
Exploring Large Language Models for Knowledge Graph Completion

Anonymous EMNLP submission

Abstract
Knowledge graphs play a vital role in numer-001
ous artificial intelligence tasks, yet they fre-002
quently face the issue of incompleteness. In003
this study, we explore utilizing Large Language004
Models (LLM) for knowledge graph comple-005
tion. We consider triples in knowledge graphs006
as text sequences and introduce an innovative007
framework called Knowledge Graph LLM (KG-008
LLM) to model these triples. Our technique em-009
ploys entity and relation descriptions of a triple010
as prompts and utilizes the response for pre-011
dictions. Experiments on various benchmark012
knowledge graphs demonstrate that our method013
attains state-of-the-art performance in tasks014
such as triple classification and relation pre-015
diction. We also find that fine-tuning relatively016
smaller models (e.g., LLaMA-7B, ChatGLM-017
6B) outperforms recent ChatGPT and GPT-4.018

1 Introduction019

Large knowledge graphs (KG) like FreeBase (Bol-020

lacker et al., 2008), YAGO (Suchanek et al., 2007),021

and WordNet (Miller, 1995) serve as a powerful022

foundation for numerous critical AI tasks, includ-023

ing semantic search, recommendation (Zhang et al.,024

2016), and question answering (Cui et al., 2017).025

A KG is generally a multi-relational graph with026

entities as nodes and relations as edges. Each edge027

is depicted as a triplet (head entity, relation, tail028

entity) (abbreviated as (h, r, t)), signifying the rela-029

tionship between two entities, for instance, (Steve030

Jobs, founded, Apple Inc.). Despite their effective-031

ness, knowledge graphs remain incomplete. This032

issue leads to the challenge of knowledge graph033

completion, which aims to evaluate the plausibility034

of triples that are not present in a knowledge graph.035

A significant amount of research has been dedi-036

cated to knowledge graph completion. One preva-037

lent method is knowledge graph embedding (Wang038

et al., 2017). However, most knowledge graph039

embedding models solely rely on structural infor-040

mation from observed triple facts, leading to issues041

arising from the sparsity of knowledge graphs. A 042

number of studies integrate textual information to 043

enhance knowledge representation (Socher et al., 044

2013; Xie et al., 2016; Xiao et al., 2017; Wang 045

and Li, 2016; Xu et al., 2017; An et al., 2018). 046

KG-BERT (Yao et al., 2019) firstly employs the 047

pre-trained language model BERT (Devlin et al., 048

2019) to encode prior knowledge and contextual 049

information. The KG-BERT model was extended 050

by several recent studies (Wang et al., 2021, 2022; 051

Lovelace and Rose, 2022; Youn and Tagkopoulos, 052

2023) on both efficiency and performance, but the 053

models used in these works are relatively small. 054

Recently, large language models (Zhao et al., 055

2023) like ChatGPT and GPT-4 (OpenAI, 2023) 056

have gained significant attention. Researchers 057

find that scaling pre-trained language models of- 058

ten leads to an improved model capacity on down- 059

stream tasks. These large-sized models show dif- 060

ferent behaviors from smaller models like BERT 061

and display surprising abilities in solving a series 062

of complex tasks. 063

In this study, we propose a novel method for 064

knowledge graph completion using large language 065

models. Specifically, we treat entities, relations, 066

and triples as textual sequences and model knowl- 067

edge graph completion as a sequence-to-sequence 068

problem. We perform instruction tuning with open 069

LLMs (LLaMA (Touvron et al., 2023) and Chat- 070

GLM (Du et al., 2022)) on these sequences for 071

predicting the plausibility of a triple or a candi- 072

date entity/relation. The method achieves stronger 073

performance in several KG completion tasks. Our 074

source code is available at: https://anonymous. 075

4open.science/r/kg-llm-527B/. Our contribu- 076

tions are summarized as follows: 077

• We propose a new language modeling method 078

for knowledge graph completion. To the best 079

of our knowledge, this is the first study to sys- 080

tematically investigate large language models 081

for KG completion tasks. 082
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• Results on several benchmarks show that our083

method achieves state-of-the-art results in084

triple classification and relation prediction.085

We also find that fine-tuning relatively smaller086

models (e.g., LLaMA-7B, ChatGLM-6B) can087

outperform recent ChatGPT and GPT-4.088

2 Related Work089

2.1 Knowledge Graph Completion090

Comprehensive reviews of knowledge graph com-091

pletion techniques have been carried out by (Wang092

et al., 2017) and (Ji et al., 2021). These techniques093

can be grouped into two categories based on their094

scoring functions for triple (h, r, t): translational095

distance models like TransE (Bordes et al., 2013)096

and semantic matching models like DistMult (Yang097

et al., 2015). Convolutional neural networks have098

also demonstrated promising results in knowledge099

graph completion (Dettmers et al., 2018; Nguyen100

et al., 2018; Nathani et al., 2019).101

The methods mentioned above perform knowl-102

edge graph completion using only the structural103

information found in triples. However, incorpo-104

rating various types of external information, such105

as entity types, logical rules, and textual descrip-106

tions, can enhance performance (Wang et al., 2017;107

Ji et al., 2021). For textual descriptions, Socher108

et al. (2013) initially represented entities by aver-109

aging the word embeddings in their names, with110

the embeddings learned from an external corpus.111

Wang et al. (2014a) suggested embedding entities112

and words in the same vector space by aligning113

Wikipedia anchors with entity names. Xie et al.114

(2016) employed convolutional neural networks115

(CNN) to encode word sequences in entity descrip-116

tions. There are also a number of studies in this line117

of works (Xiao et al., 2017; Wang and Li, 2016; Xu118

et al., 2017; An et al., 2018). Yao et al. (2019)119

proposed KG-BERT which improves the above120

methods with pre-trained language models (PLMs).121

Recently, Wang et al. (2021, 2022); Lovelace and122

Rose (2022) extended cross-encoder in KG-BERT123

to bi-encoder, which enhances the performance124

and inference efficiency. Similar to this work,125

KGT5 (Saxena et al., 2022) and KG-S2S (Chen126

et al., 2022) treat KG completion as sequence-to-127

sequence tasks. However, the pre-trained language128

models used in these studies are relatively small.129

Compared with these methods, our method uti-130

lizes more powerful large language models with131

emergent abilities not present in small models such132

as in-context learning, instruction following, and 133

step-by-step reasoning. These abilities are helpful 134

for KG completion tasks. 135

2.2 LLMs with KG Completion 136

Recently, Zhao et al. (2023) presents a compre- 137

hensive survey of LLMs that describes knowledge 138

completion as a basic evaluation task of LLMs. 139

Two closely related studies (Xie et al., 2023; Zhu 140

et al., 2023) evaluate ChatGPT and GPT-4 on a 141

link prediction task in KG. Our study is inspired 142

by these works, but we further provide more com- 143

prehensive results for KG completion and perform 144

instruction tuning on three tasks. 145

3 Method 146

3.1 Knowledge Graph Completion Tasks 147

In this chapter, we describe the three tasks in knowl- 148

edge graph completion: triple classification, rela- 149

tion prediction, and entity (link) prediction, and 150

how to transform them into simple prompt ques- 151

tions for LLM to complete the tasks. The entire 152

process is depicted in Figure 1. 153

Triple Classification. Given a triple (h, r, t), the 154

task is to classify it as correct or incorrect. For 155

example, given the triple <Steve Jobs, founded, 156

Apple Inc.>, the task is to classify it as correct. The 157

prompt formation would be "Is this true: Steve 158

Jobs founded Apple Inc.?". And the ideal output of 159

LLM would be "Yes, this is true." 160

Relation Prediction. Given a head entity and a 161

tail entity, the task is to predict the relationship 162

between them. For example, given the head entity 163

"Steve Jobs" and the tail entity "Apple Inc.", the 164

task is to predict that their relationship is "founded". 165

The prompts formation would be "What is the rela- 166

tionship between Steve Jobs and Apple Inc.? Please 167

choose your answer from: was born in | founded 168

| is citizen of | . . . . . . | plays for." And the desired 169

response would be "Steve Jobs founded Apple Inc." 170

Entity (link) Prediction. Given a head entity and 171

a relationship, the task is to predict the tail entity 172

related to the head entity. Given a tail entity and a 173

relationship, the task is to predict the head entity. 174

For example, given the head entity "Steve Jobs" and 175

the relationship "founded", the task is to predict the 176

tail entity "Apple Inc.". The prompts formation 177

would be "Steve Jobs founded" for asking the tail 178

entity and "What/Who/When/Where/Why founded 179
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LLM

Triple Classification

Relation Prediction

Entity Prediction

KG Completion Tasks

Is this true: Steve Jobs founded Apple Inc.?

Input Triple: <Steve Jobs, founded, Apple Inc.>

Prompts Formation

What is the relationship between Steve Jobs and 
Apple Inc.? Please choose your answer from: was 
born in | founded | is citizen of | …… | plays for.

Steve Jobs founded

What/Who/When/Where/Why 
founded Apple Inc.?

Outputs

Yes, this is true.

Steve Jobs founded Apple Inc.

Figure 1: Illustrations of Large Langauge Models (LLMs) for Knowledge Graph (KG) Completion.

Apple Inc.?" for asking the head entity. The ideal180

response would be "Steve Jobs founded Apple Inc."181

3.2 Instruction Turning LLM with KG182

(KG-LLM)183

In order to align LLMs with KG triples, we in-184

troduce KG-LLM, which instruction turns the185

pre-trained LLM to process KG data using186

the specific factual question-answering prompt187

paradigm. Specifically, We fine-tune two open188

LLMs: ChatGLM-6B (Du et al., 2022) with P-189

tuning v2 (Liu et al., 2021) and LLaMA (version190

1 and 2) (Touvron et al., 2023) with LoRA (Hu191

et al., 2021) using prompts and responses of train-192

ing triples in a KG. We name our fine-tuned mod-193

els KG-ChatGLM-6B and KG-LLaMA (7B and194

13B). We also incorporate structural information195

into training and test instructions. Specifically, for196

the entity prediction task, we sample K = 5 neigh-197

bor entities (excluding the target entity) for the198

given entity and tell the model as in the Appendix.199

4 Experiments200

Dataset # Ent # Rel # Train # Dev # Test
WN11 38,696 11 112,581 2,609 10,544
FB13 75,043 13 316,232 5,908 23,733

WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Table 1: Summary statistics of datasets.

4.1 Datasets and Settings201

We ran our experiments on four widely used bench-202

mark KG datasets: WN11 (Socher et al., 2013),203

FB13 (Socher et al., 2013), WN18RR and YAGO3-204

10 (Dettmers et al., 2018). Table 1 provides statis-205

tics of all datasets we used. We used the same en-206

tity and relation text descriptions as in (Yao et al.,207

Method WN11 FB13 Avg.
NTN (Socher et al., 2013) 86.2 90.0 88.1
TransE (Wang et al., 2014b) 75.9 81.5 78.7
TransH (Wang et al., 2014b) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TEKE (Wang and Li, 2016) 86.1 84.2 85.2
TransG (Xiao et al., 2016) 87.4 87.3 87.4
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
DistMult (Zhang et al., 2018) 87.1 86.2 86.7
DistMult-HRS (Zhang et al., 2018) 88.9 89.0 89.0
AATE (An et al., 2018) 88.0 87.2 87.6
ConvKB (Nguyen et al., 2018) 87.6 88.8 88.2
DOLORES (Wang et al., 2018) 87.5 89.3 88.4
DKRL (BERT) 87.3 79.8 83.6
KG-BERT(a) (Yao et al., 2019) 93.5 90.4 91.9
KGT5 72.8 66.3 69.6
LLaMA-7B 21.1 9.1 15.1
LLaMA-13B 28.1 17.6 22.9
KG-LLaMA-7B 95.5 89.2 92.4
KG-LLaMA-13B 95.6 90.2 92.9
KG-LLaMA2-13B 96.6 90.7 93.7

Table 2: Triple classification accuracy (in percentage)
for different methods. The baseline results with citations
are obtained from corresponding papers.

Method FB13-100
ChatGPT 0.90
GPT-4 0.94
LLaMA-7B 0.14
LLaMA-13B 0.16
KG-LLaMA-7B 0.93
KG-LLaMA-13B 0.94

Table 3: Triple classification accuracy on 100 test in-
stances of FB13 for different LLMs.

2019). Due to the access limit of GPT-4, we ran- 208

domly selected 100 test examples from FB13 and 209

YAGO3-10 for evaluation, we name the subsets 210

FB13-100 and YAGO3-10-100. 211

We compare KG-LLM with multiple KG em- 212

bedding methods: TransE and its extensions 213

TransH (Wang et al., 2014b), TransD (Ji et al., 214

2015), TransR (Lin et al., 2015), TransG (Xiao 215

et al., 2016) and TranSparse (Ji et al., 2016), Dist- 216

Mult and its extension DistMult-HRS (Zhang et al., 217

2018). The neural tensor network NTN (Socher 218
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Method WN18RR YAGO3-10 YAGO3-10-100
KG-BERT(a) 0.1102 – –
StAR 0.2430 – –
KGT5 0.1011 0.0484 0.12
KGLM 0.3050 – –
ChatGPT – – 0.22
GPT-4 – – 0.24
KG-ChatGLM-6B 0.1613 0.0455 0.11
LLaMA-7B 0.0849 0.0254 0.03
LLaMA-13B 0.0991 0.0276 0.01
KG-LLaMA-7B 0.2415 0.0782 0.16
KG-LLaMA-13B 0.2559 0.0872 0.13
KG-LLaMA2-13B 0.2682 0.0949 0.16
KG-LLaMA2-13B + Struct 0.3151 0.1330 0.22

Table 4: Entity (link) prediction Hits@1 for different
methods. The baseline results with citations are ob-
tained from corresponding papers.

Method YAGO3-10 YAGO3-10-100
KG-BERT(b) 0.6816 –
KGT5 0.5714 0.60
ChatGPT – 0.39
GPT-4 – 0.56
ChatGLM-6B 0.0658 0.07
KG-ChatGLM-6B 0.5662 0.58
LLaMA-7B 0.0348 0.13
LLaMA-13B 0.0040 0.01
KG-LLaMA-7B 0.7028 0.71
KG-LLaMA-13B 0.6968 0.64

Table 5: Relation prediction Hits@1 scores.

et al., 2013). CNN models: ConvKB (Nguyen219

et al., 2018). Contextualized KG embeddings: DO-220

LORES (Wang et al., 2018). KG embeddings221

with textual information: TEKE (Wang and Li,222

2016), DKRL (Xie et al., 2016) (BERT encoder),223

AATE (An et al., 2018). Pre-tained language mod-224

els: KG-BERT (Yao et al., 2019), StAR (Wang225

et al., 2021), KGT5 (Saxena et al., 2022) and226

KGLM (Youn and Tagkopoulos, 2023). We also227

compare with ChatGPT and GPT-4.228

For instruction tuning and inference of229

ChatGLM-6B, We used the default parameter230

settings in its public implementations. For LLaMA,231

we use the implementation in the Transformers232

Python library. More detailed settings can be233

found in our code. For KG completion models,234

we use the results in their original papers or235

reproduce the results using default configurations236

in their implementations. For KGT5, we use our237

prompts and responses for training, other settings238

are the same as its implementation. We input our239

designed prompts to the web interface of GPT-4240

and ChatGPT to obtain results.241

4.2 Results242

Table 2 presents triple classification accuracy243

scores on WN11 and FB13. If the ground truth244

is true and the response contains affirmative words245

like "Yes" and "yes", or if the label is false 246

and the response contains negative words like 247

"No"/"no"/"not"/"n’t", we label the response as cor- 248

rect. We find that LLaMA-7B and LLaMA-13B 249

perform poorly on both WN11 and FB13. How- 250

ever, when instructed to process KG data, KG- 251

LLaMA shows significant improvement compared 252

to LLaMA. KG-LLaMA2-13B achieves the highest 253

accuracy scores on the two KG data sets. Table 3 254

presents the accuracy scores of different LLMs on 255

the 100 test instances of FB13. We manually label 256

the response of different LLMs as correct or wrong. 257

We find that KG-LLaMA performs well, the score 258

is higher than ChatGPT and equal to GPT-4. 259

The link prediction hits@1 scores of various pre- 260

trained language models on WN18RR and YAGO3- 261

10 are presented in Table 4. The scores are the 262

average for both head and tail entities. In the 263

case of LLMs, the response is considered correct 264

if it contains the label words. The results indi- 265

cate a promising outcome in our paradigm, as KG- 266

LLaMA shows significant improvements due to in- 267

struction turning. Incorporating structural informa- 268

tion also improves the results by a large margin. Ta- 269

ble 5 demonstrates that KG-LLaMA-7B produces 270

the best relation prediction hits@1 on YAGO3-10, 271

even better than GPT-4. KG-ChatGLM-6B also 272

shows much better results. This indicates that in- 273

struction turning leads the LLM to extract knowl- 274

edge stored in model parameters more efficiently. 275

Table 6 illustrates the differences in responses 276

between LLM and KG-LLM given the same input. 277

We found the answers of the original models are 278

not satisfactory while instruction tuning can teach 279

the models to answer like training triples and to be 280

more aware of a fact. 281

The main reasons why KG-LLM performs well 282

are: 1). LLMs contain more general knowledge 283

compared with smaller pre-trained language mod- 284

els. 2). Instruction tuning fills the gap between 285

the pre-trained weights in LLMs and KG triple 286

descriptions. 287

5 Conclusions 288

In this work, we propose a novel method KG-LLM. 289

Our approach attains SOTA performance in KG 290

completion tasks such as triple classification and 291

relation prediction. We plan to apply our KG-LLM 292

as a knowledge-enhanced language model to other 293

NLP tasks. Furthermore, we are going to explore 294

more effective prompt engineering of LLM. 295
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Limitations296

Although our method has demonstrated promis-297

ing results in KG completion using LLMs, it cur-298

rently lacks the ability to handle KGs that lack299

textual names or descriptions for entities and rela-300

tions. Additionally, we have not yet fully utilized301

the high-order KG structure information, which302

has the potential to significantly improve results,303

particularly in the entity prediction task.304
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A Example Input 479

An example input for LLM relation prediction 480

from YAGO3-10: "What is the relationship be- 481

tween Sergio Padt and Jong Ajax? Please choose 482

your answer from: is known for|is citizen of|has 483

currency|has child|deals with|has academic advi- 484

sor|has gender|wrote music for|acted in|died in|has 485

capital|works at|lives in|is affiliated to|has musi- 486

cal role|is located in|happened in|has official lan- 487

guage|created|has won prize|influences|is politician 488

of|is connected to|owns|graduated from|was born 489

in|is leader of|exports|is interested in|participated 490

in|directed|imports|edited|has neighbor|has web- 491

site|is married to|plays for." 492

Two example inputs for LLM entity predic- 493

tion with structural information from YAGO3-10 494

are: "Giving the neighbors of Joseph Bologna: 495

Transylvania 6-5000 (1985 film)|Boynton Beach 496

Club|Emmy Award|male|Sins (TV miniseries). 497

Complete the fact: Joseph Bologna acted in" 498

and "What/Who/When/Where/Why is affiliated 499

to Arsenal F.C.? The neighbors of Arsenal F.C. 500

:Darragh Ryan|Leslie Jones (footballer)|Andrew 501

Devine|Gilles Grimandi|Ray Kennedy.". 502
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Input Label Output

Is this true: Everett T Moore profession Librarian? True

GPT-4
I cannot verify specific personal information about
individuals who are not public figures.

ChatGPT
I’m sorry, but I don’t have enough information to
confirm whether Everett T Moore is a librarian or not.

LLaMA-7B I was wondering if anyone could tell me if this is true.

LLaMA-13B
I’m a librarian at Everett T Moore Middle School in
San Antonio, TX.

KG-LLaMA-7B Yes, this is true.
KG-LLaMA-13B Yes, this is true.
ChatGLM-6B Yes, Everett T Moore is a profession Librarian.
KG-ChatGLM-6B Yes, this is true.

Josip Škorić has gender male

GPT-4
Josip Škorić is a male name. Josip is a Croatian form
of the name Joseph, which is a masculine name.

ChatGPT
Josip Škorić is a human being and therefore has a
gender. However, I couldn’t find any information
about the gender of Josip Škorić.

LLaMA-7B
Josip Škorić has gender issues. I’m a 22-year-old guy
from Croatia, who has gender issues.

LLaMA-13B
Josip Škorić has undergone gender reassignment
surgery.

KG-LLaMA-7B male
KG-LLaMA-13B male

ChatGLM-6B
As an AI language model, I do not have access to in-
formation about specific individuals’ genders or their
personal identity, including JosipŠkorić’s.

KG-ChatGLM-6B male

Table 6: Examples outputs from different LLMs. The first line is taken from FB13-100 and the second line is from
YAGO3-10-100.
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