
Published as a Tiny Paper at ICLR 2024

NONLINEAR MODEL REDUCTION FOR OPERATOR
LEARNING

Hamidreza Eivazi, Stefan Wittek & Andreas Rausch
ISSE, Technical University of Clausthal, 38678 Clausthal-Zellerfeld, DE
{he76,stefan.wittek,andreas.rausch}@tu-clausthal.de

ABSTRACT

Operator learning provides methods to approximate mappings between infinite-
dimensional function spaces. Deep operator networks (DeepONets) are a notable
architecture in this field. Recently, an extension of DeepONet based on model re-
duction and neural networks, proper orthogonal decomposition (POD)-DeepONet,
has been able to outperform other architectures in terms of accuracy for several
benchmark tests. We extend this idea towards nonlinear model order reduction by
proposing an efficient framework that combines neural networks with kernel prin-
cipal component analysis (KPCA) for operator learning. Our results demonstrate
the superior performance of KPCA-DeepONet over POD-DeepONet.

1 INTRODUCTION

Operator learning. Partial Differential Equations (PDEs) are a fundamental mathematical tool
for describing and analyzing physical phenomena that evolve in time and space (Brunton & Kutz,
2023). Solving the so-called parametric PDEs requires repeated operation of an expensive forward
model (e.g. finite element methods (Hughes, 1989)) for every instance of the PDE, which demands
a formidable cost. Recently, a new branch of ML research (the so-called operator learning) has
made substantial advances for solving parametric PDEs by providing methods for learning oper-
ators, i.e. maps between infinite-dimensional spaces (Kovachki et al., 2023). Operator networks
are, by construction, resolution-independent; the model can provide solutions for any arbitrary in-
put coordinate. DeepONet (Lu et al., 2019; 2021) and its POD-based extension (POD-DeepONet)
(Lu et al., 2022), Fourier neural operator (FNO) (Li et al., 2020), and PCA-based neural networks
(PCANN) (Bhattacharya et al., 2020) are among successful operator learning approaches.

Our contributions. POD-DeepONet proposed by Lu et al. (2022) follows the idea of PCANN
(Bhattacharya et al., 2020) for employing POD to represent functions. In POD-DeepONet, the trunk
network of the DeepONet is replaced by a set of pre-computed POD bases obtained from the training
data. However, POD is a linear decomposition technique and its ability to represent functions may
be limited, especially for complex high-dimensional functions. In this contribution, we introduce
kernel-PCA DeepONet (KPCA-DeepONet) as an efficient framework to combine nonlinear model
reduction with operator learning.

• The KPCA-DeepONet is the first work that benefits from kernel methods and nonlinear
model reduction techniques for learning operators.

• KPCA-DeepONet provides a non-linear reconstruction using kernel ridge regression.
• Our method provides less than 1% error, the lowest error reported in the literature, for the

benchmark test case of the Navier–Stokes equation.

2 METHODOLOGY

Let us consider U and V as two separable Banach spaces and assume that G : U 7→ V is an arbitrary
(possibly nonlinear) operator. We consider a setting in which we only have access to partially
observed input/output data {ui, vi}Ni=1 as N elements of U × V such that

G(ui) = vi, for i = 1, · · · , N. (1)

1

Published as a Tiny Paper at ICLR 2024

Figure 1: Comparison of the proposed KPCA-DeepONet (orange, ■) and POD-DeepONet (blue,
•). Lines and shades indicate mean and standard deviation, respectively, over 5 independent trials.

The input function u is defined on the domain D ⊂ Rq and the output function v is defined on the
domain D′ ⊂ Rq′ . Moreover, we consider P and Q as two linear and bounded evaluation operators
such that

P : u 7→ (u(x1), u(x2), · · · , u(xn))
T and Q : v 7→ (v(y1), v(y2), · · · , v(ym))T , (2)

where u(xi) ∈ R, v(yi) ∈ R, and {xi}ni=1 and {yi}mi=1 indicate two sets of collocation points in
the domains D and D′, respectively. Considering Ui = P(ui) and Vi = Q(vi), our goal is to learn
an approximation of G from the training dataset {Ui, Vi}Ni=1. We refer to appendix A.1 and Lu et al.
(2022) for details on DeepONet and POD-DeepONet.

KPCA-DeepONet. A diagram of our method is depicted in appendix A.2 figure 2. Let kv , kz be
kernel functions. The KPCA bases of the output function v are computed by performing eigende-
composition on Kv = kv(Vi, Vj) obtained from the training data. We denote the coefficients of the
first p KPCA basis of vi as zi ∈ Rp. The reconstruction of vi from zi is obtained through a kernel
ridge (ℓ2-regularized) regression h : z 7→ v following the representer theorem (appendix A.3) for
achieving an optimal solution (Schölkopf & Smola, 2018). The branch network learns the mapping
from the input function Ui to the coefficients of the KPCA basis zi from data. Thus, the output of
KPCA-DeepONet can be written as

G(u)(y) ≈
N∑
i=1

αi(y) kz(
p∥∥

k=1

bk(U), zt
i) + ϕ0(y), (3)

where N denotes the number of training samples, {b1, b2, · · · , bp} are the p outputs of the branch
net, zt

i is the projection of the i-th output function Vi of the training data on the p KPCA bases, and
ϕ0 is the mean function. αi are the weights of the kernel ridge regression. ∥ indicates concatenation.
Similar to ideas in POD-DeepONet and PCANN, we interpolate the coefficients of the kernel ridge
regression to obtain αi(y) and satisfy the discretization-invariance of the output function. The
KPCA bases are only required for training.

3 NUMERICAL EXPERIMENTS

We compare the proposed KPCA-DeepONet with POD-DeepONet on a 1D nonlinear parametrized
function taken from (Chaturantabut & Sorensen, 2010), the regularized cavity flow (Lu et al., 2022),
and the Navier–Stokes equation (Lu et al., 2022). We evaluate the performance of the networks by
computing the ℓ2 relative error ε of the predictions; we perform five independent training trials to
compute the mean error and the standard deviation for each test. For POD-DeepONet, we rescale
the output as suggested by Lu et al. (2022). Figure 1 summarizes the results for different sizes of
the latent space p, showing the superior performance of KPCA-DeepONet. For a more detailed
comparison and discussion on computational cost, we refer to appendices A.4 and A.7, respectively.

4 CONCLUSIONS

Our results show that employing kernel methods and nonlinear model reduction techniques, i.e.
KPCA and kernel ridge regression, combined with DeepONet can provide a more accurate frame-
work for learning operators. The kernel ridge regression employed in KPCA-DeepONet for the
reconstruction of the output function can be performed efficiently due to the low dimensionality of
the problem in the latent space. Since the reconstruction is nonlinear, our method can be extended
for operator learning of PDEs with discontinuities in the future.

2

Published as a Tiny Paper at ICLR 2024

ACKNOWLEDGEMENTS

All the codes employed for developing KPCA-DeepONet are released as open-source on GitHub-
repository https://github.com/HamidrezaEiv/KPCA-DeepONet. Hamidreza Eivazi’s research was
conducted within the Research Training Group CircularLIB, supported by the Ministry of Science
and Culture of Lower Saxony with funds from the program zukunft.niedersachsen of the Volkswagen
Foundation.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model re-
duction and neural networks for parametric PDEs. arXiv preprint arXiv:2005.03180, 2020. doi:
10.48550/arXiv.2005.03180.

Steven L. Brunton and J. Nathan Kutz. Machine learning for partial differential equations. arXiv
preprint arXiv:2303.17078, 2023. doi: 10.48550/arXiv.2303.17078.

Saifon Chaturantabut and Danny C. Sorensen. Nonlinear model reduction via discrete empirical
interpolation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010. doi: 10.1137/
090766498.

Thomas J. R. Hughes. The finite element method: Linear static and dynamic finite element analysis.
Computer-Aided Civil and Infrastructure Engineering, 4(3):245–246, 1989. doi: https://doi.org/
10.1111/j.1467-8667.1989.tb00025.x.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2023. doi: 10.48550/arXiv.2108.08481.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020. doi: https://doi.org/10.48550/arXiv.2010.
08895.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. doi: 10.48550/arXiv.1711.05101.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019. doi: 10.48550/arXiv.1910.03193.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021. doi: 10.1038/s42256-021-00302-5.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engi-
neering, 393:114778, 2022. doi: https://doi.org/10.1016/j.cma.2022.114778.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. The MIT Press, 06 2018. ISBN 9780262256933. doi:
10.7551/mitpress/4175.001.0001.

3

https://github.com/HamidrezaEiv/KPCA-DeepONet

Published as a Tiny Paper at ICLR 2024

A APPENDIX

A.1 DEEP OPERATOR NETWORKS (DEEPONETS)

Let us consider a stacked DeepONet with bias (Lu et al., 2019). A DeepONet consists of two sub-
networks, i.e., a trunk network and a branch network. The trunk net takes the coordinates as the
input and the branch net takes a discretized function U as the input. The operator G that maps the
input function U to the output function v can be approximated as

G(u)(y) ≈
p∑

k=1

bk(U)tk(y) + b0, (4)

for any point y in D′, where b0 ∈ R indicates a bias, {b1, b2, · · · , bp} are the p outputs of the branch
net, and {t1, t2, · · · , tp} are the p outputs of the trunk net. The trunk net automatically learns a set
of bases for the output function v from the training data. In POD-DeepONet (Lu et al., 2022), the
trunk net is replaced by a set of POD bases, and the branch net learns their coefficients. Thus, the
output can be written as

G(u)(y) ≈
p∑

k=1

bk(U)ϕk(y) + ϕ0(y), (5)

where {ϕ1, ϕ2, · · · , ϕp} are the POD bases of v and ϕ0 is the mean function.

A.2 KPCA-DEEPONET DIAGRAM

U V

Rn RmRp

G

P

b

Q

f

h

Figure 2: A diagram of the KPCA-DeepONet operator learning setup summarizing various maps of
interest. G is the operator we want to learn. P and Q are the evaluation operators, b is the mapping
by the branch network, f is the projection on the KPCA basis, and h is the mapping by the kernel
ridge regression. The red color indicates those mappings that are only required for training.

A.3 THE REPRESENTER THEOREM.

Theorem A.1 Representer theorem (Schölkopf & Smola, 2018): Let Ω : [0,+∞) 7→ R be strictly
increasing and let L be a loss function. Consider the optimization problem

min
f∈F

L(zi, Vi, f(zi)) + λΩ(||f ||2F), (6)

where F is a reproducing kernel Hilbert spaces (RKHS) with kernel kz , and λ > 0. Then, any
optimal solution has the form of h(·) =

∑N
i=1 αikz(·, zi), where αi are the data-dependent weights.

A.4 FURTHER EXPERIMENTAL RESULTS

In this section, we present further results obtained from our experiments and compare them to the
results reported in Lu et al. (2022). The ℓ2 relative errors obtained from the best models are reported
in table 1. Results from Lu et al. (2022) correspond to the best model or extension of a model.

Figures 3 and 4 illustrate the reference data, the prediction of KPCA-DeepONet, and the absolute
error of the prediction for the Navier–Stokes and cavity flow problems, respectively. ·̃ indicates the
KPCA-DeepONet prediction. Note that for the cavity flow problem, the operator network outputs
two functions corresponding to the velocity in x and y directions, indicated by vx and vy , respec-
tively, in figure 4.

4

Published as a Tiny Paper at ICLR 2024

Table 1: The ℓ2 relative errors ε obtained from different operator networks. Results for models
marked with * are taken from Lu et al. (2022).

Models 1D nonlinear Cavity flow Navier–Stokes

KPCA-DeepONet 0.03± 0.00% 0.05± 0.00% 0.96± 0.05%
POD-DeepONet 0.03± 0.00% 0.15± 0.03% 1.15± 0.02%
POD-DeepONet∗ – 0.33± 0.08% 1.36± 0.03%
DeepONet∗ – 1.20± 0.23% 1.78± 0.02%
FNO∗ – 0.63± 0.04% 1.81± 0.02%

Figure 3: KPCA-DeepONet prediction against the reference data for one sample of the test dataset
for the Navier–Stokes equation. ·̃ indicates the KPCA-DeepONet prediction.

Figure 4: KPCA-DeepONet prediction against the reference data for one sample of the test dataset
for the cavity flow. ·̃ indicates the KPCA-DeepONet prediction.

A.5 TEST SETUP

The data size of each problem is reported in table 2. We refer readers to section 5.6. of Lu et al.
(2022) for a detailed description of the problem setup for the Navier–Stokes equation in the vorticity-
velocity form, section 5.7. of Lu et al. (2022) for the regularized cavity flow (steady) problem, and
section 3.3.1. of Chaturantabut & Sorensen (2010) for the 1D nonlinear parametrized function. Note
that for the 1D nonlinear problem, the goal is to learn a resolution-independent approximation of a
parametrized function. The parameters of the function are the inputs of the branch network.

5

Published as a Tiny Paper at ICLR 2024

Table 2: Dataset size for each problem.

No. of training data No. of testing data

1D nonlinear 51 51
Cavity flow 100 10
Navier–Stokes 1000 200

A.6 ARCHITECTURE AND HYPERPARAMETERS

In this section, we provide details on the selected types of kernels and their hyperparameters. We
also report the architecture of the branch network.

Table 3: The selected kernel parameters for each problem.

γv cv dv γz cz dz λ

1D nonlinear 1.0 0.0 1 1.0 0.0 2 10−3

Cavity flow 1.0 1.0 1 0.01 1.0 2 10−6

Navier–Stokes 1.0 0.0 1 10−3 0.1 2 10−3

Kernels. Let kv and kz be the kernel functions for KPCA (map from the original space to latent
space) and kernel ridge regression (map from the latent space to original space), respectively. For
the conducted experiments, we utilize polynomial kernels as

k(x,y) = (γ xTy + c)d, (7)

for simplicity. Alternative kernels, including RBF, Laplace, or Matérn, can also be employed in the
proposed context. Note that, in PCA, the reconstruction map involves a direct linear combination of
the PCA bases. However, in kernel PCA, the reconstruction map requires a separate step, such as
kernel regression, to map the reduced-dimensional representation back to the original input space.
The selected kernel parameters and the regularization coefficient for kernel ridge regression λ are
reported in table 3 for each problem. Note that we chose a linear kernel for mapping to the latent
space in all test cases to underscore the impact of the nonlinear reconstruction on the performance
of the learned operator. We compare the performance of KPCA-DeepONet when utilizing both a
linear (dv = 1) and a quadratic (dv = 2) kernel for mapping to the latent space for the 1D nonlinear
problem. The mapping from the latent space to the output function utilizes a quadratic kernel in both
cases. Results are depicted in figure 5 for different sizes of the latent space. The results indicate that
incorporating nonlinearity could result in better performance when an appropriate size is chosen for
the latent space. We obtained ℓ2 relative error ε of 0.02± 0.00% using the quadratic kernel against
0.03± 0.00% using the linear kernel from the best models.

Figure 5: Performance of KPCA-DeepONet when utilizing a linear (orange, ■) and a quadratic
(green, ♦) kernel for mapping to the latent space for the 1D nonlinear problem. Lines and shades
indicate mean and standard deviation, respectively, over 5 independent trials.

Neural network architecture. In both KPCA-DeepONet and POD-DeepONet the mapping from
the input function to the latent space is performed via the branch network. For both methods, we
implement the same architectures and training processes. The branch network architecture for each

6

Published as a Tiny Paper at ICLR 2024

problem is reported in table 4. Both the information regarding the output function and its projection
into the latent space can be used for training the branch network, with the latter being implemented
in this study. The mean-squared error loss for training of the branch network can be expressed as

Lb =
1

Nb

Nb∑
i=1

∥∥bi − zi
∥∥2
2
, (8)

where bi is the output of the branch network for ith input sample, zi is the projection of the ith
output function into the latent space using KPCA, and Nb is the batch size. || · ||2 indicates ℓ2-norm.

Table 4: Architecture of the branch network for KPCA-DeepONet and POD-DeepONet for each
problem.

Branch network Activation function

1D nonlinear Depth 4 & Width 64 tanh
Cavity flow Depth 4 & Width 64 tanh
Navier–Stokes CNN tanh

Training. For the 1D nonlinear and cavity flow test cases the Adam algorithm is utilized as the
optimizer in the training process of the neural network. For the Navier–Stokes problem we employ
the AdamW algorithm (Loshchilov & Hutter, 2019). In all the cases, a scheduled learning rate is
used based on the inverse time decay schedule.

A.7 COMPUTATIONAL COMPLEXITY AND COST

In this section, we discuss the computational complexity and cost of the forward maps in KPCA-
DeepONet and POD-DeepONet. Both approaches utilize the branch network to map the input func-
tion U to the latent vector z with the size of p. We exclude this step and only discuss the computa-
tional complexity of the reconstruction maps from the latent vector to the output function v for one
sample. For KPCA-DeepONet the reconstruction map comprises two steps: (1) computing the ker-
nel matrix kz with the computational complexity of O(p×N) for a naive implementation, where N
is the number of training samples, and (2) mapping to the output function space with the computa-
tional complexity of O(N×m), where m is the number of evaluation coordinates. Since m > p, we
can conclude that the computational complexity of the reconstruction map of the proposed KPCA-
DeepONet, for a naive implementation, is O(N × m) while for POD-DeepONet it is O(p × m).
The computational complexity of the reconstruction map in KPCA-DeepONet increases linearly
with the number of training samples, potentially resulting in memory challenges when dealing with
large datasets. Sparse kernel methods may be a suitable remedy for this limitation.

Figure 6: Computational time in milliseconds (ms) (left) and GPU memory usage (right) of the
proposed KPCA-DeepONet (orange, ■) and POD-DeepONet (blue, •) versus the size of the latent
space. Results are reported for the Navier–Stokes problem.

The computational complexity for modern GPU-based implementations is notably lower than the
aforementioned values. We report the computational time and GPU memory usage of the forward
map of a batch of 100 samples for the Navier–Stokes problem. Results are depicted for different
sizes of the latent space p in figure 6. It can be noted that the computational time and GPU memory
usage of the KPCA-DeepONet are only marginally higher than those of the POD-DeepONet and do
not exhibit scaling with N/p. All computations are performed on a workstation with one NVIDIA
GeForce RTX 3090 GPU.

7

	Introduction
	Methodology
	Numerical experiments
	Conclusions
	Appendix
	Deep operator networks (DeepONets)
	KPCA-DeepONet diagram
	The representer theorem.
	Further experimental results
	Test setup
	Architecture and hyperparameters
	Computational complexity and cost

