Solving Continuous Mean Field Games: Deep
Reinforcement Learning for Non-Stationary Dynamics

Lorenzo Magnino* Kai Shao!
University of Cambridge KTH Royal Institute of Technology
Zida Wu Jiacheng Shen Mathieu Lauriere

University of California, Los Angeles ~ NYU Center for Data Science NYU Shanghai

Abstract

Mean field games (MFGs) have emerged as a powerful framework for modeling
interactions in large-scale multi-agent systems. Despite recent advancements in
reinforcement learning (RL) for MFGs, existing methods are typically limited
to finite spaces or stationary models, hindering their applicability to real-world
problems. This paper introduces a novel deep reinforcement learning (DRL)
algorithm specifically designed for non-stationary continuous MFGs. The proposed
approach builds upon a Fictitious Play (FP) methodology, leveraging DRL for best-
response computation and supervised learning for average policy representation.
Furthermore, it learns a representation of the time-dependent population distribution
using a Conditional Normalizing Flow. To validate the effectiveness of our method,
we evaluate it on three different examples of increasing complexity. By addressing
critical limitations in scalability and density approximation, this work represents a
significant advancement in applying DRL techniques to complex MFG problems,
bringing the field closer to real-world multi-agent systems.

1 Introduction

Learning in multiplayer games poses significant challenges due to the interplay between strategic
decision-making and the dynamics, often non-stationary, interactions among agents. Deep rein-
forcement learning (DRL) has recently achieved remarkable success in two-player or small-team
games such as Go [Silver et al., 2016, 2018], chess [Silver et al., 2017], poker [Heinrich and Silver,
2016], StarCraft [Samvelyan et al., 2019], and Stratego [Perolat et al., 2022]. However, scaling
these methods to large populations of agents remains difficult. As the number of agents grows, the
joint strategy space becomes prohibitively large, and traditional multi-agent reinforcement learning
(MARL) techniques often become computationally intractable; see [Busoniu et al., 2008, Yang and
Wang, 2020, Zhang et al., 2021, Gronauer and Diepold, 2022, Wong et al., 2023] for recent reviews.

Mean Field Games (MFGs) [Lasry and Lions, 2007, Huang et al., 2006] offer a principled framework
for approximating such large-scale systems by modeling the interaction between a single represen-
tative agent and an evolving population distribution. Drawing on tools from statistical physics and
optimal control, MFGs reduce the dimensionality of the problem by considering the limiting behavior
as the number of agents tends to infinity. At equilibrium, each agent solves a Markov decision process
(MDP) given the population distribution, and the distribution itself must evolve consistently with

*Work done during period at NYU Shanghai Center for Data Science and the NYU-ECNU Insti-
tute of Mathematical Sciences at NYU Shanghai. Contacts: 1m2183Q@cam.ac.uk, kshao@kth.se,
zdwu@ucla.edu, shen.patrick.jiacheng@nyu.edu, mathieu.lauriere@nyu.edu.

fWork done during period at NYU Shanghai

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

the agents’ policies. Since individual agents are infinitesimal in the limit, they do not affect the
population, allowing each agent to ignore second-order feedback effects.

This approximation is particularly relevant for applications involving large populations and continuous
state-action spaces, such as economics [Lachapelle et al., 2016, Achdou et al., 2022], finance [Car-
mona et al., 2017, Cardaliaguet and Lehalle, 2018, Carmona, 2021], engineering [Djehiche et al.,
2017], crowd motion [Lachapelle and Wolfram, 2011, Djehiche et al., 2017, Achdou and Lasry,
2018], flocking and swarming [Fornasier and Solombrino, 2014, Nourian et al., 2010], cloud comput-
ing [Hanif et al., 2015, Mao et al., 2022], and telecommunication networks [Yang et al., 2016, Ge
et al., 2019]. In many of these domains, both the state dynamics and control policies are naturally
continuous, and the population distribution often evolves over time rather than remaining stationary.

While classical numerical solvers for MFGs can handle low-dimensional problems in simple do-
mains [Achdou and Lauriere, 2020], they are limited by the curse of dimensionality and do not scale
to complex or high-dimensional settings. Deep learning methods have been proposed to solve high-
dimensional problems (see e.g. [Hu and Lauriere, 2024] for an overview) but these methods generally
struggle to solve MFGs in very complex environments. To address these limitations, recent work has
turned to model-free reinforcement learning (RL) as promising approaches to solving MFGs [Guo
et al., 2019, Subramanian and Mahajan, 2019, Elie et al., 2020, Fu et al., 2019, Cui and Koeppl,
2021, Angiuli et al., 2022, Yardim et al., 2023, Ocello et al., 2024]; see [Lauricre et al., 2022b] for a
recent survey. However, most existing methods are restricted to finite state and action spaces and
stationary population distributions. Extending RL frameworks to continuous-space, non-stationary
MFGs presents significant challenges, especially for learning time-dependent population dynamics
and solving the resulting fixed-point problems. In contrast to MDPs, where the goal is to optimize a
single agent’s trajectory, solving MFGs requires learning both an optimal response and a consistent
population evolution. To the best of our knowledge, no existing RL algorithms are capable of
learning the solution of non-stationary MFGs with continuous state and action spaces.

Contributions. This paper introduces Density-Enhanced Deep-Average Fictitious Play
(DEDA-FP) (see Figure 1), a novel deep reinforcement learning (DRL) algorithm for non-
stationary Mean Field Games (MFGs) with continuous state and action spaces. Our approach
extends Fictitious Play (FP), a classical game-theoretic learning scheme that iteratively updates
each agent’s policy to optimally respond to the evolving population behavior.

To address the challenge of averaging neural policies, we use DRL (Soft Actor-Critic and
Proximal Policy Optimization) to compute approximate best responses and supervised learning
to represent the averaged policy across FP iterations. This hybrid strategy ensures scalability
and accurate policy approximation.

We also train a time-dependent Conditional Normalizing Flow (CNF) to model the non-stationary
evolution of the population distribution, enabling sampling from the equilibrium mean field
and density estimation. This model accurately captures MFGs with local dependence on
population density, unlike empirical distributions, and improves sampling time efficiency
tenfold compared to our benchmarks.

We validate our method with three experiments of increasing complexity and provide an error
propagation analysis (Theorem 1). Our contributions address key challenges in applying RL to
MFGs, including time-dependence, continuous spaces, and local density effects, representing
a significant step toward scalable, model-free solutions for real-world multi-agent systems.

1.1 Related Work

The following works are particularly relevant to our context and help clarify our methodological
contributions (see Table 1 for a summary). [Perrin et al., 2021] develop a DRL algorithm based
on Fictitious Play (FP) for continuous state and action spaces. However, their focus is restricted
to stationary MFGs (i.e., time-invariant mean fields), and their method does not learn the Nash
equilibrium policy. Instead, it learns a collection of best responses from which a player may sample
to imitate the average behavior. [Lauriere et al., 2022a] propose two DRL algorithms and in particular
a variant of FP which does learn the Nash equilibrium policy. While we draw inspiration from their
approach to represent the average policy, their method is limited to discrete state and action spaces.

Replay buffer

Best Response Policy NN (71'0*) via Collect time-dependent samples
Initialize NNs [——>{ —) 9* _—
DeepRL using 71

Along with ﬁ'g Supervised Learning
Supervised
Nash Equilibrium Learnin .
_ Aft _ g Non-stationar;
(7% G™) 71| Conditioned Normalizing Flow (G™) learning Collect trajectories A v
' the flow u’_'s <— using 779 | Average Policy

NN 770

Figure 1: Overview of our DEDA-FP model. Our framework uses three main steps, built upon the Fictitious
Play algorithm, to fully solve the MFG problem (details in Section 3): (1) computation of the best response
using ; (2) learning a to approximate the average policy over past
policies; and (3) learning a Time-Conditioned Normalizing Flow to approximate the average distribution over
past mean-field flows.

[Zaman et al., 2020] tackle non-stationary MFGs using actor-critic methods in a discrete-time
linear-quadratic (LQ) setting. Although their model operates in continuous state and action spaces,
it is confined to the LQ regime, where optimal policies are deterministic and linear. [Angiuli et al.,
2023] study DRL algorithms for MFGs with continuous states and actions, and include a generative
model for the population distribution. However, they only address stationary LQ problems, and
their generative model can produce samples from the mean field but cannot estimate the density at a
given location, making it unsuitable for models with local mean field dependence.

Method Cont. space | General r, P | NE policy | Local. dep. | Non-stat.
DEDA-FP v v v 4 4
Zaman et al. [2020] v X v X v
Perrin et al. [2021] v v X v X
Lauriere et al. [2022a] X v v v v
Angiuli et al. [2023] 4 X v X X

Table 1: Comparison between our approach and related works. Our approach is the first to learn the Nash
equilibrium policy and distribution for continuous space non-stationary MFGs with general dynamics and
rewards, including possibly local dependence on the mean field.

2 Non-stationary continuous MFGs

Notations. Let X and A be respectively the state and action spaces, which can be continuous. To
fix the ideas, we will take X = R® and A = R*, where d and % are the respective dimensions. Let
P(X) and P(A) denote the sets of probability distributions on X and A, respectively. Let N be
the number of time steps. We will use bold symbols for sequences, i.e., functions of time. The state
distribution of the population at time ¢ is called the mean field and will be denoted by p; € P(X).
We denote by 1 the initial distribution, which is assumed to be fixed and known from the players.

Dynamics. To define the mean field game, we first need to define the dynamics of the state x; of
a representative player when the mean field sequence pt = (44):=0,... N, is given. We consider a
general dynamics: if the agent is in state x;, takes action a; and the mean field is currently p, then
the next state is sampled according to:

Tiy1 ™~ Pt('|xt;ata,uft)» (D

where P : {0,...,Nr} x X x A x P(X) — P(X) is the transition kernel. A typical setting is
when the transitions are given by a transition function, namely, x;11 = Fy(2+, az, jit, €;), where
F:{0,...,Np} x X x Ax P(X) — X is the transition function and (€;);>¢ is a sequence of
i.i.d. noises. A typical example is the time-discretization of a continuous time stochastic differential
equation (SDE): X = R% A = RF and Fy(x,as, pe,€:) = ¢ + be(xe, as, jug) + oes, where
b:{0,...,Np} x X x AX P(X) — X is the drift, and o is the volatility. This setting is particularly
relevant because most of the MFG literature focuses on SDE-type dynamics, see e.g. [Carmona and
Delarue, 2018]. But we stress that here, only time is discretized; space is continuous, in contrast with

most of the literature on RL for MFGs, see e.g. [Lauriere et al., 2022b]. From the dynamics of the
individual player, we can deduce a dynamics for the whole population, i.e., a transition from g to
Le+1, as explained below after introducing the notion of policy.

Policies. A policy 7 for an individual player is a function from {0, ..., Ny} x X to P(A) and
m¢(-|x) = w(-|t, z) is the distribution used to pick the next action when time is ¢ and the player’s state
is x. As is common in the MFG literature [Guo et al., 2019, Elie et al., 2020, Cui and Koeppl, 2021,
Guo et al., 2023], we consider here decentralized policies, which are functions of the individual state
and not of the population distribution. This is because, at equilibrium, the mean field is completely
determined by the policy and the initial population distribution, which is assumed to be known. If the
whole population uses the same policy 7, this induces a mean field flow pu™ = (u7);>0, which is
determined by the evolution: pf = pp, and fort =0,..., Ny — 1,

W) = [W @malo) P 0) dnda, ' € X. @
XxA

Rewards. The reward is a function r : X x A x P(X) — R. When the mean field flow is given by
= (f4)1>0, the representative agent aims to find a policy m = (m;)¢>0 that maximizes the total
expected reward: with (1]);>¢ is the distribution flow induced by r, see (2),

NT NT
Tu(7) = B | S rl@esanm)| =3 / i (@)mo(alz)r(z, a, po)deda,
t=0 t=0 7 AXA

We will use the notations J,,(7) and J (7,) interchangeably.

Nash equilibrium. We focus on the notion of Nash equilibrium, in which no player has any
incentives to deviate unilaterally. It is defined as follows in the mean field setting.

Definition 1. A mean-field Nash equilibrium (MFNE) is a pair (u*, 7*) = (¢, 7¢)e>0 of a
sequence of population distributions and policies that satisfies:

1. 7 maximizes 7 — Jy,- ();
2. Foreveryt > 0, u; is the distribution of x; given by dynamics (1) with (7*, pu*).

It can be expressed more concisely using the notion of exploitability, which quantifies how much a
player can be better of by deviating from the policy used by the rest of the players.

Definition 2. The exploitability of a policy 7 is defined as: £(m) = max Jyn= (7') — Jyu= ().

Then, (7, u™) is Nash equilibrium if and only if £(7) = 0. The notion of exploitability has been
used in several works to assess the convergence of RL algorithms, see e.g. [Perrin et al., 2020].

We discuss our assumption in App. A. Continuous space implies that the mean field, in P(X), is a
priori infinite-dimensional. Furthermore, the non-stationarity of the model ensures that the policy
should be time-dependent, departing from most of the RL literature. Another difficulty is that we
want to compute the equilibrium policy, which is in general, a mixed policy, not always learned
correctly by algorithms such as FP. Although ad hoc methods have been proposed for linear dynamics
and quadratic rewards, an RL algorithm for general models is still lacking.

3 Solving Continuous Mean Field Games

Solving a mean field game necessitates finding the flow (pu*, 7*) = (14, ™)¢ >0 that satisfies Def. 1.
To achieve this, we employ a version of FP algorithm. FP was originally introduced in [Brown, 1951]
and adapted to MFGs in [Cardaliaguet and Hadikhanloo, 2017] and [Perrin et al., 2020] respectively in
continuous time and discrete time MFGs. Our approach relies on computing the best response against
the weighted average of previous distributions and updated the distribution consequently (see details
in Appendix C). However, in continuous action spaces, calculating the best response, learning
the average policy, and determining the average distribution present significant challenges
due to the problem’s infinite dimensionality. To illustrate the effectiveness of our approach, we
proceed with a step-by-step construction: first, we present a basic algorithm (Algo. 1), followed
by a demonstration of the benefits of learning the equilibrium policy (Algo. 2). Finally, we detail
our approach, named DEDA-FP (Algo. 3), which overcomes the limitations highlighted by these
preceding methods.

Algo. 1: Simple Approach. As a first method, we implement a simple version of FP, in the
spirit of Perrin et al. [2021]. At each iteration of FP, the agent learns the best response against the
approximated average population distribution using DRL algorithms such as Soft Actor-Critic (SAC)
or Proximal Policy Optimization (PPO). Subsequently, this policy is added to a behavioral buffer.
The population state at iteration & is approximated by simulating NV — 1 trajectories, each generated
by one of N — 1 policies sampled uniformly from the buffer. Note that this constitutes a two-level
approximation: first, we approximate the average policy by sampling from the buffer, and then we
mimic the population distribution by sampling trajectories. Details are provided in Appendix C.
However, at the conclusion of this algorithm, we do not obtain either the Nash equilibrium
policy or the mean field distribution.

Algo. 2: Learning the Nash equilibrium policy. To address the main limitation of the simple
approach, we train a policy network to learn the average policy. To this end, we draw inspiration
from [Heinrich and Silver, 2016, Lauriere et al., 2022a] and use supervised learning with a suitably
defined replay buffer. We present here the main ideas and the details are provided in Appendix C.
Concretely, at every iteration we collect samples from the best response and we train a neural network
(NN) to minimize the Negative Log-Likelihood:

M
1
LaiL(0) = Bt 5,00 oMmsr, [~ log m(alt, s)] = i ZIOgN(ai§ po(sirti), o9(sists))
=1

where N (+) is the Gaussian probability density function, M is the size of the replay buffer Mgy,
containing all the triples (¢, s, a) sampled from the previous policies and pg and oy are the mean
and standard deviation predicted by the policy network for the state s; at time ¢;. Furthermore, this
approach allows us, at iteration k, to compute the best response against N — 1 agents using the
learned average policy, thereby avoiding the need to sample uniformly from the behavioral buffer.
Further details are provided in Appendix C.

Remaining Challenges. At this point, the algorithm can learn the equilibrium policy, which
is one part of the solution to the MFGs (see Def. 1). However, the other part, namely the
equilibrium mean field, is still lacking. Most existing works then approximate the optimal
mean field distribution by sampling a large number of trajectories to adequately cover the state
space. However, as we will elaborate in Sec. 5, there are several key limitations to this approach:

1. Many mean field games derive their complexity and richness from local interactions,
where the dynamics or rewards depend on the population density (e.g., congestion, entropy
maximization). Without a direct model for the mean field distribution, the density must be
estimated indirectly (e.g., via Gaussian convolution), which can alter the nature of the problem.

2. In the evaluation or rollout phase, estimating the mean field and its density requires sampling
many trajectories at each step. This becomes computationally expensive, especially in state
spaces of dimension d > 2, and can significantly slow down execution.

For the reasons mentioned above, we propose a novel algorithm, Density-Enhanced Deep Average
Fictitious Play solver (DEDA-FP), that fully solves MFGs by learning both the Nash equilibrium
policy and the mean field distribution, enabling us to both sample from it and the compute its density.

3.1 DEDA-FP

Our method incorporates best response computation using deep reinforcement learning and learns
the average policy with supervised learning, as depicted in the previous scheme. Furthermore,
it completely solves the mean field game problem by learning the Nash equilibrium mean field
distribution. Inspired by and extending the approach of Perrin et al. [2021], we utilize a time-
conditioned generative model to learn the mean field flow pu™ = (uT);>0. Specifically, we employ
a Conditional Normalizing Flow [Winkler et al., 2019, Rezende and Mohamed, 2015, Kobyzev
et al., 2020] which is a particular generative model that learns a complex probability distribution
p(x|t) conditioned on a time variable ¢ € [0,T]. It achieves this by transforming a simple base
distribution po(z) (e.g., a standard Gaussian) into the target distribution p(x|¢) through a sequence
of invertible transformations f1, fs, ..., fx, where each transformation is conditioned on the time ¢.
The probability density of a sample x from the target distribution p(x|t) is computed as:

p(x|t) = po(f~1(x,t)) |det (W)

)

ox

where f'(x,t) = fr'(fxl,(..fi (x,t)...)) is the inverse of the entire flow, and

—1
det (W) is the determinant of the Jacobian of the inverse transformation.

The conditioning on time ¢ is typically incorporated into the parameters of the transformation
functions f. For example, if f is an affine transformation, its parameters (e.g., the scaling and
translation) would be functions of ¢. Similarly, for more complex flow architectures like neural spline
flows, the parameters of the splines would be conditioned on ¢ (see Sec. 5 for more details about the
architecture we used).

To learn the parameters of the Conditional Normalizing Flow, we employ Maximum Likelihood
Estimation (MLE). This is equivalent to minimizing the Negative Log-Likelihood (NLL) of the
observed data. Given a dataset of N samples {x;,#;}2; drawn from the time-dependent distribution,

the NLL loss function is given by:
det <8f (X“tZ))H .
3xi

By learning the parameters of these time-conditioned transformations using maximum likelihood
estimation on a dataset of time-dependent distributions, the model learns to generate samples from
and estimate the probability density of p(x|t) for any ¢ € [0, T]. Algo. 3 summarizes our method.
For notations and further discussion on the choices of the individual components refer to App. C.

N
1 —1
LaiL = N ;:1 {logpo(f (xi,t;)) + log

Algo. 3 Density-Enhanced Deep Average Fictitious Play (DEDA-FP)

1: Input: pg: initial distribution; Ng,: number of state-action pairs to collect at every iteration, /V:
population size in population simulation; K': number of iterations.
2: Initialize: (0§ = 6y, 7o) at random; empty replay buffer Mgy, for supervised learning of average
policy; using () := %, sample N, triples (0, s, a) and store them in Mgy
: for iteration kK = 1 to K do _
4: Find the best response 7}, := 7% vs the N — 1 agents using ;_; := 7?1 using Deep RL:

w

T}, = argmax Jﬁ) (7, Gr-1)
T

5. Collect N, time-state-action §amples of the form (¢, s, a) using 7 and store in Mgy,.
6: Train the NN policy 74, := 7% using supervised learning to minimize the categorical loss:
£510.(0) = B s.0m,, |~ log 7 (alt, 5)]

7: Train a Conditional Normalizing Flow G, := G™ for the time-dependent mean field p™*
using trajectories generated by 7r;, and initialization G _1.

end for ~

9: return wg, G

o0

4 On the convergence of DEDA-FP

We analyze the convergence of the DEDA-FP algorithm by extending the theoretical framework
developed by [Elie et al., 2020]. Our goal is to show that the exploitability of the learned policy con-
verges towards a value determined by the sum of three specific accumulated errors, thus establishing
convergence to an e-Nash Equilibrium.

We first formalize the error sources based on distance d, between sequences of mean fields and
distance dry between policies (see App. B for details).

1. Best Response Error. The sub-optimality of the DRL policy 7rj; wrt the mean-field flow
G from the previous iteration: €} := J(BR(Gj_1),Gg—1) — J(7}, Gg_1) > 0.

2. Average Policy Error. The error in the supervised learning step: €*, := dp (7, II[")
where IT}" := % Zle 7} is the true average policy.

3. Distribution Error. The error of the CNF model G, in approximating the true mean-field
flow p™*: €, o = dng (G, ™).

We will use the following two assumptions, which are satisfied under mild conditions on the reward
and transition functions:

Assumption 1 (Lipschitz continuity of J). For any policy w and any two flows py, po: |J (7, pq) —
J(Tra I'LQ)‘ <L-dny (”’17 “2)'

Assumption 2 (Lipchitz continuity of MF). For any policies 1, o, the generated mean fields
satisfy: dn, (U™, p™?) < Ly pdn(my, m2).

The following result provides a bound on the exploitability of the policy computed by our algorithm.

Theorem 1 (Convergence to approximate Nash equilibrium). Ler e := J(BR(pu™*), ™) —
J(Tk, u™*) > 0 be the true exploitability at iteration k, which measures the incentive to deviate
from the policy Ty, in the true distribution it generates, u™*. Under Assumptions 1 and 2, we have:

k—1 C
> [+ nat+ et it + 2
i=1

x| =

e < Coctt +

for some constants Cy, C,Co > 0.

The proof is provided in App. B. It relies on analyzing the propagation of errors.

5 Experiments

To validate our method, we present three distinct scenarios, each designed to showcase specific
strengths and potential applications. The initial two examples illustrate the benefit of learning the
average policy without performance degradation, while also revealing limitations in capturing local
dependencies. We then introduce a more complex case study to demonstrate the effectiveness of
DEDA-FP against established benchmarks, highlighting its ability to directly learn the environment
and achieve a richer problem representation. Further results and an additional example (the price
impact model) can be found in Appendix E.

Evaluation: To evaluate the algorithms’ performance, we approximate the exploitability (defined in
Def. 2). Since the model-free setting prevents direct computation of the optimal value we approximate
the first term . In all cases, we conduct 4 independent runs and report the mean and standard deviation
of the exploitability across these runs to assess the consistency of our results.

Architecture details: For the DRL algorithms, we used the Stable Baselines library by Hill et al.
[2018] for the implementation of the DeepRL algorithm (SAC for the first two examples, PPO for
the case study). We used an RTX4090 GPU with 24 GB RAM for each experiment. For the policy
network we use a multi-layer perceptron (MLP) consisting of two hidden layers, each with 256 units
and two parallel output layers for mean and standard deviation. To model distributions, we adapt a
version of Neural Spline Flows (NSF) with autoregressive layers [Durkan et al., 2019] for handling
time dependencies. More details about NSF work and implementation see Appendix D.

5.1 Beach Bar Problem

Environment: "I would like to go to that nice bar on the beach, unless it is too crowded!". We
consider a continuous space version of the beach bar problem introduced in [Perrin et al., 2020]
in discrete space. We take X = [0,1], A = [—0.3,0.3] as a continuous state space with dynamics:
Ti+1 = T4 + a¢ + €. If the agent reaches the boundary of X and tries to exit, it is pushed back
inside. €; represents the noise and is uniformly distributed over [—0.1,0.1]. We take the initial
distribution po = Uni f[0, 1]. The time horizon is set as N7 = 10. For the one-step reward function,
we take r(z,a,) = —C1 |z — Tpar|? — Cop(x) — Cs)al?, where C1,Ca, C3 > 0, Tper = 0.5 and
u(x) denotes the value of the density at « and represent the congestion avoidance.

Numerical results: Fig. 2 presents a comparison between the algorithms, illustrating the final
flow p™x after the last Fictitious Play iteration (/). As can be seen in the figure, DEDA-FP
demonstrates a superior interpretation of the problem formulation, achieving a smoother distribution
concentrated around the center. Furthermore, the exploitability decay analysis indicates that this
improved distributional representation in Algo. 3 does not come at the cost of performance. An
important challenge highlighted by this problem, revealing a limitation of both benchmarks Algo. 1

DEDAFP

Figure 2: Beach Bar Problem. a): exploitability of Algo. 1, Algo. 2 and DEDA-FP; b) NE distribution
DEDA-FP; ¢) NE distribution Algo. 2; d) NE distribution Algo. 1

and Algo. 2, lies in the approach to compute the local dependence p(x) within the reward function.
Due to the absence of an accessible approximation model for querying, we redefined the mean field
cost as follows: p(z) = (u * p)(z), and (u * p)(z) := [, p(y)p(z — y)dy, p is the Gaussian

—a? .
density p(z) := \/2;76272 and p¥ == LS 5 x; Where X/ is the position at time ¢ of the agent

7 and § is the Dirac delta measure.

5.2 Linear-Quadratic (LQ) model

0.050 — Algol

120 Algo2
DEDA-FP

nnnnn

Mean A
Exploitability
s o ®
S 3 3

nnnnn

B 10 12 1
Time Step. Iteration

Figure 3: LQ Model DEDA-FP Left: mean field flow p™ ¥ at the last Fictitious Play (FP) iteration. Middle:
policy 7 i at the last FP iteration. Right: comparison of exploitability between DEDA-FP and Algo. 1 and
Algo. 2.

Environment: We consider a linear-quadratic (LQ) model with continuous state and action spaces
and a finite time horizon Np. Similar LQ models have been considered in [Lauricre et al., 2022a]
with discrete spaces and [Angiuli et al., 2023] with stationary mean field. We take the state space
X = [—1, 1] and the action space A = [—0.1,0.1]. The dynamics is: xy11 = Az, + Ba; + A + €,
where A, B and A are real constants, ji; = f Py a s (x)da is the first moment (mean) of the distribution
at time ¢, and €; represents the noise that is uniformly distributed over [—0.1, 0.1]. The reward is:
r(z,a,u) = —cx|z — xtarget|2 —calal? — epr| — Ji?, where cx, ¢4 and ¢y are positive constants.
The dynamics and the reward are linear and quadratic in the state x, the action a, and the mean i of
the distribution. The agent learns to maximize the reward by finding an optimal policy that balances
staying close to the target state, minimizing the action cost, and remaining near the population mean.
In the experiment, we set N = 20, A =1, B =1, A = 0.06. The reward coefficients are cy = 5,
CpA = 0.1, and Cp = 1.

Numerical results: Fig. 3 shows the mean field flow and the learned policy after the last FP iteration
by Algo. 2. The distribution concentrates near the target position Ty = 0.6 that aligns with
the reward’s high weight target discrepancy term. The learned policy also shows its linearity with
respect to the state. The agent takes action that converges to the target position with increasing |al
as the distance from the target increases. It is important to note that at later time steps, the policy’s
predictions far from the target may exhibit inconsistencies. However, this is not a limitation, as it is
caused by the low agent density in those regions, rendering the action choices effectively arbitrary at
those times. This example demonstrates the policy network’s effectiveness in approximating
the average policy, and, importantly, shows that performance is not degraded. The averaged
exploitability curves of Algo. 1 and Algo. 2 both show the exploitability converges to zero quickly
after several FP iterations and stay near zero, confirm the latter statement.

5.3 Case Study: 4-rooms exploration

Building upon the limitations observed with Algo. 1 and Algo. 2, we now introduce a more complex
setting to further highlight the strengths of the DEDA-FP (Algo. 3) against the benchmarks. In this
problem, the approximation of the mean-field distribution becomes a critical aspect, primarily due to
its inherent nature of entropy maximization.

Population at t=0

0.5
| « Agents

0.100
0.4 0.075

0.050

0.3 0.025
0.2

I
S
°
I
&
Action Magnitude

Action Magnitude

—-0.050

-0.075

—0.100

0.0 0.1 0.2 0.3 0.4 0.5
x

Figure 4: 4-rooms Exploration. Visualization of a large, finite population of 2000 agents and their velocity
vectors during exploration in the 4-rooms environment. The agents’ behavior is governed by the mean-field Nash
equilibrium policy learned by the DEDA-FP solver, Algo. 3. This shows how well the mean-field approximation
captures the behavior of a large-population system.

Environment: The 4-rooms exploration MFG has been introduced using discrete spaces in [Geist
et al., 2022] and has served as a benchmark e.g. in [Lauriére et al., 2022a, Algumaei et al., 2023]. The
state space and the action space are 2 dimensional (d = 2) and the states have constraints represented
by walls forming four connected rooms. While the original model was discrete, we consider here a
continuous space generalization, which is more natural because pedestrians move in continuous space.
The action is the vector of movement (velocity) and the reward decreases with the mean field density:
a larger density at the player’s location means a smaller reward. Hence the players are encouraged
to move in order to go to less crowded regions. In the end, if the time horizon is long enough, the
mean field density becomes uniform. In this example, the stationary distribution is trivial and the
key point is to learn the entire flow from the initial distribution to the stationary one. Following, the
mathematical formulation. We take X' = [0, 1]2, interpreted as a 2D domain. Time horizon Nr is set
to 20. There are obstacles (walls) such that the domain has the shape of four connected rooms (see
Fig. 5). The dynamics are: x;1 = x; + vy + €, except that the agent cannot cross a wall. The reward
is: r(z,v, 1) = —cal|v||3 — carlog(u(z) + €), where ca, cpr and € are positive constants, with €
very close to 0. This reward (entropy maximization) discourages the agent from taking large
actions (i.e., from moving a lot) and from being at a crowded location. The initial distribution
is uniform over a small square at the top left corner. We expect the agents to spread throughout the
domain and, if the time horizon is long enough, the population distribution should converge to the
uniform distribution over the domain.

Figure 5: 4-rooms Exploration - NE flow. The three plots represent the dynamics of the Nash Equilibrium
mean field flow Gk attime ¢t = 6, 15, 20, obtained by DEDA-FP. It can be seen how the population is spreading
across the 4 different rooms.

Discussion: The aim of this case study was to demon- — g
strate the effectiveness of DEDA-FP (Algo. 3) compared e e
to Algo. 1 and Algo. 2. Figs. 5, 6 and 7 summarize our 7o
results. First, DEDA-FP enables direct access to the local 5°
dependence p(z) in the reward function, without the need g4
to compute the convolution or any other approximation of 3, L
the local density. Secondly, by leveraging the generative 10

model’s sample efficiency, our method yields a superior

0 4 8 12 16 20
mean-field distribution representation during training (given . e
a fixed-time budget for all algorithms) while maintaining Algorithm | Time (s)
comparable final performance. Algol 16.76+1.54
L . . Algo2 15.14+1.19
Scalable Sampling: In Fig. 6 (bottom) we display a ta- DEDA-FP | 1524023

ble highlighting DEDA-FP’s > 10x efficiency advantage
over Algo. 1 and Algo. 2 in generating 5000 trajectories
(time horizon: 7" = 20). This represents a substantial re-
duction in the computational cost of rollouts (critical, for
instance, when applying the mean field policy in finite agent settings; see Fig. 4), enabling a consider-
ably faster approximation of the environment (distribution and reward).

0.5
0.4 0.005
0.004
0.3
0.003
0.2 0.002
0.001
0.1
0.000
0.0

0.0 0.1 0.2 03 04 05

Figure 6: (top) Exploitability decay. (bot-
tom) Time to sample 5000 trajectories.

0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

0.0000

Figure 7: 4-rooms Exploration - Algo 2 vs DEDA-FP The figure shows the last step Nash equilibrium policy
generate by (left) Algo. 2 and (right) DEDA-FP with a fixed-time budget of 10s. Remarkably, DEDA-FP can
approximate the mean field distribution by sampling 10 times more agents than Algo. 2.

6 Conclusion and Limitations

Conclusions. In this paper, we introduce a deep reinforcement learning algorithm for non-stationary
continuous MFGs. Our primary contribution lies in the development of DEDA-FP, which combines
the strengths of Fictitious Play and supervised learning to accurately compute both the Nash equi-
librium policy and the mean field distribution. Our approach enables efficient sampling and density
approximation by leveraging time-conditioned normalizing flows, addressing the critical limitations
in scalability and local mean field dependencies. In Theorem 1, we provide an error propagation anal-
ysis of DEDA-FP. Through three increasingly complex numerical experiments, we demonstrate the
effectiveness of DEDA-FP in solving continuous space non-stationary MFGs with general dynamics
and rewards. The results show that our approach yields a significant contribution to the application of
RL techniques to continuous MFGs.

Limitations and future work. As of now, we are still lacking a complete theoretical understanding
of the proposed algorithm, particularly due to the complexity of analyzing deep neural networks
training. We also left for future work extensions beyond standard MFGs, such as multiple populations
and graphon games, or MFGs with common noise and real-world applications. Furthermore, our
present evaluation relies on approximate exploitability, which, while a state-of-the-art technique for
assessing Nash equilibria, provides an evaluation that is inherently dependent on the environment
approximation. Future research will investigate this aspect further.

10

Acknowledgments and Disclosure of Funding

M.L. is affiliated with the NYU Shanghai Center for Data Science and the NYU-ECNU Institute
of Mathematical Sciences at NYU Shanghai. J.S. is partially supported by NSF Award 1922658.
Computing resources were provided by NYU Shanghai HPC.

References

Yves Achdou and Jean-Michel Lasry. Mean field games for modeling crowd motion. In Contributions to partial
differential equations and applications, pages 17-42. Springer, 2018.

Yves Achdou and Mathieu Lauriére. Mean field games and applications: Numerical aspects. Mean Field Games:
Cetraro, Italy 2019, 2281:249-307, 2020.

Yves Achdou, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll. Income and wealth
distribution in macroeconomics: A continuous-time approach. The review of economic studies, 89(1):45-86,
2022.

Talal Algumaei, Ruben Solozabal, Reda Alami, Hakim Hacid, Merouane Debbah, and Martin Takac. Regu-
larization of the policy updates for stabilizing mean field games. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 361-372. Springer, 2023.

Andrea Angiuli, Jean-Pierre Fouque, and Mathieu Lauriere. Unified reinforcement Q-learning for mean field
game and control problems. Mathematics of Control, Signals, and Systems, 34(2):217-271, 2022.

Andrea Angiuli, Jean-Pierre Fouque, Ruimeng Hu, and Alan Raydan. Deep reinforcement learning for infinite
horizon mean field problems in continuous spaces. arXiv preprint arXiv:2309.10953, 2023.

George W Brown. Iterative solution of games by fictitious play. Activity analysis of production and allocation,
13(1):374-376, 1951.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(2):
156-172, 2008.

Pierre Cardaliaguet and Saeed Hadikhanloo. Learning in mean field games: the fictitious play. ESAIM Control
Optim. Calc. Var., 23(2):569-591, 2017. ISSN 1292-8119. doi: 10.1051/cocv/2016004.

Pierre Cardaliaguet and Charles-Albert Lehalle. Mean field game of controls and an application to trade crowding.
Mathematics and Financial Economics, 12:335-363, 2018.

René Carmona. Applications of mean field games in financial engineering and economic theory. In Mean Field
Games on Agent Based Models to Nash Equilibria, AMS 2020, pages 165-218. American Mathematical
Society, 2021.

René Carmona and Frangois Delarue. Probabilistic theory of mean field games with applications. I, volume 83
of Probability Theory and Stochastic Modelling. Springer, Cham, 2018. ISBN 978-3-319-56437-1; 978-3-
319-58920-6. Mean field FBSDEs, control, and games.

René Carmona, Francois Delarue, and Daniel Lacker. Mean field games of timing and models for bank runs.
Applied Mathematics & Optimization, 76(1):217-260, 2017.

Kai Cui and Heinz Koeppl. Approximately solving mean field games via entropy-regularized deep reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pages 1909-1917. PMLR, 2021.

Boualem Djehiche, Alain Tcheukam, and Hamidou Tembine. Mean-field-type games in engineering. AIMS
Electronics and Electrical Engineering, 1(1):18-73, 2017.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Advances in neural
information processing systems, 32, 2019.

Romuald Elie, Julien Perolat, Mathieu Lauriere, Matthieu Geist, and Olivier Pietquin. On the convergence of
model free learning in mean field games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7143-7150, 2020.

Massimo Fornasier and Francesco Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and
Calculus of Variations, 20(4):1123-1152, 2014.

11

Zuyue Fu, Zhuoran Yang, Yongxin Chen, and Zhaoran Wang. Actor-critic provably finds Nash equilibria of
linear-quadratic mean-field games. In International Conference on Learning Representations, 2019.

Xiaohu Ge, Haoming Jia, Yi Zhong, Yong Xiao, Yonghui Li, and Branka Vucetic. Energy efficient optimization
of wireless-powered 5G full duplex cellular networks: A mean field game approach. IEEE Transactions on
Green Communications and Networking, 3(2):455-467, 2019.

Matthieu Geist, Julien Pérolat, Mathieu Lauriére, Romuald Elie, Sarah Perrin, Oliver Bachem, Rémi Munos, and
Olivier Pietquin. Concave utility reinforcement learning: The mean-field game viewpoint. In Proceedings of
the 21st International Conference on Autonomous Agents and Multiagent Systems, pages 489-497, 2022.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a survey. Artificial Intelligence
Review, 55(2):895-943, 2022.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. Learning mean-field games. Advances in Neural Information
Processing Systems, 32:4966—4976, 2019.

Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. A general framework for learning mean-field games.
Mathematics of Operations Research, 48(2):656-686, 2023.

Ahmed Farhan Hanif, Hamidou Tembine, Mohamad Assaad, and Djamal Zeghlache. Mean-field games for
resource sharing in cloud-based networks. IEEE/ACM Transactions on Networking, 24(1):624-637, 2015.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-information
games. arXiv preprint arXiv:1603.01121, 2016.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines, 2018.

Ruimeng Hu and Mathieu Lauriere. Recent developments in machine learning methods for stochastic control
and games. Numerical Algebra, Control and Optimization, 14(3):435-525, 2024.

Minyi Huang, Roland P Malhamé, Peter E Caines, et al. Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information &
Systems, 6(3):221-252, 2006.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and review of
current methods. /EEE transactions on pattern analysis and machine intelligence, 43(11):3964-3979, 2020.

Aimé Lachapelle and Marie-Therese Wolfram. On a mean field game approach modeling congestion and
aversion in pedestrian crowds. Transportation research part B: methodological, 45(10):1572-1589, 2011.

Aimé Lachapelle, Jean-Michel Lasry, Charles-Albert Lehalle, and Pierre-Louis Lions. Efficiency of the price
formation process in presence of high frequency participants: a mean field game analysis. Mathematics and
Financial Economics, 10:223-262, 2016.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229-260, 2007. ISSN
0289-2316. doi: 10.1007/s11537-007-0657-8.

Mathieu Lauriere, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras,
Julien Pérolat, Romuald Elie, and Olivier Pietquin. Scalable deep reinforcement learning algorithms for mean
field games. In International Conference on Machine Learning, pages 12078-12095. PMLR, 2022a.

Mathieu Lauriere, Sarah Perrin, Julien Pérolat, Sertan Girgin, Paul Muller, Romuald Elie, Matthieu Geist, and
Olivier Pietquin. Learning in mean field games: A survey. arXiv preprint arXiv:2205.12944, 2022b.

Weichao Mao, Haoran Qiu, Chen Wang, Hubertus Franke, Zbigniew Kalbarczyk, Ravishankar Iyer, and Tamer
Basar. A mean-field game approach to cloud resource management with function approximation. Advances
in Neural Information Processing Systems, 35:36243-36258, 2022.

Mojtaba Nourian, Peter E Caines, and Roland P Malhamé. Synthesis of Cucker-Smale type flocking via mean
field stochastic control theory: Nash equilibria. In 2010 48th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 814-819. IEEE, 2010.

Antonio Ocello, Daniil Tiapkin, Lorenzo Mancini, Mathieu Lauriere, and Eric Moulines. Finite-Sample Conver-

gence Bounds for Trust Region Policy Optimization in Mean Field Games. In Forty-second International
Conference on Machine Learning, 2024.

12

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller,
Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of Stratego with model-free
multiagent reinforcement learning. Science, 378(6623):990-996, 2022.

Sarah Perrin, Julien Pérolat, Mathieu Lauriere, Matthieu Geist, Romuald Elie, and Olivier Pietquin. Fictitious
play for mean field games: Continuous time analysis and applications. Advances in Neural Information
Processing Systems, 2020.

Sarah Perrin, Mathieu Lauriere, Julien Pérolat, Matthieu Geist, Romuald Elie, and Olivier Pietquin. Mean
Field Games Flock! The Reinforcement Learning Way. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pages 356-362. International Joint Conferences on Artificial
Intelligence Organization, 8 2021.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 1530-1538, Lille, France, 07-09 Jul 2015. PMLR.

Naci Saldi, Tamer Basar, and Maxim Raginsky. Approximate markov-nash equilibria for discrete-time risk-
sensitive mean-field games. Mathematics of Operations Research, 45(4):1596-1620, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ
Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587), 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with
a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144, 2018.

Jayakumar Subramanian and Aditya Mahajan. Reinforcement learning in stationary mean-field games. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pages
251-259, 2019.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods with conditional
normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

Annie Wong, Thomas Bick, Anna V Kononova, and Aske Plaat. Deep multiagent reinforcement learning:
Challenges and directions. Artificial Intelligence Review, 56(6):5023-5056, 2023.

Chungang Yang, Jiandong Li, Prabodini Semasinghe, Ekram Hossain, Samir M Perlaza, and Zhu Han. Distributed
interference and energy-aware power control for ultra-dense D2D networks: A mean field game. [EEE
Transactions on Wireless Communications, 16(2):1205-1217, 2016.

Yaodong Yang and Jun Wang. An overview of multi-agent reinforcement learning from game theoretical
perspective. arXiv preprint arXiv:2011.00583, 2020.

Batuhan Yardim, Semih Cayci, Matthieu Geist, and Niao He. Policy mirror ascent for efficient and independent
learning in mean field games. In International Conference on Machine Learning, pages 39722-39754. PMLR,
2023.

Muhammad Aneeq uz Zaman, Kaiqing Zhang, Erik Miehling, and Tamer Basar. Reinforcement learning in
non-stationary discrete-time linear-quadratic mean-field games. In 2020 59th IEEE Conference on Decision
and Control (CDC), pages 2278-2284, 2020.

Kaiqing Zhang, Zhuoran Yang, and Tamer Bagar. Multi-agent reinforcement learning: A selective overview of
theories and algorithms. Handbook of reinforcement learning and control, pages 321-384, 2021.

13

A Model Assumptions

We discuss our assumption here.

 Existence: Our work assumes the existence of a Mean Field Nash Equilibrium (MFNE).
This assumption is grounded in established results for related problems, as existence proofs
typically rely on fixed-point arguments under specific regularity conditions on the coeffi-
cients not yet proven for our exact setting. Specifically, our justification relies on the work
of [Saldi et al., 2020], who established the existence of an equilibrium for a broad class
of discrete-time MFGs in an infinite-horizon, risk-sensitive setting. Crucially, their work
also provides an argument that this infinite-horizon, risk-sensitive cost can be approximated
by a finite-horizon game. Since our finite-horizon setting is a well-posed approximation
of a problem where existence is proven, we can assume that an equilibrium also exists in
our case. Furthermore, we expect that existence holds under mild assumptions (typically,
continuity) using the Schauder fixed point theorem in a suitable functional space. Under
more restrictive assumptions (typically, Lipschitz continuity with a small Lipschitz constant),
the Banach fixed point theorem yields both existence and uniqueness. While a full proof is
beyond the scope of the present paper, which focuses on a DRL algorithm, we included this
discussion in Section 2 of the paper, after the definition of MFNE (Definition 1).

* Uniqueness of Equilibrium: For our theoretical convergence discussion, we also assume
uniqueness. This is not required for the DEDA-FP algorithm itself to run. Following the
approach of e.g. [Elie et al., 2020], uniqueness can be ensured by adopting the standard
Lasry-Lions monotonicity assumption. Intuitively, this condition means that the reward
function discourages agents from being too concentrated.

B Proof of the convergence of DEDA-FP

We are going to prove Theorem 1.

As mentioned in Section 4, we follow the methodology developed by [Elie et al., 2020]. Their
analysis rigorously bounds the propagation of errors from an approximate best-response computation.
We extend this framework to account for two additional sources of error inherent to our algorithm:
the average policy error and the distribution error.

We first bound the exploitability with respect to the tractable distribution G, learned by the algorithm
(Lemma 1). Then we connect this result with the true value of the exploitability to show that the
pair is an approximate Nash equilibrium (7%, u™*) (Lemma 2). Combining these two bounds yield
Theorem 1 stated above.

We define dn, (g, to) = maxy—o, . Ny Wi(f1,e, poe) and dp(mw,72) =
mMax;—o, . Ny fX Wi (m14(-|z), 72,4 (-|z))dx, where W1 is the Wasserstein-1 distance on X' = R4
and we consider only a class of regular policies.

Lemma 1. Let Assumptions 1 and 2 above hold. We have:

k
e 1 . it+1 it+1 i+1 Cy
en< T+ ; <(z +Det + Culeft e + =

for some constants C1,Cy > 0, where ey, := J(BR(Gy),Gg) — J(7k, Gy) is the tractable ex-
ploitability defined with respect to the learned distribution Gy.

Proof. The proof adapts the derivation of estimate (8) in Theorem 6 of [Elie et al., 2020]. Let
éx = J(m} 1, Gi) — J(7y, Gi). The total tractable exploitability is e, = J(BR(Gg), Gx) —

J(7 1, Gr)+é, = er T 4+ ¢).. We analyze the evolution of the term (k + 1)éj,11 — kéj,. Following
the original proof structure, we can prove that:

(k+1)éps1 — ke < (k+1) (JBR(Gry1), Gir1) — J(75p1, Grs)) -

The term in the parentheses is exactly e]lfj L This appears to simplify things, but the derivation used in
the original proof is made using exact flows p™* whereas our value functions are defined with respect

14

to the tractable flows G . It can be seen that the extra term’s magnitude depends on d . (C_-}kﬂ, G k)
We bound this distance using the triangle inequality and our error definitions:

ANy (Gri1, Gr) < dnp (Gropr, p™4) + dng (™4, ™) + dy (07, Gi)
< ef’rj_fl + dNT (/J’ﬁk_H) Hﬂ-k) + 6(]fnf'
The term d .. (™ +1, u™*) is further bounded by:

dNT (ll’ﬁk+l) H’ﬁk) < dNT (H’ﬁk+1) MHZT;‘) + dNT (II’HK&E? “’HZTM) + dNT (HHZTW ’ /“ﬁ-k)
true true
< e vy (R) el
The term d . (unwf , Nnime) corresponds to the change in the exact Fictitious Play update, which
is known to be of order O(1/k) (Lemma 5 in [Elie et al., 2020]). Let’s denote the stability constant
as Cpp. So, dy, (| ™)
our tractable distributions:

< Cpp/k. Combining these, we get a bound on the change in

_ _ C
k+1 k k+1 k FP
dNT(GkJrl?Gk?) < 6cnf +60nf +€sl +egt E
Substituting these bounds back into the recursive inequality for (k4 1)eg41 — ke, introduces additive
terms related to €y, €5, and €., r. The final form of the recursive inequality becomes:

Cy
(4 Tewss —hew < (e + G + ki) + 2
Applying Lemma 9 from [Elie et al., 2020] to solve this recursion yields the result. O

Now, it is necessary to establish a connection between the tractable exploitability (bounded in
Lemma 1) and the actual exploitability as defined in (1). The subsequent lemma serves to create this
connection.

Lemma 2. Under the same assumptions, the true exploitability e}** is close to the tractable ex-
ploitability ey. Specifically,
|elrte — ep| < 4L - €

cnf

where L is the Lipschitz constant of Assumption 1.

Proof. We seek to bound |ef™¢ — ¢ |. Using the triangle inequality:
el — ex| < [J(BR(u™), u™*) — J(BR(Gy), Gi)| + | (&g, p™) — J (&g, Gi)| -

Term 1 Term 2

Let us bound each term separately.
Term 2 (Bound on Policy Value): This term is straightforward using Assumption 1.
|J(7Trk7p‘ﬁ-k) - J(ﬁ'lﬁ Gk)‘ <L dNT (/1’7?1‘7Gk)
Term 1 (Bound on Best Response Value): This term requires more care. Let 771 = BR(p™*) and
75 = BR(Gy). We want to bound |J (71, ™) — J (w2, Gi)|. We add and subtract J (71, Gg):
[J(m1, p™) = J (w2, Gi)| < (w1, p™) = J (1, Gi)| + [T (w1, Gi) — J (w2, Gie)-

The first part is again bounded by Lipschitz continuity: |J (71, p™) — J(w1,Gp)| < L -
dn, (p™,Gg) < L - e’gnf. For the second part, |J(71, Gy) — J(m2, Gi)|, we know by defi-
nition of best response that J(m2, G,) > J(m1, Gy). So we need to bound the non-negative quantity
J(mo, Gg) — J(m1, Gi). Using the fact that 7r; is a best response against g™+,

0 < J(ma, G) — J(71, Gy) = J(m2, Gy) — J (w2, p™*)
+ J(ﬂ27p'ﬁ-k) - J(Trlviu’ﬁ-k) + ‘](Trlap’ﬁ-k) - J(ﬂ-lyék)
< (J(mwa, Gg) = J (o, u™)) + (J (71, u™) — J (w1, Gy)) -

15

Both remaining terms can be bounded by Assumption 1:

J(wa, Gr) — J (71, Gp) < |J (w2, Gi) — J (o,)| + |J (701, u™) — J (71, Gy)|
< L- dNT(GkalJ'ﬁk) +L- dNT(p'ﬁ-kaGk)

k
S 2L - Gcnf.
Combining the parts for Term 1, we get |.J (BR(p™*), u™) —J(BR(Gy), Gi)| < Le¥, ;+2Lek =
3L € ..
enf

Final Bound: Combining the bounds for Term 1 and Term 2:

|e§€7‘ue - ek?' < (3L Elgnf) + (L 6]c€nf) =4L- 6lgnf

This completes the proof of Theorem 1.

C Algorithms Details

In the context of MFGs, Fictitious Play (FP) operates by iteratively computing the best response of a
representative agent against the distribution induced by the average of past best responses of the entire
population. The discrete-time FP process involves several key steps at each iteration k = 0..., K:

1. Best Response Computation: An agent finds its best response policy w2# against the
approximated average population distribution ft;,_ ;.

2. Average Policy Update: The average policy 7, is computed by averaging the current best
response policy with all previous policies. In particular we have V¢t = 0, ..., Np

i—k BR
Sico TR Gl)t (2)
i=k wPF
Zi:o pe ()

3. Average Distribution Update: The average population distribution f, is updated by
averaging the current population distribution with past distributions. In particular we have,

_ k—1_ 1
Hk:Tlv%—r*‘%N

ﬁ'kfl(-|l’, t) =

BR
Tk

It can be seen that j1;,, = pu™*

At the end of the algorithm, the pair (7 x, [t ;c) represents the Nash equilibrium of the mean-field
game problem. In a model-free framework, however, direct analytical computation is not feasible. For
this reason, all three steps must be approximated to fully solve the game. While Algo. 1 and Algo. 2
only address parts of this problem, DEDA-FP (described in Algo. 3) provides the complete solution.

Notation. Here, we provide the notation used in the pseudocodes.

* M represent the policy buffer use to store all the best responses during FP.

. uiv M is the empirical distribution at time ¢, generated by IV agents using a policy assigned
uniformly at random from the buffer M.

. uiv '™ is the empirical distribution, at time ¢, generated by N agents using the policy 7.

o J ﬁj () is the approximated cost function, computed against N — 1 trajectories. These
trajectories originate from points sampled from the initial distribution pg and subsequently

evolve according to N — 1 policies sampled uniformly from the buffer M.
e J fb\é 7,?(7r) is the approximated cost function, computed against N — 1 trajectories. These
trajectories originate from points sampled from the initial distribution 1o and subsequently

all evolve according to 7.

16

« LaL(0) = B g aportss, [~ log w0 (alt,s)] = =2 SoM log N (ass po(si, i), 0(si, i)
where M is the size of the replay buffer Mgy, containing all the triples (¢, s, a) sampled
from the previous policies and 9 and oy are the mean and standard deviation predicted by
the policy network for the state s; at time ;.

Algo. 1 Simple Approach

Input: Initial distribution zio; population size N; Number of iterations K.
Initialize: 0, M := {m}} where 7, := 7%,
for iteration £ = 1 to K do

Using DRL, find the best response 7} := 7w’ such that:

El i

T}, = arg max Jﬁ) ()
- :

5: Add w} in M
6: end for
7: return M

Algo. 2 Learning the NE Policy

1: Input: Initial distribution po; Nsq: number of state-action pairs to collect at every iteration, N: population
size in population simulation; number of iterations K.

2: Initialize: 0 and set 8y = 6} since (7% = %); sample, according to 7w := % N, (time)-state-action
triples (0, s, a) and define My, to store them.

3: for iteration k = 1 to K do .
4: Using DRL, find the best response 7}, := 7% such that:
7, = argmaxJyy ()
5: Collect N, state-action samples of the form (¢, s, a) using 7}, and store in Msr..

6: Train the NN policy 7, := 7% using supervised learning to minimize the categorical loss:

L1 (0) = Be.amis, [~ log 7 (alt,)]

This NN aims to mimic the behaviour of the average policy 4 (75 + - - - + 7}).
7: end for
8: return 77K

C.1 DEDA-FP components

In DEDA-FP (Algo. 3), both the overall orchestration and the individual components are chosen for
a specific purpose. While other choices could be made, we explain below the rationale behind our
choices.

Fictitious Play: this is the backbone of our method. The main advantage is that it is known to
converge in larges classes of games. One drawback is that convergence can be lower than some other
methods, but we prefered to sacrifice the convergence speed and ensure robustness rather than the
opposite.

DRL for Best Response: Policies are functions defined on the continuous state and action spaces so
they are infinite dimentsional. Hence we had to approximate them using parameterized functions. We
chose neural networks due to the empirical success in a variety of machine learning tasks. As for the
training, model-free RL has the advantage to avoid exact dynamic programming and hence scale well
to highly complex problems. In the implementation we chose SAC and PPO but other choices could
be made, depending on the specific MFG at hand.

Supervised learning for average policy: In general, convergence results for Fictitious Play are not
for the last iterate policy (the best response computed in the last iteration) but only for the average
policy. So computing the average policy is crucial to ensure convergence. However, our policies are
neural networks and averaging neural networks is hard due to non-linearities. We thus have to train
a new neural network for the average policy. Here, we chose to use supervised learning, drawing
inspiration from Neural Fictitious Self-Play ([Heinrich and Silver, 2016]). Conditional Normalizing
Flow (CNF) for the Mean-Field: This is a critical design choice that directly enables one of our
paper’s main contributions. To solve MFGs with local density dependence (e.g., congestion), we

17

require a model that can both (1) sample from the population distribution and (2) compute its exact
probability density at any given point in time and space (p(z|t)). Normalizing Flows (NFs) are
well-established generative models that have been introduced precisely to provide both of these
capabilities without time and CNFs are an extension of NFs, which allow us to take time into account
in a natural way. Other generative models, like GANs or score-based diffusion models, can sample
effectively but do not allow direct density evaluation, making them unsuitable for our goal.

D Implementation Details

D.1 Time Conditioned Neural Spline Flow

We employ the Neural Spline Flow (NSF) with autoregressive layers [Durkan et al., 2019] as the flow
component in our time conditioned normalizing flow.

Neural Spline Flows The key idea in NSF is to transform a simple distribution (like a standard Gaus-
sian) into a complex one using a series of invertible transformations. To make these transformations
very flexible and efficient, NSF uses "rational-quadratic splines."

Rational-Quadratic Splines A spline can be seen as a flexible curve made up of pieces. In our
case, each piece is a "rational-quadratic" function, which is a ratio of two quadratic polynomials.
These functions are smooth and can be easily inverted, which is important for our model. A rational-
quadratic spline is defined by a set of K +1 knots { (z(*), y(*))} /. The value of the spline at a given
x is determined by which interval [z(*), z(*+1)] it falls into. Letting & = (x — z(®)) /(z(*+1) — z(k)
represent the normalized position within that interval, the spline segment is:

a®(g)

9(2) =~y

BRI(E)

where

ok (&) = sy (bt e2 4 [y(k)(;(kJrl) + y(k+1)5(k)]§(1 —O+ s(’“)y(’“)(l —¢)?

BI(€) = sW2 + [4+ 5WE(1 -) + 50 (1 - ¢)?

and s®) = (y(F+1) — () /(g (++1) — 2(k)) is the slope of the line connecting the knots at the
interval’s boundaries. 5(*) represents the derivative of the spline at knot k.

Autoregressive Neural Spline Flows In our implementation, we use the variant of NSF with
autoregressive layers. This means that the parameters of the rational-quadratic spline transformation
for each dimension of the data are predicted by an autoregressive neural network. Specifically, for
each dimension ¢ of the input x, the spline parameters are computed as a function of the previous
dimensions z1.;_1:

0; = NN(z1:i-1)

where NNr denotes an autoregressive neural network. This autoregressive approach allows the
model to capture complex dependencies between the dimensions of the data, as the transformation
applied to each dimension is conditioned on the values of the preceding dimensions.

Time Conditioning To handle the non-stationary nature of the mean-field distribution, we explicitly
condition the Neural Spline Flow on time ¢. This means that the entire transformation, and specifically
the parameters of the rational-quadratic splines, are made dependent on the current time step. In
our autoregressive setup, the neural network that predicts the spline parameters (NN in the equation
above) not only takes the previous dimensions x1.;_1 as input but also the time ¢. The time variable ¢
is typically concatenated with the input features or fed into the neural network as an additional input,
allowing the network to learn time-dependent transformations. This enables the flow to dynamically

18

adjust its shape and density characteristics as time evolves from ¢ = 0 to ¢t = 7', thereby capturing
the non-stationary dynamics of the mean-field.

E Numerical Experiments details

This section provides further experimental results and detailed comparisons between our proposed
DEDA-FP approach and the benchmark algorithms considered in the main paper.

E.1 Beach Bar Problem

Further numerical results for the Beach Bar problem are shown in Figures 8 and 9.

Figure 8: Comparison of Nash equilibrium distribution heatmaps in the Beach Bar Problem.
From left to right: Algo. 1, Algo. 2, and DEDA-FP (Algo. 3). Thanks to its remarkable speed, DEDA-
FP can utilize a high volume of samples (6x times in the displayed figure) for robust distribution
approximation, a scale that proves computationally prohibitive for existing benchmarks.

—— Algol
20 \ —— Algo2
\ DEDA-FP

0.6
04 qe®
10 02 gae®" [5 T6 74
0.0 Iteration

Figure 9: Beach Bar Problem Results for DEDA-FP. Left: Nash equilibrium distribution. Right:
Exploitability decay comparison across algorithms.

E.2 LQ model

Further numerical results for the LQ problem are shown in Figures 10 and 11.

E.3 4-rooms exploration

Further numerical results for the 4-rooms exploration problem are shown in Figures 16 and 17.

19

Population Density Over Time (20 Colormap)

Figure 10: Comparison of Nash equilibrium distribution heatmaps in the LQ Problem. From
left to right: Algo Algo. 1, Algo Algo. 2, and DEDA-FP (Algo. 3).

—— Algol

120 Algo2
DEDA-FP

o
>
Exploitability

0.
0.50

0.2000 Cod
—0.50 o
—0.75 0.50 sﬂ‘ek

-1.00 Iteration

Figure 11: LQ Problem Results for DEDA-FP. Left: Nash equilibrium distribution. Right: Ex-
ploitability decay comparison across algorithms.

E.4 Market Model

Here we present one more example on an environment of a different type, with a financial application.
It is a discrete time version of the price impact model in MFG literature, introduced by Carmona and
Lacker.?

Environment: We consider a market model where X = [—5, 5] represents the inventory for a stock.
The action space A = [—1, 1] represents the rate of trading for the stock. Each agent controls the
inventory for the stock. The dynamics is: z;11 = x4 + a; + €, where ¢, ~ N(0, 1). The reward is
r(z,a,a) = —Cxz? — C4a® + hza, where Cy, C 4, and h are positive constants, a is the mean of
the action. At each time ¢, the representative agent wants to minimize the shares held. In this model,
the agent interacts with the distribution of the action instead of the population distribution. The mean
field term haxa reflects the impact of the action on the price.

Numerical results: Results are shown in Figures 12, 13 and 14. We observe that traders tend to
liquidate their portfolios (given to the 2 term in the reward function). However, a proportion of
agents is incentivized to buy instead of sell due to the interaction term. Moreover, we observe that
our model (DEDA-FP) consistently provides a superior representation of the distribution, which is
ensured by its efficiency in sampling a large number of agent positions at every time step.

René Carmona and Daniel Lacker. A probabilistic weak formulation of mean field games and applications.
Annals of applied probability: an official journal of the Institute of Mathematical Statistics, 25(3):1189-1231,
2015.

20

— Algol
700 —— Algo2
DEDAFP

0 5 10 15 20 25 1 2 3 4 5 6 7
Iteration Time Step

Figure 12: Market Model Results: Left: Exploitability decay comparison across algorithms; Right:
Nash Equilibrium Policy learned by DEDA-FP

Figure 13: Comparison of Nash equilibrium distribution heatmaps in the Market Model
Problem. From left to right: Algo Algo. 1, Algo Algo. 2, and DEDA-FP (Algo. 3).

Figure 14: Comparison of Nash equilibrium distribution in the Market Model Problem ((3D
plots)). From left to right: Algo Algo. 1, Algo Algo. 2, and DEDA-FP (Algo. 3).

F Hyperparameter Sweep

We sweep the learning rate over the set {3 x 1072,3 x 1073,3 x 1074,3 x 1075,3 x 1076} for
Deep RL in Algo. 1 in to the center environment shown in Figure 15. We observe that a learning rate
of 3 x 10~* yields more stable training and faster convergence. Based on this observation, we adopt
3 x 10~* for the Deep RL component in Algo. 2 and Algo. 3 as well.

21

Total Reward
&

16
14
12
0 10 20 30 40 50 60
Iteration

Figure 15: Total reward vs iterations for different learning rate of Deep RL in Algo. 1 in the center
environment

Time step 0 Time step 3 Time step 6
0.5 0.5 0.5
0.25 0.07
0.4 0.4 0.06 0.4 0.020
0.20
0.05
0.3 0.3 0.3 0.015
0.15 0.04
> > >
0.010
0.2 0.10 0.2 0.03 0.2
0.02
0.05 0.005
0.1 0.1 0.01 0.1
0.00 0.00 0.000
0.0 0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
X X X
Time step 9 Time step 12 Time step 15
0.5 0.5 0.5
0.4 0.008 0.4 0.004 0.4 0.0035
0.0030
0.3 0.006 . 0.003 0.3 0.0025
> > > 0.0020
0.004 0.002
0.2 . 0.2 0.0015
0.002 0.001 0.0010
0.1 . 0.1 0.0005
0.000 0.000 0.0000
0.0 0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
X X X
Time step 18 Time step 20
0.5 0.5
0.4 0.004 0.4 0.0035
0.0030
0.3 0.003 0.3 0.0025
> > 0.0020
0.002
0.2 0.2 0.0015
0.001 0.0010
0.1 0.1 0.0005
0.000 0.0000
0.0 0.0

00 01 0.2 0.3 04 05 00 01 0.2 0.3 04 05
X X

Figure 16: 4 rooms explorations. Nash Equilibrium mean field flow obtained by Algo. 2 sampling
1500 trajectories

22

Time step 0 Time step 3 Time step 6
0.5 0.5 0.5
0.25
0.4 0.4 0.06 0.4 0.020
0.20
0.05
0.015
03 0.15 03 0.04 03
> > >
0.03 0.010
0.2 0.10 0.2 0.2
0.02
0.05 0.005
0.1 0.1 0.01 0.1
0.00 0.00 0.000
0.0 0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
X X X
Time step 9 Time step 12 Time step 15
0.5 . 0.5
0.008 0.0035 0.00175
0.4 . 0.4
0.0030 0.00150
0.006 0.0025 0.00125
0.3 . 0.3
0.0020 0.00100
> 0.004 > >
0.2 ; 0.0015 02 0.00075
0.002 0.0010 0.00050
0.1 . 0.0005 0.1 0.00025
0.000 0.0000 0.00000
0.0 0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
X X X

0.0014 0.0014
0.0012 0.0012
0.0010 0.0010
0.0008 0.0008
0.0006 0.0006
0.0004 0.0004
0.0002 0.0002
0.0000 0.0000
X X

Figure 17: 4 rooms explorations. Nash Equilibrium mean field flow obtained by Algo. 3 sampling
8000 trajectories 10x faster than Algo. 2 and Algo. 1.

23

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provided the the detailed description of the MFGs models and our algo-
rithm.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24

Justification: We are lack of theoretical analysis of the approximation of NE of current
method.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

Justification: We state our assumptions and provide a detailed proof of the theoretical result
provided in the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We describe both the detailed and each algorithm in the main text and appendix.

Guidelines:

25

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will open access to the code after the paper gets accepted.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided the details of each experiments in the environment setup sections.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We averaged all the numerical results over 4 seeds and reported the error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mentioned in section 4 the computer resources we used to run the experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

27

0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the societal impacts of the work in section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our model doesn’t have a high risk for misuse
Guidelines:

* The answer NA means that the paper poses no such risks.

28

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited all the papers that studied the models we used in our paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new algorithm is well documented in our paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper doesn’t include the human subjects in our experiments.

29

paperswithcode.com/datasets

15.

16.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper doesn’t include the human subjects in our experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We don’t use LLMs to generate the methods.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1.1.M) for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work

	Non-stationary continuous MFGs
	Solving Continuous Mean Field Games
	DEDA-FP

	On the convergence of DEDA-FP
	Experiments
	Beach Bar Problem
	Linear-Quadratic (LQ) model
	Case Study: 4-rooms exploration

	Conclusion and Limitations
	Model Assumptions
	Proof of the convergence of DEDA-FP
	Algorithms Details
	DEDA-FP components

	Implementation Details
	Time Conditioned Neural Spline Flow

	Numerical Experiments details
	Beach Bar Problem
	LQ model
	4-rooms exploration
	Market Model

	Hyperparameter Sweep

