transformers implement for ICL? How29

many pretraining examples are required for ICL to emerge? How many examples should be provided30

within the input for the model to be able to solve an in-context task? How diverse should the tasks31

in the training dataset be for in-context learning of truly new tasks not encountered in the training32

dataset? We address these questions by investigating a simplified model of a Transformer that captures33

its key architectural motif: the linear self-attention module [12–17]. Linear attention includes the34

quadratic pairwise interactions between inputs that lie at the heart of softmax attention, but it omits the35

normalization steps and fully connected layers. This simplification makes the model more amenable36
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to theoretical analysis. Our main result is a sharp asymptotic analysis of ICL for linear regression37

using linear attention, leading to a more precisely predictive theory than previous population risk38

analyses or finite-sample bounds [13, 16]. The main contributions of our paper are structured as39

follows:40

We begin in §2 by developing a simplified parameterization of linear self-attention that allows41

pretraining on the ICL linear regression task to be performed using ridge regression. Within this42

simplified model, we identify a phenomenologically rich scaling limit in which the ICL performance43

can be analyzed (§3). In this joint limit, we compute sharp asymptotics for ICL performance44

using random matrix theory. Our theoretical results reveal several interesting phenomena (§4).45

First, we observe double-descent in the model’s ICL generalization performance as a function of46

pretraining dataset size, reflecting our assumption that it is pretrained to interpolation. Second, we47

uncover a transition to in-context learning as the pretraining task diversity increases. This transition48

recapitulates the empirical findings of [18] in full Transformer models. We further show through49

numerical experiments that these insights from our theory transfer to full Transformer models with50

softmax self-attention.51

Understanding the mechanistic underpinnings of ICL of well-controlled synthetic tasks in solvable52

models is an important prerequisite to understanding how it emerges from pretraining on natural data53

[19].54

2 Problem formulation55

ICL of linear regression In an ICL task, the model takes as input a sequence of tokens56

{x1, y1, x2, y2, . . . , xℓ, yℓ, xℓ+1}, and outputs a prediction of yℓ+1. We will often refer to an in-57

put sequence as a context. We will refer to ℓ as the context length. We focus on an approximately58

linear mapping between xi ∈ Rd and yi ∈ R:59

yi = ⟨xi, w⟩+ ϵi, (1)

where ϵi is a Gaussian noise with mean zero and variance ρ, and w ∈ Rd is referred to as a task60

vector. We note that the task vector w is fixed within a context, but can change between different61

contexts. The model has to learn w from the ℓ pairs presented within the context, and use it to predict62

yℓ+1 from xℓ+1.63

Linear self-attention The model that we will analytically study is the linear self-attention block64

[20]. Linear self-attention takes as input an embedding matrix Z, whose columns hold the sequence65

tokens. The choice of embedding matrix for a sequence is not unique; here, following the convention66

in [15, 16, 20], we will embed the input sequence {x1, y1, x2, y2, . . . , xℓ, yℓ, xℓ+1} as:67

Z =

[
x1 x2 . . . xℓ xℓ+1

y1 y2 . . . yℓ 0

]
∈ R(d+1)×(ℓ+1), (2)

where 0 in the lower-right corner is a token that prompts the missing value yℓ+1 to be predicted. For68

appropriately-sized key, query, and value matrices K,Q, V , the output of a linear-attention block69

[20–22] is given by70

A := Z +
1

ℓ
V Z(KZ)⊤(QZ). (3)

The output A is a matrix while our goal is to predict a scalar, yℓ+1. Following the choice of positional71

encoding in (2), we will take Ad+1,ℓ+1, the element of A corresponding to the 0 prompt, as the72

prediction for yℓ+1, namely ŷ := Ad+1,ℓ+1.73

Pretraining data The model is pretrained on n sample sequences, where the µth sample is a74

collection of ℓ + 1 vector-scalar pairs {xµ
i ∈ Rd, yµi ∈ R}ℓ+1

i=1 related by the approximate linear75

mapping in (1): yµi = ⟨xµ
i , w

µ⟩ + ϵµi . Here, wµ denotes the task vector associated with the µth76

sample. We make the following statistical assumptions:77

• xµ
i are d-dimensional random vectors, sampled i.i.d. over both i and µ from N (0, Id/d).78
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• At the start of training, construct a finite set of k elements, written Ωk = {w1, w2, . . . , wk} . The79

elements of this set are independently drawn once from wi ∼i.i.d. N (0, Id). For 1 ≤ µ ≤ n, the80

task vector wµ associated with the µth sample context is uniformly sampled from Ωk. Note that81

the variable k controls the task diversity in the pretraining dataset. Importantly, k can be less than82

n, in which case the same task vector from Ωk may be repeated multiple times.83

• The noise terms ϵµi are i.i.d. over both i and µ, and drawn from N (0, ρ).84

We denote a sample from this distribution by (Z, yℓ+1) ∼ Ptrain.85

Parameter reduction Before specifying a training procedure, we examine the prediction mecha-86

nism of the linear attention module for the ICL task. This is a fruitful exercise, shedding light on87

critical questions: Can linear self-attention learn linear regression in-context? If so, what information88

do model parameters learn from data in solving this ICL problem?89

We start by rewriting the output of the linear attention module ŷ = Ad+1,ℓ+1 in an alternative form.90

Following [16], we define91

V =

[
V11 v12
v⊤21 v22

]
, M =

[
M11 m12

m⊤
21 m22

]
:= K⊤Q, (4)

where V11 ∈ Rd×d, v12, v21 ∈ Rd, v22 ∈ R, M11 ∈ Rd×d, m12,m21 ∈ Rd, and m22 ∈ R.92

Expanding (3), one can check that93

ŷ =
1

ℓ

〈
xℓ+1, v22M

⊤
11

ℓ∑
i=1

yixi + v22m21

ℓ∑
i=1

y2i +M⊤
11

ℓ+1∑
i=1

xix
⊤
i v21 +m21

ℓ∑
i=1

yix
⊤
i v21

〉
, (5)

where ⟨·, ·⟩ stands for the standard inner product.94

This expression reveals several interesting points. First, not all parameters in (4) contribute to the95

output: we can discard all the parameters except for the last row of V and the first d columns of M .96

Second, the first term97

1

ℓ
v22M

⊤
11

ℓ∑
i=1

yixi (6)

offers a hint about how the linear attention module might be solving the task. The sum 1
ℓ

∑
i≤ℓ yixi98

is a noisy estimate of E[xx⊤]w for that context. Hence, if the parameters of the model are such99

that v22M⊤
11 is approximately E[xx⊤]−1, this term alone makes a good prediction for the output.100

Motivated by this observation, and a more detailed argument presented in Section SI-6 of the101

Supplementary Information, we study the linear attention module with the constraint v21 = 0. In this102

case, we have the model103

ŷ = ⟨Γ, HZ⟩. (7)

for104

Parameter matrix Γ := v22
[
M⊤

11/d m21

]
∈ Rd×(d+1) (8)

Input data HZ := xℓ+1

[
d
ℓ

∑
i≤ℓ yix

⊤
i

1
ℓ

∑
i≤ℓ y

2
i

]
∈ Rd×(d+1). (9)

The 1/d scaling of M11 in Γ is chosen so that the columns of HZ scale similarly; it does not affect105

the final predictor ŷ.106

Model pretraining The parameters of the linear attention module are learned from n samples of107

input sequences {xµ
1 , y

µ
1 , . . . , x

µ
ℓ+1, y

µ
ℓ+1} for µ = 1, . . . , n. We estimate model parameters using108

ridge regression, giving109

Γ∗ = arg min
Γ

n∑
µ=1

(
yµℓ+1 − ⟨Γ, HZµ⟩

)2
+

n

d
λ∥Γ∥2F , (10)

where λ > 0 is a regularization parameter, and HZµ refers to the input matrix (9) populated with the110

µth sample sequence. The factor n/d in front of λ makes sure that, when we take the d → ∞ or111
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n → ∞ limits later, there is still a meaningful ridge regularization when λ > 0. The solution to the112

optimization problem in (10) can be expressed explicitly as113

vec(Γ∗) =

n

d
λI +

n∑
µ=1

vec(HZµ)vec(HZµ)⊤

−1
n∑

µ=1

yµℓ+1vec(HZµ), (11)

where vec(·) denotes the row-major vectorization operation.114

Evaluation For a given set of parameters Γ, the model’s generalization error is defined as115

e(Γ) := EPtest

[(
yℓ+1 − ⟨Γ, HZ⟩

)2]
, (12)

where (Z, yℓ+1) ∼ Ptest is a new sample drawn from the probability distribution of the test dataset.116

At test time, xi and ϵi are i.i.d. Gaussians as in the pretraining case. However, for each 1 ≤ µ ≤ n,117

the task vector wµ associated with the µth input sequence is drawn independently from N (0, Id). We118

will denote the test error under this setting by eICL(Γ).119

This ICL task evaluates the true in-context learning performance of the linear attention module. The120

task vectors in the test set differ from those seen in training, requiring the model to infer them from121

context. High performance on the ICL task indicates that the model can learn task vectors from the122

provided context.123

To understand the performance of our model on this task, we will need to evaluate these expressions124

for the pretrained attention matrix Γ∗ given in (11). An asymptotically precise prediction of eICL(Γ∗)125

will be a main result of this work. We then verify through simulations that the primary insights gained126

from our theoretical analysis extend to more realistic nonlinear Transformers.127

3 Theoretical results128

Joint asymptotic limit We have now defined both the structure of the training data as well as the129

parameters to be optimized. For our theoretical analysis, we consider a joint asymptotic limit in130

which the input dimension d, the pretraining dataset size n, the context length ℓ, and the number of131

task vectors in the training set k, go to infinity together such that132

ℓ

d
:= α = Θ(1),

k

d
:= κ = Θ(1),

n

d2
:= τ = Θ(1). (13)

Identification of these scalings constitutes one of the main results of our paper. As we will see, the133

linear attention module exhibits rich learning phenomena in this limit.134

The intuition for these scaling parameters can be seen as follows. Standard results in linear regression135

[23–25] show that to estimate a d-dimensional task vector w from the ℓ samples within a context,136

one needs at least ℓ = Θ(d). The number of unique task vectors that must be seen to estimate the137

covariance matrix of the true d-dimensional task distribution N (0, Id) should also scale with d, i.e.138

k = Θ(d). Finally, we see from (8) that the number of linear attention parameters to be learned is139

Θ(d2). This suggests that the number of individual contexts the model sees during pretraining should140

scale similarly, i.e., n = Θ(d2).141

Learning curves for ICL of linear regression by a linear attention module Our theoretical142

analysis, explained in detail in the Supplementary Information, leads to an asymptotically precise143

expression for the generalization error under the ICL test distribution being studied. The exact144

expressions of this function functions can be found in Section SI-13.2 of the SI. For simplicity, we145

only present in what follows the ridgeless limit (i.e., λ → 0+) of the asymptotic generalization errors.146

Result 1 (ICL generalization error in the ridgeless limit). Let147

q∗ :=
1 + ρ

α
, m∗ := Mκ (q

∗) , µ∗ := q∗Mκ/τ (q
∗), (14)

where Mκ(·) is defined in (181) and M′
κ(·) is the derivative of Mκ(q) with respect to q. Then148

eICL
ridgeless := lim

λ→0+
eICL(τ, α, κ, ρ, λ) (15)

=


τ(1+q∗)

1−τ

[
1− τ(1− µ∗)2 + µ∗(ρ/q∗ − 1)

]
−2τ(1− µ∗) + (1 + ρ) τ < 1

(q∗ + 1)
(
1− 2q∗m∗ − (q∗)2M′

κ(q
∗) + (ρ+q∗−(q∗)2m∗)m∗

τ−1

)
− 2(1− q∗m∗) + (1 + ρ) τ > 1
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We derive this result using techniques from random matrix theory. The full setup and technical149

details are presented in the Supplementary Information in Section SI-9 through Section SI-13. The150

computations involve analysis of the properties of the finite-sample optimal parameter matrix Γ∗.151

4 Observed Phenomena152

This section discusses two key results that are mathematically evident from our theoretical characteri-153

sation of ICL error, namely a double descent in τ and a learning transition in κ. We show how these154

phenomena follow directly from the theory, and further, remain present in realistic (nonlinear) trans-155

former architectures. A detailed exposition of nonlinear architecture setup and training procedures is156

given in Section SI-7 in the Supplementary Info. Specific parameter configurations and more detailed157

descriptions of the figures are available in Section SI-8 in the Supplementary Info.158

Double-descent in pretraining samples How large should n, the pretraining dataset size, be for159

the linear attention to succesfully learn the task in-context? In Figure 1, we plot our theoretical160

predictions for ICL error as a function of τ = n/d2 and verify them with numerical simulations.161

Our results demonstrate that the quadratic scaling of sample size with input dimensions is indeed an162

appropriate regime where nontrivial learning phenomena can be observed.163

As apparent in Figure 1, we find that the generalization error for the ICL task is not monotonic in164

the number of samples. In the ridgeless limit, ICL error diverges at τ = 1, with the leading order165

behavior proportional to (τ − 1)−1. This leads to a “double-descent” behavior [25, 26] in the number166

of samples. As in other models exhibiting double-descent [25–27], the location of the divergence is167

at the interpolation threshold: the number of parameters of the model (elements of Γ) is, to leading168

order in d, equal to d2, which matches the number of pretraining samples at τ = 1. Further, we can169

investigate the effect of ridge regularisation on the steepness of the double descent, as illustrated170

in Figure 1b for the ICL task. As we would expect from other models exhibiting double-descent171

[25–27], increasing the regularization strength suppresses the peak in error around the interpolation172

threshold.173

Figure 2 confirms this phenomenon in a selection of nonlinear models. We recover a peak in error at174

the interpolation threshold (given by n), and tracking the location of the interpolation threshold as d175

increases recovers the quadratic scaling n ∼ d2.176

Learning transition with increasing pretraining task diversity Recall that the parameter κ = k/d177

controls the diversity of the training task vectors. How large should it be for ICL to emerge? Figure 3178

shows a transition in the performance of a transformer on the ICL task. We see that as κ increases179

beyond κ = 1, the ICL error converges rapidly. We interpret this as, in the κ > 1 regime, the180

model generalizes to task vectors beyond its pretraining dataset, behaving as if it has learned the true181

distribution on the task vectors despite having only seen a finite subset in the pretraining dataset. The182

dependence on α arises since, as α increases, the model achieves even better estimates of the task183

vector for a single context, allowing it to achieve a better estimate of the true task distribution after184
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Figure 1: ICL performance as a function of τ : theory (solid lines) vs simulations (dots). Plots show
eICL
ridgeless(τ, α, κ, ρ) in 1a and eICL(τ, α, κ, ρ, λ) in 1b against τ .
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n ∝ d2 scaling for a range of architectures.

Figure 2: Experimental verification in full linear attention 2a nonlinear models 2b, 2c of both scaling
definition for τ and double descent behaviour in n. Figures 2a, 2b, 2c show error curves against τ for
various architectures, consistent across token dimension d = 20, 40, 80. Double-descent phenomena
is confirmed: increasing n will increase error until an interpolation threshold is reached. Coloured
dashed lines indicate experimental interpolation threshold for that architecture and d configuration.
Figure 2d shows that the location of the interpolation threshold occurs for n proportional to d2, as
predicted by the linear theory. Dots are experimental interpolation thresholds for various architectures,
and dashed lines are best fit curves correspond to fitting log(n) = a log(d) + b, each with a ≈ 2.
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(b) ICL error in non-linear transformer against κ

Figure 3: Plot of transformer generalization error against κ, illustrating sharp transition in performance
as pretraining diversity increases. Figure 3a has theory (solid lines) vs simulations (dots). Figure 3b
shows ICL performance against κ for the nonlinear architecture given in Figure 2c. This demonstrates
consistency of κ scaling across increasing dimension choices d = 20, 40, 80, and a similar sharp
transition in learning familiar from the linear theory.

seeing multiple contexts with enough task diversity (κ > 1). Crucially, this learning transition is185

persistent in nonlinear architectures; an example is seen in Figure 3b.186
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To explicitly understand the role of κ in the solution learned by the linear attention mechanism,187

consider the regime where τ, α → ∞ with τ/α = c∗ kept fixed. Under this setting, we have188

lim
τ→∞
α→∞

eICL
ridgeless =

ρ+ (1− κ)
(
1 + ρ

1+ρc
∗
)

κ < 1

ρ κ > 1
. (16)

This change in analytical behavior indicates a phase transition at κ = 1. Further, the κ > 1 branch189

approaches ρ, the information-theoretical error limit for this problem. The smooth learning transitions190

observed in Figure 3 stem from this phase transition; this behaviour is increasingly obvious for larger191

α, as can be seen by contrasting the various α curves in Figure 3a.192

5 Conclusions193

In this work, we compute sharp asymptotics for the in-context learning (ICL) performance in a194

simplified model of ICL for linear regression using linear attention. This exactly solvable model195

demonstrates a transition in the generalizing capability of the model as the diversity of pretraining196

tasks increases, echoing empirical findings in full Transformers [18]. Additionally, we observe a197

sample-wise double descent as the amount of pretraining data increases. Our numerical experiments198

show that full, nonlinear Transformers exhibit similar behavior in the scaling regime relevant to our199

solvable model. Our work represents a first step towards a detailed theoretical understanding of the200

conditions required for ICL to emerge [19].201

In our analysis, we have assumed that the model is trained to interpolation on a fixed dataset. This202

allows us to cast our simplified form of linear attention pretraining as a ridge regression problem,203

which in turn enables our random matrix analysis. In contrast, Transformer-based large language204

models are usually trained in a nearly-online setting, where each gradient update is estimated using205

fresh examples with no repeating data [28]. Some of our findings, such as double-descent in the206

learning curve as a function of the number of pretraining examples, are unlikely to generalize to the207

fully-online setting. It will be interesting to probe these potential differences in future work.208

Finally, our results have some bearing on the broad question of what architectural features are required209

for ICL [7, 11, 19]. Our work shows that a full Transformer—or indeed even full linear attention—is210

not required for ICL of linear regression. However, our simplified model retains the structured211

quadratic pairwise interaction between inputs that is at the heart of the attention mechanism. It is this212

quadratic interaction that allows the model to solve the ICL regression task, which it does essentially213

by reversing the data correlation. One would therefore hypothesize that our model is minimal in the214

sense that further simplifications within this model class would impair its ability to solve this ICL215

task. In the specific context of regression with isotropic data, a simple point of comparison would216

be to fix Γ = Id, which gives a pretraining-free model that should perform well when the context217

length is very long. However, this further-reduced model would perform poorly if the covariates218

of the in-context task are anisotropic. More generally, it would be interesting to investigate when219

models lacking this precisely-engineered quadratic interaction can learn linear regression in-context,220

and if they are less sample-efficient than the attention-based models considered here.221
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Supplementary Information346

SI-6 Parameter Reduction347

Recall that we can express the output of the linear attention mechanism (with full K,Q, V parameters)348

as349

ŷ =
1

ℓ

〈
xℓ+1, v22M

⊤
11

ℓ∑
i=1

yixi + v22m21

ℓ∑
i=1

y2i +M⊤
11

ℓ+1∑
i=1

xix
⊤
i v21 +m21

ℓ∑
i=1

yix
⊤
i v21

〉
, (17)

where ⟨·, ·⟩ stands for the standard inner product. We previously argued that the term350

1

ℓ
v22M

⊤
11

ℓ∑
i=1

yixi (18)

makes a good prediction for the output. Further, the third term does not depend on outputs y, and351

thus does not directly contribute to the ICL task that relies on the relationship between x and y.352

Finally, the last term only considers a one dimensional projection of x onto v21. Because the task353

vectors w and x are isotropic in the statistical models that we consider, there are no special directions354

in the problem. Consequently, we expect the optimal v21 to be approximately zero by symmetry355

considerations.356

We note that Zhang et al. [16] provide an analysis of population risk (whereas we focus on empirical357

risk) for a related reduced model in which they set v21 = 0 and m21 = 0. Consequently, the358

predictors they study differ from ours (7) by an additive term. They justify this choice through an359

optimization argument: if these parameters are initialized to zero, they remain zero under gradient360

descent optimization of the population risk, given certain conditions.361

SI-7 Experimental Details362

Our experiments1 are done with a standard Transformer architecture, where each sample context363

initially takes the form given by (2). The fully-parameterised linear transformer (fig. 2a) and softmax-364

only transformer (fig. 2b) do not use MLPs. If MLPs are used (e.g. fig. 2c and fig. 2d), the architecture365

consists of blocks with: (1) a single-head softmax self-attention with K,Q, V ∈ Rd+1×d+1 matrices,366

followed by (2) a two-layer dense MLP with GELU activation and hidden layer of size d + 1 [1].367

Residual connections are used between the input tokens (padded from dimension d to d + 1), the368

pre-MLP output, and the MLP output. We use a variable number of attention+MLP blocks before369

returning the final logit corresponding to the (d + 1, ℓ + 1)th element in the original embedding370

structure given by (2). The loss function is the mean squared error (MSE) between the predicted label371

(the output of the model for a given sample Z) and the true value yℓ+1. We train the model in an372

offline setting with n total samples Z1, · · · , Zn, divided into 10 batches, using the Adam optimizer373

[29] with a learning rate 10−4 until the training error converges, typically requiring 10000 epochs2.374

The structure of the pretraining and test distributions exactly follows the setup for the ICL task375

described in Section 2.376

SI-8 Figure Details377

Figure 1 Simulated errors are calculated by evaluating the corresponding test error on the cor-378

responding optimised Γ∗. Parameters: d = 100, ρ = 0.01 for all; for 1a κ = 0.5 and for 1b379

α = 10, κ = ∞. Averages and standard deviations are computed over 10 runs.380

1Code to reproduce all experiments will be made available upon acceptance.
2Note that larger d models are often trained for less epochs than smaller d models due to early stopping; that

said, whether or not early stopping is used in training does not affect either the alignment of error curves in
d-scaling nor the qualitative behaviour (double descent in τ and transition in κ).
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Figure 2 Interpolation thresholds shown in fig. 2d were computed empirically by searching for381

location in τ of sharp increase in value and variance of training error at a fixed number of gradient382

steps. The log-log plot demostrating quadratic scaling of n in d was best-fit on the data points plotted.383

Explicitly, the exponents of d are afull linear = 1.87, asoftmax = 1.66, a2 blocks = 2.13, a3 blocks = 2.08.384

Theory predicts a = 2.385

Parameters: α = 1, κ = ∞, ρ = 0.01. For fig. 2a, 2b, and 2c: variance shown comes from model386

trained over different samples of pretraining data; lines show averages over 10 runs and shaded region387

shows standard deviation.388

Figure 3 Parameters for fig. 3a: d = 100, τ = 100. Simulations deviate from theory curve at low389

κ due to finite size effects. Averages and standard deviations for linear model are computed over 100390

runs.391

Parameters for fig. 3b: τ = 10, α = 1, ρ = 0.01. Variance shown comes from 10 models trained392

over different samples of pretraining data.393

A note on the subsequent computations394

A key technical component of our analysis involves characterizing the spectral properties of the395

sample covariance matrix of n = Θ(d2) i.i.d. random vectors in dimension Θ(d2). Each of these396

vectors is constructed as the vectorized version of the matrix in (9). Related but simpler versions of397

this type of random matrices involving the tensor product of i.i.d. random vectors have been studied398

in recent work [30]. Some of our derivations are based on non-rigorous yet technically plausible399

heuristics. We support these predictions with numerical simulations in the main document and discuss400

below the steps required to achieve a fully rigorous proof.401

Finally, it’s worthwhile to comment that this paper and computations therein fall inside a broader402

program of research that seeks sharp asymptotic characterizations of the performance of machine403

learning algorithms. This program has a long history in statistical physics [27, 31, 32], and has in404

recent years attracted substantial attention in machine learning [25, 27, 33–38]. For simplicity, we405

have assumed that the covariates in the in-context regression problem are drawn from an isotropic406

Gaussian. However, our technical approach could be extended to anisotropic covariates, and, perhaps407

more interestingly, to featurized linear attention models in which the inputs are passed through some408

feature map before linear attention is applied [21, 22]. This extension would be possible thanks to an409

appropriate form of Gaussian universality: for certain classes of regression problems, the asymptotic410

error coincides with that of a model where the true features are replaced with Gaussian features of411

matched mean and covariance [25, 30, 33–37, 39]. This would allow for a theoretical characterization412

of ICL for realistic data structure in a closer approximation of full softmax attention, yielding more413

precise predictions of how performance scales in real Transformers.414

SI-9 Notation415

Sets, vectors and matrices: For each n ∈ N, [n] := {1, 2, . . . , n}. The sphere in Rd with radius
√
d is416

expressed as Sd−1(
√
d). For a vector v ∈ Rd, its ℓ2 norm is denoted by∥v∥. For a matrix A ∈ Rd×d,417

∥A∥op and ∥A∥F denote the operator (spectral) norm and the Frobenius norm of A, respectively.418

Additionally,∥A∥∞ := maxi,j∈[n]

∣∣A(i, j)
∣∣ denotes the entry-wise ℓ∞ norm. We use e1 to denote the419

first natural basis vector (1, 0, . . . , 0), and I is an identity matrix. Their dimensions can be inferred420

from the context. The trace of A is written as tr(A).421

Our derivations will frequently use the vectorization operation, denoted by vec(·). It maps a d1 × d2422

matrix A ∈ Rd1×d2 to a vector vA = vec(A) in Rd1d2 . Note that we shall adopt the row-major423

convention, and thus the rows of A are stacked together to form vA. We also recall the standard424

identity:425

vec(E1E2E3) = (E1 ⊗ E⊤
3 ) vec(E2), (19)

where ⊗ denotes the matrix Kronecker product, and E1, E2, E3 are matrices whose dimensions are426

compatible for the multiplication operation. For any square matrix A ∈ R(L+1)×(L+1), we introduce427

the notation428

[M ]\0 ∈ RL×L (20)
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to denote the principal minor of M after removing its first row and column.429

Stochastic order notation: In our analysis, we use a concept of high-probability bounds known as430

stochastic domination. This notion, first introduced in [40, 41], provides a convenient way to account431

for low-probability exceptional events where some bounds may not hold. Consider two families of432

nonnegative random variables:433

X =
(
X(d)(u) : d ∈ N, u ∈ U (d)

)
, Y =

(
Y (d)(u) : d ∈ N, u ∈ U (d)

)
,

where U (d) is a possibly d-dependent parameter set. We say that X is stochastically dominated by Y ,434

uniformly in u, if for every (small) ε > 0 and (large) D > 0 we have435

sup
u∈U(d)

P[X(d)(u) > dεY (d)(u)] ≤ d−D

for sufficiently large d ≥ d0(ε,D). If X is stochastically dominated by Y , uniformly in u, we use436

the notation X ≺ Y . Moreover, if for some family X we have|X| ≺ Y , we also write X = O≺(Y ).437

We also use the notation X ≃ Y to indicate that two families of random variables X,Y are438

asymptotically equivalent. Precisely, X ≃ Y , if there exists ε > 0 such that for every D > 0 we have439

P
[
|X − Y | > d−ε

]
≤ d−D (21)

for all sufficiently large d > d0(ε,D).440

SI-10 Moment Calculations and Generalization Errors441

For a given set of parameters Γ, its generalization error is defined as442

e(Γ) = EPtest

[(
yℓ+1 − ⟨Γ, HZ⟩

)2]
, (22)

where (Z, yℓ+1) ∼ Ptest is a new sample drawn from the distribution of the test data set. Recall that443

Z is the input embedding matrix defined in (2) in the main text, and yℓ+1 denotes the missing value444

to be predicted. The goal of this section is to derive an expression for the generalization error e(Γ).445

Note that the test distribution Ptest crucially depends on the probability distribution of the task vector446

w used in the linear model in (1). For the ICL test task, we have w ∼ Unif(Sd−1(
√
d)), the uniform447

distribution on the sphere . In what follows, we slightly abuse the notation by writing w ∼ Ptest to448

indicate that w is sampled from the task vector distribution associated with Ptest.449

Let w be the task vector used in the input matrix Z. Throughout the paper, we use Ew [·] to denote450

the conditional expectation with respect to the randomness in the data vectors {xi}i∈[ℓ+1] and the451

noise {ϵi}i∈[ℓ+1], with the task vector w kept fixed. We have the following expressions for the first452

two conditional moments of (HZ , yℓ+1).453

Lemma 1 (Conditional moments). Let the task vector w ∈ be fixed. We have454

Ew [yℓ+1] = 0, and Ew [HZ ] = 0. (23)

Moreover,455

Ew [yℓ+1HZ ] =
1

d
w
[
w⊤, 1 + ρ

]
(24)

and456

Ew

[
vec(HZ) vec(HZ)

⊤
]
=

(1 + ρ)

d
Id⊗

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1ww⊤ (1 + 2ℓ−1)w

(1 + 2ℓ−1)w⊤ (1 + 2ℓ−1)(1 + ρ)

]
.

(25)

Proof. Using the equivalent representations in (162) and (163), it is straightforward to verify the457

estimates of the first (conditional) moments in (23). To show (24), we note that458

HZ = (d/ℓ)zaz
⊤
b , (26)
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where459

za = Mw

[
s
u

]
and zb =

[
Mwh

(θwa/
√
d+ θϵ)

2/
√
d+ θ2q/

√
d

]
. (27)

Using the representation in (163), we have460

Ew [yℓ+1HZ ] = (d/ℓ)Ew [yℓ+1za]Ew

[
z⊤b

]
. (28)

Computing the expectations Ew [yℓ+1za] and Ew

[
z⊤b
]

then gives us (24). Next, we show (25). Since461

za and zb are independent,462

E
[
vec(HZ) vec(HZ)

⊤
]
= (d/ℓ)2 E

[
zaz

⊤
a

]
⊗ E

[
zbz

⊤
b

]
. (29)

The first expectation on the right-hand side is easy to compute. Since Mw is an orthonormal matrix,463

Ew

[
zaz

⊤
a

]
= Id (30)

To obtain the second expectation on the right-hand side of the above expression, we can first verify464

that465

Ew

[
Mwhh

⊤Mw

]
=

ℓ

d2

[
(1 + ρ)Id +

(ℓ+ 1)

d
ww⊤

]
. (31)

Moreover,466

Ew

[
Mwh

(
(a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
)]

=
ℓ(ℓ+ 2)(1 + ρ)

d3
w (32)

and467

Ew

[(
(a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
)2]

=
ℓ(ℓ+ 2)(1 + ρ)2

d3
. (33)

Combining (31), (32), and (33), we have468

E
[
zbz

⊤
b

]
=

(ℓ/d)2(1 + ρ)

d

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1ww⊤ (1 + 2ℓ−1)w

(1 + 2ℓ−1)w⊤ (1 + 2ℓ−1)(1 + ρ)

]
. (34)

Substituting (30) and (34) into (25), we reach the formula in (25).469

Proposition 1 (Generalization error). For a given weight matrix Γ, the generalization error of the470

linear transformer is471

e(Γ) =
1 + ρ

d
tr

Γ

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1Rtest (1 + 2ℓ−1)btest

(1 + 2ℓ−1)b⊤test (1 + 2ℓ−1)(1 + ρ)

]
Γ⊤


− 2

d
tr

(
Γ

[
Rtest

(1 + ρ)b⊤test

])
+ 1 + ρ,

(35)

where472

btest := Ew∼Ptest [w] and Rtest := Ew∼Ptest

[
ww⊤

]
. (36)

Remark 1. We use w ∼ Ptest to indicate that w is sampled from the task vector distribution473

associated with Ptest. Recall our discussions in Section 2. For the ICL test task, and for the purposes474

of analytical tractibility, we take w ∼ Unif(Sd−1(
√
d)). In high dimensions, the characterisation475

of ICL error using w ∼ Unif(Sd−1(
√
d)) will be identical to using w ∼ N (0, I). It is then476

straightforward to check that we want477

(ICL) : btest = 0 and Rtest = Id. (37)

Proof. Recall the definition of the generalization error in (22). We start by writing478

e(Γ) = vec(Γ)⊤E
[
vec(HZ) vec(HZ)

⊤
]
vec(Γ)− 2 vec(Γ)⊤ vec(E [yN+1HZ ]) + E

[
y2ℓ+1

]
,

(38)

14



where HZ is a matrix in the form of (9) and HZ is independent of Γ. Since yℓ+1 = x⊤
ℓ+1w + ϵ, with479

ϵ ∼ N (0, ρ) denoting the noise, it is straightforward to check that480

E
[
y2ℓ+1

]
= 1 + ρ. (39)

Using the moment estimate (25) in Lemma 1 and the identity (19), we have481

vec(Γ)⊤E
[
vec(HZ) vec(HZ)

⊤
]
vec(Γ)

=
1 + ρ

d
tr

Γ

[
d
ℓ Id + (1 + ℓ−1)(1 + ρ)−1Rtest (1 + 2ℓ−1)btest

(1 + 2ℓ−1)b⊤test (1 + 2ℓ−1)(1 + ρ)

]
Γ⊤

 .
(40)

Moreover, by (24),482

vec(Γ)⊤ vec
(
E [yℓ+1HZ ]

)
=

1

d
tr

(
Γ

[
Rtest

(1 + ρ)b⊤test

])
. (41)

483

Corollary 1. For a given set of parameters Γ, its generalization error can be written as484

e(Γ) =
1

d
tr
(
ΓBtestΓ

⊤
)
− 2

d
tr
(
ΓA⊤

test

)
+ (1 + ρ) + E , (42)

where485

Atest :=
[
Rtest (1 + ρ)btest

]
, (43)

486

Btest :=

[
1
α (1 + ρ)Id +Rtest (1 + ρ)btest

(1 + ρ)b⊤test (1 + ρ)2

]
, (44)

and Rtest, btest are as defined in (36). Moreover, E denotes an “error” term such that487

|E| ≤
Cα,ρ max

{
∥Rtest∥op ,∥btest∥ , 1

}(
∥Γ∥2F /d

)
d

, (45)

where Cα,ρ is some constant that only depends on α and ρ.488

Proof. Let489

∆ =

[
d
ℓ (1 + ρ)Id + (1 + ℓ−1)Rtest (1 + 2ℓ−1)(1 + ρ)btest

(1 + 2ℓ−1)(1 + ρ)b⊤test (1 + 2ℓ−1)(1 + ρ)2

]
−Btest. (46)

It is straightforward to check that490

E =
1

d
tr
(
Γ∆Γ⊤

)
(47)

=
1

d
vec(Γ)⊤(Id ⊗∆)vec(Γ) (48)

≤∥∆∥op
∥Γ∥2F
d

. (49)

The bound in (45) follows from the estimate that∥∆∥op ≤ Cα,ρ max
{
∥Rtest∥op ,∥btest∥ , 1

}
/d.491

Remark 2. Consider the optimal weight matrix Γ∗ obtained by solving the ridge regression problem492

in (10). Since Γ∗ is the optimal solution of (10), we must have493

n

d
λ∥Γ∗∥2F ≤

∑
µ∈[n]

(yµℓ+1)
2, (50)

where the right-hand side is the value of the objective function of (10) when we choose Γ to be the494

all-zero matrix. It follows that495

∥Γ∗∥2F
d

≤
∑

µ∈[n](y
µ
ℓ+1)

2

λn
. (51)

By the law of large numbers,
∑

µ∈[n] y
2
µ

n → 1 + ρ as n → ∞. Thus, ∥Γ∗∥2F /d is asymptotically496

bounded by the constant (1 + ρ)/λ. Furthermore, it is easy to check that∥Rtest∥op = O(1) and497

∥btest∥ = O(1) for the ICL task [see (37)]. It then follows from Corollary 1 that the generalization498

error associated with the optimal parameters Γ∗ is asymptotically determined by the first three terms499

on the right-hand side of (42).500
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SI-11 Analysis of Ridge Regression: Extended Resolvent Matrices501

We see from Corollary 1 and Remark 2 that the two key quantities in determining the generalization502

error e(Γ∗) are503

1

d
tr(Γ∗A⊤

test) and
1

d
tr(Γ∗Btest(Γ

∗)⊤), (52)

where Atest and Btest are the matrices defined in (43) and (44), respectively. In this section, we504

show that the two quantities in (52) can be obtained by studying a parameterized family of extended505

resolvent matrices.506

To start, we observe that the ridge regression problem in (7) admits the following closed-form507

solution:508

vec(Γ∗) = G
(∑

µ∈[n] yµ vec(Hµ)
)
/d, (53)

where G is a resolvent matrix defined as509

G =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ τλI

)−1

. (54)

For our later analysis of the generalization error, we need to consider a more general, “parameterized”510

version of G, defined as511

G(π) =
(∑

µ∈[n] vec(Hµ) vec(Hµ)
⊤/d+ πΠ+ τλI

)−1

, (55)

where Π ∈ R(d2+d)×(d2+d) is a symmetric positive-semidefinite matrix and π is a nonnegative scalar.512

The original resolvent G in (54) is a special case, corresponding to π = 0.513

The objects in (53) and (55) are the submatrices of an extended resolvent matrix, which we construct514

as follows. For each µ ∈ [n], let515

zµ =

[
yµ/d

vec(Hµ)/
√
d

]
(56)

be an (d2 + d+ 1)-dimensional vector. Let516

Πe =

[
0

Π

]
, (57)

where Π is the (d2 + d)× (d2 + d) matrix in (55). Define an extended resolvent matrix517

Ge(π) =
1∑

µ∈[n] zµz
⊤
µ + πΠe + τλI

. (58)

By block-matrix inversion, it is straightforward to check that518

Ge(π) =

[
c(π) −c(π)q⊤(π)

−c(π)q(π) G(π) + c(π)q(π)q⊤(π)

]
, (59)

where519

q(π) :=
1

d3/2
G(π)

(∑
µ∈[n] yµ vec(Hµ)

)
(60)

is a vector in Rd(d+1), and c(π) is a scalar such that520

1

c(π)
=

1

d2

∑
µ∈[n]

y2µ + τλ− 1

d3

∑
µ,ν∈[n]

yµyν vec(Hµ)
⊤G(π) vec(Hν). (61)

By comparing (60) with (53), we see that521

vec(Γ∗) =
√
d q(0). (62)

Moreover, as shown in the following lemma, the two key quantities in (52) can also be obtained from522

the extended resolvent Ge(π).523
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Lemma 2. For any matrix A ∈ Rd×(d+1),524

1

d
tr(Γ∗A⊤) =

−1

c(0)
√
d

[
0 vec(A)T

]
Ge(0)e1, (63)

where e1 denotes the first natural basis vector in Rd2+d+1. Moreover, for any symmetric and positive525

semidefinite matrix B ∈ R(d+1)×(d+1), if we set526

Π = Id ⊗B (64)

in (57), then527

1

d
tr(Γ∗B(Γ∗)⊤) =

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

. (65)

Proof. The identity (63) follows immediately from the block form of Ge(π) in (59) and the observa-528

tion in (62). To show (65), we take the derivative of 1/c(π) with respect to π. From (61), and using529

the identity530

d

dπ
G(π) = −G(π)ΠG(π), (66)

we have531

d

dπ

(
1

c(π)

)
=

1

d3

∑
µ,ν∈[n]

yµyν vec(Hµ)
⊤G(π)ΠG(π) vec(Hν) (67)

= q⊤(π)Πq(π). (68)

Thus, by (62),532

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

=
1

d

(
vec(Γ∗)

)⊤
Πvec(Γ∗) (69)

=
1

d

(
vec(Γ∗)

)⊤
(Id ⊗B) vec(Γ∗). (70)

Applying the identity in (19) to the right-hand side of the above equation, we reach (65).533

Remark 3. To lighten the notation, we will often write Ge(π) [resp. G(π)] as Ge [resp. G], leaving534

their dependence on the parameter π implicit.535

Remark 4. In light of (64) and (65), we will always choose536

Π = Id ⊗Btest, (71)

where Btest is the matrix defined in (44).537

SI-12 An Asymptotic Equivalent of the Extended Resolvent Matrix538

In this section, we derive an asymptotic equivalent of the extended resolvent Ge defined in (58).539

From this equivalent version, we can then obtain the asymptotic limits of the right-hand sides of (63)540

and (65). Our analysis relies on non-rigorous but technically sound heuristic arguments from random541

matrix theory. Therefore, we refer to our theoretical predictions as results rather than propositions.542

Recall that there are k unique task vectors {wi}i∈[k] in the training set. Let543

btr :=
1

k

∑
i∈[k]

wi and Rtr :=
1

k

∑
i∈[k]

wiw
⊤
i (72)

denote the empirical mean and correlation matrix of these k regression vectors, respectively. Define544

Atr :=
[
Rtr (1 + ρ)btr

]
. (73)

and545

Etr :=

[
(1+ρ)

α Id +Rtr (1 + ρ)btr
(1 + ρ)b⊤tr (1 + ρ)2

]
. (74)
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Definition 1. Consider the extended resolvent Ge(π) in (58), with Πe chosen in the forms of (57)546

and (71). Let G̃e be another matrix of the same size as Ge(π). We say that G̃e and Ge(π) are547

asymptotically equivalent, if the following conditions hold.548

(1) For any two deterministic and unit-norm vectors u, v ∈ Rd2+d+1,549

u⊤Ge(π)v ≃ u⊤G̃ev, (75)

where ≃ is the asymptotic equivalent notation defined in (21).550

(2) Let Atr =
[
Rtr (1 + ρ)btr

]
. For any deterministic, unit-norm vector v ∈ Rd2+d+1,551

1√
d

[
0 vec(Atr)

⊤]Ge(π)v ≃ 1√
d

[
0 vec(Atr)

⊤] G̃ev. (76)

(3) Recall the notation introduced in (20). We have552

1

d2
tr
([

Ge(π)
]
\0 · [I ⊗ Etr]

)
=

1

d2
tr

([
G̃e

]
\0

· [I ⊗ Etr]

)
+O≺(d

−1/2), (77)

where
[
Ge(π)

]
\0 and

[
Ge(π)

]
\0 denote the principal minors of Ge(π) and Ge(π), respec-553

tively.554

Result 2. Let χπ denote the unique positive solution to the equation555

χπ =
1

d
tr

[( τ

1 + χπ
Etr + πBtest + λτId

)−1

Etr

]
, (78)

where Btest is the positive-semidefinite matrix in (44), with btest, Rtest chosen according to (37). The556

extended resolvent Ge(π) in (58) is asymptotically equivalent to557

Ge(π) :=

 τ

1 + χπ

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


−1

,

(79)
in the sense of Definition 1. In the above expression, Πe is the matrix in (57) with Π = Id ⊗Btest.558

In what follows, we present the steps in reaching the asymptotic equivalent Ge(π) given in (79). To559

start, let G[µ]
e to denote a “leave-one-out” version of Ge, defined as560

G[µ]
e =

1∑
ν ̸=µ zνz

⊤
ν + πΠe + τλI

. (80)

By (58), we have561

Ge

(∑
µ∈[n] zµz

⊤
µ + πΠe + τλI

)
= I. (81)

Applying the Woodbury matrix identity then gives us562 ∑
µ∈[n]

1

1 + z⊤µ G
[µ]
e zµ

G[µ]
e zµz

⊤
µ +Ge(πΠe + τλI) = I. (82)

To proceed, we study the quadratic form z⊤µ G
[µ]
e zµ. Let wµ denotes the task vector associated with563

zµ. Conditioned on wµ and Gµ
e , the quadratic form z⊤µ G

[µ]
e zµ concentrates around its conditional564

expectation with respect to the remaining randomness in zµ. Specifically,565

z⊤µ G[µ]
e zµ = χµ(wµ) +O≺(d

−1/2), (83)

where566

χµ(wµ) :=
1

d2
tr
(
[Gµ

e ]\0 ·
[
I ⊗ E(wµ)

])
, (84)
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and567

E(w) :=

[
1+ρ
α Id + ww⊤ (1 + ρ)w
(1 + ρ)w⊤ (1 + ρ)2

]
. (85)

Substituting z⊤µ G
[µ]
e zµ in (82) by χµ(wµ), we get568 ∑

µ∈[n]

1

1 + χµ(wµ)
G[µ]

e zµz
⊤
µ +Ge(πΠe + τλI) = I +∆1, (86)

where569

∆1 :=
∑
µ∈[n]

z⊤µ G
[µ]
e zµ − χµ(wµ)

(1 + χµ(wµ))(1 + z⊤µ G
[µ]
e zµ)

G[µ]
e zµz

⊤
µ (87)

is a matrix that captures the approximation error of the above substitution.570

Next, we replace zµz
⊤
µ on the left-hand side of (86) by its conditional expectation Ewµ

[
zµz

⊤
µ

]
,571

conditioned on the task vector wµ. This allows us to rewrite (86) as572 ∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e Ewµ

[
zµz

⊤
µ

]
+Ge(πΠe + τλI) = I +∆1 +∆2, (88)

where573

∆2 :=
∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e

(
Ewµ

[
zµz

⊤
µ

]
− zµz

⊤
µ

)
(89)

captures the corresponding approximation error. Recall the definition of zµ in (56). Using the moment574

estimates in Lemma 1, we have575

Ewµ

[
zµz

⊤
µ

]
=

1

d2

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+
1

d2

[
0

Id ⊗ Eµ

]
, (90)

where E(wµ) is the matrix defined in (85) and576

Eµ =
1

ℓ

[
wµw

⊤
µ 2(1 + ρ)wµ

2(1 + ρ)w⊤
µ 2(1 + ρ)2

]
. (91)

Replacing the conditional expectation Ewµ

[
zµz

⊤
µ

]
in (88) by the main (i.e. the first) term on the577

right-hand side of (90), we can transform (88) to578

τ

n

∑
µ∈[n]

1

1 + χµ(wµ)
G[µ]

e

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+Ge(πΠe+τλI) = I+∆1+∆2+∆3,

(92)
where we recall τ = n/d2, and we use ∆3 to capture the approximation error associated with Eµ.579

Next, we replace the “leave-one-out” terms Gµ
e and χµ(wµ) in (92) by their “full” versions. Specifi-580

cally, we replace Gµ
e by Ge, and χµ(wµ) by581

χ(wµ) :=
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wµ)

])
. (93)

It is important to note the difference between (84) and (93): the former uses Gµ
e and the latter Ge.582

After these replacements and using ∆4 to capture the approximation errors, we have583

Ge

 τ

n

∑
µ∈[n]

1

1 + χ(wµ)

 1 + ρ 1√
d
w⊤

µ ⊗
[
w⊤

µ 1 + ρ
]

1√
d
wµ ⊗

[
wµ

1 + ρ

]
Id ⊗ E(wµ)

+ πΠe + τλI

 = I+
∑
j≤4

∆j .

(94)
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Recall that there are k unique task vectors {wi}1≤i≤k in the training set consisting of n input samples.584

Each sample is associated with one of these task vectors, sampled uniformly from the set {wi}1≤i≤k.585

In our analysis, we shall assume that k divides n and that each unique task vector is associated with586

exactly n/k input samples. (We note that this assumption merely serves to simplify the notation. The587

asymptotic characterization of the random matrix Ge remains the same even without this assumption.)588

Observe that there are only k unique terms in the sum on the left-hand side of (94). Thus,589

Ge

τ

k

∑
i∈[k]

1

1 + χ(wi)

 1 + ρ 1√
d
w⊤

i ⊗
[
w⊤

i 1 + ρ
]

1√
d
wi ⊗

[
wi

1 + ρ

]
Id ⊗ E(wi)

+ πΠe + τλI

 = I+
∑
j≤4

∆j .

(95)

So far, we have been treating the k task vectors {wi}i∈[k] as fixed vectors, only using the random-590

ness in the input samples that are associated with the data vectors
{
xµ
i

}
. To further simplify our591

asymptotic characterization, we take advantage of the fact that {wi}i∈[k] are independently sampled592

from Unif(Sd−1(
√
d)). To that end, we can first show that χ(wi) in (93) concentrates around its593

expectation. Specifically,594

χ(wi) = E
[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wi)

])]
+O≺(d

−1/2). (96)

By symmetry, we must have595

E
[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wi)

])]
= E

[
1

d2
tr
(
[Ge]\0 ·

[
I ⊗ E(wj)

])]
(97)

for any 1 ≤ i < j ≤ k. It follows that
∣∣χ(wi)− χ(wj)

∣∣ = O≺(d
−1/2), and thus, by a union bound,596

max
i∈[k]

∣∣χ(wk1
)− χ̂ave

∣∣ = O≺(d
−1/2), (98)

where597

χ̂ave :=
1

k

∑
i∈[k]

χ(wi). (99)

Upon substituting (93) into (99), it is straightforward to verify the following characterization of χ̂ave:598

χ̂ave =
1

d2
tr
(
[Ge]\0 · [I ⊗ Etr]

)
. (100)

The estimate in (98) prompts us to replace the terms χ(wi) in the right-hand side of (95) by the599

common value χ̂ave. As before, we introduce a matrix ∆5 to capture the approximation error600

associated with this step. Using the newly introduced notation Etr, btr and Rtr in (74) and (72), we601

can then simplify (95) as602

Ge

 τ

1 + χ̂ave

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


= I +

∑
1≤j≤5

∆j .

(101)
Define603

Ĝe(π) :=

 τ

1 + χ̂ave

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

+ πΠe + τλI


−1

.

(102)
Then604

Ge = Ĝe(π) + Ĝe(π) (∆1 +∆2 +∆3 +∆4 +∆5)︸ ︷︷ ︸
approximation errors

. (103)
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Remark 5. We claim that Ĝe is asymptotically equivalent to Ge, in the sense of Definition 1. Given605

(103), proving this claim requires showing that, for j = 1, 2, . . . , 5,606

u⊤
(
Ĝe(π)∆j

)
v ≃ 0, (104a)

607
1√
d

[
0 vec(Atr)

⊤] (Ĝe(π)∆j

)
v ≃ 0, (104b)

and608
1

d2
tr

([
Ĝe(π)∆j

]
\0

· [I ⊗ Etr]

)
≃ 0, (104c)

for any deterministic and unit-norm vectors u, v and for Atr =
[
Rtr (1 + ρ)btr

]
.609

We note the equivalent matrix Ĝe(π) still involves one scalar χ̂ave that depends on the original610

resolvent Ge(π). Next, we show that χ̂ave can be replaced by χπ, the unique positive solution to611

(78). To that end, we recall the characterization in (100). Using the claim that Ge(π) and Ĝe(π) are612

asymptotically equivalent (in particular, in the sense of (77)), we have613

χ̂ave ≃
1

d2
tr

([
Ĝe(π)

]
\0

· [I ⊗ Etr]

)
. (105)

To compute the first term on the right-hand side of the above estimate, we directly invert the block614

matrix Ĝe(π) in (102). Recall that Πe is chosen in the forms of (57) and (64). It is then straightforward615

to verify that616

Ĝe =

[
c̄ −c̄ q̄⊤

−c̄ q̄ I ⊗ FE(χ̂ave) + c̄ q̄q̄⊤

]
, (106)

where FE(χ) is a matrix valued function such that617

FE(χ) =
( τ

1 + χ
Etr + πB + λτId+1

)−1

, (107)
618

q̄ =
τ

(1 + χ̂ave)
√
d
vec
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)

)
, (108)

and619

1/c̄ =
τ(1 + ρ)

1 + χ̂ave
+ λτ − τ2

(1 + χ̂ave)2d
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
.

(109)

Using (106), we can now write the equation (105) as620

χ̂ave ≃
1

d
tr
(
FE(χ̂ave)Etr

)
+

c̄ τ2

(1 + χ̂ave)2d3
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
.

(110)
The second term on the right-hand side of (110) is negligible. Indeed,621

tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
≤
∥∥FE(χ̂ave)EtrFE(χ̂ave)

∥∥
op
(∥Rtr∥2F + (1 + ρ)2∥btr∥2).

(111)

By construction,
∥∥FE(χ̂ave)

∥∥
op

≤ (λτ)−1. Moreover, since the task vectors {wi}i∈[k] are indepen-622

dent vectors sampled from Unif(Sd−1(
√
d)), it is easy to verify that623

∥Etr∥op = O≺(1), ∥Rtr∥F = O≺(
√
d) and ∥btr∥2 = O≺(1). (112)

Finally, since c̄ is an element of Ĝe, we must have|c̄| ≤
∥∥∥Ĝe

∥∥∥
op

≤ (τλ)−1. Combining these estimates624

gives us625

c̄ τ2

(1 + χ̂ave)2d3
tr
([

Rtr (1 + ρ)btr
]
FE(χ̂ave)EtrFE(χ̂ave)

[
Rtr (1 + ρ)btr

]⊤)
= O≺(d

−2),

(113)
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and thus we can simplify (110) as626

χ̂ave ≃
1

d
tr

[( τ

1 + χ̂ave
Etr + πB + λτId

)−1

Etr

]
. (114)

Observe that (114) is a small perturbation of the self-consistent equation in (78). By the stability of627

the equation (78), we then have628

χ̂ave ≃ χπ, (115)
where χπ is the unique positive solution to (78).629

Recall the definitions of Ge(π) and Ĝe(π) in (102) and (79), respectively. By the standard resolvent630

identity,631

Ĝe(π)− Ge(π)

=
τ [χ̂ave − χπ]

[1 + χπ][1 + χ̂ave]
Ĝe(π)

 1 + ρ 1√
d
vec
([

Rtr (1 + ρ)btr
])⊤

1√
d
vec
([

Rtr (1 + ρ)btr
])

Id ⊗ Etr

Ge(π).

(116)
By construction,

∥∥∥Ĝe(π)
∥∥∥
op

≤ 1/(τλ) and
∥∥Ge(π)

∥∥
op

≤ 1/(τλ). Moreover,∥Etr∥op ≺ 1 and632 ∥∥∥∥ 1√
d
vec
([

Rtr (1 + ρ)btr
])∥∥∥∥ ≺ 1. (117)

It then follows from (115) and (116) that633 ∥∥∥Ĝe(π)− Ge(π)
∥∥∥
op

≃ 0. (118)

If Ĝe(π) satisfies the equivalent conditions (75), (76) and (77) (as claimed in our analysis above),634

then the estimate in (118) allows us to easily check that Ge(π) also satisfies (75), (76) and (77). Thus,635

we claim that Ge(π) is asymptotically equivalent to the extended resolvent matrix Ge(π) in the sense636

of Definition 1.637

SI-13 Asymptotic Limits of the Generalization Errors638

In this section, we use the characterization in Result 2 to derive the asymptotic limits of the general-639

ization errors of associated with the set of parameters Γ∗ learned from ridge regression.640

SI-13.1 Asymptotic Limits of the Linear and Quadratic Terms641

From Corollary 1 and the discussions in Remark 2, characterizing the test error e(Γ∗) boils down to642

computing the linear term 1
d tr

(
Γ∗A⊤

test

)
and the quadratic term 1

d tr
(
Γ∗Btest(Γ

∗)⊤
)
, where Atest643

and Btest are the matrices defined in (43) and (44), respectively.644

We consider test data distributions Ptest as follows. From (37), the ICL task test setting we consider645

corresponds to choosing646

(ICL) : Atest =
[
Id 0

]
and Btest =

[
( 1+ρ

α + 1)Id
(1 + ρ)2

]
. (119)

.647

Result 3. Let Γ∗ be the set of parameters learned from the ridge regression problem in (10). Let648

Atest ∈ Rd×(d+1) and Btest ∈ R(d+1)×(d+1) be two matrices constructed as in (119). We have649

1

d
tr(Γ∗A⊤

test) ≃
1

d
tr
(
Γ∗
eqA

⊤
test

)
, (120)

and650

1

d
tr(Γ∗Btest(Γ

∗)⊤) ≃ 1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

T )− ce
d
tr

(
Btest

[
(Etr + ξI)−1 − ξ(Etr + ξI)−2

])
.

(121)
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In the above displays, Γ∗
eq is an asymptotic equivalent of Γ∗, defined as651

Γ∗
eq :=

[
Rtr (1 + ρ)btr

]
(Etr + ξI)−1, (122)

where ξ is the unique positive solution to the self-consistent equation652

ξMκ

(
1 + ρ

α
+ ξ

)
− τλ

ξ
= 1− τ, (123)

and Mκ(·) is the function defined in (181). Moreover, the scalar ce in (121) is defined as653

ce =
ρ+ ν − ν2Mκ(ν)− ξ

[
1− 2νMκ(ν)− ν2M′

κ(ν)
]

1− 2ξMκ(ν)− ξ2M′
κ(ν)− τ

, (124)

where654

ν :=
1 + ρ

α
+ ξ. (125)

To derive the asymptotic characterizations (120) and (121) in Result 3, we first use block-matrix655

inversion to rewrite Ge(π) in (79) as656

Ge(π) =

[
c∗(π) −c∗(π) (q∗(π))⊤

−c∗(π) q∗(π) I ⊗ FE(χπ) + c∗(π)q∗(π)(q∗(π))⊤

]
, (126)

where FE(·) is the matrix-valued function defined in (107), i.e.,657

FE(χπ) =
( τ

1 + χπ
Etr + πBtest + λτId+1

)−1

. (127)

Moreover,658

q∗(π) =
τ

(1 + χπ)
√
d
vec
([

Rtr (1 + ρ)btr
]
FE(χπ)

)
, (128)

and659

1

c∗(π)
=

τ(1 + ρ)

1 + χπ
+ λτ − τ2

(1 + χπ)2d
tr
([

Rtr (1 + ρ)btr
]
FE(χπ)

[
Rtr (1 + ρ)btr

]⊤)
.

(129)
Observe that there is a one-to-one correspondence between the terms in (126) and those in (59).660

To derive the asymptotic characterization given in (120), we note that661

1

d
tr(Γ∗A⊤

test) ≃
−1

c(0)
√
d

[
0 vec(Atest)

T
]
Ge(0)e1 (130)

=
c∗(0)

c(0)
· 1
d
tr
([

Rtr (1 + ρ)btr
]
(Etr + λ(1 + χ0)I)

−1A⊤
test

)
(131)

≃ 1

d
tr
([

Rtr (1 + ρ)btr
]
(Etr + λ(1 + χ0)I)

−1A⊤
test

)
. (132)

In the above display, (130) follows from (63) and the asymptotic equivalence between Ge(0) and662

Ge(0). The equality in (131) is due to (126) and (128). To reach (132), we note that c(0) =663

e⊤1 Ge(0)e1 and c∗(0) = e⊤1 Ge(0)e1. Thus, c(0) ≃ c∗(0) due to the asymptotic equivalence between664

Ge(0) and Ge(0). In Appendix B, we show that665

λ(1 + χ0) ≃ ξ, (133)
where ξ is the scalar defined in (123). The asymptotic characterization given in (120) then follows666

from (132) and from the definition of Γ∗
eq given in (122).667

Next, we use (65) to derive the asymptotic characterization of the quadratic term in (121). Taking the668

derivative of (129) gives us669

d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

=
1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

⊤)

− τχ′
0

(1 + χ0)2

(
1 + ρ− 2

d
tr(Atr(Etr + ξI)−1AT

tr) +
1

d
tr(Atr(Etr + ξI)−1Etr(Etr + ξI)−1AT

tr)

)
(134)

=
1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

⊤)− τχ′
0

(1 + χ0)2

(
1 + ρ− 1

d
tr(Γ∗

eqA
T
tr)−

ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤)

)
, (135)
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where Atr is the matrix defined in (73). In reaching the above expression, we have also used the670

estimate in (133).671

To further simplify our formula, we note that672

Atr = S

(
Etr + ξId+1 −

(1 + ρ

α
+ ξ
)
Id+1

)
, (136)

where S is a d× (d+ 1) matrix obtained by removing the last row of Id+1. Using this identity, we673

can rewrite the matrix Γ∗
eq in (122) as674

Γ∗
eq = S

(
I −

(1 + ρ

α
+ ξ
)
(Etr + ξI)−1

)
(137)

=
[
I − νFR(ν)− a∗(1 + ρ)2νFR(ν)btrb

⊤
trFR(ν) a∗(1 + ρ)νFR(ν)btr

]
, (138)

where FR(·) is the function defined in (179), and ν is the parameter given in (125). The second675

equality (138) is obtained from the explicit formula for (Etr + ξI)−1 in (185).676

From (136) and (137), it is straightforward to check that677

1

d
tr(Γ∗

eqA
T
tr) = 1− ν + ν2

1

d
tr(S(Etr + ξI)−1S⊤), (139)

and678

ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤) = ξ

[
1− 2ν

1

d
tr(S(Etr + ξI)−1S⊤) + ν2

1

d
tr(S(Etr + ξI)−2S⊤

]
. (140)

By using the asymptotic characterizations given in (197) and (198), we then have679

1

d
tr(Γ∗

eqA
T
tr) ≃ 1− ν + ν2Mκ(ν), (141)

and680
ξ

d
tr(Γ∗

eq(Γ
∗
eq)

⊤) ≃ ξ
[
1− 2νMκ(ν)− ν2M′

κ(ν)
]
. (142)

Substituting (141), (142), and (199) into (135) yields681

d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

≃ 1

d
tr(Γ∗

eqBtest(Γ
∗
eq)

T )− ce
d
tr

(
Btest

[
(Etr + ξI)−1 − ξ(Etr + ξI)−2

])
,

(143)
where ce is the scalar defined in (124). The asymptotic characterization of the quadratic term in (121)682

then follows from (65) and the claim that683

d

dπ

(
1

c(π)

)∣∣∣∣
π=0

≃ d

dπ

(
1

c∗(π)

)∣∣∣∣
π=0

. (144)

SI-13.2 The Generalization Error of In-Context Learning684

Result 4. Consider the test distribution Ptest associated with the ICL task. We have685

e(Γ∗) ≃ eICL(τ, α, κ, ρ, λ), (145)

where686

eICL(τ, α, κ, ρ, λ) :=

(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)− ce
[
Mκ(ν) + ξM′

κ(ν)
])

− 2
[
1− νMκ(ν)

]
+ 1 + ρ,

(146)
and ce is the constant given in (124).687

Remark 6. Recall the definition of the asymptotic equivalence notation “≃” introduced in Section SI-688

9. The characterization given in (145) implies that, as d → ∞, the generalization error e(Γ∗)689

converges almost surely to the deterministic quantity eICL(τ, α, κ, ρ, λ).690
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To derive (145), our starting point is the estimate691

e(Γ∗) ≃ 1

d
tr
(
Γ∗Btest(Γ

∗)⊤
)
− 2

d
tr
(
Γ∗A⊤

test

)
+ 1 + ρ, (147)

which follows from Corollary 1 and the discussions in Remark 2. We consider the ICL task here, and692

thus Atest and Btest are given in (119). The asymptotic limits of the first two terms on the right-hand693

side of the above equation can be obtained by the characterizations given in Result 3.694

Using (120) and the expressions in (138) and (119), we have695

1

d
tr(Γ∗A⊤

test) ≃
1

d
tr
(
Γ∗
eqA

⊤
test

)
(148)

= 1− ν

d
trFR(ν)− a∗(1 + ρ)2ν

∥∥FR(ν)btr
∥∥2

d
(149)

≃ 1− νMκ(ν), (150)

where ν is the constant defined in (125). To reach the last step, we have used the estimate given in696

(197).697

Next, we use (121) to characterize the first term on the right-hand side of (147). From the formulas698

in (138) and (119), we can check that699

1

d
tr
(
Γ∗
eqBtest(Γ

∗
eq)

⊤
)
≃
(
1 + ρ

α
+ 1

)
1

d
tr
(
I − νF (ν)

)2
(151)

≃
(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)
)
, (152)

where the second step follows from (197) and (198). From (185),700

1

d
tr(Btest(Etr + ξI)−1) ≃

(
1 + ρ

α
+ 1

)
1

d
trFR(ν) ≃

(
1 + ρ

α
+ 1

)
Mκ(ν). (153)

Similarly, we can check that701

1

d
tr(Btest(Etr + ξI)−2) ≃

(
1 + ρ

α
+ 1

)
1

d
trF 2

R(ν) ≃ −
(
1 + ρ

α
+ 1

)
M′

κ(ν). (154)

Substituting (152), (153), and (154) into (121) gives us702

1

d
tr(Γ∗B(Γ∗)⊤) ≃

(
1 + ρ

α
+ 1

)(
1− 2νMκ(ν)− ν2M′

κ(ν)− ce
[
Mκ(ν) + ξM′

κ(ν)
])

,

(155)
where ce is the constant given in (124). Combining (150), (155), and (147), we are done.703

In what follows, we further simplify the characterizations in Result 4 by considering the ridgeless704

limit, i.e., when λ → 0+.705

Result 5. Let706

q∗ :=
1 + ρ

α
, m∗ := Mκ (q

∗) , and µ∗ := q∗Mκ/τ (q
∗), (156)

where Mκ(x) is the function defined in (181). Then707

eICL
ridgeless := lim

λ→0+
eICL(τ, α, κ, ρ, λ)

=


τ(1+q∗)

1−τ

[
1− τ(1− µ∗)2 + µ∗(ρ/q∗ − 1)

]
−2τ(1− µ∗) + (1 + ρ) τ < 1

(q∗ + 1)
(
1− 2q∗m∗ − (q∗)2M′

κ(q
∗) + (ρ+q∗−(q∗)2m∗)m∗

τ−1

)
− 2(1− q∗m∗) + (1 + ρ) τ > 1

,

(157)
where M′

κ(·) denotes the derivative of Mκ(x) with respect to x.708

We start with the case of τ < 1. Examining the self-consistent equation in (123), we can see that709

the parameter ξ tends to a nonzero constant, denoted by ξ∗, as λ → 0+. It follows that the original710

equation in (123) reduces to711

ξ∗Mκ

(
1 + ρ

α
+ ξ∗

)
= 1− τ. (158)
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Introduce a change of variables712

µ∗ :=
(1− τ)(1 + ρ)

ατξ∗
. (159)

By combining (158) and the characterization in (182), we can directly solve for µ and get µ∗ =713

q∗Mκ/τ (q
∗) as given in (156). The characterization in (157) (for the case of τ < 1) then directly714

follows from (150), (155), and (3) after some lengthy calculations.715

Next, we consider the case of τ > 1. It is straightforward to verify from (123) that716

ξ =
τ

τ − 1
λ+O(λ2). (160)

Thus, when τ > 1, ξ → 0 as λ → 0+. It follows that717

lim
λ→0+

ν = lim
λ→0+

(
1 + ρ

α
+ ξ

)
= q∗ and lim

λ→0+
Mκ(ν) = m∗. (161)

Substituting these estimates into (150), (155), and (3), we then reach the characterizations in (157)718

for the case of τ > 1.719

A Equivalent Statistical Representations720

In this appendix, we present an equivalent (but simplified) statistical model for the regression vector721

HZ defined in (9). This statistically-equivalent model will simplify the moment calculations in722

Section SI-10 and the random matrix analysis in Section SI-12.723

Lemma 3. Let w be a given task vector with∥w∥ =
√
d. Meanwhile, let a ∼ N (0, 1), s ∼ N (0, 1),724

ϵ ∼ N (0, ρ) be three scalar normal random variables, and q ∼ N (0, Iℓ−1), g ∼ N (0, Id−1),725

u ∼ N (0, Id−1), and vϵ ∼ N (0, ρIℓ) be isotropic normal random vectors. Moreover, w and all of726

the above random variables are mutually independent. We have the following equivalent statistical727

representation of the pair (HZ , yℓ+1):728

HZ
(d)
= (d/ℓ)Mw

[
s
u

] [
h⊤Mw, (a/

√
d+ θϵ)

2/
√
d+ θ2q/

√
d
]
, (162)

and729

yℓ+1
(d)
= s+ ϵ. (163)

In the above displays, Mw denotes a symmetric and orthonormal matrix such that730

(Mw)e1 =
w

∥w∥
, (164)

where e1 denotes the first natural basis vector in Rd; h ∈ Rd is a vector defined as731

h :=

 θϵa√
d
+ a2

d + θ2q[
(θϵ + a/

√
d)2 + θ2q

]1/2
g/

√
d

 ; (165)

and θϵ, θq are scalars such that732

θϵ =∥vϵ∥/
√
d and θq =∥q∥ /

√
d. (166)

Remark 7. For two random variables A and B, the notation A
(d)
= B indicates that A and B have733

identical probability distributions. Note that A and B can be either scalars [as in the case of (163)],734

or matrices of matching dimensions [as in the case of (162)].735

Remark 8. A concrete construction of the symmetric and orthonormal matrix Mw satisfying (164)736

can be based on the Householder transformation [42–44].737

Proof. Recall that the data vector xℓ+1 is independent of the task vector w. Then, by the rotational738

symmetry of the isotropic normal distribution, we can rewrite739

xℓ+1
(d)
=

1√
d
Mw

[
s
u

]
, (167)
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where s ∼ N (0, 1) and u ∼ N (0, Id−1) are two independent normal random variables (vectors),740

and Mw is the symmetric orthonormal matrix specified in (164). Note that yℓ+1 = x⊤
ℓ+1w + ϵ, with741

ϵ ∼ N (0, ρ) denoting the noise. The representation in (163) then follows immediately from (167)742

and the identity in (164).743

To show (162), we first reparameterize the d× ℓ Gaussian data matrix X as744

X = Mw

[
a q⊤

p U

]
Mvϵ/

√
d. (168)

In the above display, a ∼ N (0, 1), p ∼ N (0, Id−1), q ∼ N (0, Iℓ−1); U ∈ R(d−1)×(ℓ−1) is a matrix745

with iid standard normal entries; and Mvϵ is a symmetric orthonormal matrix such that746

Mvϵe1 =
vϵ

∥vϵ∥
, (169)

where e1 denotes the first natural basis vector in Rℓ. Since the data matrix X , the task vector w,747

and the noise vector vϵ are mutually independent, it is straightforward to verify via the rotational748

symmetry of the isotropic normal distribution that both sides of (168) have identical probability749

distributions. Using this new representation, we have750

Xvϵ = θϵMw

[
a
p

]
. (170)

Meanwhile,751

X⊤w = Mvϵ

[
a
q

]
, (171)

and thus752

XX⊤w =
1√
d
Mw

[
a2 +∥q∥2
ap+ Uq

]
. (172)

Combining (171) and (172) yields753

Xy = XX⊤w +Xvϵ (173)

= Mw

[
θϵa+ a2/

√
d+ θ2q

√
d

(θϵ + a/
√
d)p+ Uq/

√
d

]
. (174)

Observe that Uq/
√
d

(d)
= θq p

′, where p′ ∼ N (0, Id−1) is a normal random variable independent of754

everything else. Using this reparametrization for Uq/
√
d and the fact that p, p′ are two independent755

Gaussian vectors, we can conclude that756

1√
d
Xy

(d)
= Mwh, (175)

where h is the random vector defined in (165).757

Lastly, we consider the term y⊤y in (9). Since y = X⊤w + vϵ,758

y⊤y =
∥∥∥X⊤w + vϵ

∥∥∥2 (176)

=
∥∥∥X⊤w + θϵ

√
dMvϵe1

∥∥∥2 (177)

= (a+ θϵ
√
d)2 + θ2qd, (178)

where the second equality follows from (169) and to reach the last equality we have used the759

representation in (171). To show (162), we recall the definition of HZ in (9). Substituting (167),760

(175) and (178) into (9), we are done.761
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B The Stieltjes Transforms of Wishart Ensembles762

In this appendix, we first recall several standard results related to the Stieltjes transforms of Wishart763

ensembles. In our problem, we assume that there are k unique task vectors {wi}i∈[k] in the training764

set. Moreover, these task vectors {wi}i∈[k] are independently sampled from the uniform distribution765

on the sphere Sd−1(
√
d) with radius

√
d. Let766

FR(ν) := (Rtr + νId)
−1, (179)

where Rtr is the sample covariance matrix of the task vectors as defined in (72) and ν is a positive767

scalar.768

Note that the distribution of Rtr is asymptotically equivalent to that of a Wishart ensemble. By769

standard random matrix results on the Stieltjes transforms of Wishart ensembles (see, e.g., [24]), we770

have771
1

d
trFR(ν) ≃ Mκ(ν) (180)

as d, k → ∞ with k/d = κ. Here,772

Mκ(ν) :=
2

ν + 1− 1/κ+
[
(ν + 1− 1/κ)2 + 4ν/κ

]1/2 . (181)

is the solution to the self-consistent equation773

1

Mκ(ν)
=

1

1 +Mκ(ν)/κ
+ ν. (182)

Moreover,774

1

d
trF 2(ν) ≃ −M′

κ(ν) =
M2

κ(ν)

1− κM2
κ(ν)

[κ+Mκ(ν)]2

. (183)

For the remainder of this appendix, we will further explore the self-consistent equation given by (78).775

We will show that the solution χπ and its derivative d
dπχπ, at π = 0, can be characterized by the776

function Mκ(ν) in (181). To start, note that at π = 0, the equation in (78) can be written as777

τχ0

1 + χ0
= (1 + 1/d)− λ(1 + χ0)

d
tr(Etr + λ(1 + χ0)I)

−1. (184)

Recall the definition of Etr given in (74). It is straightforward to verify that778

(Etr+λ(1+χ0)Id+1)
−1 =

[
FR(ν0) + a∗(1 + ρ)2FR(ν0)btrb

⊤
trFR(ν0) −a∗(1 + ρ)FR(ν0)btr

−a∗(1 + ρ)b⊤trFR(ν0) a∗

]
,

(185)
where FR(·) is the function defined in (179),779

ν0 =
1 + ρ

α
+ λ(1 + χ0) (186)

and780
1

a∗
= (1 + ρ)2 + λ(1 + χ0)− (1 + ρ)2b⊤trFR(ν0)btr. (187)

From (185), the equation (184) becomes781

τχ0

1 + χ0
= (1 + 1/d)− λ(1 + χ0)

d
trFR(ν0)− (1 + ρ)2

a∗λ(1 + χ0)

d

∥∥FR(ν0)btr
∥∥2 . (188)

By the construction of FR(ν0) and btr, we can verify that782

b⊤trFR(ν0)btr ≤ 1 and
∥∥FR(ν0)btr

∥∥2 ≤ 1

ν0
≤ α

1 + ρ
. (189)

Substituting the first inequality above into (187) gives us783

a∗λ(1 + χ0) ≤ 1. (190)
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Combining this estimate with the second inequality in (189), we can conclude that the last term on784

the right-hand side of (188) is negligible as d → ∞. Moreover, using the asymptotic characterization785

given in (180), the equation (188) leads to786

τχ0

1 + χ0
≃ 1− λ(1 + χ0)Mκ(ν0). (191)

Introducing a change of variables787

ξ0 = λ(1 + χ0), (192)
and also recalling the definition of ν0 in (186), we can further transform (191) to788

ξ0Mκ

(
1 + ρ

α
+ ξ0

)
− τλ

ξ0
≃ 1− τ. (193)

Observe that the above is identical to the equation in (123), except for a small error term captured by789

≃. By the stability of (123), we can then conclude that790

ξ0 ≃ ξ, (194)

thus verifying (133).791

Next, we compute χ′
0, the derivative of χπ (with respect to π) evaluated at π = 0. Differentiating792

(78) give us793

τχ′
0 =

1

d
tr

[
(Etr + ξ0I)

−1
(
χ′
0Etr −

(1 + χ0)
2

τ
Btest

)
(Etr + ξ0I)

−1Etr

]
. (195)

Thus,794

τχ′
0

(1 + χ0)2
≃

1
d tr

(
Btest[(Etr + ξI)−1 − ξ(Etr + ξI)−2]

)
1− 2ξ tr(Etr + ξI)−1/d+ ξ2 tr(Etr + ξI)−2/d− τ

, (196)

where we have used (194) to replace ξ0 in (195) by ξ, with the latter being the solution to the795

self-consistent equation in (123). Using the decomposition in (185) and following similar arguments796

that allowed us to simplify (188) to (191), we can check that797

1

d
tr(Etr+ ξI)−1 ≃ 1

d
trS(Etr+ ξI)−1S⊤ ≃ 1

d
trF

(
1 + ρ

α
+ ξ

)
≃ Mκ

(
1 + ρ

α
+ ξ

)
, (197)

and798

1

d
tr(Etr + ξI)−2 ≃ 1

d
trS(Etr + ξI)−2S⊤ ≃ 1

d
trF 2

(
1 + ρ

α
+ ξ

)
≃ −M′

κ

(
1 + ρ

α
+ ξ

)
,

(198)
where S is a d× (d+1) matrix obtained by removing the last row of Id+1, and Mκ(·) is the function799

defined in (181). Substituting (197) and (198) into (196) yields800

τχ′
0

(1 + χ0)2
≃

1
d tr

(
Btest[(Etr + ξI)−1 − ξ(Etr + ξI)−2]

)
1− 2ξMκ

(
1+ρ
α + ξ

)
− ξ2M′

κ

(
1+ρ
α + ξ

)
− τ

. (199)
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