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ABSTRACT

Cloud based machine learning inference is an emerging paradigm where users share
their data with a service provider. Due to increased concerns over data privacy,
recent works have proposed using Adversarial Representation Learning (ARL)
to learn a privacy-preserving encoding of sensitive user data before it is shared
with an untrusted service provider. Traditionally, the privacy of these encodings is
evaluated empirically as they lack formal guarantees. In this work, we develop a
new framework that provides formal privacy guarantees for an arbitrarily trained
neural network by linking its local Lipschitz constant with its local sensitivity.
To utilize local sensitivity for guaranteeing privacy, we extend the Propose-Test-
Release (PTR) framework to make it tractable for neural network based queries.
We verify the efficacy of our framework experimentally on real-world datasets and
elucidate the role of ARL in improving the privacy-utility tradeoff.

1 INTRODUCTION

The ethical and regulatory concerns around data privacy have become increasingly important with
the adoption of machine learning (ML) across various sectors such as health, finance, and mobility.
Although training ML models privately has seen tremendous progress(Abadi et al.| (2016)); Papernot
et al.| (2016); Du et al.|(2021)); Jordon et al.|(2018)) in the last few years, protecting privacy during the
inference phase remains a challenge as these models get deployed by cloud based service providers.
Cryptographic techniques(Ohrimenko et al.| (2016); |Knott et al.[(2021); Mishra et al.| (2020); [Juvekar
et al.| (2018)) address this challenge by performing computation over encrypted data. However, to
combat the high computational cost of encryption techniques, alternative works have used ARL to
suppress task irrelevant information from data. While ARL based techniques have shown promising
empirical results, they lack formal privacy guarantees over obfuscated representations due to their
use of Deep Neural Networks (DNN5s) for achieving privacy. For the first time, we show how to give
formal privacy guarantees for inference queries over arbitrarily trained (including ARL) DNNGs.

The key aspect of any ARL algorithm is an obfuscator which is trained to encode a user’s private data
such that an attacker can not recover the original data from its encoding. Achieving formal privacy
guarantees for an obfuscator has remained elusive due to the non-convexity of the training objective
of DNNss. In this work, we take a posthoc approach to guaranteeing privacy, where the privacy of data
is evaluated after the obfuscator is learned. Because the obfuscator is trained for non-invertibility, we
hypothesize that the obfuscator network should act as a contractive mapping, and hence, increase
the stability of the function in its local neighborhood, i.e., reduce sensitivity. Therefore, we measure
the stability of an adversarially learned obfuscator neural network, using Lipschitz constants, and
link it with privacy properties. To exactly compute the local Lipschitz constant of a non-linear
(ReLU) DNNs, we use LipMip(Jordan & Dimakis| (2020)), a mixed-integer programming based
technique, and re-formulate the ARL pipeline to ensure the computational feasibility of calculating
the Lipschitz constant. To draw a connection between the local Lipschitz constant and reconstruction
privacy, we introduce a privacy definition that is a specific instantiation of a general dy-privacy
framework by |Chatzikokolakis et al.|(2013). Instead of evaluating the global Lipschitz constant of
DNNs, we evaluate the Lipschitz constant only in the local neighborhood of the user’s sensitive data.
We extend the Propose-Test-Release (PTR)(Dwork & Lei| (2009)) framework to formalize our local
neighborhood based measurement of the Lipschitz constant.
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The scope of our paper is to provide privacy guarantees against reconstruction attacks for existing
ARL techniques, i.e., our goal is not to develop a new ARL technique but rather to develop a formal
privacy framework compatible with existing ARL techniques. A Majority of the ARL techniques
protect either a sensitive attribute or reconstruction of the input. We only consider sensitive input in
this work. We adopt a different threat model from that of traditional differential privacy (DP)(Dwork
et al.|(2014)) because, as we explain later, protecting membership inference is at odds with private
inference. Our threat model for the reconstruction attack is motivated by the use cases where a
user may be willing to disclose coarse-grained information about their data but wants to prevent
leakage of fine-grained information. Alternate threat models have been widely used in the privacy
literature(Chatzikokolakis et al.| (2013)); |Kifer & Machanavajjhalal (2014)); |Andrés et al.| (2013);
Hannun et al.| (2021))). Furthermore, we only focus on protecting the privacy of data during the
inference stage, and assume that ML models can be trained privately.

Typically ARL techniques evaluate the privacy of their representations by empirically measuring
the information leakage using a proxy adversary. Existing works(Srivastava et al.[(2019); Guo et al.
(2021); Singh et al.| (2021)) show that a proxy adversary’s performance as a measure of protection
could be unreliable. Some of the existing ARL techniques have used theoretical tools(Hamm| (2017);
Zhao et al.| (2020b); Basciftci et al.| (2016); [Zhao et al.| (2020a)); [Wang et al.| (2017); |[Bertran et al.
(2019); Mireshghallah et al.[(2021))) for measuring information leakage empirically. However, most of
these works analyze specific obfuscation techniques and lack formal privacy definitions. In contrast,
our work is agnostic to the design of the obfuscator as long as it is differentiable, and our definition
is built upon a variant of DP — a widely used formal privacy framework. Our privacy definition
and mechanism is built upon dx-privacy(Chatzikokolakis et al.| (2013)) and PTR(Dwork & Lei
(2009)). Existing instantiations of dy-privacy include geo-indistinguishability(Andrés et al.|(2013))
and location-dependent privacy(Koufogiannis & Pappas|(2016)) that share a similar goal as ours of
sharing coarse grained information. Our work differs in its usage of neural network queries and high
dimensional data modality. We refer the reader to Appendix Sec|A|for a detailed literature review.

In Sec 2] we begin with the preliminaries of DP and its variant for metric spaces. Then, we motivate
our ML inference setup and introduce our privacy definition in Sec[3] Next, we construct our posthoc
framework by extending PTR and proving its privacy guarantees in Sec[d] In Sec[5|we experimentally
demonstrate the feasibility of our framework and understand the dynamics of ARL algorithms. Our
contributions can be summarized as follows:

* We introduce (e, 4, R)-neighborhood privacy definition to formalize reconstruction privacy
for ARL based inference.

* We extend the PTR framework to make it tractable for neural network based queries. Our
extension bridges the gap between formal privacy frameworks and empirical techniques in
private ML inference.

* We perform extensive experimental analysis on ARL techniques and provide insight into
how ARL improves the privacy-utility tradeoff by reducing the local sensitivity of DNNs.

2 PRELIMINARIES

Differential privacy (DP)(Dwork et al.|(2014)) is a widely used framework for answering a query,
f, on a dataset x € X by applying a mechanism M(-) such that the probability distribution of the
output of the mechanism M (x) is similar regardless the presence or absence of any individual in the
dataset x. More formally, M satisfies (¢, §)-DP if Vx,x’ € X such that dy(x,x’) < 1, and for all
(measurable) output .S over the range of M

P(M(x) € S) < eP(M(xX) € S) + 4,

where dy is the hamming distance. This definition is based on a trusted central server model, where
a trusted third party collects sensitive data and computes M (x) to share with untrusted parties. In
local-DP(Kasiviswanathan et al.| (2011)), this model has been extended such that each user shares
M(x), and the service provider is untrusted. Our threat model is a special case of local DP which we
refer to as single-instance sharing. In this setup, the client queries every data instance independently
with the service provider and there is no aggregation or summary statistic involved. For ex.— a
user shares a face image to receive an age prediction from the service provider. While our setup



Under review as a conference paper at ICLR 2023

[ ; @ Trusted Device Service Provider
4 »

’_,

Tmage Spac \
9 Embedder | Imertible Map

N

4
¢
EN

\

Obfuscator |  Informal Privacy

ot L T
Pal< , P

Formal Privacy

EVW |

L > = 5
\ Embedding Space L Obfuscated Space

Figure 1: Posthoc Privacy framework: We project a high dimensional data instance to a lower
dimensional embedding. The goal of the embedder is to measure a semantically relevant distance
between different instances. The embedding is fed to the Obfuscator that compresses similar inputs
in a small volume. In traditional ARL, the obfuscated instance is shared with the untrusted service
provider without any formal privacy guarantee. In this work, by analyzing the stability of the
obfuscator network, we perturb the obfuscated instance to provide a formal privacy guarantee.

is similar to item-level local DP, the answer to the query depends exactly on a single input. We
note that dy (x,x’) < 1, ¥x,x’ € X, whenever single-instance sharing is involved. Informally, this
notion of neighboring databases under the DP definition would suggest that the outcome of two
individuals should be similar no matter how different their datum is. This privacy definition could be
too restrictive for our ML inference application where the data instance necessarily needs a certain
degree of distinguishability to obtain utility from the service provider. This observation is formalized
in the impossibility result of instance encoding(Carlini et al.| (2020)) for private learning. To subside
this fundamental conflict between the privacy definition and our application, we look at the definition
of dx-privacy(Chatzikokolakis et al.| (2013))) that generalizes the DP definition to a general distance
metric beyond hamming distance as follows:

P(M(x) € S) < eXCXIPM(X) € 9), (1)

here dx(x,x’) is a function that gives a level of indistinguishability between two datasets x and x’.
DP can be viewed as a special case of dy-privacy by keeping dx (x, x’) = edy (x,x’). Choosing a
different distance metric yields stronger or weaker privacy guarantee.

3  PRIVACY DEFINITION

In order to formalize reconstruction privacy, we hypothesize that semantically similar points are close
to each other on a data manifold, i.e. semantically similar samples are closer in a space where distances
are defined as geodesic on the manifold. Therefore, one way to bound the reconstruction of x is by
making it indistinguishable among semantically similar points. The extent of reconstruction privacy
would therefore depend upon the radius of the neighborhood. We formalize it by introducing a privacy
parameter R that allows a user to control how big this indistinguishable neighborhood should be. This
formulation leads to two additional constraints - i) a distance metric that models low dimensional
manifold space of data; ii) a privacy definition that incorporates the privacy parameter R as well as
the distance metric. We propose to use embedding based manifold learning techniques(Brehmer &
[Cranmer (2020); [Horvat & Pfister| (2021))) for the first constraint because we do not have a closed form
expression for the manifold chart for real world data. We refer to the distance metric as dg (x,x'),
where the parameter 6 is learned to model the data manifold and f is a standard norm such as 1, 5.
Intuitively, we want to compute distances in a space where semantically similar data points are
closer and semantically different data points are farther apart. For high dimensional datasets that lie
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over a low dimensional manifold (such as images), traditional distance metrics like ¢1, £3 norms do
not capture the semantic similarity. This idea has been used in perceptual similarity for computer
vision(Zhang et al.[(2018))) as well as manifold and metric learning techniques(Brehmer & Cranmer
(2020); Horvat & Pfister] (2021); Kha Vu| (2021)). Hence, we instantiate dx-privacy by keeping

dx(x,x") = edg (x,x’) such that,

P(M(x) € §) < % X IP(M(x') € S) + 6. 2)
The privacy parameter € describes the extent of indistinguishability and the parameter R describes
the neighborhood in which we obtain this indistinguishability. We note that dx-privacy, unlike DP,
does not use the notion of a neighborhood (dg (x,x") < R) because the guarantee holds for any
possible pair of x,x’ € X and smoothly decays with distance. Finally, we slightly weaken the

dx-privacy instantiation by defining neighborhood as dg (x,x’) < R and keeping fixed levels of
indistinguishability dg (x,x") <R

Definition 1. A mechanism M satisfies (¢, 8, R)-semantic neighborhood privacy if Vx,x' € X s.t.
S (x,x') < Rand S C Range(M)

P(M(x) € S) < e P(M(x') € S) + 4. (3)

Note that the above equation is exactly the same as (e, §)-DP except for the definition of neigh-
boring databases. In this way, our privacy definition can be seen as a mix of standard DP and
dx-prviacy. A key characteristic of Eq [2]is that points closer to a given x than R enjoy higher
indistinguishability while in Eq[3]all points in the neighborhood of x, similar to DP, get the same
level of indistinguishability.

3.1 COMPARISON WITH DIFFERENTIAL PRIVACY

Conceptually, usage of hamming distance in DP for neighboring databases provides a level of
protection such that the output does not change significantly regardless of the chosen sample. Such a
privacy requirement can be at odds with the goal of prediction that necessarily requires discrimination
between samples belonging to different concept classes. Our privacy definition relaxes this dichotomy
by using a distance metric in the embedding space and guarantees privacy only within a neighborhood.
The size of the neighborhood is a privacy parameter R such that higher value of R provides higher
privacy. This privacy parameter is equivalent to the group size(Dwork et al.|(2014)) used sometimes in
the DP literature. By default, this value is kept 1 in DP but can be kept higher if a group of individuals
(family, community) have to be privatized instead of a single individual. There is an equivalence
between the group privacy definition and standard DP definition which we state informally -
Lemma 2.2 in [Vadhan| (2017): Any (e, §)-differentially private mechanism is (Re, Re(R_l)eé)-
differentially private for groups of size R.

This lemma also applies to our proposed definition. However, we emphasize that privacy parameters
of (¢, §)-DP mechanism can not be compared trivially with a (e, d, R)-semantic neighborhood privacy
mechanism because same value of ¢ and § provide different levels of protection due to different
definitions of neighboring databases. We experimentally demonstrate this claim in Sec[3]

4 PRIVACY MECHANISM

Our goal is to design a framework that can provide a formal privacy guarantee for single data instance
sharing that is informally privatized using ARL. However, ARL algorithms use non-linear neural
networks trained on non-convex objectives making it difficult to perform any worst-case analysis.
Therefore, we take a posthoc approach where the formal privatization is performed after the model
is trained. Specifically, we apply propose-test-release (PTR) mechanism by [Dwork & Lei| (2009).
Applying PTR directly to our query (ARL) is not computationally feasible because PTR requires
estimating local sensitivity at multiple points whereas evaluating local sensitivity of a neural network
query is not even feasible at a single point. Therefore, we design a tractable variant of PTR that
utilizes local lipschitz constant estimator to compute privacy related parameters. We refer the reader
to Appendix for a detailed discussion on the lipschitz constant estimation and PTR.

Conventionally, ARL algorithms have three computational blocks during the training stage: 1)
obfuscator (f(+)) that generates a (informally private) representation (z) of data, 2) proxy adversary
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that reconstructs the data from the representation produced by the obfuscator, and 3) classifier that
performs the given task using the obfuscated representation. The classifier and proxy adversary are
trained to minimize the task loss and reconstruction loss, respectively. The obfuscator is trained
to minimize the task loss but maximize the reconstruction loss. This setup results in a min-max
optimization where the trade-off between task performance and reconstruction is controlled by a
hyper-parameter . Note that some techniques(Oh et al.|(2016); Osia et al.|(2020); Vepakomma et al.
(2021))) do not require a proxy adversary but still learn an obfuscator model using other regularizers.
We propose to use an embedder (g(0, -)) to learn semantic similarity using VAE(Kingma & Welling
(2013)). The key idea of using the embedder is to embed the original sample (x) to a lower
dimensional space (z = g(x)) such that the distance metric in z space captures semantic similarity as
shown in FigE]and motivated in SecE} Since z can be (almost) loss-lessly inverted to x, it is fed to
the obfuscator to get z = f(z).

Our framework applies the mechanism M such that the final released data Z = M (x) has a privacy
guarantee discussed in Eq [3] Like PTR, we start with a proposal (A7 ¢) on the upper bound of
the local sensitivity of x. To test the validity of A? , we compute the size of the biggest possible
neighborhood such that the local Lipschitz constant of the obfuscator network in the neighborhood is
lesser than the proposed bound. Next, we privately verify the correctness of the proposed bound for
the given data instance. We do not release the data (denoted by _L) if the proposed bound is invalid.
Otherwise, we perturb the data using Laplace distribution calibrated by the proposed bound. Next,
we discuss the framework and privacy guarantees in more detail.

Global Sensitivity and Lipschitz constant of a query f : X — ) are essentially same in the
dy-privacy framework. Global sensitivity of a query f(-) is the smallest value of A (if it exists)
such that Vx, x’ € X, dy(f(x), f(x)) < Adx(x,x’). While global sensitivity is a measure over
all possible pairs of data in the data domain X, local sensitivity (A g) is defined with respect to a
given dataset x such that Vx' € X, dy(f(x), f(x')) < Aps(x)dx(x,x’). We integrate the notion
of semantic similarity in a neighborhood (described in Sec[2) by defining the local sensitivity of a
neighborhood N (x, R) around x of radius R such that N'(x,R) = {x'|dx(x,x’) < R, VX’ € X}.
Therefore, the local sensitivity of query f on x in the R-neighborhood is defined Vx’' € N (x, R) such

that

dy(f(x), f(x')) < Ars(x,R)dx(x,x'). (4)
We note that if dx is hamming distance and R is 1 then this formulation is exactly same as local
sensitivity in e-DP(Dwork et al.|(2014)). The equation above can be re-written as:

dy(f(x), f(x))

ALS X,R =
(. R) XeN(xR)  dx(x,X)

(&)
This formulation of local sensitivity is similar to the definition of the local Lipschitz constant. The
local Lipschitz constant £ of f for a given open neighborhood N C X is defined as follows:

AN 7
La’ﬁ(f’./\/) = sup ||f(X)/ f/(/x )Ha (X/ #X”) (6)

x'x"eN ||X - X Hﬂ

We note that while the local sensitivity of x is described around the neighborhood of x, the Lipschitz
constant is defined for every possible pair of points in a given neighborhood. Therefore, in Lemma4.1]
we show that the local Lipschitz in the neighborhood of x is an upper bound on the local sensitivity.

Lemma 4.1. For a given f and for dy < {, and dy < lg, Aps(x) < L(f,N(x,R)). Proof in
Appendix[B.1]

Since local sensitivity is upper bounded by the Lipschitz constant, evaluating the Lipschitz constant
suffices as an alternative to evaluating local sensitivity.

Lower bound on testing the validity of A? ;: The PTR algorithm(Dwork & Lei| (2009)) suggests a
proposal on the upper bound (A7 ) of local sensitivity and then finds the distance between the given
dataset (x) and the closest dataset for which the proposed upper bound is not valid. Let v(-) be a
distance query and A g(x) be the local sensitivity defined as per the DP framework with respect to
x such that

v(x) = H/lél)l({dH(X, x') st Aps(x’) > A g1 @)
In our framework, the query 7(x, R) can be formulated in the semantic neighborhood as follows:
v(x,R) = miI}l({dX(X,XI) st. Aps(x',R) > Al S} 8)
x'e
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We note that keeping dx = dy and R = 1, makes the v query exactly same as defined in the eq[7}
In our setup, computing ~y(+) is intractable due to local sensitivity estimation required for every
x’ € X (which depends upon a non-linear neural network). We emphasize that this step is intractable
at two levels, first we require estimating local sensitivity of a neural network query. Second, we
require this local sensitivity over all samples in the data domain. Therefore, we make it tractable
by computing a lower bound over v(x, R) by designing a function ¢(-) s.t. ¢(x,R) < v(x,R).
Intuitively, ¢(-) finds the largest possible neighborhood around x such that the local Lipschitz
constant of the neighborhood is smaller than the proposed local sensitivity. Because the subset
of points around x whose neighborhood does not violate AY ¢ is half of the size of the original
neighborhood in the worst case, we return half of the size of neighborhood as the output. We describe
its computation in Algorithm[I} More formally,

o(x,R) = % . arg;n;x{ﬁ(f,./\/'(x, R')) < AT}

If there is no solution to the equation above, then we return 0.
Lemma 4.2. ¢(x,R) < v(x,R). Proof in Appendix|B.2]

Privately testing the lower bound: The next step in the PTR algorithm requires testing if v(x) <
1n(%) /e. If the condition is true, then no-answer (L) is released instead of data. Since the y query
depends upon x, PTR privatizes it by applying laplace mechanism, i.e. 4(x) = v(x)+Lap(1/€). The
query has a sensitivity of 1 since the v could differ at most by 1 for any two neighboring databases.
In our framework, we compute ¢(x, R) to lower bound the value of y(x, R). Therefore, we need to
privatize the ¢ query. For general distance metrics in dx-privacy, the global sensitivity of the ¢(x)
query is 1.

Lemma 4.3. The query ¢(-) has a global sensitivity of 1, i.e. Vx,x" € X, dups(¢(%,R), (%', R)) <
dx(x,x’). Proof in Appendix|B.3|

After computing ¢(x, R), we add noise sampled from a laplace distribution, i.e. ¢(x,R) = ¢(x, R) +
Lap(R/e). Next, we check if ¢(x,R) < In(3) - R/e, then we release L, otherwise we release
z = f(9(x)) + Lap(Af 5/€). Next, we prove that the mechanism M; described above satisfies
semantic neighborhood-privacy.

Theorem 4.4. Mechanism M satisfies uniform (2€, §/2, R)-semantic neighborhood privacy Eq.[3]
e Vx,x" € X,s.t. dx(x,x") <R

P(M(x) € S) < e*P(M(x') € S) + g )

Proof Sketch: Our proof is similar to the proof for the PTR framework(Dwork et al.|(2014))) except
the peculiarity introduced due to our metric space formulation. First, we show that not releasing
the answer (L) satisfies the privacy definition. Next, we divide the proof into two parts, when the

proposed bound is incorrect (i.e. Ars(x,R) > Af o) and when it is correct. Let R be the output of
query ¢.

Plo(x,R) = K] _ exp(—(12=0=H o))
Plp(x',R) = R] exp(—(w -€))

< exp(|9(x', ) — $(x,R)| - 2) < expldn(x,x) - 2)

< exp(e)

Therefore, using the post-processing property - PM(x) = L] < eP[M(x’) = L]. Here, the first
inequality is due to triangle inequality, the second one is due to Lemmad.3|and the third inequality
follows from dy(x,x’) < R. Note that when Apg(x,R) > Al o, ¢(x,R) = 0. Therefore, the
probability for the test to release the answer in this case is

R 1. R R 1. R
PM(x) # L] = Plo(x,R) + Lap(;) > log(g) : z] = P“—ap(z) > log(g) ' ;]
Based on the CDF of Laplace distribution, P[M(x) # L] = 3. Therefore, if Apg(x,R) > A ., for

any S C R? U L in the output space of M
PM(x) € S] = PIM(x) € SN{L}] + PIM(x) € SN {R%}]
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| MNIST (e = 0, 0.10), (¢ = 00, 0.93) FMNIST (e = 0, 0.10), (¢ = 00, 0.781) | UTKFace (e = 0, 0.502), (¢ = 00, 0.732)

| Informal | e=1|e=2|e=5]e=10
Encoder | 093 | 0428 | 0673 | 0.883 | 0.921

Informal | e=1]e=2]e=5|e¢=10 | Informal | e=1|e=2]e=5| =10
0.779 | 0.228 | 0.355 | 0.605 | 0.722 | 0724 | 0.617 | 0.673 | 0717 | 0.721

ARL | 0917 | 0329 | 0532|0792 | 0.882 | 0747 |0.214 | 0319 | 0557 | 0.685 | 0.71 | 0.605 | 0.649 | 0.691 | 0.707
C | 0926 | 0443 |0.684 | 0.881 | 0.917 | 0781 | 0.158 | 0.225 | 0.422 | 0.608 | 0.73 | 0.623 | 0.673 | 0.718 | 0.724
N | 0923 | 0279|049 | 0.816 | 0.902 | 0559 |0.136 | 0.177 | 0.310 | 0.462 | 0725 | 0.614 | 0.667 | 0.708 | 0.715

ARL-C | 0896 | 0.424 | 0.648 | 0.839 | 0.883 | 0.761 | 0.196 | 0.314 [ 0.537 | 0.682 | 0.709 | 0.632 | 0.684 | 0.70 | 0.705

ARL-N | 088 |0.118]0.139 | 021 | 0.325
C-N | 0929 | 0353|0574 | 0.844 | 0.913
ARL-C-N | 0921 | 0514 | 0.751 | 0.891 | 0912

0717 | 0.294 | 0467 | 0.657 | 0.705
0.774 | 0.161 | 0224 | 0.411 | 0.599
0706 | 0.371 | 0.554 | 0.678 | 0.695

071 | 0.628 | 0.674 | 0.701 | 0.708
0.727 | 0.616 | 0.671 | 0.712 | 0.722
0.712 | 0.650 | 0.690 | 0.700 | 0.700

Table 1: Performance comparison for different baselines: Our posthoc framework enables com-
parison between different obfuscation techniques by fixing the privacy budget (). First four rows
are different approaches to protect against data reconstruction and the remaining rows below are
combinations of different approaches. The top row refers to the accuracy corresponding to different
datasets under two extremes of epsilons. ARL refers to widely used adversarial representation
learning approach for regularizing representation based on a proxy attacker(Li et al.| (2021); [Liu
et al.| (2019); Xiao et al.|(2020); [Singh et al.| (2021))). Contrastive refers to contrastive learning based
informally privatizing mechanism introduced in|Osia et al.[ (2020).

< ePIM(X) € SN {L}] +PIM(x) # 1] < eP[M(x') € 8] + g

If Aps(x,R) < Al 4 then the mechanism is a composition of two (e, d, R)-semantic neighborhood
private algorithm where the first algorithm (¢(x, R)) is (e, §/2, R)-semantic neighborhood private and
the second algorithm is (¢, 0, R)-private. Using composition, the algorithm is (2¢, 0/2, R)-semantic
neighborhood private. We describe M step by step in Algorithm[I] To summarize, we designed the
posthoc privacy framework that extends the PTR framework by making it tractable to get (e, J, R)-
semantic neighborhood privacy. The exact local Lipschitz constant of the neural network based
obfuscator is estimated using mixed-integer programming based optimization developed by Jordan &
Dimakis| (2020).

Computational feasibility: Our key idea is to add extra computation on the client side to formally
reason about the privacy of shared data. This extra computational cost is due to the estimation of
the local Lipschitz constant of the obfuscator network. However, three key factors of our framework
make it practically feasible -

1. We compute the local Lipschitz constant (i.e. in a small neighborhood around a given point):
Our extension of the propose-test-release framework only requires us to operate in a small
local neighborhood instead of estimating the global Lipschitz constant which would be
much more computationally expensive.

2. Low number of parameters for obfuscator: Instead of estimating the Lipschitz constant of
the whole prediction model, we only require estimation of the obfuscator - a neural network
that has a significantly lower number of parameters in comparison to the prediction model.

3. Lower dimension of input embedding: Since we measure distance in the embedding space,
the dimensions over which the local Lipschitz constant is estimated are significantly lower
than the ambient data dimension.

We performed an ablation study on all three aspects mentioned above in Sec[6] The fact that the
local Lipschitz constant is being computed over the same obfuscator allows room for optimizing
performance by caching. Our goal is to demonstrate the feasibility of bridging formal privacy
guarantees and ARL-based mechanisms, hence, we did not explore such performance speedups.

5 EXPERIMENTS

Experimental Setup: We evaluate different aspects of our proposed framework - i) E1: compar-
ison between different adversarial appraches, ii) E2: comparison with local differential privacy
(LDP), iii) E3: computational tractability of our proposed framework, and iv) E4: investigating
role of ARL in achieving privacy. We use MNIST(LeCun| (1998))), FMNIST(Xiao et al. (2017))
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and UTKFace(Zhang et al.| (2017)) dataset for all experiments. All of them contain samples with
extremely high ambient dimensions (MNIST-784, FMNIST-784 and UTKFace-4096). We use a deep
CNN based -VAE(Higgins et al,| (2016)) for the embedder. We use LipMip(Jordan & Dimakis
(2020)) for computing Lipschitz constant over ¢, norm in the input space and ¢; norm in the output
space. We baseline with a simple Encoder based approach where the data is projected to smaller
dimensions using a neural network. This encoder type approach has been used in the literature as Split
Learning|Gupta & Raskar| (2018). For ARL, we use the proxy-adversary based min-max optimization
used by several ARL techniques(Xiao et al.[(2020); [Singh et al.| (2021); [Liu et al.| (2019); |Li et al.
(2021)) and adversarial contrastive learning(Osia et al.|(2020)) which we denote as C. We use noisy
regularization (denoted by N) to improve classifier performance. We refer the reader to sec[E]for a
detailed experimental setup, codebase and hyper-parameters.

E1: Privacy-Utility Trade-off: Since our framework enables comparison between different obfus-
cation techniques under same privacy budget, we evaluate test set accuracy on three image datasets
in Table |l Our results indicate that ARL complemented with contrastive and noise regularization
helps in attaining overall best performance among all possible combinations. We note that the SoTA
performance on all three datasets is higher than our experimental setup because of the usage of
embedder that can be further improved to yield higher accuracy.

E2: Comparison between ARL and LDP: While e-LDP definition provides a different and stronger
privacy guarantee than our proposed privacy definition, we compare the performance between ARL
and LDP and report results in the Table [2|in the Appendix for the sake of completeness. Results
indicate that for low value of €, LDP techniques do not yield any practical utility. This observation
corroborates with impossibility result of instance encoding Carlini et al.[(2020) and our discussion in
Sec2]about applicability of traditional DP in the context of ARL.

E3: Computational feasibility: Our framework relies upon the exact computation of Lipschitz
constant of ReLU networks (obfuscator in our case) that has been shown to be a NP-hard prob-
lem(Jordan & Dimakis| (2020)). Our end-to-end runtime evaluation on a CPU based client results
in a runtime of 2 sec/image (MNIST) and 3.5 sec/image (UTKFace). While plenty of room ex-
ists for optimizing this runtime, we believe current numbers serve as a reasonable starting point
for providing formal privacy in ARL. As discussed in Sec f] we compare computation time of
the obfuscator across three factors relevant to our setup - i) Dimensionality of the input, ii) Size
of the neighborhood, and iii) Number of layers in the Obfuscator. Figure |4 shows performance
evaluation. While the running time quickly grows exponentially with input size, we emphasize that
the obfuscator network requires only small number of dimensions due to its input residing on the
embedding space. Results demonstrate that not only the framework is computationally tractable but
it can be executed at a real-time speed for our inference use-case.

E4: What role does ARL play in achieving privacy? In this experiment, we assess the contribution
of adversarial training in improving privacy-utility trade-off. We train obfuscator models with
different values of a (weighing factor) for adversarial training. Our results in Fig |2 indicate that
higher weighing of adversarial regularization reduces the local lipschitz constant, hence reducing the
local sensitivity of the neural network. Furthermore, for high values of o, the change in local lipschitz
constant reduces significantly for different size (R) of the neighborhood. These two observations
can potentially explain that ARL improves reconstruction privacy by reducing the sensitivity of
the obfuscator. However, as we observe in Table m the classifier can reduce its utility if ARL
is not complemented with noisy and contrastive regularization. We believe this finding could
be of independent interest for the adversarial defense community where the goal is to reduce
misclassification performance of neural networks.

6 DISCUSSION

How to select privacy parameter R? One of the key difference between (¢, d, R)-neighborhood
privacy and (e, §)-DP is the additional parameter R. The choice of R depends upon the neighborhood
in which a user wishes to get an ¢ level of indistinguishability. We perform reconstruction attacks on
privatized encoding obtained from our framework by training an ML model to reconstruct original
images. We compare reconstruction results for different values of € and R on four distinct metrics
for images in Table @I5|3lI6] To assess the level of indistinguishability, we look at Fig [3] where
we project the original images into embedding space and sample points from the boundary of
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Figure 2: Local sensitivity comparison for different values of o: The five bars for each « represent
different neighborhood radii. Increase in the value of o decreases the local Lipschitz constant (upper
bound on local sensitivity) indicating lesser amount of noise to be added for the same level of privacy.

w

neighborhoods of different R. We observe that as the boundary of the neighborhood increases, the
images become perceptually different from the original image. For extremely large radii, the images
change significantly enough that their corresponding label may change too. Such visualization can be
used to semantically understand different values of R.

How to propose A’ ;? Our framework requires a proposal on the upper bound of local sensitivity in
a private manner. One possible way to obtain A 4 is by using the Lipschitz constant of training data
samples used in training the obfuscator. To incorporate this notion of average, we choose A’ ¢ by
first computing the mean (1) and standard deviation (o) of local sensitivity on the training dataset
(assumed to be known under our threat model), then we keep A} ¢ = jt + n * o where n allows a
trade-off between the likelihood of releasing the samples under PTR and adding extra noise to data.
We used n = 3 in our experiments. Since empirically, the value of local sensitivity appears to be
following a gaussian, using confidence interval serves as a good proxy. Fig[2]shows that for higher
values of «, the variability in the local Lipschitz constant decreases indicating the validity of the
bound would hold for a large number of samples. We emphasize that privacy parameters should be
chosen independently of the private data otherwise the guarantees do not hold.

Limitations: i) The distance metric (dg (x,x’)) is currently learned from data and could lead to
irrelevant privacy guarantees if semantically similar points are farther apart in the embedding space.
We believe this limitation could be addressed by understanding the convergence of these learned
distance metrics. Furthermore, these learned distance metrics might be better than not assessing
privacy formally at all or using distance metrics like 1, /> norm in the ambient dimension of data. ii)
Since we utilize the PTR framework, outlier samples may not get released due to high sensitivity, this
is expected since these outlier samples are likely to be misclassified anyway. iii) Lipschitz constant
computation is limited to ReLU networks, therefore more sophisticated obfuscator architectures are
currently not compatible with our proposed framework.

7 CONCLUSION

ML based approaches to private inference have been on a rise in the past few years owing to the
powerful representational capacity of neural networks, especially for complex real-world datasets.
Their main drawback is the lack of formal privacy guarantees. Our work has taken the first steps
towards a formal privacy guarantee for a broad class of existing empirical techniques for privacy. We
believe that our framework would foster more research in ARL techniques by improving privacy-
utility evaluation and take them closer to real world adoption.
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A RELATED WORK

ARL techniques aim to learn a task-oriented privacy preserving encoding of data. Majority of the
works in this area either protect against sensitive attribute leakage [Hamm)| (2017); [Roy & Boddeti
(2019); Bertran et al.|(2019); |Li et al.|(2018)) or input reconstruction |Samragh et al.|(2021); Singh
et al.| (2021)); Mireshghallah et al.|(2021); ILi et al.| (2021)); Liu et al.|(2019)). These techniques usually
evaluate their privacy using empirical attacks since the mechanism is learned using gradient based
min-max optimization making it infeasible for the worst-case privacy analysis. The goal of our work
is to make them amenable to formal privacy analysis. While theoretical analyses|Zhao et al.|(2020a3b);
Sadeghi & Boddeti| (2021) of ARL objectives have identified fundamental trade-offs between utility
and attribute leakage, they are difficult to formalize as a worst-case privacy guarantee especially for
deep neural networks.

Privacy definitions that extend the DP definition to incorporate some of its limitations |Kifer &
Machanavajjhalal (2011) include dx-Privacy |Chatzikokolakis et al.| (2013)), and Pufferfish Kifer
& Machanavajjhalal (2014). Our privacy definition is a specific instantiation of the dx-
Privacy |Chatzikokolakis et al.| (2013) framework that extends DP to general metric spaces. Our
instantiation is focused on reconstruction privacy for individual samples instead of membership
inference attacks Dwork et al.| (2017). Existing works in DP for reconstruction attacks /[Bhowmick
et al.| (2018); Stock et al.[(2022) focus on the privacy of training data.

Lipschitz constant estimation for neural networks has been used to guarantee network’s stability
to perturbations. Existing works either provide an upper bound Weng et al.| (2018); |[Latorre et al.
(2020); |[Fazlyab et al.|(2019), exact Lipschitz constant|{Jordan & Dimakis|(2020; [2021)) or Lipschitz
constant regularization [Scaman & Virmaux| (2018)); [Huang et al.|(2021)) during the training stage.
Some existing works have explored the relationship between adversarial robustness and DP model
training |Phan et al.| (2020); [Pinot et al.| (2019)); Tursynbek et al.[(2020). We utilize similar ideas of
perturbation stability but for privacy. Shavit and GjuraShavit & Gjura (2019)) use Lipschitz neural
networks |Gouk et al.| (2018)) to learn a private mechanism design for summary statistics such as
median, however their mechanism design lack privacy guarantee.

Posthoc approach to privacy applies privacy preserving mechanism in a data dependent manner.
Smooth sensitivity |[Nissim et al.|(2007) and PTR Dwork & Lei|(2009) reduce the noise magnitude
since local sensitivity is only equal to global sensitivity in the worst case. Privacy odometer|[Rogers
et al.| (2016), Ex-post privacy loss|Ligett et al. (2017) and Rényi privacy filter [ Feldman & Zrnic|(2021)
track privacy loss as the query is applied over data. Our works builds upon the PTR framework in
order to give high privacy for less sensitive data. However, as we show in Sec ] our framework
reformulates the PTR algorithm to make it tractable under our setup.

B PROOFs
Lemma B.1. For a given f and for dy < {, and dx < {3, Aps(x,R) < L(f,N(x,R)).

Proof. Local sensitivity (A g) for a sample x in a radius R for a query f is defined as:

sz P

Local Lipschitz constant (£) for a function f and a neighborhood A is defined as:

/:aﬁ(f, N) = sup ||f(X/) - f(XN)Ha (X/ 4 XN)

x/ x"eN [[x" —x"[|g

If £ is defined around neighborhood A (x, R) then the set over which local sensitivity is computed
is a subset of the set over which local Lipschitz constant is estimated. Intuitively, local Lipschitz
condition is for all possible pair of samples in the neighborhood while local sensitivity is for all
samples with respect to the given sample. Since both conditions require a suprememum over the set,
ALS(X7R) < L(faN(XaR)) O

Lemma B.2. Algorithm ¢ gives a lower bound on the query ~. That is, ¢(x,R) < v(x,R).
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Proof. The v query is defined as -

~v(x,R) = ){I}gl({dX(va/) sit. Apg(x',R) > A ¢} (10)
The ¢ query is defined as -
1
B0 R) = 5 - axgmax{L(f, N'(x,K) < AL} an

R'>R
For any given sample x and privacy parameters (R, AY o) such that s = ¢(x,R), we know that
vx' e N(x,s)

N(x',s) C N(x,2s)

= L[ N(X,s)) < L(f, N(x,25))

Based on eq[10] we know that £(f, N (x,2s)) < A ; and hence Vx' € N(x, s),

L(f,N(X,s)) <A
Therefore, A s(x’,R) < A 4 and hence,

s < v(x)

For the cases when there is not any feasible solution, ¢ returns O which is exactly the same answer
for v query. This completes the proof. O

Lemma B.3. The query ¢(-) has a global sensitivity of 1, i.e. daps(d(X,R), (X', R)) < dx(x,x’)

Proof. We will prove the above argument through a contradiction. We will prove that for a fixed
radius R and any arbitrary point x € X, the neighborhood spanned by ¢(x, R) can not be a proper
superset for any neighborhood spanned by any other point ¢(x’, R). More formally, we will prove,
Vx,x' € X, N(x,0(x,R)) ¢ N(x',¢(x',R)) and N'(x', $(x',R)) ¢ N(x,¢(x,R)). Once proven,
this argument allows us to specify the distance between x and x’ with respect to ¢(x, R) and ¢(x’, R).
Since the function ¢(x, R) returns the maximum possible value such that

‘C(faN(Xa ¢(X7 R))) < Ais’
Therefore, for any ¢ > 0

’C(faN(Xa ¢(X7R) + C)) > Azfis (12)

For contradiction, we assume that 3x, x" € X s.t. N'(x, ¢(x,R)) C N(x', $(x',R))
— 35> 05 Nx 6(xR) + 1) C N, (x'.R)) (3
—> LIN(x,6(x,R) +1)) < Alg (14)

This leads to a contradiction between eq|l2|and eq Therefore, Vx,x’ € X,
d(x,R) < ¢(x',R) + dx(x,x")
Using symmetry argument, we can show that

daps ((ZS(X, R), d)(X/, R)) <dx (X; X/)
This completes the proof. O

C PROPOSE-TEST-RELEASE

DP mechanisms typically add noise based on the global sensitivity of a query. However, for several
queries over various data distributions, average local sensitivity might be much lower than the global
sensitivity. However, local sensitivity is data dependent hence the amount of noise introduced by a
mechanism based on local sensitivity itself can reveal private information. Therefore, to add noise
based on local sensitivity in a privacy preserving manner, Dwork & Lei (2009)) introduced PTR.
Conceptually, the idea behind PTR is to propose an arbitrary upper bound on the true value of local
sensitivity. This upper bound should be obtained privately otherwise the choice of upper bound
itself can reveal private information. To test whether the proposed bound is correct, the mechanism
performs a privacy-preserving testing of the upper bound. The test itself is a randomized algorithm
due to privacy requirements. Therefore, it can have false positives and false negatives. If the test fails,
the mechanism returns L (no-answer). Otherwise, standard DP mechanism (ex. - Laplace) is applied
to the query based on the proposed sensitivity (and not true local sensitivity). More formally, the
algorithm proceeds in the following steps -
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1. A proposal on upper bound of a query ¢ is fed as input for data x. Let us call it AY ..

2. The algorithm finds the closest point ' to = such that Ay g(2’) > A . Here A g refers
to local sensitivity for the query gq.

3. Lety = dy(x,2') and ¥ = v + Lap(1/e)
4. If 4 <In(1/9)/e; return L
5. Else share data x + Lapl(AY ¢ /¢)

Computational Cost: Depending on the query, this algorithm can incur significant computation cost.
Especially in the Step 2, finding closest 2’ can be impractical if the data space is high dimensional.
Finally, for queries such as neural networks evaluating local sensitivity itself is not practical since
it requires giving exact and correct solution to a non-convex optimization problem. Therefore, our
framework relies on computing local lipschitz constant over a small neighborhood instead of local
sensitvity over the complete data space.

Algorithm 1: Extended PTR algorithm for (¢, §, R)-semantic neighborhood privacy
Data: x € X
Inputs: e € RT, 6 e RT,Re Rt Al , e RT
Init: ( € R ; /+ For numerical stability, typically very small x/
Init: R,in, = R, Rynaz € RT
while R, > Riin + ¢ do
R'rnid = (Rmin + Rmaw)/2;
r=L(f,N(x,R)); /* Compute local Lipschitz constant =/
ifr < AIZ,S then R,,i, = Rpnid; €lse Rynaz = Ripia; €nd
end

Rimin .

2 b
+— 7+ Lap(1/e);
if R < In(1/5)/e then return L; else return f(z) + Lap(A} /e); end

> i

D LiPSCHITZ CONSTANT ESTIMATION

We use the mixed integer programming based algorithm LipMip by [Jordan & Dimakis| (2020) for
computing the local Lipschitz constant. Their technique allows exactly computing the local Lipschitz
constant of a neural network with ReLU non-linearities. Their key idea is to estimate the supremal
norm of the jacobian of the neural network. Since ReLU networks do not allow for differentiability,
LipMip uses clark jacobian to circumvent the issue and encode the optimization objective of obtaining
local Lipschitz constant over a pre-defined neighborhood as a mixed integer programming problem.
The neighborhood is specified as a hypercube with same dimension as points in the neighborhood.
Their algorithm searches for feasible regions and minimizes the gap between lower and upper bound
on the Lipschitz constant.

E EXPERIMENTAL DETAILS

Our experimental setup operates in three stages - i) Embedder training, ii) Obfuscator training,
and iii) Private inference. Our codebase is available https://drive.google.com/drive/
folders/1DpHhS9u-Mpp3TVmTYiue 7BKKUshyKw2w?usp=sharing| here for reprodu-
cability. We will release the code and all trained models publicly after the reviews. For all our
experiments we use PyTorch(Paszke et al.|(2019)) with Nvidia-GeForce GTX TITAN GPU. We use
B-VAE with 5 = 5 for the design of the embedder.

1. Embedder Training: We use embedding dimension as 8 for MNIST and FMNIST dataset.
For the UTKFace dataset, we use embedding size as 10. We use Adam optimizer(Kingma &
Ba (2014)) with a constant learning rate of 0.001. The VAE architecture for MNIST and
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e=1 €e=2 e=5 e=7 | e=00
LDP-Image 0.1 0.1 0.1 0.3 0.99

MNIST | LDP-Embedding | 0.1075 | 0.1319 | 0.1927 | 0.3107 | 0.9096
Adversarial 0.514 | 0.751 0.891 0912 | 0.9291
LDP-Image 0.1 0.1 0.1 0.1 0.92

FMNIST | LDP-Embedding | 0.1012 | 0.1251 | 0.1708 | 0.2420 | 0.7798
Adversarial 0.371 0.554 0.678 0.722 0.781

LDP-Image 0.52 0.52 0.52 0.52 0.89
UTKFace | LDP-Embedding | 0.5040 | 0.535 | 0.5757 | 0.6375 | 0.7246
Adversarial 0.65 0.69 0.718 | 0.724 0.73

Table 2: Comparison between LDP and Adversarial Representation Learning: Using our proposed
framework we compare the utility of LDP and ARL across different values of the privacy parameter

Original Image m Original Image l l Original Image .

Figure 3: Neighborhood for different image datasets. The center image (in translucent red) is the
reconstruction of the original image with nearby images sampled from the embedding space. Note
that there are multiple dimensions and we have illustrated interpolation for only one here.

FMNIST dataset is composed of three fully connected layers with non-linear activations and
dropout.

2. Obfuscator Training: For ARL, we use o = 0.99, for noisy regularization, we use
o = 0.01 and for contrastive regularization, we use A = 1.0 with a margin of 25. All of
these regularizations are trained jointly using Adam optimizer(Kingma & Ba| (2014)).

3. Private Inference: In the this stage we use LipMip(Jordan & Dimakis|(2020)) which is built
upon Gurobi Optimizer(Gurobi Optimization, LLC|(2022))) for solving the Mixed-Integer
programming formulation of local lipschitz constant estimation. For the metrics, we use
dx as infinity norm and dy as ¢;-norm. For the privacy parameters, we use § = 0.05 and
R = 0.5 for MNIST, R = 0.2 for FMNIST and R = 0.1 for UTKFace. The choice of
different R was based on visualizing samples from the training set and evaluating how far
similar looking samples lie in the embedding space.

SSIM MNIST UTKFace

0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0
e=1 0.558 | 0.427 | 0.287 | 0.231 | 0.201 | 0.179 | 0.481 | 0.443 | 0.426 | 0.425 | 0.422 | 0.421
€= 0.648 | 0.553 | 0.414 | 0.328 | 0.275 | 0.229 | 0.507 | 0.475 | 0.442 | 0.439 | 0.428 | 0.426
e=5 | 0.702 | 0.655 | 0.580 | 0.499 | 0.434 | 0.380 | 0.519 | 0.5037 | 0.481 | 0.465 | 0.451 | 0.447
e=10 | 0.710 | 0.700 | 0.656 | 0.610 | 0.560 | 0.517 | 0.519 | 0.5169 | 0.507 | 0.494 | 0.485 | 0.476

Table 3: SSIM metric for reconstruction attack with varying R and e
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Figure 4: Runtime evaluation of local lipschitz computation for different (a) neighborhood radius,
(b) input dimensions, and (c) number of layers. While the runtime increases exponentially with
dimensions, it plateaus with increase in neighborhood radius. Since the input dimensions are same as
embedding dimensions making the algorithm favorable to our analysis.

0y MNIST UTKFace

0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0
e=1 | 0.0775 | 0.0968 | 0.1145 | 0.1204 | 0.1232 | 0.1249 | 0.1304 | 0.1532 | 0.1706 | 0.1731 | 0.1776 | 0.1782
e=2 | 0.0642 | 0.078 | 0.0983 | 0.1091 | 0.1153 | 0.1196 | 0.1126 | 0.1312 | 0.1543 | 0.1645 | 0.1699 | 0.1732
e=5 | 0.0565 | 0.0634 | 0.0749 | 0.0859 | 0.0959 | 0.1031 | 0.1017 | 0.1089 | 0.125 | 0.1388 | 0.148 | 0.1546
e=10 | 0.0549 | 0.0569 | 0.0631 | 0.0697 | 0.0771 | 0.0837 | 0.1001 | 0.1027 | 0.1091 | 0.1182 | 0.1255 | 0.1321

Table 4: ¢1 metric for reconstruction attack with varying R and €

2 MNIST UTKFace

0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0
e=1 | 0.0471 | 0.0613 | 0.0762 | 0.0817 | 0.0847 | 0.0867 | 0.029 | 0.0385 | 0.0464 | 0.0476 | 0.0492 | 0.0498
e=2 | 0.0363 | 0.0478 | 0.0631 | 0.0716 | 0.0773 | 0.0814 | 0.0223 | 0.029 | 0.0387 | 0.0433 | 0.0454 | 0.0471
€=5 0.03 | 0.0354 | 0.0449 | 0.0537 | 0.0618 | 0.0672 | 0.0189 | 0.021 | 0.027 | 0.032 | 0.0358 | 0.0388
e=10 | 0.0291 | 0.0305 | 0.0352 | 0.0407 | 0.0467 | 0.0518 | 0.0184 | 0.0192 | 0.0212 | 0.0243 | 0.0271 | 0.0294

Table 5: /2 metric for reconstruction attack with varying R and e

PSNR MNIST UTKFace

0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0
e=1 61.87 | 60.70 | 59.74 | 59.45 | 59.29 | 59.19 | 64.42 | 63.18 | 62.36 | 62.25 | 62.10 | 62.05
e=2 | 63.04 | 61.80 | 60.57 | 60.02 | 59.68 | 59.47 | 65.59 | 64.43 | 63.16 | 62.66 | 62.45 | 62.29
e=5 | 63.88 | 63.15 | 62.09 | 61.28 | 60.67 | 60.29 | 66.30 | 65.84 | 64.75 | 63.99 | 63.50 | 63.15
e=10 | 64.06 | 63.82 | 63.19 | 62.54 | 61.91 | 61.44 | 66.43 | 66.25 | 65.80 | 65.21 | 64.72 | 64.36

Table 6: PSNR metric for reconstruction attack with varying R and ¢
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