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ABSTRACT

This paper introduces PhyloLM, a method adapting phylogenetic algorithms to
Large Language Models (LLMs) to explore whether and how they relate to each
other and to predict their performance characteristics. Our method calculates a
phylogenetic distance metric based on the similarity of LLMs’ output. The resulting
metric is then used to construct dendrograms, which satisfactorily capture known
relationships across a set of 111 open-source and 45 closed models. Furthermore,
our phylogenetic distance predicts performance in standard benchmarks, thus
demonstrating its functional validity and paving the way for a time and cost-
effective estimation of LLM capabilities. To sum up, by translating population
genetic concepts to machine learning, we propose and validate a tool to evaluate
LLM development, relationships and capabilities, even in the absence of transparent
training information.

1 INTRODUCTION

The Large Language Models (LLMs) landscape is vast and rapidly expanding, comprising both
private and open-access models. Each day a few hundreds of new language models are created on the
huggingface hub among which most will not be benchmarked, and a small minority are transparent
about the training details. Evaluating these models presents challenges due to the sheer volume and
the complexity of assessing their true capabilities. The evaluation methods used today mostly rely on
a multitude of benchmarks, each focused on specific domains like reasoning or question-answering
(Chollet, 2019; Hendrycks et al., 2021; Srivastava et al., 2023). However, tracking LLMs evolution
and progress using benchmarks presents inherent limitations, including the fact that they are rather
domain-specific, meaning that to get a full picture of a model’s capabilities one has to run multiple
costly tests that are prone to contamination (Chang et al., 2023; Deng et al., 2023; Liang et al., 2023).
Moreover, the opacity of algorithmic and training data specifications in many models, adds further
complexity and constraints to monitor progress in LLMs (Liao & Vaughan, 2023).

Our approach stems from the observation that most of the newly released models are not created
ex-nihilo (from scratch). In fact, they rather inherit features from existing ones, such as training
data or initial weights. We reasoned that we could therefore think about LLMs development as
an "evolutionary" process and therefore study their relationships and functional properties with
conceptual and quantitative tools borrowed from genetics.

In the field of Phylogeny, algorithms have been developed that reconstruct evolutionary trees to
understand evolutionary relationships among species (Takezaki & Nei, 1996). The idea of applying
these methods, initially developed for biology, to cultural artefacts is not new. Previous studies
yielded useful insights into the evolution of popular tales, languages, or craft assemblages (Atkinson
et al., 2008; d’Huy, 2013; Gray et al., 2010; Tehrani & d’Huy, 2017; Tehrani & Collard, 2009). We
hypothesize here that LLMs, which are a new kind of cultural artefact (in the sense that they are
productions of humans that convey information about the culture of their creators and users), may
also be studied using similar tools.

Thus, we here apply a conceptually similar approach to LLMs and, by doing so, we make several
contributions. In a first contribution, we introduce an algorithm, PhyloLM, inspired by a simplified
phylogenetic model, but specifically tailored for Large Language Models (LLMs), which core idea is
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Figure 1: Analogy between running human genetic studies and LLMs genetic studies. The
first stage consists in selecting genes (for both humans and LLMs). Then alleles are collected for
each individual in the population and will be used to compare the populations (either populations of
humans or LLMs seen as populations). Finally these data go through the Nei distance computation
(Takezaki & Nei, 1996) that returns a distance matrix that can then be turned into dendrograms using
the NJ algorithm (Saitou & Nei, 1987) in the same way for both humans and LLMs.

to consider that generated tokens are to contexts what alleles are to genes in genetics. This analogy
makes it possible to apply algorithms from the genetics framework to LLMs and to generate distance
matrices and dendrograms. In addition to presenting the underlying theory, we also explore the
hyperparameters of our algorithm to strike a balance between precision and computational efficiency.

In our second contribution, we analyze the resulting phylogenetic trees ("dendrograms") and
confirm that PhyloLM is capable of correctly retrieving known relationships between LLMs and
overall correctly capturing models families and sub-families. Our analysis primarily focuses on
open-access model families (Llama (Touvron et al., 2023a;b), Mistral (Jiang et al., 2023), Bloom
(BigScienceWorkshop et al., 2023), Pythia (Biderman et al., 2023), Falcon (Almazrouei et al., 2023),
OPT (Zhang et al., 2022), Qwen (Bai et al., 2023) and Gemma (Team et al., 2024b) families), where
ground truth information is available, but also provides insights into fine-tuning relationships for
proprietary models (GPT-3 (Brown et al., 2020), 3.5 (Ouyang et al., 2022), 4 (OpenAI et al., 2023),
Claude , Palm (Chowdhery et al., 2022) and Gemini models (Team et al., 2024a)). Finally, in our third
contribution, we examine whether phylogenetic distance can also be used to predict performance in
several benchmarks, thus showing that the utility of PhyloLM extends to the assessment of functional
properties of LLMs.

To sum up, our study illustrates the potential of leveraging methods from genetics to understand
how models evolve, shedding light on their relationships and functional capabilities in a relatively
cost-efficient manner, even in the absence of transparent training information and also without direct
access to the model.

2 METHODS

2.1 TRANSLATING PHYLOGENETIC ALGORITHMS TO LLMS

In the current landscape, LLMs predominantly operate on an autoregressive basis, wherein they learn
the conditional probability denoted as LLMpt|cq. Here, LLM represents the probability learned
by the language model, t signifies a token, and c denotes the context in which to sample token
t. Transposing genetic methods to LLMs involves establishing analogies for the elements of the
phylogenetic analysis, namely genes, alleles, and populations. Drawing a parallel with the notation for
populations in the Nei genetic distance (see Equation 1) (Takezaki & Nei, 1996), P1pa|gq with a an
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Equation 1: Similarity computation with P1 and P2 two populations seen as probability distribution
of alleles a given a gene g estimated empirically in the selected populations. G is the set of genes
considered and AG the set of possible alleles for this gene and matrix S is the similarity matrix
(bounded in [0,1]). In genetics people tend to use a distance matrix D to plot dendrograms derived
from the similarity matrix with this formula DpP1, P2q “ ´ logpSpP1, P2qq (Takezaki & Nei, 1996).
Seen from the autoregressive LLM framework, ’populations’ are LLMs, ’genes’ are contexts and
’alleles’ are the different tokens in the vocabulary : P pa|gq “ LLMpt|cq

allele and g a gene, we propose that LLMs play the role of populations (i.e., the set of the individuals
belonging to a given population); contexts (or "prompts") are aligned to genes (i.e., portions of DNA);
finally, tokens align with alleles (i.e., variants in the DNA sequence).

To substantiate this analogy, consider that, in the realm of genetics, populations are conceptualized
as probability distributions of DNA, represented by P pa|gq, where a stands for specific alleles at
gene locations. Gene-specific alleles are then considered to be probabilistically drawn from the
abstract statistical construct that is the population, akin to context-specific tokens are probabilistically
generated from Large Language Models, expressed as LLMpt|cq (t being a token likely to follow
text c). The generated text can therefore be seen as a thread of DNA, comprised of tokens (alleles)
sampled in contexts (genes) according to a probability distribution defined by the LLM.

To elucidate this crucial point, consider a tokenized text sequence: ’I’ ’_like’ ’_choco’ ’late’. This
sequence can be analogous to a DNA thread represented as ’I_like_chocolate’. Breaking it down,
the allele I corresponds to the gene ϵ (empty text), _like aligns with the gene I, _choco associates
with the gene I_like, and late is linked to the gene I_like_choco. Now, consider another individual
represented by ’I’ ’_prefer’ ’_ice’ ’_cream’. These two individuals share exactly two genes: ϵ, for
which they possess the same allele I, and the gene I, for which they have distinct alleles (_like and
_prefer). They do not share any further genes, as their prefixes diverge beyond this point.

The algorithm is illustrated in Figure 1. The initial step involves collecting model outputs to contexts
(genes). Given a set of LLMs, a set of ’genes’, and the specified number of individuals in each
population (i.e., the number of times the model is queried on each gene refered to as the number of
probes) as N , the models are queried for a single token N times. This process generates the matrix
P , which serves as an approximation of P pa|gq, the proportion of the population with allele a to
gene g. Subsequently, based on this approximation, the similarity matrix S is computed using the
Nei genetic distance formula (Takezaki & Nei, 1996) depicted in Equation 1. The pseudo code of
PhyloLM can be found in Algorithm 1 in Appendix C.

2.2 CHOICE OF THE SET OF GENES

The implementation of phylogenetic algorithms requires selecting specific genes that show enough
evolutionary changes among the species studied to differentiate them, while still retaining enough
similarity to trace relationships between closely related species (Grünwald et al., 2017). If these
genes mutate too quickly and are completely altered between similar species, they will not provide
useful information about their evolution. Conversely, if they are too stable and show no changes
across the species being considered, they are also not informative. These genes must strike a balance
between stability and variation among the species studied.

That is why we need to carefully select genes (i.e., prompt contexts) that could show a moderate
variance between LLMs. Recent LLM development focused a lot on instruction tuning, reasoning and
coding (Brown et al., 2020; Chiang et al., 2023; OpenAI et al., 2023; Taori et al., 2023). Selecting
contexts on these topics might show a relevant variance between generations of language models as
well as finetuning refinements that improved these models on these specific topics.

3
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Furthermore, contexts (’genes’) which are very likely to belong to the training data of these LLMs
can suffer from contamination issues and generate very low variance1. To obviate this issue, we used
contexts (or a ’gene’ set) taken from recent test benchmarks because, in principle, LLMs shouldn’t
be trained on this data. To further assess the robustness of our approach and study the impact of the
choice of the set of ’genes’, we took our contexts from two different test sets: open-web-math (Paster
et al., 2023) and MBXP (Athiwaratkun et al., 2023). They address different capabilities of LLMs:
reasoning and coding, respectively, which are very relevant in recent LLM-related research and are
therefore likely to deliver useful results.

The exact selection of contexts from the benchmarks consisted of randomly and uniformly selecting
lines from the solution column in the datasets and truncating the text to leave it open for LLMs
to complete the sentence. To decide the length of the contexts we need once more to think about
making ’genes’ show a moderate completion variance. If the context is only a few tokens long it may
not be informative enough for LLMs to understand the topic of the context (that is relevant for the
recent evolution of language models as discussed above) but also to follow the logics of the text that
would constrain the generation. On the other hand, making it hundreds of tokens long will induce
additional costs without necessarily improving the variability balance. That is why we decided to
truncate randomly and uniformly between the 20th and 100th characters in each text (5 to 30 tokens
approximately). ’Gene’ examples are shown in Appendix A. More details about the impact of the
gene length can be found in appendix K.1.

2.3 SELECTION OF THE HYPER-PARAMETERS OF THE DISTANCE MATRICES

We devised two complementary analyses to estimate the right hyperparameters to run PhyloLM. The
hyperparameters are the ’gene’ set, the number of probes and sampling parameters from the LLM
(see Appendix B). Testing the gene set is more difficult as testing thousands of different combinations
of genes would come at a very expensive cost. Thus we limited ourselves at 2 parameters of the
gene set : the topic (math and code in this paper) and the size of the gene set G. In this section we
will investigate the impact of G and N in the math gene set, the results for the code gene set are in
Appendix D.

First we investigate how G and N affect the variability of the distance matrix, namely how much the
similarity matrix changes between different estimations. We focus on similarity matrices (the matrix
S in Equation 1) instead of distance matrices at this point as they are bounded in [0,1] making them a
lot easier to plot and compare. Then, once the variance is controlled, what combination of G and N
approximate reasonably well a very high G1 and N 1 distance matrix.

To assess the impact of the number of contexts (’genes’) G and the number of probes/individuals
N for each dataset, the algorithm was executed across a range of gene set sizes G (varying between
16 and 256 genes per run) and individuals N (ranging from 8 to 128) building similarity matrices.
This optimization process, aimed at testing the best values for the algorithm hyperparameters, is
particularly computationally expensive. Therefore it was only run on the 5 smallest OPENAI models
(ada,babbage,text-ada-001,text-babbage-001 and babbage-002), in order to minimize the costs. Thus
similarity matrices in this section are 5 ˆ 5 making it an estimate of what could be a larger distance
matrix at a very low cost.

To investigate the variability of PhyloLM for different combination of hyperparameters, we composed
8 sets of genes of size G, each with different genes. Each set of gene is probed N times to build
a similarity matrix SG,N,i, i P r|0, 7}s representing the independant set of genes of size G used
to generate the matrix with N probes. A variance computation over this set of matrices is finally
performed yielding a matrix V containing the variance of each distance between 2 models : VG,N

2
“

1
8

ř

i

´

SG,N,i ´

´

1
8

ř

j SG,N,j

¯¯2

. The square operator is applied coefficient by coefficient. The

final variability score is the mean value of the coefficients in the matrix vG,N “ µ

ˆ

b

VG,N
2

˙

.

Then we investigated the impact of these hyperparameters when trying to approximate a high precision
matrix. For this purpose, we compute the variance around a very expensive distance matrix SG1,N 1

1To understand this point, imagine using "May the force be with" as context. All models will complete this
sentence with "you", thus making impossible establishing distance matrices between them
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(a) Variability of distance matrices (b) Distance to the high precision matrix

Figure 2: Hyperparameters impact on distance matrices in the math set of genes (a) shows the
variability of distance matrices for different number of genes G and number of probes N in the math
benchmark. Each set of genes of specified size contains different and independent genes from the
other matrices for a total of 8 distance matrix for each data point in the figure. (b) shows the distance
to the high precision matrix made of 2048 genes and N=128 in the math benchmark. Errorbars
represent the standard error of the mean.

with G1 “ 2048 and N 1 “ 128. The gene set for the high precision matrix is independent from the
lower size set of genes used to estimate it. The formula to compute this variance around the high
precision matrix is V 1

G,N
2

“ 1
8

ř

i pSG,N,i ´ SG1,N 1 q
2. The final metric is the mean value in the

matrix v1
G,N “ µ

ˆ

b

V 1
G,N

2

˙

.

2.4 ALIGNMENT OF THE RESULTS ACROSS DIFFERENT TOKENIZATION

In situations where models do not share the same tokenizer, comparing only the first alleles generated
can pose challenges. For instance, if the context is "The president of the US is Joe," and one model
could complete with "Biden" in one token while another could complete with "Bi" "den" in two
tokens they would be considered as different alleles while both LLM meant the same completion.

To mitigate this issue of tokenizer alignment, a proxy approach was employed by only using the first
4 characters of the generated text instead of the first token. Practically, each model was instructed to
generate at least 4 tokens (tokens are at least 1 character long) and the comparison focused on the
first 4 characters in the concatenation of these tokens. In the previous example, the word "Biden"
generated in one token or in two ("Bi" and "den") would have been considered as the same response,
because the first 4 characters ("Bide") constitute the same ’allele’, despite having being tokenized
differently. In other words, we are retokenizing the text using a tokenizer with a vocabulary of words
that are 4 characters long, and then comparing the first token of the generated text with this new
tokenization scheme. An example of the results of such a proxy approach is presented in Appendix A.
Further details about why 4 characters is efficient are discussed in Appendix K.2.

2.5 VISUALIZATION OF THE RESULTS

From a distance matrix obtained by the phylogenetic algorithm it is usual to plot dendrograms
representing a possible evolution between the entities in the distance matrix. For this purpose many
different algorithms exist and we chose the Neighbour Joining (NJ) technique (Saitou & Nei, 1987)
for its simplicity, efficiency and being a common choice in genetics. We plotted unrooted trees as
they are easier to make figures that fit in a paper and are more adapted to LLM evolution than rooted
ones. The analysis of the resulting dendrograms also allowed us to validate the capability of our
algorithm to predict actual relationship between LLMs in cases where the ground truth is known.

2.6 PREDICT BENCHMARK SCORES FROM GENETIC DISTANCE

We explored whether genetic distance can predict model performance by using logistic regression
to estimate benchmark scores of large language models based on their similarity to other models.
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Due to the high dimensionality of the similarity matrix, we reduced the input dimensions to 15 using
Independent Component Analysis (ICA), resulting in 15 parameters to learn from approximately 100
data points per fit. We then applied a sigmoid function to the output to scale the predictions between
0 and 1, corresponding to benchmark scores ranging from 0% to 100%. Since benchmark scores can
be highly correlated within a family of models, we employed a leave-one-family-out method. This
involved training the regressor on all families but one and testing it on the excluded family. A Mean
Squared Error loss was used with an Adam optimizer (learning rate of 10´3).

We tested the benchmarks available on the hugging face open llm leaderboard which includes MMLU,
ARC, Hellaswag, TruthfulQA, Winogrande and GSM8k (HuggingFaceH4) and only included open
access models for which the scores are available on the leaderboard. Thus we didn’t include
proprietary models in this study as, as explained in later sections, distance computation is slightly
biased for these models and benchmark scores are not obtained in the same conditions as in the
leaderboard (number of shots, CoT, ...). The benchmarks used for the ’gene’ set were distinct from
these benchmarks to avoid any type of contamination between the ’alleles’ used to generate genetic
distances and the performance of the models in the considered benchmark tasks.

3 EXPERIMENTS AND RESULTS

3.1 WHAT IS THE IMPACT OF HYPERPARAMETERS ON THE DISTANCE MATRIX?

We first ran the hyperparameters’ optimization process explained in Methods2.3 and plotted the
results in figure 2a left side. This graph shows a clear decrease in the variability as the number of
’genes’, G grows with almost no effect from N . This is interesting : it seems that having different sets
of ’genes’ doesn’t appear to change the similarity matrix as long as there are enough of them (at least
in the open-web-math and mbxp dataset - see Appendix D for the results on the code set of ’genes’).

However this method doesn’t make it possible to find a good N , indeed, the probability for two
models to generate the same token in the same context in only one try is quite low. Therefore, a very
low N will make all models appear particularly different making the similarity matrix look like the
identity matrix yielding unsatisfactory results despite having a low variance. Thus having a N high
enough is required to get a useful similarity matrix and we need to find a better metric but how to
choose it ?

We have just seen that G monitors the variability of the matrix (variability parameter), thus a
similarity matrix with a very high G should be particularly stable across different sets of genes. We
then compared modestly parametrized similarity matrices to study how hyperparameters G and N
influence the difference between a lower precision matrices to a high precision matrix on average
(see Methods 2.3 for the computational details). This new metric should penalize having a low N
leading to similarity matrices close to the identity matrix and may yield more satisfying results.

As shown in Figure 2b, while increasing the number of genes still seems to approximate better high
precision matrix, this time, the number of probes is also very important. Indeed, for each value of N ,
the performance saturates from some G value making less and less improvement when G increases.
Thus, this figure gives an optimal G for a given N in order to approximate the high precision matrix
efficiently with a low cost. The total cost of the algorithm in tokens being proportional to G ˆ N , we
found a good tradeoff between variance and precision around G “ 128 and N “ 32.

The estimated cost to run the algorithm per model is therefore 128 genes ˆ 32 probes “ 4096 queries
of « 20 tokens. As a point of reference, conducting the MMLU benchmark requires around 14,000
queries on significantly longer prompts (« 70 tokens each), making PhyloLM approximately 10
times less expensive in terms of the number of tokens required.

3.2 CAN WE TRACE BACK THE GENEALOGY OF LLMS USING TOOLS FROM GENETICS?

We first examine the results of PhyloLM by analyzing the resulting phylogenic trees (materialized as
dendrograms). However, before dwelling into the results, an important point to understand is that, in
genetics, branches in the tree show probable speciation events that occured in the past, when from an
extinct common ancestor, two (or more) current species (leaves of the tree) emerged. When looking
at LLMs, ’common ancestors’ are not extinct, but rather among the studied ’populations’. Take for
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Figure 3: Phylogenetic tree reconstruction. On the left it is shown the ground truth concerning
the relation of some LLMs of the Mistral family. Right is the reconstruction from the phylogenetic
algorithm on the ’math’ set of genes for the five latest models of this family ("leaves" of the
phylogenetic tree) on which we run PhyloLM. On the right, it is shown the reconstructed phylogenetic
tree PhyloLM on the 5 "leafs" models. The numerical labels (0:3) map the true common ancestors
(on the right, "ground truth") to the inferred ones (on the left, "reconstructed"). It can be seen that the
true and the reconstructed trees are topologically equivalent

z

(a) completion models (b) chat models

Figure 4: Inferred phylogenetic tree of LLMs on the ’math’ set of genes. (a) completion models
inlcude all open source models included in our study and the 14 openai completion models (b) chat
models include additional proprietary models. Completion and chat models were separated because
they are not comparable due to additional prompting from the API. Llama models have been split by
version of the pretrained model and the number of parameters.

instance Mistral 7B that is the common ancestor of OpenChat3.5 and Zephyr 7B Alpha, but still
included in our analysis. Oblivious of this difference, the dendrogram plotting method will put all
models at the ’leaves’ of the tree, while, in fact, some of them (such as Mistral 7B) should be at a
speciation node. As such, without additional information about which model is at a node, it is difficult
to interpret them in the same way as in genetics. Without this important phylogenetic assumption, one
has to bear in mind that what matters (and should be compared with the ground truth) is their relative
distance and position when evaluating the dendrograms resulting from the phylogenetic analysis of
LLMs. Indeed the distance between two models is represented by the distance from their respective
leaves in the dendrogram.

To investigate the capabilities of PhyloLM, let’s first start by respecting this assumption by looking
at a set of 9 models from the Mistral family whose relationships are known because transparently
disclosed by their creators. Out of these 9 models, 5 are leaves in the ground truth dendrogram
(Arc53, 2023; mlabonne, 2023; Tenyx, 2024; Ullah, 2024; Vallego, 2024). Running PhyloLM on
these 5 models getting the distance matrix between them and finally plotting the NJTree we perfectly
get back the ground truth phylogenetic tree (see Fig 3) validating the method. These rooted trees are
not necessarily very stable as the NJ algorithm makes an unrooted tree of the evolution but then has
to choose the root. In Appendix D we show that, on the code genome, the root has been mistakenly
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attributed to model 3 while the structure of the tree is right. That is why we prefer to plot unrooted
trees in the rest of this paper.

3.2.1 GLOBAL DENDROGRAM

LLMs: open-source vs private, completion vs chat Now let’s drop the assumption of not having
’common ancestors’ in the set of LLMs. The LLMs we are investigating here include 111 open
access models spanning from 70M to 176B parameters and 45 closed LLMs. Most modern LLMs
are only accessible through a chat API which naturally adds new tokens to the prompt such as chat
messages markers biasing the completion of the given ’gene’. This can strongly influence PhyloLM
as the algorithm will compare ’alleles’ that do not correspond to the same ’gene’. As such we call
completion models LLMs that were accessed in a way that can generate a completion to a very
specific sequence of tokens without adding more tokens. All the 111 open access models we included
in this study were accessed in this completion setting but among the 45 proprieraty models we only
considered 14 of them to be completion models (see Appendix B for more details). That is why we
split the LLMs and investigated them in 2 groups: completion models (to show the capabilities of
PhyloLM when run in good conditions) and the others on which we suspect additional prompting
manipulation. In both classes of models we found that our algorithm was largely capable of clustering
LLMs into their original families, with only a few specificities discussed below. Dendrograms for
both model classes are in Figure 4.

In the completion group of models we notice very clear Llama clusters separating the family from
other families but also on a more fine grained level, subfamilies of llama linked to the version of the
models and their respective sizes. Similarly clear cluster appear for Mistral, Qwen and Bloom. The
other families such as Falcon, OPT, Pythia and GPT 3 are more mixed with each other and indeed
we know that OPT, Pythia and Falcon-RW-1B (the one the closest to OPT in the tree) were trained
each on their own version of the Common Crawl dataset and thus share a similar training set. Lastly,
some GPT-3 models (ada, babbage and curie) appear to be close to this OPT,Pythia and Falcon-RW
cluster showing they may have been trained on a version of the CommonCrawl as well. On the other
hand, GPT-3.5 completion models including text-davinci-002 and text-davinci-003 seem to share
more with Falcon than other models while davinci-002, babbage-002 and gpt-3.5-turbo-instruct look
more related to Qwen and more precisely its CausalLM finetuning. It is important to understand that
dendrograms in LLMs are just a visualisation tool, much more details can be found in the similarity
matrix shown in Figure 9 Appendix I shows dendrograms with model names of the models (see
Figure 23).

In the chat models group, we also find a lot of structure : Palm and Gemini models are on the same
branch, Gemini seems to be a further improvement on Palm as it is further on the branch (and indeed
they are both from Google showing maybe a sharing of their training data) while claude has its own
branch and Mistral / GPT-3.5 and GPT-4 models show some similarities. Dendrograms with model
names are provided in Figure 23 in Appendix I.

Additional figure are available and discussed in Appendix: similarity matrices are in Figure 9
(Appendix E). Code results are in Appendix D, with the dendrogram in Figure 8 and the similarity
matrix in Figure 10. Additional mixed class figures are in Appendix G: Figure 18 (math), Figure 19
(code), and global similarity matrices in Figures 16 and 17.

3.3 CAN WE INFER MODEL CAPABILITIES FROM THE GENETIC DISTANCE?

We then investigated whether the genetic distance metric can be used to predict the abilities of lan-
guage models. As such we used the benchmark scores from the Huggingface open LLM leaderboard.
The results indicate that the prediction correlates with the true score of the models (Figure 15 (a)). In-
deed, we found that the Pearson’s correlation coefficients (r) of the correlation between the true scores
and the predicted ones was positive and significant for all benchmarks and regardless of the set of
“genes” used to make the prediction (mean˘sem: 0.68˘0.04; Student’s t-test again zero: t(11)=16.0,
p<0.001; Figure 15 (b)). In other terms, within benchmarks and across families, the phylogenetic
distance metric allowed us to predict on average 48.2˘0.03% of the variance of the between-model
benchmark performance. In a control analysis, we also verified that significant correlation was also
achieved within families, thus eliminating the possibility that significant prediction in the previous
analysis was driven by our metric simply capturing the fact that different families have different levels

8
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(a) Fitting scatter plot (b) Predictions for all families

Figure 5: Predictions from the logistic regression compared to ground truth for every model
(leave one family out method) on ARC benchmark. (a) Scatter plot showing the fitting of the
logistic regression on all models but the OPT family (in grey) and the prediction of OPT performance
by the regression (in red). (b) Predictions from the logistic regression for each family. To predict a
family, the regressor fits on all the other families to finally predict the score of the models from the
remaining family (leave one family out method - see (a)).

of performance on average. To do so, we calculated the Pearson correlation between the true and the
predicted scores per benchmark and within each family separately. The results indicate that, even
though for some combinations of families and benchmarks, we obtained small or negative correlation
coefficients (which is unsurprising, since these correlations were sometimes calculated across very
few data points), also in this case, the results were in average positive and significant difference from
zero (0.64˘0.05; t(107)= 20.7, p<0.001; Figure 15 (c)). Within families, the variance explained by
our method amounted to 52.2˘0.03% on average, thus indicating that our metric achieved good
predictive power even when drastically increasing the level of granularity. Individual plots for each
benchmark are shown in Appendix F

4 DISCUSSION

Here we show that an algorithm, inspired by those used in phylogeny, is successful in reconstructing
important aspects of the genesis of LLMs, based solely on their outputs to diverse short queries.
By leveraging the genetic distance matrix, it becomes feasible to robustly trace the relationships
and evolution of models over time. This is particularly evident in the constructed dendrograms,
where clear clusters align with distinct families of LLMs, offering a visual representation of their
evolutionary trajectories or at least their training similarity. It is important to also emphasize the
applicability of these methods to proprietary models. Understanding the fine-tuning relationships and
performance characteristics of private models is often challenging due to limited access to training
details and data. PhyloLM offers a valuable tool for gaining insights into these aspects, by providing
to the research community a more transparent image of how proprietary models evolve.

We also show that the utility of the "genetic" distance, derived from our algorithm, was not limited to
capturing the training relationships, but could be used to infer the performances of models on various
benchmarks. The observation that a logistic regression trained on the genetic distance matrix can
accurately predict benchmark accuracy has the potential to accelerate the evaluation of new LLMs
capabilities in a very computationally efficient manner. Overall, our method provides a robust and
insightful analysis of the history, relationships, and performance of Large Language Models, even in
cases where detailed training information is not publicly available.

9
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Despite these promising results, it is important to acknowledge the inherent limitations of applying
the genetic metaphor to LLMs. Phylogenetic algorithms, traditionally designed for biological analysis
where common ancestors are not included among the tested species, face challenges when applied to
LLMs, where common ancestors are present among the studied models. Furthermore, chat interfaces
complicate the acquisition of reliable genetic material. Nonetheless, this work lays the foundation for
further studies aimed at refining these algorithms to better fit the LLM framework and chat models.
Our study did not explore the effect of temperature, and while our results were consistent across two
sets of genes (and more in Appendix J), examining an even broader range of genes could provide
additional insights. Additionally, while the predictive results for benchmark scores are promising
(roughly 50% of the variance explained) and could be practically applied to estimate the capabilities
of new models, it remains room for improvement (a possible venue being using multiple sets of genes
in the evaluation).

Lastly, similarity matrices serve as versatile tools with numerous applications in the study and opti-
mization of large language models (LLMs). For instance, in our investigation of model quantization,
we discovered that as the size of the model increases, the quantized version more closely approximates
the original model (see Appendix H). Additional fields in which PhyloLM could provide very good
insights could also include model merging (Goddard et al., 2024) and scaling laws but we leave it for
further research.
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APPENDIX

This Appendix provides additional materials for PhyloLM :

• Section A presents examples of ’genes’ and ’alleles’ for 3 LLMs.
• Section B shows the list of models included in this study with finetuning relationships, sizes

and benchmark scores.
• Section C gives PhyloLM pseudo code.
• Section D outlines the results on the code set of genes.
• Section E discusses more in depth similarity matrices results, differences between models

and proposes potential explanations for such observations.
• Section F provides results about benchmark prediction on each benchmark for each family

of models.
• Section G represents dendrograms including both sets of genes together.
• Section H exhibits results on PhyloLM and model quantization.
• Section I gives an overview of dendrograms with the names of the models.
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A EXAMPLES OF GENES AND ALLELES

Genes were extracted from the Open-Web-Math (Paster et al., 2023) and MBXP (Athiwaratkun et al.,
2023) datasets. The Open-Web-Math dataset comprises 31,577 rows, from which we selected the first
20 to 100 characters from the ’text’ column (refer to Section 2.2 for detailed extraction methods). The
MBXP dataset contains 6,814 rows, from which genes were extracted from the ’canonical solution’
column. Twenty of the shortest genes (to fit on the page) in the extracted gene sets are presented in
Table 1.

Table 1: Examples of 20 short genes extracted from both sets of genes and one allele sampled
from 3 LLMs : Llama 1 7B, Llama 2 7B and GPT4 turbo 03/14. ê stands for a newline and ˝

represents a space (except in genes where spaces are packed to only one space for simplicity). Only
the shortest genes have been included to fit in the table. Longer genes are also present in the gene set.

(a) from open-web-math set of genes

Genes Llama1 7B Llama2 7B GPT-4 (0314)
# Ignatius and the P igeo igêê arli

1 $\begingroup$ Close vote vote I’m˝

# Propositional Logic Prop /Mis Prop
[texhax] environment vari 2êDe An˝e

### HomesêêThere are 23˝h 219˝ seve
# Annual income of A a pers B˝an I˝am

# Image Mosaicking¶êê# Impl Writ Imag
# Physics (Version 8.4 )êêP )êêP "Phy

# Solve the linear equatio ...ê ##˝S To˝s
[texhax] \mid Descriptionêê [tex I˝am The˝

# string.replace.regexêêSynt akti acti ax:ê
# Math Help - 2-norm of a ma xtri ##˝P To˝f
# Math Help - matlab code hel peêê plin I’d˝

Thank you for visiting nature gift tour You’
size - Maple HelpêêMTMêê sizeê The˝ \˝beg In˝M

# In observing a Tetrahedron... In˝o In˝o A˝te
Previous issue · Next issue · Volu Arch Arch

# All Questionsêê1,524 questionsê All˝ ##˝A Unfo
## [POJ2411]Mondriaan\’s Dreamêê成 功êê˝ 绩排名： 本题考察

# How to prove that $C=\{x: Ax\le 0\˝}$ 0\˝}$ b\˝}$
(b) from MBXP set of genes

return 4 * a;ê} temp func func
ê double s =˝1; 1(do I’m˝

ê res = []ê for e in˝i in˝r ach˝

ê // TODO: ˝˝˝˝ 15.0 Ther
return n > 0 ? n % 10 0˝:˝ :˝0; +˝Ma

return a + b + c;ê} \˝end </s> func
// Function to hand ˝˝// dete

if (monthnum3 == 6) { ê˝ {ê˝˝ It˝m
ê str = ”.join(tup1 )ê˝˝ if˝t If˝y

ê res = tuple(list(te .fie .out It˝s
ê r = n%mê return (r) prin endê def˝

ê seq_nums = [seq_nums[ star 1:]] i]˝f
double result = 0;ê if˝( doub In˝o

ê string result = null null I˝ca
$isSame = true;ê fore :ê˝˝ ach˝ ach˝

return n * (2 * n - 1)ê} //˝T /**ê func
let sortedArr = arr.sort ((a, {˝a, ((a,

$list1 = $list1 || [];ê $lis $lis if˝(
return !a[0] == !a[n-1];ê} bool int˝ This

string result = "";ê fo obar .ope r˝(i
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B MODELS INCLUDED IN THIS STUDY

Open access models were run on A100 80Gb GPUs (approximately one per 20B parameters) with
default floating precision except for Falcon180B that was downsized from float32 to bfloat16 as it
was too big to fit on 8 GPUs. OpenAI models were accessed through the Openai API. Claude models
were acessed through the Anthropic AI API . Proprietary mistral models were accessed through
the Mistral API. Proprietary Google models were accessed through the VertexAI API. Tokens were
sampled with a temperature of 0.7 with no sampling restriction (topp=1).

The following table 2 includes all models tested in this study with their benchmark scores. Only the
completion models have been included in the benchmark score prediction study. After this table is the
table of chat models that were separated in dendrogram plots and not included in benchmark score
prediction. They can be found in Table 3.

1From HELM (Liang et al., 2023) - no information about prompting -
https://crfm.stanford.edu/helm/classic/latest/#/models

1From GPT-Fathom (Zheng et al., 2023) - ARC(1 shot) - HellaSwag (1 shot) - MMLU (5 shot) - TruthfulQA
(1 shot) - WinoGrande (1 shot) - GSM8K (8 shot CoT) - https://crfm.stanford.edu/helm/classic/latest/#/models

1From HuggingFace (HuggingFaceH4) - ARC(25 shot) - HellaSwag (10 shot) -
MMLU (5 shot) - TruthfulQA (0 shot) - WinoGrande (5 shot) - GSM8K (5 shot) -
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

15

https://openai.com/blog/openai-api
https://www.anthropic.com/api
https://mistral.ai/
https://cloud.google.com/vertex-ai/docs/reference/rest


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 2: List of completion LLMs included in the study. They appear in the similarity matrices
(see Fig 9 10) in the same order as presented in this table. For proprietary LLMs, names are taken
from their respective API. For all the other models, they were downloaded from the huggingface
hub with the same name as given here. B and M stand for billions and millions, H for trained from
scratch and ? means unknown or not officially communicated.

Name Family Size Parent AR HS ML TQ WG GS
llama-7b llama 1-7 7B H 50.9 77.8 35.6 34.3 71.4 8.03
alpaca-7b llama 1-7 7B llama-7b 52.0 76.9 41.4 37.5 69.4 1.44
wizard-7b llama 1-7 7B llama-7b ? ? ? ? ? ?
vicuna-7b-v1.1 llama 1-7 7B llama-7b ? ? ? ? ? ?
vicuna-7b-v1.3 llama 1-7 7B llama-7b 50.4 76.9 48.1 47.0 70.4 5.68
baize-7b llama 1-7 7B llama-7b 48.9 75.0 39.6 41.3 71.1 4.16
chimera-inst-chat-7b llama 1-7 7B llama-7b ? ? ? ? ? ?
llama-13b llama 1-13 13B H 56.1 80.9 47.6 39.4 76.2 7.58
vicuna-13b-v1.1 llama 1-13 13B llama-13b 52.7 80.1 51.9 52.0 74.1 8.64
vicuna-13b-v1.3 llama 1-13 13B llama-13b 54.6 80.4 52.8 52.1 74.8 10.7
openchat_v2 llama 1-13 13B llama-13b 57.1 81.1 50.5 49.5 76.2 9.09
openchat_v2_w llama 1-13 13B llama-13b 57.3 81.2 50.1 50.6 75.9 8.41
chimera-inst-chat-13b llama 1-13 13B llama-13b 55.3 78.9 50.5 50.1 73.9 8.18
llama-2-7b-hf llama 2-7 7B H 53.0 77.7 43.7 38.9 74.0 14.4
Orca-2-7b llama 2-7 7B llama-2-7b 54.0 76.1 56.3 52.4 73.4 14.7
tigerbot-7b-base llama 2-7 7B llama-2-7b 47.6 72.0 45.1 42.2 69.6 10.8
tigerbot-7b-chat llama 2-7 7B tigerbot-7b-base ? ? ? ? ? ?
OpenHermes-7B llama 2-7 7B llama-2-7b 56.1 78.3 48.6 44.9 74.5 5.00
vicuna-7b-v1.5 llama 2-7 7B llama-2-7b 53.2 77.3 50.8 50.3 72.1 8.18
llama-2-13b-hf llama 2-13 13B H 58.1 80.9 54.3 34.1 76.6 22.8
openchat_v3.1 llama 2-13 13B llama-2-13b 59.8 82.8 56.7 44.4 76.2 13.7
openchat_v3.2 llama 2-13 13B llama-2-13b 59.6 82.6 56.6 44.4 76.9 13.6
OpenHermes-13B llama 2-13 13B llama-2-13b 60.1 82.1 56.1 45.9 75.4 11.5
vicuna-13b-v1.5 llama 2-13 13B llama-2-13b 57.0 81.2 56.6 51.5 74.6 11.2
openchat_v3.2_super llama 2-13 13B llama-2-13b 59.8 82.5 55.8 42.2 75.9 13.4
tigerbot-13b-base-v1 llama 2 13 13B llama-2-13b ? ? ? ? ? ?
tigerbot-13b-base-v2 llama 2 13 13B llama-2-13b ? ? ? ? ? ?
tigerbot-13b-chat-v1 llama 2 13 13B tigerbot-13b-base-v1 ? ? ? ? ? ?
tigerbot-13b-chat-v2 llama 2 13 13B tigerbot-13b-base-v2 ? ? ? ? ? ?
tigerbot-13b-chat-v3 llama 2 13 13B tigerbot-13b-base-v2 ? ? ? ? ? ?
tigerbot-13b-chat-v4 llama 2 13 13B tigerbot-13b-base-v2 ? ? ? ? ? ?
bloom-3b bloom 3B H 35.7 54.3 26.5 40.5 57.6 1.51
bloom-7b bloom 7B H 41.1 61.9 26.2 38.8 65.4 1.36
bloomz-3b bloom 3B bloom-3b 36.8 54.9 32.9 40.3 57.1 0.0
bloomz-7b bloom 7B bloom-7b 42.4 63.0 37.8 45.2 64.6 0.07
tigerbot-7b-base-v1 bloom 7B bloom-7b ? ? ? ? ? ?
tigerbot-7b-base-v2 bloom 7B bloom-7b ? ? ? ? ? ?
tigerbot-7b-sft-v1 bloom 7B tigerbot-7b-base-v1 ? ? ? ? ? ?
tigerbot-7b-sft-v2 bloom 7B tigerbot-7b-base-v2 ? ? ? ? ? ?
phoenix-inst-chat-7b bloom 7B bloom-7b ? ? ? ? ? ?
bloom-176b bloom 176B H 50.4 76.4 30.8 39.7 72.0 6.89
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Name Family Size Parent AR HS ML TQ WG GS
pythia-70m pythia 70M H 21.5 27.2 25.9 47.0 51.4 0.30
pythia-160m pythia 160M H 22.7 30.3 24.9 44.2 51.5 0.22
pythia-410m pythia 410M H 26.1 40.8 27.2 41.2 53.1 0.68
pythia-1.4b pythia 1.4B H 31.4 52.8 25.8 38.8 58.0 1.51
pythia-2.8b pythia 2.8B H 36.2 60.6 26.7 35.5 60.2 0.83
pythia-6.9b pythia 6.9B H 41.2 67.0 26.4 35.1 64.0 1.66
pythia-12b pythia 12B H 39.5 68.8 26.7 31.8 64.1 1.74
dolly-v2-3b pythia 3B pythia-2.8b 25.2 26.5 24.6 ? 59.4 1.06
dolly-v2-7b pythia 7B pythia-6.9b 44.5 69.6 25.1 34.8 60.0 1.13
dolly-v2-12b pythia 12B pythia-12b 42.4 72.5 25.9 33.8 60.8 1.21
oasst-sft-4-pythia-12b-
epoch-3.5

pythia 12B pythia-12b 45.7 68.5 26.8 37.8 65.9 3.03

opt-125m opt 125M H 22.8 31.4 26.0 42.8 51.6 0.07
opt-350m opt 250M H 23.5 36.7 26.0 40.8 52.6 0.30
opt-1.3b opt 1B H 29.5 54.5 24.9 38.7 59.7 0.15
opt-2.7b opt 3B H 33.9 61.4 25.4 37.4 61.9 0.22
opt-6.7b opt 7B H 39.1 68.6 24.5 35.1 65.9 0.98
opt-13b opt 13B H 39.9 71.2 24.8 34.0 68.5 1.74
opt-30b opt 30B H 43.2 74.0 26.6 35.1 70.6 2.19
opt-66b opt 66B H 46.3 76.2 26.9 35.4 70.0 1.66
Mistral-7B-v0.1 mistral 7B H 59.9 83.3 64.1 42.1 78.6 37.0
Mistral-7B-Instruct-v0.1 mistral 7B Mistral-7B-v0.1 54.5 75.6 55.3 56.2 73.7 14.2
Mistral-7B-Instruct-v0.2 mistral 7B Mistral-7B-v0.1 63.1 84.8 60.7 68.2 77.1 40.0
zephyr-7b-alpha mistral 7B Mistral-7B-v0.1 61.0 84.0 61.3 57.9 78.6 14.0
zephyr-7b-beta mistral 7B Mistral-7B-v0.1 62.4 84.3 60.7 57.8 77.1 29.0
docsgpt-7b-mistral mistral 7B zephyr-7b-beta ? ? ? ? ? ?
openchat_3.5 mistral 7B Mistral-7B-v0.1 62.4 83.9 62.8 45.4 81.0 25.7
TenyxChat-7B-v1 mistral 7B openchat_3.5 65.6 85.5 64.8 51.2 80.5 63.0
MedChat3.5 mistral 7B openchat_3.5 ? ? ? ? ? ?
neural-chat-7b-v3 mistral 67.1 83.2 62.2 58.7 78.0 1.21
neural-chat-7b-v3-1 mistral 7B Mistral-7B-v0.1 65.6 83.5 62.1 59.4 78.6 20.0
OpenHermes-2-Mistral-
7B

mistral 7B Mistral-7B-v0.1 63.0 83.8 63.4 50.2 ? ?

OpenHermes-2.5-Mistral-
7B

mistral 7B Mistral-7B-v0.1 64.9 84.1 63.6 52.2 78.0 26.0

H4rmoniousAnthea mistral 7B OpenHermes-2.5-
Mistral-7B

? ? ? ? ? ?

NeuralHermes-2.5-
Mistral-7B

mistral 7B OpenHermes-2.5-
Mistral-7B

66.5 84.9 63.3 54.9 78.2 61.3

Mixtral-8x7B-v0.1 mistral 8x7B H 66.3 86.4 71.8 46.8 81.6 57.6
Mixtral-8x7B-Instruct-
v0.1

mistral 8x7B H 70.1 87.5 71.3 64.9 81.0 61.1

Qwen-1_8B qwen 2B H ? ? ? ? ? ?
Qwen-7B qwen 7B H 51.3 78.4 59.8 47.7 72.6 44.9
Qwen-14B qwen 14B H 58.2 83.9 67.7 49.4 76.7 58.9
Qwen-72B qwen 72B H 65.1 85.9 77.3 60.1 82.4 70.4
causallm-7b qwen 7B Qwen-7B 50.0 74.5 61.7 50.1 69.6 22.9
causallm-14b qwen 14B Qwen-14B 56.6 79.0 65.8 47.7 74.9 58.6
Qwen1.5-0.5B qwen 0.5B H 31.4 49.0 39.3 38.2 57.2 16.3
Qwen1.5-1.8B qwen 1.8B H 37.8 61.4 46.7 39.4 60.2 33.5
Qwen1.5-4B qwen 4B H 48.4 71.5 56.5 47.2 66.2 52.2
Qwen1.5-7B qwen 7B H 54.1 78.5 61.9 51.0 71.2 53.5
Qwen1.5-14B qwen 14B H 56.5 81.0 69.3 52.0 73.4 67.6
Qwen1.5-32B qwen 32B H 63.5 85.0 74.2 57.3 81.4 61.1
Qwen1.5-72B qwen 72B H 65.8 85.9 77.2 59.6 83.0 65.7
Qwen1.5-0.5B-Chat qwen 0.5B Qwen1.5-0.5B 30.5 44.0 33.8 42.9 54.6 7.65
Qwen1.5-1.8B-Chat qwen 1.8B Qwen1.5-1.8B ? ? ? ? ? ?
Qwen1.5-4B-Chat qwen 4B Qwen1.5-4B 43.2 69.7 55.5 44.7 64.9 2.42
Qwen1.5-7B-Chat qwen 7B Qwen1.5-7B 55.8 78.5 61.6 53.6 67.7 13.1
Qwen1.5-14B-Chat qwen 14B Qwen1.5-14B 58.7 82.3 68.5 60.3 73.3 30.8
Qwen1.5-32B-Chat qwen 32B Qwen1.5-32B 66.0 85.4 74.9 66.9 77.1 7.05
Qwen1.5-72B-Chat qwen 72B Qwen1.5-72B 68.5 86.4 77.4 63.8 79.0 20.3
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Name Family Size Parent AR HS ML TQ WG GS
falcon-rw-1b falcon 1B H 35.0 63.5 25.2 35.9 62.0 0.53
falcon-rw-7b falcon 7B H ? ? ? ? ? ?
falcon-7b falcon 7B H 47.8 78.1 27.7 34.2 72.3 4.62
falcon-7b-instruct falcon 7B falcon-7b 46.1 70.8 25.8 44.0 67.9 4.70
falcon-40b falcon 40B H 61.9 85.2 56.9 41.7 81.2 21.4
falcon-40b-instruct falcon 40B falcon-40b 61.6 84.3 55.4 52.5 79.7 34.3
falcon-180b falcon 180B H 69.1 88.8 69.5 45.1 86.8 45.9
gemma-2b gemma 2B H 48.3 71.7 41.7 33.0 66.2 16.9
gemma-2b-it gemma 2B gemma-2b 43.9 62.6 37.6 45.8 60.9 5.45
gemma-7b gemma 7B H 61.0 82.4 66.0 44.9 78.4 52.7
gemma-7b-it gemma 7B gemma-7b 51.4 71.9 53.5 47.2 67.9 29.1
gemma-1.1-2b-it gemma 2B gemma-2b-it ? ? ? ? ? ?
gemma-1.1-7b-it gemma 7B gemma-7b-it 60.0 76.1 60.9 50.7 69.6 42.9
codegemma-2b gemma 2B gemma-2b 25.6 39.6 28.3 41.2 53.6 4.62
codegemma-7b gemma 7B gemma-7b 53.9 76.7 56.5 38.0 69.6 45.4
codegemma-7b-it gemma 7B codegemma-7b 53.8 72.5 56.0 48.5 66.2 52.4
ada gpt 3 ? H ? 43.5 24.3 21.5 ? 0.6
babbage gpt 3 ? H ? 55.5 23.3 18.8 ? 0.7
curie gpt 3 ? H ? 68.2 24.3 23.2 ? 1.6
davinci gpt 3 175B H 35.9 22.8 34.3 21.4 48.0 12.1
davinci-instruct-beta gpt 3 175B davinci 40.9 18.9 39.9 5.4 49.6 10.8
text-ada-001 gpt 3 ? ada ? 42.9 23.8 23.2 ? 0.4
text-babbage-001 gpt 3 ? babbage ? 56.1 22.9 23.3 ? 0
text-curie-001 gpt 3 ? curie ? 67.6 23.7 25.7 ? 0.6
text-davinci-001 gpt 3 175B ? 53.2 34.6 46.7 21.7 54.6 15.6
text-davinci-002 gpt 3.5 175B code-davinci-002 75.7 64.9 62.1 47.8 65.5 47.3
text-davinci-003 gpt 3.5 175B ? 79.5 60.4 63.7 52.2 70.6 59.4
babbage-002 gpt 3.5 ? ? ? ? ? ? ? ?
davinci-002 gpt 3.5 ? ? ? ? ? ? ? ?
gpt-3.5-turbo-instruct-
0914

gpt 3.5 ? ? 83.6 82.8 69.6 59.4 68.0 75.8
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Table 3: List of chat LLMs included in the study. They appear in the similarity matrices (see Fig 9
10) in the same order as presented in this table. For proprietary LLMs, names are taken from their
respective API. For all the other models, they were downloaded from the huggingface hub with the
same name as given here. B and M stand for billions and millions, H for trained from scratch and ?
means unknown or not officially communicated.

Name Family Size Parent
gpt-3.5-turbo-instruct-0914 gpt 3.5 ? ?
gpt-3.5-turbo-0301 gpt 3.5 ? ?
gpt-3.5-turbo-0613 gpt 3.5 ? ?
gpt-3.5-turbo-1106 gpt 3.5 ? ?
gpt-4-0314 gpt 4 ? ?
gpt-4-0613 gpt 4 ? ?
gpt-4-vision-preview gpt 4 ? ?
gpt-4-1106-preview gpt 4 ? ?
gpt-4-0125-preview gpt 4 ? ?
claude-2.0 claude ? ?
claude-2.1 claude ? ?
claude-3-haiku-20240307 claude ? ?
claude-3-sonnet-20240229 claude ? ?
claude-3-opus-20240229 claude ? ?
mistral-tiny-2312 (Mistral-7B-v0.1) mistral 7B H

mistral-small-2312 (Mixtral-8x7B-v0.1) mistral 8x7B H

mistral-small-2402 mistral ? ?
mistral-medium-2312 mistral ? ?
mistral-large-2402 mistral ? ?
text-bison@001 palm ? ?
text-bison@002 palm ? ?
text-unicorn@001 palm ? ?
chat-bison@001 palm ? ?
chat-bison@002 palm ? ?
gemini-1.0-pro gemini ? ?
gemini-1.0-pro-001 gemini ? ?
gemini-1.0-pro-002 gemini ? ?
gemini-1.0-pro-vision gemini ? ?
gemini-1.0-pro-vision-001 gemini ? ?
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C PHYLOLM ALGORITHM

Data: genes, N , LLMs

/* Estimate P */
P Ð arraypLLMs, genes, vocab_sizeq #Zero filled array of given shape
for LLM in LLMs do

for gene in genes do
for i ď N do

allele Ð generate_4_characterspLLM, geneq #Generate ’allele’
P rLLM, gene, alleles Ð P rLLM, gene, alleles ` 1

N #Update P
end

end
end

/* Compute similarity matrix S from P */
S Ð arraypLLMs,LLMsq

for LLM1 in LLMs do
for LLM2 in LLMs do

SrLLM1, LLM2s Ð

ř

gPG

ř

aPAg
P rLLM1, g, asP rLLM2, g, as

b

p
ř

gPG

ř

aPAg
P rLLM1, g, as2qp

ř

gPG

ř

aPAg
P rLLM2, g, as2q

end
end

/* Compute distance matrix D from S */
D Ð ´ logpSq

return S,D
Algorithm 1: PhyloLM
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D RESULTS REPLICATION ON THE CODE SET OF GENES

In the main text we discussed the results obtained on the math set of genes and analysed dendrograms
(see Section 3.2.1). Here we discuss results obtained on the code set of genes about hyperparameter
search for PhyloLM, ground truth tree reconstruction and dendrograms. The benchmark prediction
score (Figure 15) already includes code benchmark. For more details about individual benchmarks
and sets of genes, see Appendix F.

(a) Variability of distance matrices (b) Distance to the high precision matrix

Figure 6: Hyperparameters impact on distance matrices in the code set of genes. (a) shows the
variability of distance matrices for different number of genes G and number of probes N in the math
benchmark. Each set of genes of specified size contains different and independent genes from the
other matrices for a total of 8 distance matrix for each data point in the figure. (b) shows the distance
to the high precision matrix made of 2048 genes and N=128 in the math benchmark. Errorbars
represent the standard error of the mean.

D.1 HYPERPARAMETER INFLUENCE

We conducted the same experiments as described in Section 2.3. We first ran the variability analysis
yielding the same results as in the math set of genes (see Figure 6 for code results and 2 for math set
of genes): the variability decreases as G increases but N doesn’t affect very much this value.

About the approximation of the high-precision matrix we get the same result as well : for each
value of N , there is a value of G from which increasing G doesn’t make the approximation very
much better. One difference can be noted : with the math set of genes the approximation completely
saturates while in the code set of genes it still improves a little bit. The same tradeoff of G “ 128
and N “ 32 can be found in this plot.

D.2 PHYLOGENETIC TREE RECONSTRUCTION

When trying to reconstruct part of the Mistral Family we get similar results compared to the math
set of genes (see Figure 7 for the code reconstruction and 3 for the math reconstruction). However,
the root of the tree is not the right one. Indeed, the dendrogram algorithm, NJ (Saitou & Nei, 1987)
constructs an unrooted tree that is then rooted for plotting. Here it failed to find the right root.
Nonetheless, except the root choice, the structure of the tree is identical to the ground truth. That is
also why we choose to plot unrooted trees in the paper as choosing a root for all the LLMs evolution
is very artificial.

D.3 DENDROGRAMS

Let’s first look at the dendrogram (see Figure 8), one can notice very clear clusters for all completion
families like in the math set of genes (see Figure 4). Indeed, all the llama branches are clustered
together, Mistral, Gemma, Pythia, Qwen and Bloom models have very distinct branches in the
phylogenetic tree. On the other hand, GPT-3, OPT and some Falcon models seem to share more than
the other families like in the math similarity matrix. However, they still appear a little more different
than in the math dendrogram. More details are given in the comparison of similarity matrices in
Appendix E.
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Figure 7: Phylogenetic tree reconstruction on the code set of genes. Left: ground truth concerning
the relation of some LLMs of the Mistral family. Right is the reconstruction from the phylogenetic
algorithm on the ’code’ set of genes for the five latest models of this family ("leaves" of the phylo-
genetic tree) on which we run PhyloLM. Right: phylogenetic tree reconstructed by PhyloLM when
given as input the 5 "leaves" models. The numerical labels (0:3) map the true common ancestors (on
the right, "ground truth") to the inferred ones (on the left, "reconstructed"). It can be seen that the true
and the reconstructed trees are very similar to the exception of the root that is 0 in the ground truth
but 3 in the reconstruction. If we reroot the tree as having 0 as root we would get the exact ground
truth like with the math set of genes.

(a) completion models (b) chat models

Figure 8: Inferred phylogenetic tree of LLMs on the ’code’ set of genes. (a) completion models
include 111 open source models included in our study and the 14 openai completion models (b)
chat models include additional proprietary models. Completion and chat models were separated
because they are not comparable due to additional prompting from the API. Leaves represent models
and branches are colored according to model families. Llama models have been split by version of
the pretrained model and the number of parameters. Length of lines from a model (leaf) to another
represents the distance between the two models.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E SIMILARITY MATRICES COMPARISON BETWEEN SETS OF GENES

Let’s now dive in the similarity matrices. It is important to understand that these matrices are a little
noisy due to the value of N and G used (see Section 3.1). Estimating this noise is challenging as
it may change from a LLM to another and is very difficult to represent in figures. By estimating
variance on the smallest gpt models (ada, babbage, text-ada-001, text-babbage-001, babbage-002) we
found the variance of the hyperparameters used in this study to be around 0.04 (see Figure 2a for
the math set of genes and Figure 6 for the code set of genes). A difference of such a tiny value is
barely visible with naked eye on a 0 to 1 scale (the scale in which similarity matrices are plotted)
meaning that every visible difference of shade between models in the similarity matrix is significant.
Of course, this is just an approximation, however, running such a statistical analysis on all models
would be far too expensive in practice thus we stayed with this approximation in the paper.

Let’s first dive into the completion models similarity matrices (see Figure 9 for the math set of genes
and Figure Figure 10 for the code set of genes). First we notice that the code similarity matrix is a lot
brighter than the math similarity matrix. This is likely due to the fact that code is a very formatted
language meaning less options are available to complete a context making all models appear a little
bit more similar when sampling alleles. Now, let’s dive into the matrix one family at a time.

In the next paragraphs, we will present observations from the different distance matrices and contrast
the observations between the two sets of genes. Then, we will hypothesise what are the reasons
why we observe these things and sometimes validate these hypotheses if the models are transparent
enough about the training details. For proprietary models we will only hypothesise drawing a parallel
with validated hypothesis on the open access models that are transparent enough.

Llama The same subfamily clusters can be found in both similarity matrices with, on one side,
tigerbot-7b-base and tigerbot-7b-chat that appear closer to each other than the average llama models.
Indeed, the second one is finetuned from the first one. Additionally, tigerbot-13b-base-v1, tigerbot-
13b-base-v2, tigerbot-13b-chat-v1, tigerbot-13b-chat-v2, tigerbot-13b-chat-v3 and tigerbot-13b-chat-
v4 form an additional cluster as they are based on each other (see Table 2 in Appendix B). We can
also find openchat_v2 and openchat_v2_w in a same subcluster as they are trained on similar data as
well as openchat_v3.1 and openchat_v3.2.

Pythia Very clear finetuning relationships can be found in Pythia in both sets of genes as the dolly
models are based on the respective pythia model with the same size and each of the dolly models
shows an above average similarity with their repective pythia model.

OPT This family is very interesting as in both sets of genes these models appear fairly close to
each other. However, in the code similarity matrix, the family shows a lot of dissimilarity with all
other models which is not the case with the math set of genes showing peculiar coding skills. While
in the math matrix, OPT shares similarities with Pythia and GPT-3, in the code genome only the
smaller gpt-3 family models including ada, babbage, curie, davinci, text-ada-001, text-babbage-001,
text-curie-001 and davinci-instruct-beta (but not text-davinci-001 that is finetuned from davinci-
instruct-beta !) seem to share an above average similarity and all the other models look very different
from OPT. The only information we have is that OPT training data include ThePile but we don’t
know much about GPT-3 models.

Falcon Falcon-RW-1 still shows similarities with the OPT family in both sets of genes but a little
less in the code set of genes. Intriguingly, still in both matrices, the distance between Falcon-7b and
Falcon-7b-instruct (finetuned from Falcon-7B) seems larger than the distance between Falcon-7b and
Falcon-40b suggesting probably an intensive instruct finetuning on coding tasks as it is not found in
the math similarity matrix. The same observation stands for Falcon-40b and Falcon-40b-instruct.

Mistral In the Mistral family, in both sets of genes, we find back the subfamilies used in the tree
reconstruction : zephyr-alpha-7b, zephyr-beta-7b and docsgpt-7b-mistral showing a lot of similarity
while on another hand we have openchat_3.5 with TenyxChat-7B-v1 and MedChat3.5 and finally
OpenHermes-2.5-Mistral-7B with H4rmoniousAnthea and NeuralHermes-2.5-Mistral-7B. Additional
subclusters can be found such as Mixtral models and neural-chat models.
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Qwen Qwen, in both similarity matrices shows very intricate structure but with a lower contrast.
We notice a first subcluster for the original Qwen models with their finetunings in CausalLM. Each
CausalLM shows a better ressemblance to the Qwen model from which they were finetuned. Then
we have the 1.5 family showing a lot of similarity with their chat finetuned counterparts. The smallest
model Qwen1.5-0.5B-Chat shows very little similarity to all other models in the matrix indicating
maybe catastrophic forgetting to some extent during finetuning in both sets of genes. However, in the
code set of genes it shows even more dissimilarity with Qwen1.5-Chat-1_8B while it is the closest
model in the math matrix. We are not entirely sure as to what could be the origin of this observation.

Gemma In the Gemma family there is a lot of finetuning structure in both matrices. Indeed lots
of white dots are far from the diagonal meaning several models show an unusual similarity with
other models. Starting with gemma-2b and gemma-7b appearing very similar even more than their
instruction finetuned counterparts (gemma-2b-it and gemma-7b-it). On the other hand, these finetuned
versions appear to be very similar to the version 1.1 they were finetuned in. Lastly, codegemma-7b
appear to be very close to gemma-2b and gemma-7b but codegemma-2b is less similar to them,
probably because of its lower size that lead to forgetting to some extent.

GPT-3 Finally in the GPT-3 family, still in all matrices, we notice a first cluster corresponding
to the pretrained models ada, babbage, curie and davinci. Intestingly, davinci-instruct-beta an SFT
finetuned model from davinci shows a lot of similarities to davinci in both sets of genes meaning
it might have been finetuned on a low size dataset. Then their finetuned counterparts, text-ada-001,
text-babbage-001, text-curie-001 and text-davinci-001 appear a lot farther from the pretrained models
but we can trace back the model they were finetuned from from the similarity they share with the
GPT-3 pretrained models. Then, in the math set of genes, text-davinci-001, text-davinci-002 and
text-davinci-003 look vaguely similar but on the code genome, the last two appear extremely close
and a little far from text-davinci-001. This might be linked to the fact that text-davinci-002 and
text-davinci-003 have been finetuned from code-davinci-002 (trained on code) and not from davinci
indicating different coding skills between the 1st version and the last 2 while all of them are fairly
different in reasoning tasks (which was likely the object of their respective different finetuning).
Going back to the similarities with OPT, we notice that, in coding tasks, text-davinci-001 doesn’t
show much similarities with OPT models while davinci-instruct-beta appear close to OPT. What
is truely interesting here is that text-davinci-001 is either finetuned from davinci or from davinci-
instruct-beta and this finetuning does not seem to share similarities with OPT on coding skills showing
a potential emphasis on coding skills during this finetuning. Finally, babbage-002, davinci-002 and
gpt3.5-turbo-instruct-0914 appear close to each other. While babbage-002 and davinci-002 might be
pretrained, if we had to find a parent for gpt-3.5-turbo-instruct it would likely be davinci-002 as it is
the closest model to it (but we don’t have enough information to be sure of this).

Now that we have seen the completion models similarity matrix let’s switch to the chat models (see
Figure 12). These models essentially include proprietary models with very little to no transparency
at all about the training details. As such we will have to completely guess the reasons for the
observations we are going to make.

GPT-3.5/GPT-4 We discern two clusters in the GPT family : before 11/06 and after and in both
sets of genes. Indeed the newest versions of gpt-4 show a lot of similarity with each other but are
extremely dissimilar to the previous versions that have a lot with each other. Something important
must have happened at this point in the training methods at OPENAI.

Claude In claude the two generations of models are clearly discernible : claude 1 and 2 on one
side and claude 3 on another side. Once more a big change has occurred in the training methods in
between. Interestingly, the 3rd generation share a lot with bison and gemini models especially in
the code context. More specifically with code-bison@001. This is not the case with the math set of
genes. This may show some similarities in code training sets or data generation using another model.

Mistral In the Mistral API we notice a strong similarity between mistral-small-2402 and mistral-
large-2402 that were probably trained on the same training set. On another hand most models appear
close to the last two gpt models more specifically these two models released on 02/24. On the contrary,
mistral-medium-2312 seems a lot closer to the previous version of gpt-4 and gpt-3.5 showing maybe
a similar inspiration in the training set or data generation using a model.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Palm In the Palm family, we notice that text-bison@002 and code-bison@002 are almost identical
suggesting a finetuning from one to another like it is the case in the gemma family (also from google)
or that it is the same model.

Gemini Finally, models in the gemini family appear almost identical to each other except gemini-
1.0-pro-002. Palm appear fairly close to Gemini in both context showing maybe a shared training
set to some extent (both models are from google) but in the code context they appear very close to
Claude 3 models (maybe a similar training set or data generation using a model).

Figure 9: Similarity matrix of completion LLMs on the math set of genes
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Figure 10: Similarity matrix of completion LLMs on the code set of genes
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Figure 11: Similarity matrix of chat LLMs on the math set of genes
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Figure 12: Similarity matrix of chat LLMs on the code set of genes
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F BENCHMARK RESULTS

In the main paper only MMLU and ARC prediction results were presented. Here we show all the 6
benchmark predictions for both gene sets (Figure 15 for the math set of genes and Figure ?? for the
code set of genes). Statistics are reported in Tables (Table 4 for the math set of genes and Table 5 for
the code set of genes).

(a) ARC (b) Hellaswag

(c) MMLU (d) TruthfulQA

(e) Winogrande (f) GSM8k

Figure 13: Predictions of benchmark performances from the MLP compared to ground truth
for every model(leave-one-out method) for the math set of genes . Each point is the predicted
score of the model when the regressor is trained on data from all other models but the given point.
For the sake of clarity, names of models have been omitted and replace by the color of models from
the dendrogram plot. Lines represent a linear regression between predicted and true labels within
each family.
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Table 4: Statistics on benchmark prediction for the math set of ’genes’. ρ is the pearson correlation
coefficient between the predicted labels and the true labels, p is the p-value for the student-test against
0 and N is the number of datapoint for this analysis.

Benchmark Family ρ p N
llama 0.78 <0.001 21
bloom 0.98 0.002 5
pythia 0.84 0.001 11

opt 0.94 <0.001 8
arc falcon 0.94 0.005 6

mistral 0.70 0.004 14
qwen 0.94 <0.001 18

gemma 0.95 <0.001 8
gpt 0.97 <0.001 6
all 0.82 <0.001 97

Benchmark Family ρ p N
llama 0.66 <0.001 21
bloom 0.94 0.015 5
pythia 0.81 0.002 11

opt 0.89 0.002 8
hellaswag falcon 0.94 0.003 6

mistral 0.79 <0.001 14
qwen 0.89 <0.001 18

gemma 0.56 0.145 8
gpt 0.07 0.806 12
all 0.68 <0.001 103

Benchmark Family ρ p N
llama 0.61 0.002 21
bloom 0.23 0.701 5
pythia 0.18 0.587 11

opt 0.31 0.450 8
mmlu falcon 0.93 0.005 6

mistral 0.90 <0.001 14
qwen 0.87 <0.001 18

gemma 0.96 <0.001 8
gpt 0.97 <0.001 12
all 0.88 <0.001 103

Benchmark Family ρ p N
llama 0.51 0.017 21
bloom 0.54 0.343 5
pythia 0.47 0.161 10

opt 0.58 0.129 8
truthfulqa falcon 0.72 0.102 6

mistral 0.10 0.732 14
qwen 0.79 <0.001 18

gemma 0.23 0.572 8
gpt 0.79 0.001 12
all 0.43 <0.001 102

Benchmark Family ρ p N
llama 0.60 0.003 21
bloom 0.91 0.029 5
pythia 0.92 <0.001 11

opt 0.94 <0.001 8
winogrande falcon 0.93 0.005 6

mistral 0.90 <0.001 13
qwen 0.87 <0.001 18

gemma 0.55 0.149 8
gpt 0.91 0.011 6
all 0.72 <0.001 96

Benchmark Family ρ p N
llama 0.31 0.169 21
bloom 0.94 0.013 5
pythia 0.58 0.058 11

opt 0.76 0.026 8
gsm8k falcon 0.90 0.012 6

mistral 0.63 0.019 13
qwen 0.30 0.215 18

gemma 0.82 0.012 8
gpt 0.77 0.003 12
all 0.66 <0.001 102
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Table 5: Statistics on benchmark prediction for the code set of ’genes’. ρ is the pearson correlation
coefficient between the predicted labels and the true labels, p is the p-value for the student-test against
0 and N is the number of datapoint for this analysis.

Benchmark Family ρ p N
llama 0.39 0.076 21
bloom 0.95 0.012 5
pythia 0.84 0.001 11

opt 0.88 0.003 8
arc falcon 0.97 0.001 6

mistral 0.35 0.210 14
qwen 0.87 <0.001 18

gemma 0.18 0.655 8
gpt 0.84 0.034 6
all 0.76 <0.001 97

Benchmark Family ρ p N
llama 0.70 <0.001 21
bloom 0.94 0.016 5
pythia 0.52 0.095 11

opt 0.93 <0.001 8
hellaswag falcon 0.90 0.014 6

mistral 0.09 0.739 14
qwen 0.83 <0.001 18

gemma 0.15 0.714 8
gpt 0.15 0.637 12
all 0.50 <0.001 103

Benchmark Family ρ p N
llama 0.67 <0.001 21
bloom 0.84 0.072 5
pythia 0.08 0.794 11

opt 0.09 0.831 8
mmlu falcon 0.88 0.020 6

mistral 0.49 0.068 14
qwen 0.93 <0.001 18

gemma 0.50 0.206 8
gpt 0.95 <0.001 12
all 0.79 <0.001 103

Benchmark Family ρ p N
llama 0.71 <0.001 21
bloom 0.65 0.230 5
pythia 0.39 0.256 10

opt 0.27 0.516 8
truthfulqa falcon 0.71 0.106 6

mistral 0.09 0.753 14
qwen 0.68 0.001 18

gemma 0.77 0.024 8
gpt 0.80 0.001 12
all 0.58 <0.001 102

Benchmark Family ρ p N
llama 0.48 0.024 21
bloom 0.87 0.052 5
pythia 0.71 0.013 11

opt 0.90 0.001 8
winogrande falcon 0.88 0.020 6

mistral 0.53 0.062 13
qwen 0.75 <0.001 18

gemma 0.08 0.839 8
gpt 0.74 0.092 6
all 0.50 <0.001 96

Benchmark Family ρ p N
llama 0.20 0.377 21
bloom 0.52 0.359 5
pythia 0.39 0.229 11

opt 0.60 0.110 8
gsm8k falcon 0.83 0.040 6

mistral 0.44 0.127 13
qwen 0.39 0.103 18

gemma 0.58 0.124 8
gpt 0.87 <0.001 12
all 0.70 <0.001 102
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(a) ARC (b) Hellaswag

(c) MMLU (d) TruthfulQA

(e) Winogrande (f) GSM8k

Figure 14: Predictions of benchmark performances from the MLP compared to ground truth
for every model(leave-one-out method) for the code set of genes . Each point is the predicted score
of the model when the regressor is trained on data from all other models but the given point. For
the sake of clarity, names of models have been omitted and replace by the color of models from the
dendrogram plot. Lines represent a linear regression between predicted and true labels within each
family.
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Figure 15: Predictions from the logistic regression compared to ground truth for every model
(leave one family out method). (a) Scatter plot of the correlation between the true scores in six
benchmarks (names are given on the left of the plot) against the predicted scores using our methods
based on the genetic distance calculated on either the “code” (*_C) or the “math” (*_M) set of
“genes" (the plot presents individual LLMs as points and linear regression lines; colors of the panel
correspond to the colors of the benchmarks’ names). (b) Individual Pearson’s correlation coefficients
of the correlation between true and predicted scores across 6 benchmarks x 2 set of genes (leading to
12 combinations). (c) Individual Pearson’s correlation coefficients of the correlation between true
and predicted scores computed within each family and benchmarks (leading to 108 combinations).
In (b) and (c) the horizontal line represents the mean, the dark vertical bar the standard error of the
mean, the box delimitates the confidence interval and points are plotted within a probability density
function.
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G GLOBAL FIGURES

In the main paper we claimed that separating completion and chat models is important as they do
not return the allele to the same gene. Indeed, many private models add additional tokens to the
prompt such as message markers for user and assistant that will be concatenated to the gene such that
the allele returned doesn’t correspond to the same gene as completion models. We still plotted the
similarity matrices (see Figures 16 and 17) and dendrograms (see Figures 18 and 19) to show that,
indeed, it doesn’t capture the families very well.

As explained in the main text we can see that the Mistral 7B model prompted in a completion manner
doesn’t appear close to the same model from the Mistral API prompted in a chat format. A possible
improvement to PhyloLM would be to prompt all completion models in a chat format to see whether
it bridges the gap between completion and chat models. However depending on the prompting
technique, some models are finetuned to interact with a specific message token whereas others might
be more familiar with another prompting technique which could bias the comparison.

Looking at the figures (see Figure 16 for the math set of genes and Figure 17 for the code set of
genes), one can see that, indeed, the similarity between completion and chat models (the separation
starting at the second half of the gpt-family) is very low except for text-bison@001 and the first few
gpt-3.5 and gpt-4 models for both sets of genes (maybe even clearer for the code set of genes). This
can be seen further in the dendrograms as the chat models are all on the same branch and, despite
having a lot of structure when plotting only the chat models dendrogram (see Figure 4 for the math
set of genes and Figure 8 for the code set of genes) here not much is to be seen. Indeed, one has to
bear in mind that the phylogenetic tree vizualisation plots in a 2D space information coming from
a 150 dimensional space and is influenced by the variance in all the models to be plotted. As such,
plotting models that are too different will lead to a vague representation while plotting a very specific
set of models can lead to very precise discrimination in the history of the models (see Figure 3 for
phylogenetic reconstruction from the math set of gene and Figure 7 from the code set of genes). That
is why we splitted both types of models as the technical limitations linked to the interaction with
some proprietary LLMs doesn’t make it possible to extract precise genetic information from these
models biasing the completion models from which we have precise genetic information.
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Figure 16: Similarity matrix with all models (completion and chat) at once on the math set
of genes. All models included are shown in Appendix B. Purple lines split completion from chat
models.
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Figure 17: Similarity matrix with all models (completion and chat) at once on the code set of
genes. All models included are shown in Appendix B. Purple lines split completion from chat models.
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Figure 18: Dendrogram with all models (completion and chat) at once on the math set of genes.
All models included are shown in Appendix B.
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Figure 19: Dendrogram with all models (completion and chat) at once on the code set of genes.
All models included are shown in Appendix B.
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H PHYLOLM AND MODEL QUANTIZATION

Quantization of models has become very common the in the LLM field as it makes it possible to run a
very large model on a rather modest hardware. However this procedure relies on simplifying the inner
computations of the model raising many concerns about whether the quantized version is as reliable
as the original version. As such, we investigated the Qwen family of models with quantization. They
provide a GPTQ 4 bit, GPTQ 8bit and AQW 4 bit version of all their chat models from the family 1.5
(Bai et al., 2023; Frantar et al., 2023; Lin et al., 2024). We computed the similarity matrix for all
the models in the family (except the 32B version as all quantized models weren’t online at the time
of the study) and compared the similarity with respect to their 3 quantized versions. The similarity
matrix between these models is shown in Figure 21 for the math genes and 22 for the code genes.
The authors did not communicate on the hyperparameters used to quantize these models aside from
the number of bits

Interestingly, in the Qwen 1.5 family release, the quantized version the closest to the original model is
GPTQ 8bit followed closely by the 4bit and finally by the AWQ a lot farther. This observation stands
for all the models in the family. However, intriguingly, the larger the model the less quantization
seem to affect the distance to the original model (see Fig 20 - t(5)= 21.8 (p<0.001)).

Figure 20: Evolution of the similarity with the original model for all quantized Qwen1.5 Chat
models. Each curve represent the evolution of similarity with the original model for each quantization
method depending on the size of the model. All models included come from the Qwen1.5 huggingface
repository including the quantized versions (). Qwen1.5 32B Chat models are not included here as
not all quantized versions were accessible at the time of the study.
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Figure 21: Similarity Matrix between Qwen 1.5 Chat models and several quantized versions on
the math set of genes.. For the sake of simplicity only the size of the models have been included in
the legend for the original Qwen 1.5 Chat models and the quantization method as well as the size of
the quantization for the quantized versions. All models included come from the Qwen1.5 huggingface
repository including the quantized versions (). Qwen1.5 32B Chat models are not included here as
not all quantized versions were accessible at the time of the study.
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Figure 22: Similarity Matrix between Qwen 1.5 Chat models and several quantized versions on
the code set of genes.. For the sake of simplicity only the size of the models have been included in
the legend for the original Qwen 1.5 Chat models and the quantization method as well as the size of
the quantization for the quantized versions. All models included come from the Qwen1.5 huggingface
repository including the quantized versions (). Qwen1.5 32B Chat models are not included here as
not all quantized versions were accessible at the time of the study.
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I BIG DENDROGRAMS

Dendrograms contained in the main text do not include model names for the sake of clarity as most
of them would overlap. For the sake of clarity, we include here large vectorial figures of these
corresponding dendrograms with the names so that readers can zoom in to see better where are the
individual models in the dendrograms. Figure 23 shows the math based dendrogram while Figure 24
shows the code based dendrogram.

(a) completion models

(b) chat models

Figure 23: Inferred phylogenetic tree of LLMs on the ’math’ set of genes with the names. (a)
completion models inlcude all open source models included in our study and the 14 openai completion
models (b) chat models include additional proprietary models. Completion and chat models were
separated because they are not comparable due to additional prompting from the API. Llama models
have been split by version of the pretrained model and the number of parameters. Names are very
small but this is a vectorial figure : readers are encouraged to zoom in when reading from a computer.
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(a) completion models

(b) chat models

Figure 24: Inferred phylogenetic tree of LLMs on the ’math’ set of genes with the names. (a)
completion models inlcude all open source models included in our study and the 14 openai completion
models (b) chat models include additional proprietary models. Completion and chat models were
separated because they are not comparable due to additional prompting from the API. Llama models
have been split by version of the pretrained model and the number of parameters. Names are very
small but this is a vectorial figure : readers are encouraged to zoom in when reading from a computer.
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J OTHER SETS OF GENES

The main text presents an extensive evaluation of 2 sets of genes : one based on reasoning and the
other on code. Choosing a set of gene is asking a question to the group of LLMs studied. In the
main text we wanted to investigate the phylogeny of language models so we tested them on skills that
have evolved a lot recently. Here we include results on other sets of genes by asking other questions
like language spoken, chat interaction familiarity and finally another gene set about more general
knowledge.

J.1 CHINESE POETRY GENES

We wanted to test the language spoken by various LLMs so we used a set of genes extracted from
huggingface - erhwenkuo/poetry-chinese-zhtw using the same pipeline as presented in the main text
in section 2.2 but cutting around the 5th character instead of 20-100 as chinese characters are much
more informative than latin characters. The similarity matrix show a very little contrast between
models from the same family for except Qwen and Bloom, known to have been trained on Chinese.
Interestingly, Mistral also shows little contrast as well as tigerbot models finetuned from llama (that do
not seem to know Chinese) appear to be quite close to bloom models and its own tigerbot finetunings
(see Figure 25). When visualizing the matrix with dendrogram the major axis in the dendrogram
looks very linked to the ability to write Chinese with the right models in the Figure 26 being the ones
that show the most contrast in the matrix. The left models show very little contrast and are not known
to speak chinese.

J.2 CHAT-STYLE GENES

We also tested genes from the reasoning gene set but with additional chat prompting to see if we can
spot models that have been finetuned with a chat format. New genes have directly been obtained from
the original math genes discussed in the main text by adding additional prompting around them :

User:[Reasoning gene]\n Assistant:

Results in Figure 27 show much variance within the families which appears to be a bimodal distribu-
tion. To better visualize it we plotted the dendrograms with colors of families but also from whether
they are explicitely trained for chat-based interactions (see Fig 28). When looking at families we
notice that are much more split in the dendrogram compared to previous results without the chat
prompting (compare with Figure 4 - completion models). When looking at whether the models have
been exposed to chat-based interactions during training we notice a more clear separation in the
dendrogram. Indeed the bottom part of the plot only includes models not explicitely trained on chat
based interactions while the top part is essentially composed of models trained for such interactions.

J.3 WIKIPEDIA

Lastly we wanted to see if it was still possible to reconstruct the phylogeny of LLMs not using
classical finetuning topics. We used a the wikimedia/wikipedia dataset from huggingface and reused
the same pipeline as presented in the main text in section2.2 to extract ’genes’ from the dataset. The
similarity matrix in Figure 30 shows patterns very similar to what we observed on math or code in
the main text. Similarly, the dendrogram (see Figure 29) splits extremely well the different families
showing that even more sets of genes can be used to study the evolution of LLMs.

44

https://huggingface.co/datasets/erhwenkuo/poetry-chinese-zhtw
https://huggingface.co/datasets/wikimedia/wikipedia


2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Figure 25: Similarity matrix of some completion LLMs on the chinese poetry set of genes.
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Figure 26: Inferred phylogenetic tree of LLMs on the chinese poetry set of genes. All models
included are completion models. Llama models have been split by version of the pretrained model
and the number of parameters.
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Figure 27: Similarity matrix of some completion LLMs on the chat version of the math set of
genes.
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Figure 28: Inferred phylogenetic tree of LLMs on the chat version of the math set of genes
with coloring from families and chat interaction training. Left shows the dendrogram colored
with family colors and the right plot shows the same dendrogram but with colors indicating whether
they have been explicitely trained to be familiar with chat interations. All models included are
completion models. Llama models have been split by version of the pretrained model and the number
of parameters.

Figure 29: Inferred phylogenetic tree of LLMs on the chinese poetry set of genes. All models
included are completion models. Llama models have been split by version of the pretrained model
and the number of parameters.
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Figure 30: Similarity matrix of some completion LLMs on the chinese poetry set of genes.
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K ADDITIONAL ANALYSES OF GENE SETS’ HYPERPARAMETERS

K.1 GENE LENGTH

In section 2.2 we presented a pipeline to sample genes and explained that we truncated text coming
from test benchmarks somewhere between the 20th and the 100th character. This choice is arbitrary
and we provide here more precisions about the impact of the length of genes. We took a subset of
LLM families included in the study and computed a gene set using the same pipeline as presented in
the main text but with either only 5 characters, 200 characters or 1000 characters. We plot here the
similarity matrices and phylogenetic trees (Figure 31) made from these genes. For short genes the
matrix is a little darker than for longer genes. However, the similarity matrix doesn’t seem to change
very much with gene length from 20 to 100 characters long (main text configuration) and all 4 sets
lead to good family clustering in the dendrograms. We conclude that the length of the gene doesn’t
impact very much the reconstruction and thus it is probably better to keep rather short genes in order
to avoid unnecessary costs when running the algorithm.

K.2 COMPLETION LENGTH

We also tested the impact of the number of characters to generate after each gene. Generating only 1
character will increase the likelihood for 2 models to generate the same thing (even if they meant
something different but starting with the same character) thus the similarity matrix will be a lot
brighter in general as models appear more similar. On the other hand, letting the LLM generate 20
characters is a lot more likely to produce generations that do not match leading to a similarity matrix
a lot darker.

A similarity matrix with low contrast (too bright or too dark) makes all the differences between
models in a very low numeric range. Knowing these matrices are a little noisy (see Figure 2b in
section 2.2) it is better to have a contrast as high as possible in order to better visualize similarities
between models.

Thus we computed the RMS contrast of the matrix (standard deviation of the similarity matrix
including all the parameters but the diagonal) and plotted its value from 1 character long completion
to 19 characters long completions. The results in Figure 32 show an optimal contrast for a completion
length somewhere between 2, 3 and 4 characters.
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(a)

(b)

(c)
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(d)

Figure 31: Impact of the number of characters in the gene compared in each generation on
similarity matrices Similarity matrices only include Llama, Pythia, OPT, Mistral and Qwen families.
(a) is the similarity matrix for only 5 character long genes (b) is for 20 to 100 characters long genes
(like in the main text), (c) is for 200 characters long genes and finally (d) shows the similarity matrix
for 1000 characters long genes.
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(a) Similarity matrix for 1 character long completions (b) similarity matrix for 4 character long completions

(c) similarity matrix for 19 character long completions
(d) Evolution of the RMS contrast for all lenghts be-
tween 1 and 19 characters.

Figure 32: Impact of the number of characters compared in each generation on similarity
matrices Similarity matrices only include Llama, Pythia, OPT, Mistral and Qwen families.
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