
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BENCHMARKING OPTIMIZERS
FOR LARGE LANGUAGE MODEL PRETRAINING

Anonymous authors
Paper under double-blind review

https://anonymous.4open.science/r/llm-opt-bench-7B81

ABSTRACT

The recent development of Large Language Models (LLMs) has been accompa-
nied by an effervescence of novel ideas and methods to better optimize the loss of
deep learning models. Claims from those methods are myriad: from faster con-
vergence to removing reliance on certain hyperparameters. However, the diverse
experimental protocols used to validate these claims make direct comparisons be-
tween methods challenging. This study presents a comprehensive evaluation of
recent optimization techniques across standardized LLM pretraining scenarios,
systematically varying model size, batch size, and training duration. Through
careful tuning of each method, we provide guidance to practitioners on which
optimizer is best suited for each scenario. For researchers, our work highlights
promising directions for future optimization research. Finally, by releasing our
code and making all experiments fully reproducible, we hope our efforts can help
the development and rigorous benchmarking of future methods.

1 INTRODUCTION

Over the past five years, Large Language Models (LLMs) (DeepSeek-AI, 2024b; OpenAI, 2024;
Gemini Team, 2024; Llama Team, 2024) have shown growth in performance and size, demonstrating
proficiency in various downstream tasks (Snell et al., 2024; Brown et al., 2020; Wei et al., 2023).
The success of LLM pretraining hinges on three key pillars: high-quality data (Penedo et al., 2024b;
Li et al., 2024), architectural innovations (Jiang et al., 2024; DeepSeek-AI, 2024b), and scalable
optimization techniques (Jaghouar et al., 2024; Shah et al., 2024; Charles et al., 2025).

Among these, the choice of optimizer has remained notably consistent in recent years, with
Adam(W) (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) dominating deep learning for nearly
a decade. However, recent advances (Jordan et al., 2024b; Liu et al., 2025; Vyas et al., 2024;
Pagliardini et al., 2024; Pethick et al., 2025; Frans et al., 2025; Defazio et al., 2024b) challenge this
status quo, offering alternatives that surpass AdamW in speed, communication efficiency (Ahn &
Xu, 2025) or final downstream performance on various benchmarks (Dahl et al., 2023; Karpathy,
2022), particularly for autoregressive language modeling (Radford & Narasimhan, 2018). Despite
these innovations, current benchmarks and ablation studies (Zhao et al., 2025; Morwani et al., 2025;
Kaddour et al., 2023) remain narrow in scope, often examining only isolated aspects of optimizer
design (Kasimbeg et al., 2025). This lack of systematic comparison makes it difficult to obtain
trustworthy insights for practitioners or identify the next promising research directions.

In this work, our goal is to revisit the problem of benchmarking optimizers for LLM pretraining.
We do so through standardized experiments which vary important parameters such as batch size,
model size, and the number of training iterations. This allows us to formulate an up-to-date list of
best-performing methods for the community of researchers and practitioners. We demonstrate the
efficiency of each considered method through careful tuning, and present insightful ablations along
the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable
regardless of the optimizer chosen.

We summarize our contributions as follows:

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization
methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting

1

https://anonymous.4open.science/r/llm-opt-bench-7B81

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

8 16 48

Tokens (B)

2.8

2.9

3.0

3.1

F
in

al
V

al
id

at
io

n
L
os

s

8 16 48

Tokens (B)

2.8

2.9

3.0

F
in

a
l

V
a
li
d
at

io
n

L
os

s

Ranking (↓)

SF-AdamW

Signum

Lion

Sophia

Prodigy

ADOPT

SOAP

AdamW

D-Muon

MARS

AdEMAMix

Figure 1: Ranking of optimizers for 720M Llama-based models. We plot the final validation loss
obtained by the best-tuned optimizers on the FineWeb dataset. We use a batch size of 1M tokens
and train multiple methods beyond and below the Chinchilla optimal duration, which is 14.4B for
model of this size. AdEMAMix and MARS are the best optimizers in this setup, with a noticable
gap in performance compared to other methods. We also plot the AdamW baseline in both figures
to distinguish the group of methods that consistently perform worse than AdamW from the group of
optimizers that outperform it for some training durations. See § 3 and Appendix G for a detailed
description of our experimental setup, including hyperparameters.

for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in
several relevant training regimes, for both dense and Mixture of Experts (MoE) architectures.

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—
including warmup duration, initialization schemes, gradient clipping, final learning rates, and learn-
ing rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts,

5:5 44

Tokens (B)

2:9

3:0

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

AdamW (336k steps)
42k 336k

D-Muon

SOAP

AdEMAMix

Figure 2: Training dynamics of leading op-
timizers on 520M MoE model pretrain-
ing. We use a batch size of 131k tokens,
and train models for both short runs, i.e., less
than Chinchilla optimal duration, and for ex-
tended runs beyond this regime. The dashed
blue lines correspond to the final validation
loss of AdamW baselines trained for both 42k
and 336k steps.

evaluation pipelines, and hyperparameter configu-
rations, to enable reproducible research and facili-
tate future optimizer development.

For practitioners, our work provides an evidence-
based answer to the burning question: “Is Adam
still the most effective optimizer in the age of LLMs,
or can we achieve better performance at scale with
novel optimizers?”.

For researchers, our work delivers a unified
benchmarking framework for LLM pretraining,
along with extensive ablation studies which system-
atically evaluate both popular and overlooked op-
timizer designs—revealing previously unexplored
tradeoffs between efficiency, stability, and final
model performance. Overall, our findings not only
challenge long-held assumptions about optimizer
selection but also establish a foundation for fu-
ture advances in large-scale model training. By
bridging the gap between theoretical innovation and
practical deployment, this work aims to accelerate
progress in both research and industry applications
of LLM training.

2 BACKGROUND & RELATED WORK
Optimizers. While computer vision models often show comparable performance be-
tween SGD (Robbins & Monro, 1951) and AdamW (Zhang et al., 2020b), the landscape differs
dramatically in LLM training (Srećković et al., 2025). Recent work (Zhang et al., 2024b) demon-
strates that adaptive methods like AdamW provide substantially better optimization characteristics for
transformer-based language models. The question of why AdamW works so well has been a long-
standing topic of research (Balles & Hennig, 2020; Orabona, 2020; Zhang et al., 2020a; Kunstner
et al., 2024; Kunstner, 2024). Modern methods often inherit AdamW’s core ideas in their structure,
such as ADOPT (Taniguchi et al., 2024) and AdEMAMix (Pagliardini et al., 2024). ADOPT has been
motivated by solving long-standing convergence issues in AdamW. By normalizing the second-order
moment prior to the momentum update, they eliminate the non-convergence issues of AdamW on

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

smooth non-convex functions. Meanwhile AdEMAMix extends AdamW with an additional slower
momentum buffer, i.e., a slower exponential moving average (EMA), which allows the use of much
larger momentum values, accelerating convergence. One interpretation of AdamW’s effectiveness
lies in its sign-based update (Kunstner et al., 2023): without the exponential moving average (EMA),
AdamW resembles signSGD (Bernstein et al., 2018). Recent works (Zhao et al., 2025; Karimireddy
et al., 2019) has shown that Signum (signSGD with momentum), can perform comparably to
AdamW. The community also discussed Lion (Chen et al., 2023), a method with a similar sign-
based structure. Signum and Lion offer memory benefits due to the use of only a single instead of
Adam’s two buffers for optimizer states. Another family of methods stems from AdamW’s approxi-
mate second-order structure. This idea has given rise to Sophia (Liu et al., 2024), where the diag-
onal of the Fisher information matrix is used as the second moment estimate. Exploiting the matrix
structure of model weights and optimizer states has led to methods such as SOAP (Vyas et al., 2024),
Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025), including their extentions (Liu et al.,
2025; Riabinin et al., 2025; Ahn & Xu, 2025). The parameter-free concept (Orabona & Pál, 2016)
has led to the development of Schedule-Free AdamW (SF-AdamW) (Defazio et al., 2024b) and
Prodigy (Mishchenko & Defazio, 2024). These optimizers do not require a decreasing learning
rate schedule, making them relevant for continual training. Last but not least, MARS (Yuan et al.,
2024), builds upon this line of research and incorporates a variance reduction mechanism in its
update rule.

Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some
benchmarks are designed for short speedruns in terms of training or validation loss (Jordan et al.,
2024a), while others focus on a downstream target metric after training (Zhao et al., 2025; Dahl et al.,
2023; Schmidt et al., 2021). Methods that perform well in short speedruns might not be optimal for
longer training horizons as in real LLM training runs (see Figure 3 (a), or Figures 37 and 40 (b)).
”But what constitutes a sufficiently long horizon?” ”What should be the compute budget for LLM
training?” These are questions explored by scaling laws (Kaplan et al., 2020). Early benchmarks for
optimizers and other ablation studies often rely on Chinchilla scaling laws (Hoffmann et al., 2022)
with a ratio of roughly 20 tokens per parameter needed for pretraining. However, recent research
(Li et al., 2025a; Porian et al., 2024; Sardana et al., 2024) argues that this is far from sufficient for
production-ready models. Another important issue is the choice of loss function. Recent setups have
used an auxiliary z-loss (Yang et al., 2023; Chowdhery et al., 2022) in addition to cross-entropy,
which requires further investigation. We believe that this choice is influenced by the use of the
OLMo (Team OLMo, 2024b) codebase, which we also address in our work. Additionally, we found
that previous setups for comparing optimizers do not align with recent best practices regarding
weight decay, learning rate decay, and overall hyperparameter tuning. All of these questions are
revisited in our work. We also encourage the reader to refer to the concurrent work of Wen et al.
(2025). Overall, our findings are well aligned, we both find Muon and SOAP outperforming AdamW
in many settings. A few differences: we find MARS beating D-Muon at 1M tokens batch size, and
also AdEMAMix is the best in the majority of our runs. We attribute differences regarding MARS to
discrepancies in the batch size, Wen et al. (2025) uses a large sequence length of 4096. In addition,
the authors do not try AdEMAMix, therefore such a comparison in their setup remains questionable.

3 EXPERIMENTAL SETUP
Notations. We use the following notations. Let γ be the learning rate, λ the weight decay coefficient,
and T the total number of iterations. Momentum-related parameters are represented by β.

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we
write in parentheses the optimizer-specific hyperparameters we tuned: AdamW(β1, β2), ADOPT(β1,
β2), AdEMAMix(β1, β2, β3, α), Lion(β1, β2), Signum(β), Muon(γM, β, β1, β2), D-Muon(β,
β1, β2) (Liu et al., 2025), SOAP(β1, β2) and preconditioning frequency, Sophia(ρ, β1, β2),
SF-AdamW(β1, β2), Prodigy(β1, β2), MARS(η, β1, β2). When an optimizer has several momen-
tum variants e.g. Nesterov (Nesterov, 1983) or Polyak (Polyak, 1964), we try both. When optimizers
use the Newton-Schulz orthogonalization (Bernstein & Newhouse, 2024; Higham, 2008), we vary
the number of steps for this procedure. In addition, we tune the learning rate γ extensively for all
methods. We also try different gradient clipping levels, warmup steps, weight decay values, weights
initialization, and learning rate schedulers. A summary of the hyperparameters tested and selected
for each model size is in Appendix G. All optimizers are described in depth in Appendix C.

Models & Data. For most experiments, we use a Llama-like transformer (Llama Team, 2024)
architecture with weight tying (Press & Wolf, 2017), including SwiGLU activations (Shazeer, 2020),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

RMSNorm (Zhang & Sennrich, 2019), and RoPE embeddings (Su et al., 2023). We experiment
with four sizes of models: 124M, 210M, 583M, 720M. In addition to our dense models, we also
benchmark optimizers on a Llama-based 520M MoE model, the corresponding setup is described
in § 4.4 and Appendix G. We train on a 100B tokens1 subset of FineWeb (Penedo et al., 2024a).
It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the
GPT-2 tokenizer prior to splitting into train and validation sequences.

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens.
For clarity, we often report the batch size in tokens by writing batch size× sequence length. For the
124M model, we use batch sizes of 32 × 512 = 16k, 256 × 512 = 131k, and 512 × 512 = 262k
tokens; for the 210M model and 520M MoE model, we use a batch size of 256 × 512 = 131k;
for the 583M model, we leverage the batch size of 3936 × 512 = 2M tokens, finally, we use a
batch size of 1984 × 512 = 1M tokens for the 720M model. Depending on the model size, we
vary the number of iterations—also measured in tokens for compatibility with scaling laws and to
accommodate different batch size settings. We train 124M and 210M models for equal durations
of {1, 2.1, 4.2, 6.3, 8.4, 16.8}B tokens. This corresponds to T ∈ {64, 128, 256, 384, 512, 1024}k
iterations for a batch size of 32, and T ∈ {8, 16, 32, 48, 64, 128}k iterations for a batch size of 256.
For 583M models, we train on 13B tokens, corresponding to 6.5k iterations. In the setup with
720M model, we have T ∈ {8, 16, 48}k iterations for a batch size of 1M tokens. Thus, for all
model scales, we include both Chinchilla optimal lengths of training and beyond. More details are
available in Appendix E.

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works
introducing optimizers (Vyas et al., 2024), benchmarkings (Zhao et al., 2025), or pretraining recipes
for LLMs (Jaghouar et al., 2024; Chowdhery et al., 2022; Yang et al., 2023; Brandfonbrener et al.,
2024), use a z-loss regularizer in addition to cross-entropy. We found that this has little impact and,
therefore, do not use z-loss. An ablation showing results with and without z-loss is in § 4.

Hyperparameter Tuning. Training LLMs is a computationally intensive task (Erdil, 2024). As a
guidance, practitioners often rely on insights gathered at lower scales, scaling laws (OpenAI, 2024;
DeepSeek-AI, 2024a; Sardana et al., 2024; Li et al., 2025b), and other rules (Yang et al., 2022; Dey
et al., 2024; Blake et al., 2025; Kumar et al., 2024). It is also commonplace to run experiments for
only a shorter duration of training, as a way to test certain hyperparameters prior to extending the
training horizon to more iterations. Because a full grid search over every hyperparameter, for each
setting and optimizer, would be too costly, we resort to a similar approach. More precisely, for each
model size, batch size, and optimizer, we extensively tune optimization hyperparameters for a num-
ber of training tokens which are near-Chinchilla optimal, e.g., we pick {2.1, 16}B tokens for tuning
{124, 720}M models (see Appendix G). We then keep those hyperparameters when we increase the
number of iterations. While we found that the sensitivity to several hyperparameters can change as
we increase the training horizon—see Figure 13—we found this approach simple and yet effective.
The hyperparameters being considered depend on the optimizer. We proceeded from small to large
model scale, and used insights gathered at smaller scales to guide the hyperparameter search at larger
scales. Our hyperparameter sweeps are summarized in Appendix G. We present the clarifications
regarding the connection between the number of iterations and tokens for different batch size set-
tings, as well as the Chinchilla optimal training durations for our models in Tables 3, 4, 5, 6, and 48.
As learning rate schedulers, we compare cosine (Loshchilov & Hutter, 2017), linear and warmup-
stable-decay (WSD) (Hu et al., 2024; Zhai et al., 2022; Hägele et al., 2024). Unless specified, we use
a cosine scheduler. Results with WSD and linear schedulers are discussed in § 4. Recent works also
emphasize the importance of sufficiently decaying the learning rate (Bergsma et al., 2025; Schaipp
et al., 2025; Hägele et al., 2024; Li et al., 2025b; DeepSeek-AI, 2024b). As such, we take care to
decay to 0.01 × γmax instead of the often used 0.1 × γmax (Hoffmann et al., 2022; Touvron et al.,
2023; Biderman et al., 2023; Workshop, 2023; Team OLMo, 2024b;a; Zhao et al., 2025). To give
an idea of how much effort was put into tuning each method, across all model sizes, batches and
iterations, we trained a total of 2900 models, and have spent roughly 30000 GPU hours. See more
details in Appendices D and G.
4 RESULTS
We structure our story starting with smaller models and batch sizes, and gradually scaling up to
larger configurations. In some instances, we complement the core benchmarking results with addi-
tional ablations and possible best-practices.

1https://huggingface.co/datasets/HuggingFaceFW/fineweb

4

https://huggingface.co/datasets/HuggingFaceFW/fineweb

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 BENCHMARKING & ABLATIONS AT SMALL SCALE: TRAINING 124M MODELS
Results with “small” batches. We first report results when using batches of 32 × 512 tokens in
Figures 3 (a) and 12 (a). We tune the hyperparameters by training for 2.1B tokens (128k iterations)
and then keep those hyperparameters for all other training durations. The best hyperparameters are
reported in Appendix G.1. We observe how, for the smallest number of iterations we considered
(1B tokens ≡ 64k), SOAP, ADOPT, AdEMAMix, D-Muon, Prodigy, and SF-AdamW all outper-
form AdamW, with D-Muon being the best. As we increase the number of iterations, AdEMAMix
takes the lead while AdamW becomes a second, and closes the gap with D-Muon and SOAP. A sign-
based methods such as Lion and Signum are expected to perform poorly when the batch size is
small. Intuitively, this is due to the sign(·) operator being sensitive to gradient noise (Tomihari &
Sato, 2025; Kornilov et al., 2025). As described in its original paper, MARS also performs poorly
when the batch size is small. We found Prodigy, the basic Muon (see Figures 16 and 17 (a)) and
SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy suffers
from the lack of bias correction of the learning rate, as well as being sensitive to (β1, β2) (see Fig-
ure 30). Importantly, when the batch size is sufficiently small, we observe that Sophia diverges
when increasing the number of iterations, even if decreasing the learning rate (see Figure 27). Thus,
we decided not to include Sophia at this stage of our benchmarking.
Results with “large” batches. We now report results when using batches of 256×512 tokens—8×
larger than for our “small” batch setting. Results in Figures 3 (b) and 12 (b) show how Signum,
MARS, Lion, Prodigy greatly benefit from the increased batch size. Remarkably, we observe that
the Prodigy method scales similarly to AdamW. We emphasize the possible community interest
in this algorithm, as its effective learning rate—determined by two EMA sequences—emulates the
learning rate behavior of AdamW. When the scheduler is applied and γmax of Prodigy is set to 1
(its default value), these EMAs result in the maximal effective learning rate, which closely matches
that of AdamW—see Figure 35. For a small number of iterations (e.g. T ∈ {8k, 16k} corresponding
to 1B and 2B tokens), all methods outperform AdamW except for SF-AdamW and Sophia. As we
increase the number of iterations ADOPT, D-Muon, SOAP, and AdEMAMix take the lead. In par-
ticular, AdEMAMix has a consistent lead over other methods. While we anticipated—in accordance
with Vyas et al. (2024)—that SOAP would greatly benefit from the larger batch size, its behavior
remains relatively consistent compared to our previous small batch setting.

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.2

3.3

3.4

3.5

3.6

F
in

al
V

al
id

at
io

n
L
os

s

64k 128k 256k 384k 512k 1024k

(a) Batch size 32× 512 tokens.

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.2

3.3

3.4

3.5

F
in

al
V

al
id

at
io

n
L
os

s

8k 16k 32k 48k 64k 128k

Ranking (↓)

Sophia

Signum

SF-AdamW

Lion

MARS

Prodigy

ADOPT

AdamW

D-Muon

SOAP

AdEMAMix

(b) Batch size 256× 512 tokens.

Figure 3: Ranking of optimizers for 124M models with “small” and “large” batch sizes. In
both (a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32× 512 tokens. In (b), we use a larger batch
size of 256× 512 tokens.

Takeaway 1. After experimenting with both “small” and “large” batch settings, we conclude
that: (I) AdEMAMix consistently achieves state-of-the-art performance and robust scaling with
training duration; (II) sign-based methods (Signum, Lion), and MARS greatly benefit from
the increased batch size; (III) Sophia diverges in the small-batch setting, when trained beyond
the Chinchilla optimal horizon, even with sufficiently small learning rate; (IV) SOAP show a
surprisingly consistent performance in both settings.

Stability across training horizons. As mentioned in § 3, we tune hyperparameters training on
2.1B tokens and keep those hyperparameters when extending the training horizon. However, when
increasing the length of training or scaling batch size, critical hyperparameters of optimizers such
as learning rate, betas might change (Busbridge et al., 2023). Thus, we additionally re-tune the
methods for 16.8B length of training to show the best results. We found that previously widely

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

adopted (DeepSeek-AI, 2024b; Wortsman et al., 2023; Zhao et al., 2025; Jaghouar et al., 2024;
Hägele et al., 2024; Li et al., 2025b) for AdamW (β1 = 0.9, β2 = 0.95) parameters give worse re-
sults than (β1 = 0.9, β2 = 0.999). We point that it would be beneficial to further increase the β2 for
AdamW-like optimizers when increasing the length of training. The same applies to β3 parameter of
AdEMAMix, which we increase from 0.999 to 0.9999 when training on 16.8B tokens and beyond
(see Appendix F.1 for a detailed ablation on that matter and references therein). Importantly, from
Figure 12 (b), we see that SOAP and D-Muon narrow the gap with AdEMAMix. It is interesting
to see how the situation changes when the training horizon is extended to 33.6B tokens (≡ 256k
iterations). For this experiment, we use the batch size of (256×512), and keep the re-tuned hyperpa-
rameters we found for 16.8B tokens run, simply reusing them for longer training. We report insights
gathered from this ablation in Figure 4 (right). As in the “small” batch ablation, we emphasize that
Sophia exhibits convergence issues when extending the training run, and diverges shortly after
130k steps (Figure 26). Regarding other optimizers, we observe a consistent behavior compared
to the one from Figure 3 (b)—all methods remain at the same position in our tier-list. The results
suggest that the best hyperparameters found at 16.8B scale are also consistent w.r.t. doubling the
number of steps. “But what can one say about scaling batch size while keeping the same amount of
tokens seen?”
Increasing the batch size further. We also run an experiment with batches of 512 × 512 = 262k
tokens, training for 64k iterations, thus, we keep the total amount of tokens to train on. We show
the results of this ablation in Figure 4 (left). Noticeably MARS becomes the second best-performing
method behind AdEMAMix, followed closely by Prodigy, Lion, ADOPT, and SOAP. Interest-
ingly, Signum performs comparably to AdamW. Our results with batches of {131, 262}k tokens
show an evidence that sign-based methods greatly benefit from increased batch size, as noticed in
many prior works (Chen et al., 2023). Furthermore, the hyperparameter sweeps from (Zhao et al.,
2025; Zhang et al., 2024a) suggest that Lion, Signum, AdamW stay consistent w.r.t tuning all hy-
perparameters except for batch size, where they notice a worsens in performance at large batch sizes
above ours 256× 512, while we observe a quite opposite results in our setup.

3:16

3:18

3:20

3:22

3:24

F
in
al
V
al
id
at
io
n
L
os
s

Batch Size 512; Trained on 16:8B Tokens

3:10

3:12

3:14

3:16

3:18

F
in
al
V
al
id
at
io
n
L
os
s

Batch Size 256; Trained on 33:6B Tokens

AdEMAMix

Lion

SOAP

AdamW

Prodigy

Signum

ADOPT

SF-AdamW

MARS

Muon

D-Muon

Sophia

Figure 4: Scaling batch size vs. scaling the number of iterations. Our results demonstrate that:
(left) scaling the batch size significantly improves MARS, Signum, Lion and Prodigy making
them as good as AdamW even for a long training for 16.8B tokens. Which was not the case in
Figure 3 (b), where we still observed a significant gap in performance; and (right): indeed, with
scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow and, finally,
increases. However, with increase of the AdEMAMix β3, the performance gap with SOAP reappears.

Takeaway 2. (I) Suprisingly, many methods, especially MARS, Prodigy, and sign-based ones,
can outperform AdamW while trained on a sufficiently large batches. (II) We also found that in
our setup, once optimizers are properly re-tuned for the maximal length of training considered,
doubling of number of iterations does not affect the ranking of methods.

Ablations at small scale: 124M models. In this section, we present ablations with relatively short
descriptions and the most meaningful figures to highlight them. We complement our results from
this section in Appendix F.1. We start sequentially with smaller models ablating: weight decay,
learning rate sensitivity, warmup, learning rate schedulers. For each ablation, we provide the
corresponding takeaway—see Takeaway 10, 11, 12, 13. Details on hyperparameter searches are
provided in Appendix G.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s AdamW

AdamW;wd0:5

Signum;wd0:5

Lion;wd0:5

(a) Use large λ for short training.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
on

L
o
ss

AdamW

AdamW; nowd

AdamW;wd0:5

(b) Use λ = 0.1 for long training.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

240

740

1240

1740

2240

M
od
el
N
o
rm

AdamW

AdamW; nowd

AdamW;wd0:5

(c) Norm grows with smaller λ.
Figure 5: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better
than AdamW with the same learning rate. In (b), we also consider a setting without weight decay.
We observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers
(see Appendix F.1), while the typical weight decay of 0.1 remains the best for longer training. In (c),
we ablate the impact od weight decay on the model’s ℓ2 norm. See Figure 15 for detailed ablation.

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:20

3:22

3:24

3:26

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

Sophia

Signum

Lion

(a) Sign-based, and Sophia diverge with large γ.

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:20

3:25

3:30

3:35

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

SF-AdamW

AdamW

D-Muon

MARS

ADOPT

SOAP

AdEMAMix

(b) Parabolic shape for most optimizers.
Figure 6: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge
with increasing learning rate. Interestingly, in (b), SF-AdamW, SOAP, and D-Muon demonstrate
their best performance with a large learning rate of 0.002, while MARS maintains remarkably consis-
tent performance across the learning rate sweep. See Figure 18 and Appendix F.1 for more details.

0:27B 1B 4:2B
Warmup Tokens (B)

3:16
3:17
3:18
3:19
3:20
3:21
3:22
3:23
3:24

F
in
al
V
al
id
at
io
n
L
os
s AdEMAMix

Prodigy

SOAP

Signum

ADOPT

MARS

Lion

SF-AdamW

D-Muon

Sophia

AdamW

Muon

Figure 7: Warmup ablation. For 124M model trained on the batches of 256 × 512 tokens, we
perform a sweep over the linear warmup durations of {1.56%, 6.25%, 25%} of the length of training,
which corresponds to {2, 8, 32}k steps, respectively. Clearly, sign-based optimizers, Sophia, and
SF-AdamW benefit from the increased warmup.

4.2 BENCHMARKING & ABLATIONS AT MEDIUM SCALE: TRAINING 210M MODELS
We report the complete ablation and benchmarking of 210M models in Section 4.2. Figure 36
demonstrated the ranking of optimizers in this setup, and Figure 37 depicts the training dynamics.
We use the same 256× 512 batch size for these models.

Takeaway 3. We do not observe a much of a change in ranking of optimizers for 210M model,
compared to benchmarking on 124M. At the same time, we replicated almost identical hyper-
parameters for all optimizers, except for the learning rate for sign-base methods. We also point
out that sign-based methods are more sensitive to the learning rate while scaling the model size.
As that, we changed the peak learning rate from 10−3 to 5 · 10−4 for Lion and Signum.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
a
ti
o
n
L
os
s Muon

Muon;Linear

Muon;WSD

(a) Muon “prefers” WSD.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
a
ti
o
n
L
os
s Sophia

Sophia;Linear

Sophia;WSD

(b) No preference for Sophia.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

AdamW

AdamW;Linear

AdamW;WSD

(c) Cosine & AdamW.
Figure 8: Comparisons between cosine, WSD, and the linear schedulers. Notably, schedulers be-
have differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between all three sched-
ulers. However, for AdamW, along with the majority of other optimizers studied (see Figure 20),
we get a better performance with cosine. We also report a detailed comparison for all optimizers in
Appendix F.1, and cover additional ablations on another dataset (see Figure 19). We also study their
gradient norm patterns and report results in Figure 21, and in Figure 22.

10¡4 10¡5 10¡6 10¡7 10¡8 10¡9

Final Learning Rate

3:04

3:05

3:06

3:07

3:08

F
in
a
l
V
al
id
a
ti
o
n
L
o
ss

Cosine (AdamW; 210M; max LR 10¡3)

(a) Cosine, γend = 0.01× γmax.

10¡4 10¡5 10¡6 10¡7 10¡8 10¡9

Final Learning Rate

3:04

3:05

3:06

3:07

3:08

3:09

F
in
a
l
V
al
id
a
ti
o
n
L
o
ss

Linear (AdamW; 210M; max LR 10¡3)

(b) Linear, γend = 0.001× γmax.

10¡5 10¡6 10¡7 10¡8 10¡9 10¡10

Final Learning Rate (5£)

3:06

3:07

3:08

F
in
al
V
al
id
at
io
n
L
os
s

WSD (AdamW; 210M; max LR 5£ 10¡4)

(c) WSD, γend = 0.01× γmax.

Figure 9: Decaying the learning rate down to 0.01 × γmax and beyond, instead of only to
10%. We run a 210M Llama model, and observe a common pattern for different schedulers that
decreasing the learning rate to moderate 0.01 × γmax value is a better choice than decreasing it
down to zero. Interestingly, the linear learning rate scheduler for models at a given scale, requires
0.001× γmax. See Figure 25 for corresponding ablation for 124M model.

Takeaway 4. Decaying the learning rate further than 10% of the maximal significantly improves
the results. However, for different schedulers, the best final learning rate is different.

4.3 SCALING UP: BENCHMARKING MODELS OF 583M AND 720M PARAMETERS

AdamW SOAP
2:80

2:88

2:96

3:04

F
in
al
V
al
id
at
io
n
L
os
s

2:958

2:984

2:961
2:978

Ours (no z-loss; wd 0:1; 0:01£max LR)
z-loss; wd 1e¡4; 0:1£max LR

Figure 10: Ablation of z-loss regulariza-
tion. Incorporating the z-loss regularizer
does not improve the final loss or reduce the
spikiness of the loss curves. Moreover, com-
bining z-loss with small weight decay and
decaying γ down to 10%, further degrades
overall performance. Notably, these changes
can reverse the relative ranking of optimiz-
ers compared to the results reported by Vyas
et al. (2024).

Comparison between our setting and Vyas et al.
(2024). We pick two methods: AdamW, SOAP, and
run experiments with a larger model of 583M pa-
rameters, and a large batch size of 2M tokens. The
goal is to get closer to one of the settings described
in (Vyas et al., 2024), i.e., train for the Chinchilla
optimal amount of tokens and use the same batch
size. Therefore, we train for 6500 iterations, corre-
sponding to 13B tokens. We found several key dif-
ferences between our codebase and (Team OLMo,
2024a), used by Vyas et al. (2024): (I) we decay the
learning rate to 0.01 × γmax instead of 0.1 × γmax,
with γmax being the maximum learning rate, (II) we
use typical weight decay values of e.g. 0.1 instead of
smaller values such as 0.01 or 0.0001, (III) we do not
use a z-loss in addition to ours. Our ablations in Fig-
ures 9 and 25 already confirm that properly decaying
the learning rate has an important effect on optimiza-
tion. Regarding z-loss and weight decay, we run an
ablation to compare both settings and conclude that
removing the z-loss and increasing the weight decay
to 0.1 improves the results. We remind that hyper-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

parameter choice in (Vyas et al., 2024) has been suggested by popular codebases for LLM pretrain-
ing (Team OLMo, 2024a;b; Biderman et al., 2023). In that view, we pose the following observation
to practitioners.

Takeaway 5. Hyperparameter choices commonly imposed by popular codebases—such as final
learning rate, z-loss regularization, and weight decay—substantially affect both absolute perfor-
mance and the relative ranking of optimizers at Chinchilla scale.

Results on 720M parameter model & 1M batch size. To expand our ablations towards more
practical scales, we train a 720M parameter model with a batch size of 1M tokens. As previously,
we include both the Chinchilla optimal horizon and beyond, following the setup in § 3. Our goal
is to characterize how optimizer performance evolves with increased model size, batch size, and
total tokens seen. The best optimizers are reported in Figure 1. In Appendix F.3 we report training
dynamics for all optimizers—see Figure 40.

Takeaway 6. (I) At larger scale of model and batch size, AdEMAMix and MARS dominate, by
far outperforming others—see Figure 1. (II) Despite training with large batches, Signum and
Lion scale poorly. (III) D-Muon is consistent across all our benchmarking setups.

4.4 EXTENSION TO MOES

The goal of ablating optimizer performance on MoE models is to assess whether our previous bench-
marking results transfer smoothly to a new type of architecture. To show this smooth transition, we
utilize an old batch size setup and keep untuned all optimizer-related hyperparameters found for the
corresponding dense model—simulating a situation as one would do in practice without much time
for running dozens of experiments on new architectures.

Setup & Comparison. Besides training dense Llama-like transformers, we also cover a comparison
for MoE architectures (Shazeer et al., 2017). Our variant of MoE is based on the Switch-Transformer
implementation (Fedus et al., 2022). We use a classical linear gating with softmax and top-k routing
(k = 2) and 8 experts. The activation functions remains the same as for the dense base model from
§ 3. Given configuration of 124M dense Llama model, we result in approximately 520M parameter
MoE model. In this setting, we train with a batch size of 256 × 512 for T ∈ {42, 336}k iterations
({5.5, 44}B tokens). If we assume that Chinchilla scaling law is applicable to this model, then it
results in 10.4B tokens. See Appendix G.5 for more details.

3:08

3:09

3:10

3:11

F
in
al
V
al
id
at
io
n
L
o
ss

5:5B Tokens (42k Steps)

2:89

2:90

2:91

2:92

2:93

2:94

2:95

F
in
al
V
al
id
at
io
n
L
o
ss

44B Tokens (336k Steps)
Ranking (#)

Sophia

SF-AdamW

Signum

MARS

Lion

Prodigy

AdamW

ADOPT

D-Muon

SOAP

AdEMAMix

Figure 11: Ranking optimizers for 520M MoE models with 256× 512 batch size. We report
results for models trained for both 42k iterations (left), and 336k (right). MoE configuration cor-
respond to one of the 124M dense model. Optimizer rankings closely mirror those in Figure 3 (b),
indicating that our benchmarking results transfer smoothly from dense models to MoEs. We also see
that SOAP outperforms AdEMAMix in 336k steps run (see also Figure 2), however, with re-tuned
beta parameters we might expect the opposite results in longer training (see Figures 4 and 13 (b)).

Takeaway 7. Benchmarking results obtained for dense models transfer to corresponding MoEs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models, 2025.
URL https://arxiv.org/abs/2504.05295.

Essential AI, :, Ishaan Shah, Anthony M. Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju,
Andrew Hojel, Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, Khoi Nguyen, Kurt
Smith, Michael Callahan, Michael Pust, Mohit Parmar, Peter Rushton, Platon Mazarakis, Ritvik
Kapila, Saurabh Srivastava, Somanshu Singla, Tim Romanski, Yash Vanjani, and Ashish Vaswani.
Practical efficiency of muon for pretraining, 2025. URL https://arxiv.org/abs/2505.
02222.

Noah Amsel, David Persson, Christopher Musco, and Robert M. Gower. The polar express: Op-
timal matrix sign methods and their application to the muon algorithm, 2025. URL https:
//arxiv.org/abs/2505.16932.

Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang. ASGO:
Adaptive structured gradient optimization, 2025. URL https://arxiv.org/abs/2503.
20762.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients, 2020. URL https://arxiv.org/abs/1705.07774.

C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied Nu-
merical Mathematics, 57(11):1214–1229, 2007. ISSN 0168-9274. doi: https://doi.org/10.1016/j.
apnum.2007.01.003. URL https://www.sciencedirect.com/science/article/
pii/S0168927407000244. Numerical Algorithms, Parallelism and Applications (2).

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025. URL
https://arxiv.org/abs/2502.15938.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024. URL
https://arxiv.org/abs/2409.20325.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems, 2018. URL https://arxiv.org/abs/
1802.04434.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Y. Prince, Björn Deiseroth,
Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-µp: The
unit-scaled maximal update parametrization, 2025. URL https://arxiv.org/abs/2407.
17465.

David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss
prediction: Scaling laws for all datasets, 2024. URL https://arxiv.org/abs/2411.
12925.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Dan Busbridge, Jason Ramapuram, Pierre Ablin, Tatiana Likhomanenko, Eeshan Gunesh Dhekane,
Xavier Suau, and Russ Webb. How to scale your ema, 2023. URL https://arxiv.org/
abs/2307.13813.

10

https://arxiv.org/abs/2504.05295
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.16932
https://arxiv.org/abs/2505.16932
https://arxiv.org/abs/2503.20762
https://arxiv.org/abs/2503.20762
https://arxiv.org/abs/1705.07774
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://arxiv.org/abs/2502.15938
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2407.17465
https://arxiv.org/abs/2407.17465
https://arxiv.org/abs/2411.12925
https://arxiv.org/abs/2411.12925
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.13813
https://arxiv.org/abs/2307.13813

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Precondi-
tioned spectral descent for deep learning. In Neural Information Processing Systems, 2015. URL
https://api.semanticscholar.org/CorpusID:2968174.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reli-
ably and robustly: Scaling laws for diloco, 2025. URL https://arxiv.org/abs/2503.
09799.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of
optimization algorithms, 2023. URL https://arxiv.org/abs/2302.06675.

Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gas-
nikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves adagrad
when the noise is heavy-tailed, 2024. URL https://arxiv.org/abs/2406.04443.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways, 2022.
URL https://arxiv.org/abs/2204.02311.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura,
Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, 2023.

Francesco D’Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why do
we need weight decay in modern deep learning?, 2024. URL https://arxiv.org/abs/
2310.04415.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism, 2024a. URL
https://arxiv.org/abs/2401.02954.

DeepSeek-AI. Deepseek-v3 technical report, 2024b. URL https://arxiv.org/abs/2412.
19437.

Aaron Defazio. Why gradients rapidly increase near the end of training, 2025. URL https:
//arxiv.org/abs/2506.02285.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements, 2024a. URL https://arxiv.org/abs/
2310.07831.

Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled, 2024b. URL https://arxiv.org/abs/2405.
15682.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner’s guide to
the maximal update parameterization. https://www.cerebras.ai/blog/
the-practitioners-guide-to-the-maximal-update-parameterization,
September 2024.

Timothy Dozat. Incorporating Nesterov Momentum into Adam, 2016. URL https://
openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ. ICLR 2016 Workshop.

11

https://api.semanticscholar.org/CorpusID:2968174
https://arxiv.org/abs/2503.09799
https://arxiv.org/abs/2503.09799
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/2406.04443
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2310.04415
https://arxiv.org/abs/2310.04415
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2506.02285
https://arxiv.org/abs/2506.02285
https://arxiv.org/abs/2310.07831
https://arxiv.org/abs/2310.07831
https://arxiv.org/abs/2405.15682
https://arxiv.org/abs/2405.15682
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of
language models from the loss perspective, 2025. URL https://arxiv.org/abs/2403.
15796.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad, 2022. URL https://arxiv.org/abs/2003.02395.

Ege Erdil. Data movement bottlenecks to large-scale model training:
Scaling past 1e28 flop, 2024. URL https://epoch.ai/blog/
data-movement-bottlenecks-scaling-past-1e28-flop. Accessed: 2025-
01-19.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Kevin Frans, Sergey Levine, and Pieter Abbeel. A stable whitening optimizer for efficient neural
network training, 2025. URL https://arxiv.org/abs/2506.07254.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina,
Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei
Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muen-
nighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on down-
stream tasks, 2024. URL https://arxiv.org/abs/2403.08540.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020a. URL https://arxiv.org/
abs/2101.00027.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020b.

Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024. URL https:
//arxiv.org/abs/2312.11805.

Athanasios Glentis, Jiaxiang Li, Andi Han, and Mingyi Hong. A minimalist optimizer design for
llm pretraining, 2025. URL https://arxiv.org/abs/2506.16659.

Alex Graves. Generating sequences with recurrent neural networks, 2014. URL https://
arxiv.org/abs/1308.0850.

Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration
for orthogonalization via chebyshev-type polynomials, 2025. URL https://arxiv.org/
abs/2506.10935.

Lei Guan. AdaPlus: Integrating nesterov momentum and precise stepsize adjustment on adamw
basis, 2023. URL https://arxiv.org/abs/2309.01966.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization, 2018. URL https://arxiv.org/abs/1802.09568.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
and minimising outlier features in neural network training, 2024. URL https://arxiv.org/
abs/2405.19279.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

12

https://arxiv.org/abs/2403.15796
https://arxiv.org/abs/2403.15796
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/2003.02395
https://epoch.ai/blog/data-movement-bottlenecks-scaling-past-1e28-flop
https://epoch.ai/blog/data-movement-bottlenecks-scaling-past-1e28-flop
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2506.07254
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2506.16659
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/2506.10935
https://arxiv.org/abs/2506.10935
https://arxiv.org/abs/2309.01966
https://arxiv.org/abs/1802.09568
https://arxiv.org/abs/2405.19279
https://arxiv.org/abs/2405.19279
https://arxiv.org/abs/1512.03385

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nicholas J. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics, 2008.
doi: 10.1137/1.9780898717778. URL https://epubs.siam.org/doi/abs/10.1137/
1.9780898717778.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning, lec-
ture 6e rmsprop: Divide the gradient by a running average of its recent magnitude, 2012. URL
https://www.cs.toronto.edu/˜hinton/coursera/lectures/6a.pdf. Cours-
era Lecture Notes.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang,
Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang
Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small
language models with scalable training strategies, 2024. URL https://arxiv.org/abs/
2404.06395.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 4475–4483. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/huang20f.html.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024. URL
https://arxiv.org/abs/2405.18392.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization, 2019. URL https:
//arxiv.org/abs/1803.05407.

Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger,
Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes
Hagemann. Intellect-1 technical report, 2024. URL https://arxiv.org/abs/2412.
01152.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Ji-
acheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrun-
ning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no
gain: Revisiting efficient training algorithms for transformer-based language models, 2023. URL
https://arxiv.org/abs/2307.06440.

13

https://epubs.siam.org/doi/abs/10.1137/1.9780898717778
https://epubs.siam.org/doi/abs/10.1137/1.9780898717778
https://www.cs.toronto.edu/~hinton/coursera/lectures/6a.pdf
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.mlr.press/v119/huang20f.html
https://arxiv.org/abs/2405.18392
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/1803.05407
https://arxiv.org/abs/2412.01152
https://arxiv.org/abs/2412.01152
https://arxiv.org/abs/2401.04088
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2307.06440

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
and improvements, 2024. URL https://arxiv.org/abs/2406.09405.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
signSGD and other gradient compression schemes. In ICML 2019 - International Conference on
Machine Learning, pp. 3252–3261. PMLR, 2019.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Priya Kasimbeg, Vincent Roulet, Naman Agarwal, Sourabh Medapati, Fabian Pedregosa, Atish
Agarwala, and George E. Dahl. How far away are truly hyperparameter-free learning algorithms?,
2025. URL https://arxiv.org/abs/2505.24005.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Nikita Kornilov, Philip Zmushko, Andrei Semenov, Mark Ikonnikov, Alexander Gasnikov, and
Alexander Beznosikov. Sign operator for coping with heavy-tailed noise in non-convex opti-
mization: High probability bounds under (l0, l1)-smoothness, 2025. URL https://arxiv.
org/abs/2502.07923.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate
warmup in gpt training, 2024a. URL https://arxiv.org/abs/2410.23922.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks, 2024b. URL https://arxiv.org/abs/2305.
17212.

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
trust-region optimization, 2025. URL https://arxiv.org/abs/2503.12645.

Tanishq Kumar, Zachary Ankner, Benjamin F. Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision,
2024. URL https://arxiv.org/abs/2411.04330.

Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, Univer-
sity of British Columbia, 2024. URL https://open.library.ubc.ca/collections/
ubctheses/24/items/1.0445444.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be,
2023. URL https://arxiv.org/abs/2304.13960.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models, 2024. URL
https://arxiv.org/abs/2402.19449.

Houyi Li, Wenzhen Zheng, Qiufeng Wang, Zhenyu Ding, Haoying Wang, Zili Wang, Shijie Xuyang,
Ning Ding, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Farseer: A refined scaling law in
large language models, 2025a. URL https://arxiv.org/abs/2506.10972.

Houyi Li, Wenzhen Zheng, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie Xuyang, Yuan-
tao Fan, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Predictable scale: Part i – opti-
mal hyperparameter scaling law in large language model pretraining, 2025b. URL https:
//arxiv.org/abs/2503.04715.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

14

https://arxiv.org/abs/2406.09405
https://arxiv.org/abs/2001.08361
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2505.24005
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2502.07923
https://arxiv.org/abs/2502.07923
https://arxiv.org/abs/2410.23922
https://arxiv.org/abs/2305.17212
https://arxiv.org/abs/2305.17212
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2411.04330
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0445444
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0445444
https://arxiv.org/abs/2304.13960
https://arxiv.org/abs/2402.19449
https://arxiv.org/abs/2506.10972
https://arxiv.org/abs/2503.04715
https://arxiv.org/abs/2503.04715

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experi-
ences on accelerating data parallel training, 2020. URL https://arxiv.org/abs/2006.
15704.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models, 2022. URL https://arxiv.org/abs/
2210.14199.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training, 2024. URL https://arxiv.org/
abs/2305.14342.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for llm training, 2025. URL https://arxiv.org/abs/2502.16982.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017. URL
https://arxiv.org/abs/1608.03983.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. SWAN: SGD with normalization and
whitening enables stateless llm training, 2025. URL https://arxiv.org/abs/2412.
13148.

Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum.
Small batch size training for language models: When vanilla sgd works, and why gradient accu-
mulation is wasteful, 2025. URL https://arxiv.org/abs/2507.07101.

James Martens. New insights and perspectives on the natural gradient method, 2020. URL https:
//arxiv.org/abs/1412.1193.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018. URL https://arxiv.org/abs/1710.03740.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner, 2024. URL https://arxiv.org/abs/2306.06101.

Depen Morwani, Nikhil Vyas, Hanlin Zhang, and Sham Kakade. Connections between schedule-
free optimizers, ademamix, and accelerated sgd variants, 2025. URL https://arxiv.org/
abs/2502.02431.

A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization.
USSR Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985. ISSN
0041-5553. doi: https://doi.org/10.1016/0041-5553(85)90100-4. URL https://www.
sciencedirect.com/science/article/pii/0041555385901004.

Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex
Minimization. Journal of Optimization Theory and Applications, 165(3):917–940, June 2015.
doi: 10.1007/s10957-014-0677-5. URL https://ideas.repec.org/a/spr/joptap/
v165y2015i3d10.1007_s10957-014-0677-5.html.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2), 1983. URL https://api.semanticscholar.org/CorpusID:
202149403.

15

https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2210.14199
https://arxiv.org/abs/2210.14199
https://arxiv.org/abs/2305.14342
https://arxiv.org/abs/2305.14342
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2412.13148
https://arxiv.org/abs/2412.13148
https://arxiv.org/abs/2507.07101
https://arxiv.org/abs/1412.1193
https://arxiv.org/abs/1412.1193
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2306.06101
https://arxiv.org/abs/2502.02431
https://arxiv.org/abs/2502.02431
https://www.sciencedirect.com/science/article/pii/0041555385901004
https://www.sciencedirect.com/science/article/pii/0041555385901004
https://ideas.repec.org/a/spr/joptap/v165y2015i3d10.1007_s10957-014-0677-5.html
https://ideas.repec.org/a/spr/joptap/v165y2015i3d10.1007_s10957-014-0677-5.html
https://api.semanticscholar.org/CorpusID:202149403
https://api.semanticscholar.org/CorpusID:202149403

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Francesco Orabona. Neural networks (maybe) evolved to make adam the best
optimizer, 2020. URL https://parameterfree.com/2020/12/06/
neural-network-maybe-evolved-to-make-adam-the-best-optimizer/.

Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online algo-
rithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir (eds.), 29th Annual Con-
ference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pp.
1659–1664, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v49/orabona16.html.

Antonio Orvieto and Robert Gower. In search of adam’s secret sauce, 2025. URL https://
arxiv.org/abs/2505.21829.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older,
2024. URL https://arxiv.org/abs/2409.03137.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024a. URL https://arxiv.org/abs/2406.17557.

Guilherme Penedo, Hynek Kydlı́ček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Mar-
tin Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with
1000s of languages, December 2024b. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-2.

Bowen Peng, Jeffrey Quesnelle, and Diederik P. Kingma. Demo: Decoupled momentum optimiza-
tion, 2024. URL https://arxiv.org/abs/2411.19870.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025. URL https:
//arxiv.org/abs/2502.07529.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Com-
putational Mathematics and Mathematical Physics, 4:1–17, 1964. URL https://api.
semanticscholar.org/CorpusID:120243018.

Boris Polyak. New method of stochastic approximation type. Automation and Remote Control,
1990, 01 1990.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models, 2024. URL https://arxiv.
org/abs/2406.19146.

Ofir Press and Lior Wolf. Using the output embedding to improve language models, 2017. URL
https://arxiv.org/abs/1608.05859.

Zeju Qiu, Simon Buchholz, Tim Z. Xiao, Maximilian Dax, Bernhard Schölkopf, and Weiyang Liu.
Reparameterized llm training via orthogonal equivalence transformation, 2025. URL https:
//arxiv.org/abs/2506.08001.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI, 2019.

16

https://arxiv.org/abs/2303.08774
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://proceedings.mlr.press/v49/orabona16.html
https://arxiv.org/abs/2505.21829
https://arxiv.org/abs/2505.21829
https://arxiv.org/abs/2409.03137
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2406.17557
https://huggingface.co/datasets/HuggingFaceFW/fineweb-2
https://huggingface.co/datasets/HuggingFaceFW/fineweb-2
https://arxiv.org/abs/2411.19870
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://api.semanticscholar.org/CorpusID:120243018
https://api.semanticscholar.org/CorpusID:120243018
https://arxiv.org/abs/2406.19146
https://arxiv.org/abs/2406.19146
https://arxiv.org/abs/1608.05859
https://arxiv.org/abs/2506.08001
https://arxiv.org/abs/2506.08001
https://api.semanticscholar.org/CorpusID:49313245

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 3505–3506, New York, NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https://doi.org/10.
1145/3394486.3406703.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.
URL https://arxiv.org/abs/1904.09237.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making Muon &
Scion great again! (bridging theory and practice of lmo-based optimizers for llms), 2025. URL
https://arxiv.org/abs/2505.13416.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Math-
ematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https:
//doi.org/10.1214/aoms/1177729586.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988. URL
https://api.semanticscholar.org/CorpusID:108279905.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training, 2025. URL https://arxiv.org/abs/2501.18965.

Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley
- benchmarking deep learning optimizers, 2021. URL https://arxiv.org/abs/2007.
01547.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017. URL https://arxiv.org/abs/1701.06538.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020. URL https://arxiv.org/abs/1909.08053.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Minhak Song, Beomhan Baek, Kwangjun Ahn, and Chulhee Yun. Through the river: Understand-
ing the benefit of schedule-free methods for language model training, 2025. URL https:
//arxiv.org/abs/2507.09846.

17

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/2505.13416
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://api.semanticscholar.org/CorpusID:108279905
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2501.18965
https://arxiv.org/abs/2007.01547
https://arxiv.org/abs/2007.01547
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2507.09846
https://arxiv.org/abs/2507.09846

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Teodora Srećković, Jonas Geiping, and Antonio Orvieto. Is your batch size the problem? revisiting
the Adam-SGD gap in language modeling, 2025. URL https://arxiv.org/abs/2506.
12543.

DiJia Su, Andrew Gu, Jane Xu, Yuandong Tian, and Jiawei Zhao. GaLore 2: Large-scale llm pre-
training by gradient low-rank projection, 2025. URL https://arxiv.org/abs/2504.
20437.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.),
Proceedings of the 30th International Conference on Machine Learning, Proceedings of Ma-
chine Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/sutskever13.html.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam
can converge with any β2 with the optimal rate, 2024. URL https://arxiv.org/abs/
2411.02853.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers, 2022. URL https://arxiv.org/abs/2109.
10686.

Team OLMo. OLMo: Accelerating the science of language models, 2024a. URL https://
arxiv.org/abs/2402.00838.

Team OLMo. 2 OLMo 2 furious, 2024b. URL https://arxiv.org/abs/2501.00656.

Akiyoshi Tomihari and Issei Sato. Understanding why adam outperforms sgd: Gradient heterogene-
ity in transformers, 2025. URL https://arxiv.org/abs/2502.00213.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham Kakade. SOAP: Improving and stabilizing shampoo using Adam, 2024. URL https:
//arxiv.org/abs/2409.11321.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
the upper bound and the lower bound of adam’s iteration complexity, 2023. URL https://
arxiv.org/abs/2310.17998.

Mingze Wang, Jinbo Wang, Jiaqi Zhang, Wei Wang, Peng Pei, Xunliang Cai, Weinan E, and Lei
Wu. GradPower: Powering gradients for faster language model pre-training, 2025. URL https:
//arxiv.org/abs/2505.24275.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them, 2025. URL https://arxiv.org/abs/2509.02046.

18

https://arxiv.org/abs/2506.12543
https://arxiv.org/abs/2506.12543
https://arxiv.org/abs/2504.20437
https://arxiv.org/abs/2504.20437
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://proceedings.mlr.press/v28/sutskever13.html
https://arxiv.org/abs/2411.02853
https://arxiv.org/abs/2411.02853
https://arxiv.org/abs/2109.10686
https://arxiv.org/abs/2109.10686
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2502.00213
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2409.11321
https://arxiv.org/abs/2409.11321
https://arxiv.org/abs/2310.17998
https://arxiv.org/abs/2310.17998
https://arxiv.org/abs/2505.24275
https://arxiv.org/abs/2505.24275
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2509.02046

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

BigScience Workshop. BLOOM: A 176b-parameter open-access multilingual language model,
2023. URL https://arxiv.org/abs/2211.05100.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities, 2023. URL https://arxiv.org/abs/2309.14322.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models, 2024. URL https://arxiv.org/
abs/2208.06677.

Chengyin Xu, Kaiyuan Chen, Xiao Li, Ke Shen, and Chenggang Li. Unveiling downstream perfor-
mance scaling of llms: A clustering-based perspective, 2025. URL https://arxiv.org/
abs/2502.17262.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer, 2022. URL https://arxiv.org/abs/
2203.03466.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models, 2024. URL https://arxiv.org/abs/
2411.10438.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-
ods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_
files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers,
2022. URL https://arxiv.org/abs/2106.04560.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://
arxiv.org/abs/1910.07467.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster,
and Sham Kakade. How does critical batch size scale in pre-training?, 2024a. URL https:
//arxiv.org/abs/2410.21676.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020a.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020b. URL
https://arxiv.org/abs/1912.03194.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective, 2024b. URL https://arxiv.org/abs/2402.
16788.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Decon-
structing what makes a good optimizer for language models. ICLR, 2025. URL https:
//arxiv.org/abs/2407.07972.

19

https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/2208.06677
https://arxiv.org/abs/2208.06677
https://arxiv.org/abs/2502.17262
https://arxiv.org/abs/2502.17262
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2411.10438
https://arxiv.org/abs/2411.10438
https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2410.21676
https://arxiv.org/abs/2410.21676
https://arxiv.org/abs/1912.03194
https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2402.16788
https://arxiv.org/abs/2407.07972
https://arxiv.org/abs/2407.07972

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experi-
ences on scaling fully sharded data parallel, 2023. URL https://arxiv.org/abs/2304.
11277.

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W. Ronny Huang, and Tom Goldstein. Gradinit:
Learning to initialize neural networks for stable and efficient training, 2021. URL https://
arxiv.org/abs/2102.08098.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z.
Pan, Zhangyang Wang, and Jinwon Lee. APOLLO: SGD-like memory, Adamw-level perfor-
mance, 2025. URL https://arxiv.org/abs/2412.05270.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.org/abs/2202.08906.

20

https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2102.08098
https://arxiv.org/abs/2102.08098
https://arxiv.org/abs/2412.05270
https://arxiv.org/abs/2202.08906

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

1 Introduction 1

2 Background & Related Work 2

3 Experimental Setup 3

4 Results 4

4.1 Benchmarking & Ablations at Small Scale: Training 124M Models 5

4.2 Benchmarking & Ablations at Medium Scale: Training 210M Models 7

4.3 Scaling Up: Benchmarking models of 583M and 720M Parameters 8

4.4 Extension to MoEs . 9

A Appendix 21

B Discussion 22

C Optimizers we study 23

C.1 AdamW, ADOPT, AdEMAMix . 23

C.2 Sign-based methods: Lion and Signum . 25

C.3 Muon & D-Muon, SOAP, Sophia . 28

C.4 Schedule-Free AdamW, Prodigy . 31

C.5 MARS . 32

D Implementation 34

E Model & Data 35

F Additional Results 35

F.1 Ablations for 124M model . 35

F.2 Ablations for 210M model . 55

F.3 Ablations for 720M model . 57

F.4 Ablations for 520M MoE model . 58

F.5 Wall-clock performance of optimizers across models of different scale 59

G Hyperparameter tuning 60

G.1 124M parameters model . 63

G.2 210M parameters model . 68

G.3 583M parameters model . 72

G.4 720M parameters model . 73

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.5 520M parameters MoE model . 74

B DISCUSSION

A summary of results. In this work, we benchmarked many interesting to community optimizers
across architectural changes, model scales, training durations and batch sizes. After an extensive
hyperparameter tuning, we revealed ablations for each optimizers showing their sensitivity to certain
of them. We questioned flaws in popular code base for LLM pretraining—so important for careful
benchmarking and the overall model performance. Regarding the benchmarking setup, we built a
rankings of optimizers in each setup considered, if consider the global result and the question of
the effectiveness of AdamW for LLMs, we point that there are new reliable optimizers that would
be beneficial at scale—AdEMAMix, D-Muon, MARS. We point that methods such as ADOPT and
Prodigy scale similarly to AdamW, and also worth a try for production purposes.

Our advices on tuning each method. Overall, we validate both widely used hyperparameters such
as λ = 0.1 and Twarmup ≈ 2k, and explore the sensitivity of optimizers to γ-schedulers, γ-decay,
and optimizer-related hyperparameters. Notably, a large weight decay ensures faster convergence
when training for fewer iterations, and large warmup of 25% of the total training duration T is
beneficial for sign-based methods, Sophia, and SF-AdamW. For Lion—as mentioned in (Chen
et al., 2023)—we find that the best value for β1 is consistently 0.99. The mechanism for Lion
appears similar to AdEMAMix, suggesting that Lion could perform better with larger β1, which
would require schedulers. We also pose an interesting observation toward Prodigy: while it may
not be so efficient with very small batch sizes, with scaling of the model size and the batch size,
it becomes almost as competitive as AdamW. MARS also benefits from large batches and continues
to improve performance as the model size scales. For MARS, when optimizing 1D parameters with
AdamW, we found that it is better to keep (β1, β2) of AdamW; for our largest models, β1 = 0.8
performs slightly better than β1 = 0.9. Additionally, MARS betas determined for 2D parameters
in (Yuan et al., 2024) also seem to be the best in our settings. Basic Muon performs poorly at
relatively small batch sizes (32, 256) across different model sizes and training lengths; however,
applying weight decay to 2-dimensional parameters, as in D-Muon, resolves this and yields a robust
optimizer across all benchmarking scenarios we considered. AdEMAMix remains the best optimizer
overall, scaling efficiently with bath size, model size, and training horizons. Importantly, increasing
β2 for longer training substantially benefits AdEMAMix and other AdamW-like methods. Moreover,
AdEMAMix allows using a large weight decay term λ during prolonged training, e.g., runs of 128k
iterations with λ = 0.5 still slightly outperform those with λ = 0.1. Beyond optimizer-specific
hyperparameters, we show that the choice of γ-scheduler also depends on the optimizer selected.
Regarding the learning rate, decaying γ below 0.1× γmax is important, as it significantly improves
the optimization performance.

Limitations. We conduct our benchmarking experiments on models of up to 720M parameters, with
long training runs of almost 50B tokens. The insights we find vary across scales, and training be-
havior may change further at practical scales and with extremely long training durations (Wei et al.,
2022; Tay et al., 2022). Especially when certain optimizers are not widely supported by modern
sharding frameworks (Zhao et al., 2023; Rajbhandari et al., 2020; Rasley et al., 2020) at the mo-
ment. Throughout this work, we study the loss dynamics, leaving aside downstream performances.
Although these often scale reliably with loss (Du et al., 2025; Gadre et al., 2024), there are also
counterexamples (Xu et al., 2025; Liu et al., 2022). Bridging the gap between loss minimization and
downstream task performance is important, as downstream abilities are ultimately the main metric
of interest. We leave a deeper investigation of this connection to future research. We also do not
cover previously explored Adan (Xie et al., 2024), NAdam(W) (Dozat, 2016), Shampoo (Gupta
et al., 2018) optimizers, as well as recently introduced Scion (Pethick et al., 2025), novel variations
of Muon (Qiu et al., 2025; An et al., 2025; Ahn & Xu, 2025), and others (Peng et al., 2024; Defazio,
2025; Guan, 2023; Wang et al., 2025). In addition, it is important to come up with a unified bench-
mark of optimizers for memory-efficient pretraining (Glentis et al., 2025; Zhu et al., 2025; Ma et al.,
2025; Su et al., 2025), as they become more popular and argue that they might even outperform the
AdamW baseline. We emphasize that there is still a huge branch of research on optimizers left to
explore.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C OPTIMIZERS WE STUDY

In this section, we describe all considered algorithms, presenting them in a unified formalism. We
start with notation and then discuss the algorithms according to their logical grouping:

1. Adam-like methods: AdamW (Algorithm 1), ADOPT (Algorithm 2), and AdEMAMix (Algo-
rithm 3).

2. Sign-based methods: Lion (Algorithm 4), Signum (Algorithms 5 and 6).

3. Approximate second-order optimizers: Muon (Algorithm 8), SOAP (Algorithm 10), and Sophia
(Algorithm 11).

4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm 12),
Prodigy (Algorithm 13).

5. MARS methods: (Algorithms 14, 15, 16).

Notation. In our work, we denote vectors and matrices in bold, and scalars in regular type. Let
L : D → R be an empirical loss function parameterized by x and mapping a batch of inputs
ξ ⊂ D to R. As g = ∇xL (x, ξ), we denote a stochastic gradient of the loss w.r.t. parameters x.
For brevity, we omit x in ∇ and write ∇L (x, ξ). We use the following standardized notation for
specific symbols in our work: batch size—|ξ|, learning rate—γ, weight decay—λ, momentum—β,
iteration counter t with the total number of iterations—T . And basic notation for symbols in the
algorithms: m,v—are first and second moment estimates, respectively, with their bias corrected
versions m̂, v̂, and beta parameters—(β1, β2). We denote the dot product of two vectors z, y as
⟨z,y⟩, while z ⊙ y stands for their element-wise product. All division and addition operations in
the described algorithms are element-wise.

C.1 ADAMW, ADOPT, ADEMAMIX

AdamW. Our baseline—Adam(W), has become a de facto optimizer for deep learning, demonstrat-
ing impressive performance across diverse domains—from tabular data to diffusion and language
models.

The method originated from the ideas of Adagrad (Duchi et al., 2011) and RMSProp (Graves,
2014), which utilize a second moment estimate v in their update rule. However, Adam(W) enhanced
this prior scheme by incorporating momentum (Nemirovskii & Nesterov, 1985; Sutskever et al.,
2013), establishing itself as a state-of-the-art method for a wide range of tasks. All other algorithms
we consider also employ a similar, if not identical, momentum scheme.

A key difference between Adam and AdamW is the use of decoupled weight decay (Loshchilov &
Hutter, 2019) in the latter. We adopt the decoupled weight decay scheme for all methods to ensure
consistency, as correct weight decay is critical for optimizer comparison, hyperparameter tuning, and
final performance. The importance of the correct weight decay implementation is clearly observable,
e.g., for Signum.

Algorithm 1 AdamW
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

8: xt+1 ← xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
9: end for

10: Return: xT

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ADOPT. Recently, Taniguchi et al. (2024) proposed a modification of Adam, by removing the current
gradient gt from the second moment estimate vt and altering the order of the momentum update mt

and normalization. As shown in line 8 of Algorithm 2, the parameter update depends only on
the previous value of the second moment estimate vt−1. The authors analyze the convergence of
ADOPT with the following update rule:

mt ← β1mt−1 + (1− β1)
gt

max{√vt−1, ε}
,

xt+1 ← xt − γtmt.

However, the practical implementation differs in a few details. To tackle instabilities caused by
near-zero gradients during the early stages of training, the authors propose using a clipping on
gt/max{√vt−1, ε}, which we formalize as the clamp operation. Given a vector g and a positive
scalar c, it is defined as:

clamp (g, c)
(I)

= min
{
max

{
g(I),−c

}
, c
}
. (1)

Thus, the element-wise clamp operation preserves gt from the division by near-zero values.

The authors theoretically claim that ADOPT achieves the optimal convergence bound for smooth
non-convex objectives, regardless of the choice of the β2 parameter. We empirically investigate this
claim and observe that, contrary to the theoretical results, there is a significant performance gap for
different choices of β2 in practice—see Figure 29. Also, the effect of ε in Algorithm 2 is intriguing:
in contrast to the typical ε = 10−8 value for AdamW, the authors pose that for ADOPT mechanism
the smaller value of 10−6 is more suitable. We notice that this also holds in practice for the method,
and we provide the corresponding ablation in Figure 38.

Algorithm 2 ADOPT
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

ε.
2: Initialize: m0 ← 0, v0 ← ∇L(x0, ξ0)⊙∇L(x0, ξ0)
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: ct ← t1/4 ▷ Update clipping value schedule
6: mt ← β1mt−1 + (1− β1)clamp

(
gt

max{√vt−1,ε} , ct

)
7: vt ← β2vt−1 + (1− β2)gt ⊙ gt
8: xt+1 ← xt − γt (mt + λxt) ▷ Update without vt

9: end for
10: Return: xT

AdEMAMix. Another Adam-like optimizer we study is AdEMAMix (Pagliardini et al., 2024). This
work argues that using a single EMA to accumulate past gradients in the first moment estimate m
can be suboptimal, as it cannot simultaneously prioritize both immediate past and older gradients. In
Algorithm 3, the authors incorporate two EMAs: one—Adam-like EMA for m (fast), and another—
a slow EMA mslow (see line 7) with an additional β3 parameter. In the update rule, fast and slow
EMAs are balanced with the constant factor α (see line 10 of Algorithm 3). This algorithmic
design enables AdEMAMix to benefit from older gradients, resulting in smoother loss curves during
training.

To mitigate the effect of early instabilities, the authors use two additional schedulers for α and β3 –
alpha scheduler and beta scheduler, formalized in our work as follows:

alpha scheduler(t, α, Tα) = min

{
tα

Tα
, α

}
,

beta scheduler(t, β3, βstart, Tβ3
) = min

exp

 log(βstart) log(β3)(
1− t

Tβ3

)
log(β3) +

t
Tβ3

log(βstart)

 , β3

 .

In all experiments, we set βstart = β1, and the warmup parameters equal to the length of training:
Tα = Tβ3 = T .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Although these schedulers may seem at odds with the WSD scheduler (Hu et al., 2024), set-
ting Tα, Tβ3

longer than the first WSD checkpoint does not noticeably harm performance. Thus,
AdEMAMix can still be combined with recent findings regarding the WSD scheduler.

Algorithm 3 AdEMAMix
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

β3, βstart, α, beta scheduler, alpha scheduler, warmup parameters Tβ3
and Tα, ε.

2: Initialize: m0 ← 0, mslow
0 ← 0, v0 ← 0

3: for t ∈ [T] do
4: β3(t)← beta scheduler(t, β3, βstart, Tβ3

), α(t)← alpha scheduler(t, α, Tα) ▷
Update β3 and α schedulers

5: gt ← ∇L(xt, ξt)
6: mt ← β1mt−1 + (1− β1)gt
7: mslow

t ← β3(t)m
slow
t−1 + (1− β3(t))gt ▷ Update slow EMA

8: vt ← β2vt−1 + (1− β2)gt ⊙ gt
9: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

10: xt+1 ← xt − γt

(
m̂t+α(t)mslow

t√
v̂t+ε

+ λxt

)
11: end for
12: Return: xT

C.2 SIGN-BASED METHODS: LION AND SIGNUM

Another branch of methods includes sign-based methods, represented by Lion and Signum. To
some extent, one can classify Adam as a sign-based optimizer also, but we mention only Lion and
Signum as they explicitly incorporate the sign operation in the update rule.

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pre-
training. However, our results demonstrate that, with sufficiently large batch sizes and at moderate
model scales, these optimizers perform on par with Adam, and in some cases even outperform it.

Lion. The first sign-based method we study is Lion (Chen et al., 2023). This optimizer is sym-
bolically discovered in the program space of first-order optimization primitives. Lion updates its
EMA of m after updating the parameters and has additional term (1 − β1)g which adds to the
momentum. This interpolation β1mt−1 + (1 − β1)gt (see line 6 of Algorithm 4) makes the
symbolic-discovered idea behind Lion similar to the idea of the AdEMAMix optimizer.

Algorithm 4 Lion
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2.
2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β2mt−1 + (1− β2)gt ▷ Update EMA of gt
6: xt+1 ← xt − γt (sign (β1mt−1 + (1− β1)gt) + λxt)
7: end for
8: Return: xT

Signum. Another sign-based method, which is the adoptation of signSGD—Signum (Bernstein
et al., 2018) (or, alternatively, signSGD with momentum). This method differs from Lion in
the interpolation term between the EMA of momentum and the current gradient, as well as in the
Signum’s update rule, where a current EMA is used.

Importantly, while Signum is not yet as widespread for LLM pretraining and has largely remained
a theoretical artifact, recent studies have begun to adopt Signum for scalable training (Zhao et al.,
2025), primarily due to its memory efficiency compared to AdamW.

In this regard, we would like to highlight that many recent PyTorch (Paszke et al., 2019) imple-
mentations of the Signum optimizer are unlikely to be suitable for this method, which impairs its
potential performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The main issue with open-source implementations is the use of decoupled weight decay in the Py-
Torch implementation of SGDM (SGD with momentum) (Sutskever et al., 2013). Indeed, with de-
coupled weight decay, the update in Algorithm 5 transforms into:

xt+1 ← xt − γtsign (βmt−1 + (1− β)gt − λ(1− β)gt) ,

which affects the sign of the update, potentially leading to the wrong optimization direction if the
weight decay is sufficiently large. See Figures 5 (a) and 15 for the impact of the correct weight
decay implementation for sign-based methods like Signum and Lion.

Another popular failure while using Signum is the incorrectly tractable PyTorch implementation of
SGD with momentum. It does not include such EMA as line 5 in Algorithm 5, on the other hand,
in PyTorch, the momentum update depends on the dampening parameter τ :

mt ← βmt−1 + (1− τ)gt,

where τ is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior
in practice, corresponds to the following update:

xt+1 ← xt − γt (sign (βmt−1 + (1− τ)gt) + λxt) ,

where the weight decay is decoupled and, consequently, does not affect sign.

However, we found out that the PyTorch implementation of Nesterov momentum (Nesterov, 1983)

gt ← gt + βmt,

improves Signum. Since enabling Nesterov momentum requires zero dampening τ , we revisited
the description of Algorithm 5 and propose more practical, PyTorch-compatible version of Signum
in Algorithm 6. We study the role of dampening and Nesterov momentum in our variant of Signum
in Figure 33.

Algorithm 5 Signum (basic)

1: Input: Initial parameters x0, number of
iterations T , learning rate γt, weight decay
λ, momentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + (1− β)gt
6: xt+1 ← xt − γt (sign (mt) + λxt)
7: end for
8: Return: xT

Algorithm 6 Signum (our PyTorch variant)

1: Input: Initial parameters x0, number of itera-
tions T , learning rate γt, weight decay λ, mo-
mentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← L(xt, ξt)
5: mt ← βmt−1 + gt
6: xt+1 ← xt−γt (sign (βmt + gt) + λxt)
7: end for
8: Return: xT

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum,
and to ensure reproducibility, we provide our Python code.

Listing 1: Signum code skeleton using PyTorch.
1 from typing import Dict
2
3 import torch
4
5
6 class Signum(torch.optim.Optimizer):
7 def __init__(
8 self,
9 params,

10 lr=1e-3,
11 momentum=0,
12 dampening=0,
13 weight_decay=0,
14 nesterov=False,
15 sign_update=True,
16):
17 if lr < 0.0:
18 raise ValueError(f"Invalid learning rate: {lr}")
19 if momentum < 0.0:
20 raise ValueError(f"Invalid momentum value: {momentum}")
21 if weight_decay < 0.0:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

22 raise ValueError(f"Invalid weight_decay value: {weight_decay}")
23
24 defaults = dict(
25 lr=lr,
26 momentum=momentum,
27 dampening=dampening,
28 weight_decay=weight_decay,
29 nesterov=nesterov,
30 sign_update=sign_update,
31)
32 if nesterov and (momentum <= 0 or dampening != 0):
33 raise ValueError("Nesterov momentum requires a momentum and zero dampening")
34 super().__init__(params, defaults)
35
36 def __setstate__(self, state):
37 super().__setstate__(state)
38 for group in self.param_groups:
39 group.setdefault("nesterov", False)
40
41 @torch.no_grad()
42 def _init_state(self, example, state=None):
43 assert isinstance(example, torch.Tensor)
44 assert isinstance(state, Dict) or state is None
45 if state is None:
46 state = {}
47 state["step"] = 0
48 state["momentum_buffer"] = torch.clone(example).detach()
49 return state
50
51 @torch.no_grad()
52 def _compute_update(
53 self, grad, state, lr, momentum, nesterov, dampening, sign_update, **kwargs
54):
55 if momentum != 0: # Signum check
56 buf = state["momentum_buffer"]
57 buf.mul_(momentum).add_(grad, alpha=1 - dampening)
58
59 if nesterov:
60 grad = grad.add(buf, alpha=momentum)
61 else:
62 grad = buf
63
64 if sign_update:
65 grad = grad.sign()
66
67 return grad * (-lr)
68
69 @torch.no_grad()
70 def step(self, closure=None):
71 """Performs a single optimization step.
72
73 Args:
74 closure (Callable, optional): A closure that reevaluates the model
75 and returns the loss.
76 """
77 loss = None
78 if closure is not None:
79 with torch.enable_grad():
80 loss = closure()
81
82 for group in self.param_groups:
83 for p in group["params"]:
84 if p.grad is None:
85 continue
86
87 grad = p.grad
88 state = self.state[p]
89
90 if group["weight_decay"] != 0:
91 p.mul_(1 - group["lr"] * group["weight_decay"])
92
93 if len(state) == 0:
94 self._init_state(example=p, state=state)
95 if not group["momentum"]:
96 state.pop("momentum_buffer", None)
97
98 state["step"] += 1
99

100 update = self._compute_update(
101 grad,
102 state,
103 group["lr"],
104 group["momentum"],
105 group["nesterov"],
106 group["dampening"],
107 group["sign_update"],
108)
109
110 p.add_(update)
111
112 return loss

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C.3 MUON & D-MUON , SOAP, SOPHIA

The next page of the methods covers algorithms that rather aim to use more information about the
problem’s curvature (SOAP (Vyas et al., 2024), Sophia (Liu et al., 2024)) or perform fast updates
of matrix parameters involving higher order computations (Muon (Jordan et al., 2024b)).

Contrary to chronological order, we discuss them starting from the recent one—Muon and end up
with Sophia.

Muon & D-Muon. Specifically designed for speedrun comparisons, Muon surpasses the AdamW
baseline on the nanoGPT pretraining benchmark (Jordan et al., 2024a). Claims from the Muon
project extend to faster learning, lower memory usage and better sample-efficiency, with a small
overhead in wall-clock time.

The reason why Muon is a good option for speedrun pretraining lies in its structure—Muon treats
different parameters based on their tensor dimensionality. One-dimensional (1D) parameters, large
embedding layers, Layer Norm (or RMSNorm) parameters, and the output layer of LLM (lm head)
are optimized by AdamW. And all parameters with two or more dimensions (e.g., Multi-Head Atten-
tion layers) are optimized by Algorithm 7, which we call MuonNon1D.

Inspired by Shampoo’s preconditioners (Gupta et al., 2018), the authors of MuonNon1D incor-
porated an orthogonalization step to compute SVD transformation of the gradient matrix. Before
the orthogonalization step, MuonNon1D resembles SGD with Nesterov momentum. To ensure a
fast orthogonalization procedure, the authors, inspired by (Bernstein & Newhouse, 2024), use the
Newton-Schulz procedure (Higham, 2008). As the number of Newton-Schulz iterations increases,
the resulting matrix becomes closer to UV ⊤ from SVD transformation. The authors also mention
that Muon can be considered an alternative method of smoothing spectral steepest descent (Carlson
et al., 2015), offering a distinct set of memory and runtime trade-offs compared to Shampoo.

Algorithm 7 MuonNon1D (for non-1D parameters)

1: Input: Initial non-1D parameters x0, number of iterations T , learning rate γt, momentum β,
number of Newton-Schulz iterations TNS, a, b, c coefficients.

2: Initialize: m0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + gt
6: gt ← βmt + gt ▷ Practical implementation of Nesterov momentum
7: Set: w0 ← gt/∥gt∥F
8: for n ∈ [TNS] do
9: wn+1 ← awn + bwnw

⊤
n + c

(
wnw

⊤
n

)2
wn ▷ Newton-Schulz iteration

10: end for
11: xt+1 ← xt − γtwTNS

12: end for
13: Return: xT

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the
official repository2, differs from the actual one, presented in Algorithm 7. In the original code, as
well as in our benchmarking, weight decay does not apply to the matrix parameters in the optimizer
state of MuonNon1D, meaning that the only weight decay used during training is AdamW’s weight
decay. From this perspective, we observe that the gap between the final loss values for runs with
weight decay of 0.1 and 0 almost disappears, while the run with a weight decay of 0.5 becomes the
worst, which is not the case for other optimizers. See Figures 5 and 15 regarding these ablations.

Noticeably, the weight decay issue was addressed in the recent paper (Liu et al., 2025), in which
the authors also present a scheme for sharing the learning rate and weight decay between the matrix
and non-matrix parameters of the model. They do this via the RMS heuristic: since AdamW has the
property of keeping its RMS updates close to 1 (Hinton et al., 2012), particularly around 0.2-0.4
in the practice of LLM training (Liu et al., 2025; AI et al., 2025), they scale the RMS update of

2https://github.com/KellerJordan/modded-nanogpt

28

https://github.com/KellerJordan/modded-nanogpt

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Algorithm 8 Muon (general scheme)

1: Input: Initial parameters x0, number of iterations T . Muon’s parameters: learning rate γMt , mo-
mentum β, number of Newton-Schulz iterations TNS, a, b, c coefficients. AdamW’s parameters:
learning rate γAt , weight decay λ, β1, β2, ε.

2: for t ∈ [T] do
3: if xt ∈ {embeds, scalar params, lm head} then
4: xA

t ← xt

5: xA
t+1 ← AdamW (xA

t , γ
A
t , λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW

6: else
7: xM

t ← xt

8: xM
t+1 ← MuonNon1D (xM

t , γ
M
t , TNS, β, a, b, c, T = 1) ▷ One iteration of MuonNon1D

9: end if
10: end for
11: Return: xA

T ,x
M
T

Muon to this range. With these adjustments, practitioners do not need to tune the learning rate and
weight decay for 1D and non-1D parameters separately, which is a significant bonus of the newer
Muon-like algorithm. We include this variation of Muon under the D-Muon naming.

Our ablations demonstrate that D-Muon scales better than the basic Muon in all settings we have
considered so far (see Figures 1, 3, 12, 36, 37 and 40). We also report a detailed comparison of these
two similar methods in Figures 16 and 17, and discuss their close connection with the weight decay
applied to non-1D parameters in the D-Muon algorithm. Refer to this ablation in § 4.

Another interesting aspect of Muon is the effect of the Newton-Schulz orthogonalization proce-
dure (Bernstein & Newhouse, 2024; Higham, 2008) on optimization. We show how the number
of Newton-Schulz steps impacts the performance of Muon in Figure 32. Furthermore, we pose
that improving the orthogonalization procedure in methods like Muon, Scion, MARS-Shampoo
(see Algorithm 16) could substantially improve their overall performance. Recent work has already
begun to explore this avenue (Amsel et al., 2025; Grishina et al., 2025), but a deeper investigation
remains an open research challenge.

SOAP. (Vyas et al., 2024) proposed a new, improved modification of Shampoo (Gupta et al.,
2018). SOAP reduces the computational overhead by optimizing only two-dimensional lay-
ers (2D) via Algorithm 9, while running AdamW for 1D layers. At initialization, the pre-
conditioners are computed via the eigenvector decomposition of the initial gradient matrices
eigenbasis

(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤): ∇L(x0, ξ0)∇L(x0, ξ0)
⊤ = qΛq−1, where Λ stands

for the diagonal matrix whose diagonal elements are the corresponding eigenvalues. For subsequent
iterations, SOAPNon1D rotates gradients into this slowly changing basis, maintains second-moment
statistics in that basis, and periodically updates the basis via QR decomposition (see lines 15,
16 of Algorithm 9) for all 2D layers (except for embeds and lm head). This is the main computa-
tional part of the method.

A key idea behind the SOAP optimizer is:

1. Given the slowly changing coordinate basis provided by eigenvectors l and r, SOAP updates its
second moment estimates in this basis; that is to say, it runs AdamW in another, a rotated space.

2. To update the eigenvectors of l and r, SOAP runs QR decomposition with the preconditioning
frequency ϕ.

In Algorithm 9, setting both ql and qr to the identity matrix would result in AdamW.

The overall SOAP algorithm can be formalized as Algorithm 10.

Sophia. Despite being named a second-order optimizer, Sophia (Liu et al., 2024) performs an
update that is quite similar to Adam’s. It also leverages the diagonal preconditioner h, but not the
curvature information of the optimization problem, which depends on the non-diagonal terms of
the Hessian. One should notice that Sophia was introduced with two types of preconditioner—
Hutchinson (Bekas et al., 2007) and Gauss-Newton-Bartlett (Martens, 2020). Since the latter shows
more promising performance, we only consider this type of preconditioner for Sophia.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 9 SOAPNon1D (for non-1D parameters)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: Initialize preconditioners: ql, qr ← eigenbasis

(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤)
4: for t ∈ [T] do
5: gt ← ∇L(xt, ξt)
6: g′

t ← q⊤
l gtqr ▷ Rotate gt

7: mt ← β1mt−1 + (1− β1)gt
8: m′

t ← q⊤
l mtqr ▷ Compute Adam’s statistics in rotational space

9: vt ← β2vt−1 + (1− β2)g
′
t ⊙ g′

t

10: γt ← γt

√
1−βt

2

1−βt
1

▷ Optional: use bias correction

11: xt+1 ← xt − γt

(
ql

m′
t√

vt+εq
⊤
r + λxt

)
▷ Perform update in original space

12: lt ← β2lt−1 + (1− β2)gtg
⊤
t ▷ Update preconditioners

13: rt ← β2rt−1 + (1− β2)g
⊤
t gt

14: if t ≡ 1 (mod ϕ) then
15: ql ← QR (ltql)
16: qr ← QR (rtqr)
17: end if
18: end for
19: Return: xT

Algorithm 10 SOAP (general scheme)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: for t ∈ [T] do
3: if xt ∈ {embeds, scalar params, lm head} then
4: xA

t ← xt

5: xA
t+1 ← AdamW (xA

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW
6: else
7: xS

t ← xt

8: xS
t+1 ← SOAPNon1D (xS

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of SOAPNon1D
9: end if

10: end for
11: Return: xA

T ,x
S
T

Every ϕ iterations, Sophia updates its second moment estimate by computing the gradient ĝ of
the empirical loss L given softmax of the logits instead of the true logits. Multiplying by the batch
size, we obtain ĥ, after that, Sophia updates the EMA of ĥ.

Importantly, we found that the algorithmic description of Sophia in the original paper differs in
minor details from the code implementation3. Indeed, the update rule in their work is formulated as
follows:

xt+1 ← xt − γtclamp

(
mt

max{ρht, ε}
, 1

)
,

where clamp is defined as in Equation (1).

On the other hand, the code from the official repository suggests:

Listing 2: Sophia update skeleton using PyTorch.
1 # update step
2 step_t += 1
3

3https://github.com/Liuhong99/Sophia

30

https://github.com/Liuhong99/Sophia

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

4 # Perform stepweight decay
5 param.mul_(1 - lr * weight_decay)
6
7 # Decay the first and second moment running average coefficient
8 exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
9

10 else:
11 step_size_neg = -lr
12
13 ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None, 1)
14 param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)

Therefore, the update rule of Sophia is misstated in the original paper and should be corrected to
match line 16 of Algorithm 11.

Takeaway 8. The actual update rule of Sophia does not match its description in the original
paper.

Algorithm 11 Sophia
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

estimator frequency ϕ, scaling factor ρ, ε.
2: Initialize: m0 ← 0, h0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt
6: if t ≡ 1 (mod ϕ) then
7: pt ← ξt ▷ Obtain logits from batch
8: pt ← softmax (pt) ▷ Sample from logits
9: L̂(xt, ξt)← pt ▷ Loss, where pt are labels

10: ĝt ← ∇L̂(xt, ξt)

11: ĥt ← |ξt|ĝt ⊙ ĝt
12: ht ← β2ht−ϕ + (1− β2)ĥt

13: else
14: ht ← ht−1

15: end if
16: xt+1 ← xt − γt

(
sign(mt)min

{
|mt|
ρht+ε , 1

}
+ λxt

)
17: end for
18: Return: xT

C.4 SCHEDULE-FREE ADAMW, PRODIGY

In this section, we outline two more players—Schedule-Free AdamW (Defazio et al., 2024b)
and Prodigy (Mishchenko & Defazio, 2024). Both of them have a promising advantages and
require less hyperparameter tuning which paves the road to parameter-free optimizers.

Schedule-Free AdamW. Defazio et al. (2024b) introduced the notion of schedule-free opti-
mizers. The underlying idea behind Schedule-Free SGD and Schedule-Free AdamW
(SF-AdamW) is to eliminate learning rate schedulers by replacing them with iterate averag-
ing. Specifically, the schedule-free method uses interpolation between Polyak-Ruppert averag-
ing (Polyak, 1990; Ruppert, 1988) and Primal averaging (Nesterov & Shikhman, 2015) for the mo-
mentum update, rather than the usual EMA (see line 4 of Algorithm 12). To stabilize scalable
training, the authors also propose an internal warmup mechanism (see line 7 of Algorithm 12),
which gradually increases the learning rate while ensuring Adam-style bias correction.

An interesting result we observe, is that SF-AdamW shows the best performance with a larger num-
ber of warmup iterations compared to other methods—see Figure 7.

Another key point—training with SF-AdamW is sensitive to the choice of beta parameters. Unlike in
AdamW, these parameters play distinct roles in SF-AdamW: β1 determines the interpolation between
the zt and xt sequences, which acts as a form of schedule-free momentum. Specifically, the term
(1 − β1)gt is immediately incorporated into the iterate sequence yt, while the remainder of gt is

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

gradually incorporated through averaging—a mechanism analogous to the momentum EMA, but
with a longer delay for the residual contribution. By contrast, β2 controls the EMA of the second
moment estimate with respect to yt (rather than directly with xt; see line 6 of Algorithm 12).

For Adam it is common to analyze in theory the case, when β2 = 1 − 1/T (Reddi et al., 2019;
Zaheer et al., 2018; Chezhegov et al., 2024), i.e., the choice of the “optimal” β2 parameter depends
on the length of training. Which, presumably, is also the case for SF-AdamW, making it not fully
schedule-free. Hägele et al. (2024) observed this sensitivity to beta parameters, and we go beyond
this ablation also (Figure 31).

Importantly, the authors mention that disabling gradient norm clipping is crucial for schedule-free
runs; however, we do not observe this in practice and instead find the opposite effect—see Figure 28.

Algorithm 12 SF-AdamW
1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2,

warmup iterations Twarmup, ε.
2: Initialize: z0 ← x0, v0 ← 0
3: for t ∈ [T] do
4: yt ← (1− β1)zt + β1xt

5: gt ← ∇L(yt, ξt)
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: γt ← γ

√
1− βt

2 min{1, t/Twarmup}
8: zt+1 ← zt − γt

(
gt/(
√
vt + ε) + λyt

)
9: ct+1 ← γ2

t∑t
i=0

γ2
i

10: xt+1 ← (1− ct+1)xt + ct+1zt+1

11: end for
12: Return: xT

Prodigy. Mishchenko & Defazio (2024) extended the D-Adaptation framework. Drawing
inspiration from the AgaGrad (Duchi et al., 2011) theory, the authors derived an alike step-size
rule, giving rise to a new family of methods. While studying the convergence (in the determinis-
tic case) of several proposed algorithms that are based on the gradient descent and dual averaging,
the authors also introduced an Adam-like version of their methods—the Prodigy optimizer (Al-
gorithm 13)—that effectively removes the need for hand-tuned learning rates through an intrinsic,
adaptive step-size scheme. The EMA of Prodigy specifically includes dtgt sequence rather than
the raw gradients gt (see lines 5, 6, 8, 9 of Algorithm 13). The new term dt is determined
by two additional EMA sequences, which are also responsible for the adaptive rescaling of the
learning rate according to line 10. Mishchenko & Defazio (2024) evaluate Prodigy in practice
on language models by running a shallow nanoGPT transformer on the Shakespeare (over-training
regime) and BookWiki datasets. We extend the experiments with Prodigy to a larger scale and a
greater variety of LLM pretraining settings.

Crucially, Prodigy does not require extensive learning rate tuning. Typically, we initialize γ = 1,
as suggested by the authors, and it remains remarkably stable, as demonstrated in our γ-sweeps (Fig-
ures 6 and 18). However, Prodigy is still be compatible with learning rate schedules, which we
verify experimentally (Figures 8 and 20). We further show that, without any schedulers, dt sequence
behaves similarly to the constant learning rate with warmup (see Figure 35 and related ablations).
Moreover, Prodigy scales reliably similar to AdamW, making it a promising choice for future
development of parameter-free methods.

C.5 MARS

Very recently, Yuan et al. (2024) introduced MARS—a family of optimizers incorporating mod-
ern adaptive (Loshchilov & Hutter, 2019; Chen et al., 2023) and approximate second-order meth-
ods (Gupta et al., 2018) methods with a variance reduction update style.

This optimization framework gave a rise to: MARS-AdamW, our main baseline, which we call simply
MARS; MARS-Lion; and MARS-Shampoo. We mainly include MARS-AdamW in our ablation
studies, but also report results for the other two optimizers (see Figure 34).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm 13 Prodigy
1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2, ε.
2: Initialize: d0 ← 10−6, γ ← 1, m0 ← 0, v0 ← 0, r0 ← 0, s0 ← 0 ▷ Optional: use scheduler

on γ
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)dtgt
6: vt ← β2vt−1 + (1− β2)d

2
tgt ⊙ gt

7: γt ← γ
√
1− βt

2/(1− βt
1) ▷ Optional: use bias correction

8: rt ←
√
β2rt−1 + (1−

√
β2)γtd

2
t ⟨gt,x0 − xt⟩

9: st ←
√
β2st−1 + (1−

√
β2)γtd

2
tgt

10: dt+1 ← max
{
dt,

rt
∥st∥1

}
11: xt+1 ← xt − γtdt

(
mt/

(√
vt + dtε

)
+ λxt

)
12: end for
13: Return: xT

The authors modified the variance reduction update by introducing a scaling parameter η, which we
call variance reduction scaling in the outlined algorithms and experiments. This parameter controls
the scale of gradient correction—see line 5 of Algorithms 14, 15, and 16.

Importantly, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate the
gradient gt in different stochasticity, meaning that

gt = ∇L (xt, ξt) ,

gt−1 = ∇L (xt−1, ξt−1) .

In the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers with two
or more dimensions. For 1D layers, embeds, scalar parameters and the final layer of neural net-
work, this method utilizes AdamW. This design choice enables efficient and fast training with MARS.
Following the practices from the original work, we also use MARS only for 2D layers. Importantly,
for MARS-based methods, one need to tune both the AdamW’s learning rate γAt , and the learning rate
for 2D parameters, which we denote as γMt for compatibility with the Muon pseudocode 8.

MARS (MARS-AdamW). For the AdamW-like algorithm, the difference occurs in the computation of
mt and vt, where the variance reduction update ct is used instead of the gradient.

Algorithm 14 MARS (MARS-AdamW)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
variance reduction scaling η, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: if ∥ct∥2 > 1 then
7: ct ← ct/∥ct∥2
8: end if
9: mt ← β1mt−1 + (1− β1)ct

10: vt ← β2vt−1 + (1− β2)ct ⊙ ct
11: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

12: xt+1 = xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
13: end for
14: Return: xT

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

We point out once again that, for LLM training, we only run Algorithm 14 for 2D parameters,
resulting in the following two updates at each iteration:

xM
t+1 ← MARS

(
xM
t , γ

M
t , λ

M, βM
1, β

M
2, ε, T = 1

)
for 2D parameters,

xA
t+1 ← AdamW

(
xA
t , γ

A
t , λ

A, βA
1, β

A
2, ε, T = 1

)
for 1D parameters,

i.e., in the same way as in Algorithms 8 and 10. The same holds for two more versions—
MARS-Lion and MARS-Shampoo, which we discuss below.

MARS-Lion. Similarly to the Lion algorithm, the authors use scaled gradient correction ct with
the current gradient. Importantly, Algorithm 15 does not leverage second moment estimates to
update 2D parameters. Instead, the updates rely on the sign-based characteristic of Lion integrated
with the variance reduction framework.

Algorithm 15 MARS-Lion
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,

variance reduction scaling η, ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: if ∥ct∥2 > 1 then
7: ct ← ct/∥ct∥2
8: end if
9: mt ← β1mt−1 + (1− β1)ct

10: xt+1 = xt − γt (sign (mt) + λxt)
11: end for
12: Return: xT

MARS-Shampoo. The same holds for MARS-Shampoo. A key point to note is that, to compute
SVD of the first moment estimate, the authors also perform the Newton-Schulz steps (Bernstein &
Newhouse, 2024; Higham, 2008). In our experiments, we use 5 iterations of this orthogonalization
scheme for MARS-Shampoo.

Algorithm 16 MARS-Shampoo
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,

variance reduction scaling η, ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: mt ← β1mt−1 + (1− β1)ct
7: Ut,Σt,Vt ← SVD(mt) ▷ Use Newton-Schulz orthogonalization
8: xt+1 = xt − γt

(
UtV

⊤
t + λxt

)
9: end for

10: Return: xT

D IMPLEMENTATION

Our code is based on an extension of nanoGPT4 and uses PyTorch (Paszke et al., 2019) as well
as FlashAttention (Dao et al., 2022). We incorporate mixed-precision training (Micikevicius et al.,
2018), i.e., we train in bfloat16 precision, except for normalization modules and softmax which
we train in float32. The optimizer states are also stored in float32. The majority of experi-
ments were performed using a cluster of A100-SXM4-80GB, H100-HBM3-80GB GPUs as well as

4https://github.com/karpathy/nanoGPT

34

https://github.com/karpathy/nanoGPT

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

GH200-120GB. We trained both in a single GPU regime and in DDP (Li et al., 2020) (from 2 to 8
GPUs per one run). We estimate that the full cost of all experiments for our project to roughly 30000
GPU hours. To give an idea of how much effort was put into tuning each method, across all model
sizes, batches and iterations, we trained a total of 2900 models. This includes includes nearly: 750
AdamW, 145 ADOPT, 238 AdEMAMix, 158 Lion, 165 Signum, 231 Muon, 135 D-Muon, 354
SOAP, 199 Sophia, 133 SF-AdamW, 195 Prodigy, 217 MARS-AdamW, 26 MARS-Lion, and
20 MARS-Shampoo models. See Appendix G for details about hyperparameter tuning.

E MODEL & DATA

Architecture details. In our project, we use the Llama-like family of models (Llama Team, 2024).
We implement the popular in the community decoder-only transformer with SwiGLU activation
functions (Shazeer, 2020), RoPE embeddings (Su et al., 2023), RMSNorm (Zhang & Sennrich,
2019). The vocabulary is based on the GPT2 (Radford et al., 2019) tokenizer 5 and contains 50304
tokens. Importantly, our variant of the Llama-based architecture employs weight tying (Press &
Wolf, 2017).

The number of parameters in our models is fully configurable, and we present the exact configura-
tions used in our experiment in Table 1.

Table 1: Configurations for our Llama-like models.

Parameters 124M 210M 583M 720M
Hidden size 768 768 1920 2048

Attention heads 12 12 15 16
Layers 12 24 11 12
Init. std 0.02 0.02 0.02 0.02
Use bias no no no no

RMSNorm epsilon 0.00001 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE RoPE

Dataset. Our main findings are obtained on the subset of FineWeb (Penedo et al., 2024a) with
100B tokens 6, cleaned and deduplicated corpus for LLM pretraining, which we split into train and
validation sequences. During training, we evaluate the models with a fixed set of 32 batches of
our chosen sequence length (512 for almost all experiments, the same context length as training) to
establish the validation loss curves. At the end of the training, we compute the full validation loss
and perplexity (this loss is reported as Final Validation Loss in the figures). We also performed our
initial results on the subset of the OpenWebText2 dataset (Gao et al., 2020b).

F ADDITIONAL RESULTS

In this section, we complement our results from the main part with extended experiments. We
start sequentially with smaller models of 124M and 210M parameters, ablating: warmup, weight
decay, learning rate schedulers, gradient norm patterns, learning rate decaying, and other
optimizer-related phenomena. We finalize this section with the wall-clock performance of opti-
mizers. Details on hyperparameter searches are provided in Appendix G.

F.1 ABLATIONS FOR 124M MODEL

At first, we systematically gather all ablations with 124M parameter models. As in § 4.1, we
study: the effect of scaling the number of iterations and hyperparameter dependence on T ; warmup;
the importance of weight decay for optimizers; γ-sensitivity; a comparison of γ-schedulers; gra-
dient norm patters during training; learning rate decaying; and optimizer-specific phenomena for
Sophia, SF-AdamW, Prodigy, Muon, Signum, and MARS-based methods.

5https://github.com/openai/tiktoken
6https://huggingface.co/datasets/HuggingFaceFW/fineweb

35

https://github.com/openai/tiktoken
https://huggingface.co/datasets/HuggingFaceFW/fineweb

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Complementing benchmarking results of 124M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 12. The presented runs correspond to
those in Figure 3.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

64k 128k 256k 384k 512k 1024k

Signum

MARS

Lion

SF-AdamW

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

64k 128k 256k 384k 512k 1024k

Prodigy

ADOPT

SOAP

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

64k 128k 256k 384k 512k 1024k

AdamW

D-Muon

AdEMAMix

(a) Batch size 32× 512 tokens.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
o
ss

8k 16k 32k 48k 64k 128k

Sophia

SF-AdamW

Signum

Lion

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
o
ss

8k 16k 32k 48k 64k 128k

MARS

Prodigy

AdamW

ADOPT

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
o
ss

8k 16k 32k 48k 64k 128k

D-Muon

SOAP

AdEMAMix

(b) Batch size 256× 512 tokens.

Figure 12: Comparing optimizers for training a 124M parameter LLM. We plot the validation
loss dynamics obtained by considered optimizers. In (a), we train methods with a “small” batch size
of 16k tokens for {64, 128, 256, 384, 512, 1024}k iterations. In (b), we train methods with nearly
8× larger batch size of 131k tokens for {8, 16, 32, 48, 64, 128}k iterations. Thus, in both settings,
we result in the same number of tokens models see during the training: {1, 2.1, 4.2, 6.3, 8.4, 16.8}B.
We observe that: (I) many methods outperform AdamW in the short runs for 1B or 2.1B tokens; (II)
as training on more tokens, AdamW narrows the gap with SOAP and D-Muon, while AdEMAMix
emerges as the best-performing method; (III) Signum, MARS, Lion, Prodigy benefit from the
increased batch size.

Scaling the number of iterations. We stay in the setup from § 3, training 124M model with
batches of 256 × 512 tokens. Our training runs in Figure 12 (b) demonstrate the the gap between
SOAP and AdEMAMix narrows as the training horizon extends. As for 124M model, we tuned all
optimizers on 2.1B tokens length of training, some hyperparameters, particularly those sensitive
to the training duration, may become suboptimal for longer runs of 16.8B tokens. For example,
the beta parameter (β2) of the second moment estimate in AdamW-like methods should arguably be
re-tuned when the number of iterations is increased (Orvieto & Gower, 2025; Marek et al., 2025;
Busbridge et al., 2023), which also makes theoretical claims (Reddi et al., 2019; Défossez et al.,
2022; Wang et al., 2023; Zaheer et al., 2018; Taniguchi et al., 2024; Chezhegov et al., 2024). Our
extensive tuning on 2.1B yielded the result that for AdamW, SOAP, and AdEMAMix optimizers, β2

should be set to 0.999. Importantly, Pagliardini et al. (2024) suggest increasing β3 of AdEMAMix,
which controls the slow EMA (see line 7 of Algorithm 3), for longer training.

As such, we conducted two experiments.

First, we keep the best hyperparameters found for 2.1B tokens horizon, and extend them to 2×
loner duration than the maximum one (16.8B tokens), resulting in a total of 33.6B tokens—it is
interesting to observe whether the gap between SOAP and AdEMAMix finally closes in a longer
run. Secondly, we re-tune beta parameters of SOAP and AdEMAMix for 16.8B and 33.6B runs, and
compare results. Our re-tuned values are β2 = 0.9999 for SOAP, and β3 = 0.9999 for AdEMAMix.

This ablation is described in Figure 13 (a,b). We see that, indeed, without re-tuning, SOAP ends up
outperforming AdEMAMix when extending the training horizon further to 33.6B tokens (≡ 256k
iterations). However, with re-tuning of β2 for SOAP and β3 for AdEMAMix, the latter optimizer

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

still takes the lead. Notably, in our experiments, β3 = 0.999 is only better than β3 = 0.9999 when
the number of training iterations is less than 32k. Surprisingly, given the many theoretical claims
from works analyzing Adam, that β2 depends on the number of iterations: β2 = β2(T) = 1− 1/T ,
we do not observe this to be a common rule in practice, as many influential settings regarding
LLM pretraining (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al., 2023; Team OLMo,
2024b) utilize a typical (β2 = 0.95) even for very long training for trillions of tokens. Therefore,
we highlight this oversight in Takeaway 9, proposing to re-tune β2 hyperparameter of Adam-like
methods when changing of the training horizon.

2:1 8:4 16:8 33:6

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s

16k 64k 128k 256k

SOAP; ¯2 =0:999

SOAP; ¯2 =0:9999

AdEMAMix; ¯3 =0:999

AdEMAMix; ¯3 =0:9999

(a) Training dynamics with different β3.

16:8 33:6

Tokens (B)

3:12

3:13

3:14

3:15

3:16

3:17

F
in
al
V
al
id
at
io
n
L
o
ss

(b) Increase β3 for AdEMAMix for longer training.

Figure 13: Re-tuning beta parameters is significant for longer training. This experimental setup
coincides with the one from Figure 4—where we consider an impact of increasing batch size or
number of iterations. We elaborate more on the impact of beta parameters for AdEMAMix: in
(a), we show a training dynamics of AdEMAMix and SOAP for T ∈ {128, 256}k steps, and (b)
demonstrates the final loss. Throughout this experiment we use a batch size of 256 × 512 tokens
and train a 124M model. Our results reveal that increasing β3 for AdEMAMix is crucial for long
runs. Without these changes, SOAP with β2 = 0.999 found via tuning on 16k steps runs ends up
outperforming AdEMAMix with β3 = 0.999. Re-tuning β2 of SOAP does not change the results
much, and give almost identical loss curves, however, the training dynamics if AdEMAMix changes
dramatically with β3 as noticed in (Pagliardini et al., 2024), and gives best results with larger β3 =
0.9999.

Takeaway 9. We highlight the overlooked claim that β2 parameters of Adam-like methods
should be re-tuned with training durations. One needs to increase β2 for longer training. This
re-tuning significantly improves the optimizer performance.

Warmup ablation. In this section, we supplement the experiments on warmup from § 4.1. We
study the impact of warmup on the final validation loss. Replicating our setup (§ 3), we use the
batch size of 256 × 512 tokens and reuse the best hyperparameters found through tuning, except
for Twarmup. For all methods, we sweep over Twarmup ∈ {1.56%, 6.25%, 25%} of the total training
duration T to examine each method’s sensitivity to warmup. Additionally, for AdamW, we extend
this sweep to Twarmup ∈ {1.56%, 5%, 6.25%, 10%, 25%} of T . We specifically consider 1.56%
and 6.25% percentages because the former represents a typical number of warmup steps (2000) for
models of our scale, while the latter (6.25% of 128000 steps) aligns with the warmup strategy used
in Llama (Llama Team, 2024).

Contrary to the insights from (Zhang et al., 2024a), we observe that 25% of the Cinchilla optimal
duration (620M tokens for 124M model) is far from being the best warmup for pretraining. We
emphasize that their results were obtained for 85M models and then extrapolated to larger scales.
However, in our setting, we found that the basic 2000 steps were a more suitable warmup option
for most optimizers; exceptions include sign-based methods (Signum, Lion), and Sophia with
SF-AdamW.

We provide the warmup sweep for AdamW in Figure 14.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

0:27B 0:84B 1B 1:67B 4:2B

Warmup Tokens (B)

3:17

3:18

3:19

3:20

F
in
al
V
al
id
at
io
n
L
os
s AdamW; Trained on 16:8B Tokens

Figure 14: Warmup sweep for AdamW. We observe that the smaller yet reasonable warmup value
is the best. However, this is not the case for other methods like Signum, Lion, Sophia, and
SF-AdamW—see Figure 7.

Takeaway 10. As usual, a warmup duration in LLM pretraining is around 2k steps. However,
we reveal that the warmup duration is optimizer-dependent and should be tuned: for SF-AdamW,
Sophia, and Signum, longer warmup results in improved final performance, while Lion with
increased warmup also surpasses strong baselines such as AdamW.

Weight decay ablation. Prior work analyzing the importance of weight decay λ in model training
suggests tuning both λ and the learning rate γ so that their product λγ remains constant. D’Angelo
et al. (2024) argue that, across different pairs of γ and λ, the lowest error of the model is observed
along the contour in the hyperparameter space where λγ = const. The authors also establish a
connection between the quantity of λγ product and an effect of regularization and noise scale in the
over-training regime, such as for small computer vision models trained over multiple epochs. Kosson
et al. (2024b) highlight that if γ and λ are chosen to result in constant product, the model achieves
the same equilibrium rotation value, reflecting a similar effective update size for the weights. While
previous studies have analyzed the rule of keeping λγ = const primarily on image classification
tasks with ResNet-based models (He et al., 2015), Pagliardini et al. (2024) also used this heuristic
when tuning hyperparameters for LLM pretraining.

In our study, which focuses solely on language modelling, we demonstrate that using a relatively
large weight decay term with a fixed learning rate can significantly accelerate short training runs.
Throughout our weight decay ablation experiments, we fix the best value of γ found via tuning on
near-Chinchilla optimal T , and sweep the weight decay across λ ∈ {0, 0.1, 0.5}, where λ = 0.1
is the standard value of the decoupled weight decay term in our work. Our results are consistent
across optimizers and training horizons: runs with large λ dominate for a small number of iterations,
but as the training length increases to {8.4, 16.8}B tokens, runs with a moderate λ = 0.1 begin
to outperform (Figures 5 and 15). An important example is Muon. As this optimizer does not
use weight decay for 2D parameters, we observe that runs with λ = 0.5 underperform those with
λ ∈ {0, 0.1} even in short training on {1, 2.1, 4.2, 6.3}B tokens. However, when we consider
an implementation of the D-Muon optimizer with learning rate and weight decay shared across all
parameters, we again observe a similar pattern to that seen with other methods—larger weight decay
dominates when training on fewer tokens.

We highlight these observations for practitioners and suggest that this approach may be useful for
short training runs. Our main claim from this section is summarized in Takeaway 11.

Impact of weight decay on Muon. We complement our claims regarding the old implementation
of Muon where weight decay has not been applied to matrix parameters. Through comparison with
modified D-Muon Liu et al. (2025), we clearly demonstrate the impact of the enabled weight decay
for longer training in Figures 16 and 17.

Takeaway 11. The use of weight decay, particularly a large decoupled weight decay term (0.5
and above), can significantly impact the final loss value and optimizer behavior. However, for
extended training horizons, a moderate, non-zero weight decay of 0.1 proves to be a robust
option.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s Sophia

Sophia; nowd

Sophia;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s Signum

Signum; nowd

Signum;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s Lion

Lion; nowd

Lion;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s Muon

Muon; nowd

Muon;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

V
a
li
d
a
ti
on

L
o
ss

SF-AdamW

SF-AdamW; nowd

SF-AdamW;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s AdamW

AdamW; nowd

AdamW;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s ADOPT

ADOPT; nowd

ADOPT;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7
V
a
li
d
at
io
n
L
os
s SOAP

SOAP; nowd

SOAP;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
at
io
n
L
os
s AdEMAMix

AdEMAMix; nowd

AdEMAMix;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
on

L
os
s Prodigy

Prodigy; nowd

Prodigy;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
on

L
os
s MARS

MARS; nowd

MARS;wd0:5

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
on

L
os
s D-Muon

D-Muon; nowd

D-Muon;wd0:5

Figure 15: Larger weight decay achieves significantly better results when training on fewer
tokens. We observe that the majority of runs with the large weight decay of 0.5 consistently outper-
form those with weight decay of 0.1 for all training durations except for the long training on 16.8B
tokens. Notably, Signum and Lion with large weight decay perform even better than AdamW
with the same learning rate—see Figure 5. We also consider a setting without weight decay. We
observe that this is suboptimal for most of other optimizers, while the typical weight decay of 0.1
remains the best for long training durations. An interesting pattern emerges for optimizers that treat
one-dimensional and two-dimensional parameters differently, such as Muon and MARS. For these,
runs with large weight decay (0.5) consistently underperform those with 0.1 and, in some cases,
even those without weight decay. For Muon, we attribute this effect to its algorithmic design, in
which weight decay is not employed to optimize matrix parameters (see Algorithm 7), in contrast
to D-Muon, where the observed patterns are reliably similar to those seen with AdamW. For MARS,
we only vary the weight decay corresponding to matrix parameters while keeping 0.1 for all scalar,
one-dimensional and final layer parameters. In this case, we conclude that the gap between large
and small weight decay values narrows significantly faster.

Learning rate sensitivity. In this part of the work, we meticulously replicate the learning rate
sweep process and present comprehensive results. In line with our experimental setup (§ 3), our aim
is to determine the true impact of the learning rate and its transferability to longer training horizons.
For each optimizer, we only vary the learning rate while maintaining the best hyperparameters ob-
tained during our initial tuning (see Appendices G and G.1) on 2.1B tokens for 124M parameter
model. That is, the learning rate has been re-tuned for all optimizers on the training length of 16.8B
tokens. We do not present γ-sensitivity for Prodigy in the main part (§ 4) because of the difference
in axis scale: we sweep across γmax ∈ {0.5, 1, 2, 10, 100} for this optimizer. We show the results of
the learning rate sweep in Figure 18.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

Muon

D-Muon

(a) Llama 124M parameters.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:1

3:2

3:3

3:4

3:5

3:6

V
a
li
d
a
ti
o
n
L
os
s Muon

D-Muon

(b) Llama 210M parameters.

8 16 48

Tokens (B)

2:8

2:9

3:0

3:1

3:2

3:3

V
al
id
a
ti
o
n
L
os
s Muon

D-Muon

(c) Llama 720M parameters.

Figure 16: Importance of weight decay for Muon. We complement our weight decay ablation with
comparison of two version of Muon: one that uses a weight decay for all parameters (D-Muon), and
another, with weight decay being applied only to embeddings, scalar parameters, and the final layer.
For three scales of models (a,b,c), we show that D-Muon greatly outperforms the basic Muon. We
emphasize that the main reason—weight decay, which supports our ablations in Figures 5 and 15.

12:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

F
in
al
V
al
id
at
io
n
L
os
s

Muon

D-Muon

(a) Llama 124M parameters.

12:1 4:2 6:3 8:4 16:8

Tokens (B)

3:0

3:2

3:4

F
in
al
V
al
id
at
io
n
L
os
s

Muon

D-Muon

(b) Llama 210M parameters.

8 16 48

Tokens (B)

2:8

2:9

3:0

F
in
al
V
al
id
at
io
n
L
os
s

Muon

D-Muon

(c) Llama 720M parameters.

Figure 17: Weight decay in Muon & D-Muon. We compare two methods—basic Muon (Jordan
et al., 2024b), and D-Muon (Liu et al., 2025) with a weight decay applied to all parameter groups.
Across model sizes used in our benchmarking of dense LLMs, we observe a major improvement of
D-Muon over Muon. We relate this observation to our ablation on the importance of weight decay
across different optimizers, and training horizons. See Figure 16 and Appendix F.1 for more details.

Takeaway 12. For most optimizers, the learning rate γmax selected near the Chinchilla optimal
horizon transfers smoothly to our 8×longer run. Notably, we found that: (I) sign-based methods
and Sophia diverge with larger γmax = 2e−3; (II) while SF-AdamW, SOAP, and D-Muon
achieve better performance with such a large learning rate; (III) MARS demonstrates a very
consistent performance across γ sweep, which is not typical for other optimizers.

Comparison of learning rate schedulers. In this part of our ablations, we systematically inves-
tigate the impact of γ-schedulers on optimizers. As we mention in § 3, we conduct the majority of
experiments on the FineWeb dataset (Penedo et al., 2024a). However, here we also present a small
ablation on another corpus for LLM pretraining—OpenWebText2 (OWT2) (Gao et al., 2020a)—as
the main results of Defazio et al. (2024b) are obtained on the subset of this corpus. We show our
results for two batch size settings: 32×512 for OWT2 (Figure 19), and 256×512 for FineWeb (Fig-
ure 20).

In Figure 19, we present our initial results in the small-batch setting on the OWT2 dataset (Gao et al.,
2020a). We run the WSD scheduler experiments without following the rule of thumb from (Hägele
et al., 2024); instead, use a linear decay shape during the learning rate cooldown and set γ to the
value that is near-optimal for cosine. Hence, we use γmax = 0.001 with the learning rate decay to
γend = 0.01 × γmax for both cosine and WSD schedulers. This is the only experiment where we
do not follow the best-practices of using WSD. Regarding hyperparameter tuning, we observe little
shift compared to that found in Appendix G for FineWeb. We only pose that it may be beneficial
to additionally re-tune the gradient clipping threshold, as this depends on the “cleanliness” of the
dataset. Our ablations (Figure 19) reveal that SF-AdamW can potentially outperform the AdamW
baseline with the WSD scheduler. However, the cosine γ-scheduler still takes the lead in this setup.

We also report the final validation loss on the FineWeb dataset (Penedo et al., 2024a) for 124M
model trained with the batch size of 256 × 512 tokens. For WSD, we follow the rule of thumb

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:20

3:22

3:24

3:26

3:28

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

Sophia

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:20

3:22

3:24

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

Signum

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:19

3:20

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

Lion

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:20

3:22

3:24

3:26

3:28

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

Muon

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:20

3:25

3:30

3:35

3:40

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

SF-AdamW

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:20

3:23

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

AdamW

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:20

3:23

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

ADOPT

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:20

3:23

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

SOAP

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:16

3:18

3:20

3:22

F
in
al
V
al
id
at
io
n
L
o
ss Trained on 16:8B Tokens (124M)

AdEMAMix

0:5 1 2 10 100
Learning Rate

3:18

3:20

3:23

F
in
al
V
al
id
at
io
n
L
os
s Trained on 16:8B Tokens (124M)

Prodigy

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:16

3:18

3:20

3:22

F
in
al
V
al
id
at
io
n
L
os
s Trained on 16:8B Tokens (124M)

MARS

0:0001 0:0003 0:0005 0:001 0:002

Learning Rate

3:18

3:21

3:24

3:27

3:30

F
in
al
V
al
id
at
io
n
L
os
s Trained on 16:8B Tokens (124M)

D-Muon

Figure 18: Learning rate sensitivity. In the current setting, only SOAP, SF-AdamW, and D-Muon
reach the better performance with the large learning rate of 0.002. Conversely, Sophia and all sign-
based methods (Signum and Lion) diverge with this learning rate value. MARS and Prodigy
show a remarkably consistent performance across the learning rate sweep. And, Prodigy diverges
for sufficiently large value of γmax—see Figure 35 for more insights regarding the learning rate of
Prodigy.

32k 64k 128k

Steps

3:0

3:2

3:4

3:6

3:8

V
al
id
at
io
n
L
os
s

Batch Size 32; OWT2 (124M)

SF-AdamW

AdamW;WSD

AdamW;WSD; LR0:002

AdamW

(a) Cosine scheduler outperforms WSD and
SF-AdamW.

32k 64k 128k 256k

Steps

3:0

3:2

3:4

3:6

3:8

V
al
id
at
io
n
L
os
s

Batch Size 32; OWT2 (124M)

SF-AdamW

AdamW;WSD

(b) Performance gap narrows with longer training.

Figure 19: WSD scheduler underperforms both AdamW with cosine scheduler and SF-AdamW.
This is the only experiment we conduct on the OpenWebText2 (OWT2) dataset. We follow the
small-batch setup, and replicate the best hyperparameters of each optimizer found through our tuning
process. Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned,
we observe a surprisingly large performance gap between the WSD scheduler and its competitors.
Figure (b) suggests that this gap may potentially diminish with extended training.

from Hägele et al. (2024): 20% of the steps for the cooldown, (1−
√
x) decay shape, and the learn-

ing rate is half the optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the
method. Additionally, we point out that we do not include stochastic weight averaging (Izmailov
et al., 2019) in the comparison, which might potentially enhance the overall performance. We ran
the linear γ-scheduler with the same learning rates that we found through our tuning for cosine (Fig-
ures 6 and 18). We report our findings in Figure 20. All missing optimizers—AdamW, Muon, and
Sophia—are in the main part; see Figure 8.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
al
id
at
io
n
L
os
s Signum

Signum;Linear

Signum;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
al
id
at
io
n
L
os
s Lion

Lion;Linear

Lion;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
al
id
a
ti
on

L
os
s ADOPT

ADOPT;Linear

ADOPT;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
al
id
a
ti
on

L
os
s SOAP

SOAP;Linear

SOAP;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
a
ti
on

L
o
ss

AdEMAMix

AdEMAMix;Linear

AdEMAMix;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8
V
a
li
d
at
io
n
L
os
s Prodigy

Prodigy;Linear

Prodigy;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
at
io
n
L
os
s MARS

MARS;Linear

MARS;WSD

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
at
io
n
L
os
s D-Muon

D-Muon;Linear

D-Muon;WSD

Figure 20: Comparisons between cosine, WSD, and the linear schedulers. We complement
results in Figure 8 by extending them to all the optimizers considered in our benchmarking. In
most cases, the tuned cosine baseline performs similarly to runs using the linear scheduler, with
both slightly outperforming WSD. However, certain optimizers still tend to “prefer” different γ-
schedulers. For example, Muon shows a preference in WSD (see Figure 8 (a)), AdamW performs
better with the cosine scheduler, Signum and Lion appear to favor the linear scheduler. While
the performance differences are not particularly large, they are still meaningful in the context of
benchmarking. Therefore, we adopt the cosine scheduler as our default, as even small gaps can
substantially impact our setup.

Takeaway 13. A choice of the learning rate scheduler is also optimizer-related. For most meth-
ods, the cosine scheduler dominates. However, linear scheduler outperforms or matches cosine
and WSD for sign-based methods, SOAP, and MARS. WSD appears to be the best option for
Muon. We also study the gradient norm patterns for all optimizers and highlight it for sign-
based method, who attain the completely different ”bump” shape.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Gradient norm patterns. We systematically track the evolution of gradient norms across weight
decay (λ), maximum learning rate (γmax), and learning rate scheduler sweeps in Figures 22 to 24.
This analysis spans all optimizers in our benchmark, providing insight into how these hyperparame-
ters influence gradient magnitude and stability. Our goal is to determine whether the gradient norm
dynamics correlate with improved convergence and whether these trends are optimizer-specific or
general. We also investigate whether deviations from expected patterns (e.g., premature flattening or
explosive growth) can serve as indicators of suboptimal configuration, potentially informing better
tuning heuristics.

Firstly, we study the dynamics of gradient norms while sweeping the learning rate schedulers—
see Figure 22. This result complements the one in Figure 21. In general, Defazio et al. (2024a)
argue that there exists an interdependence between the learning rate schedule and observed gradient
norm patterns, proposing a schedule refinement for optimization algorithms. The observation that
γ-scheduler can tract the gradient norm pattern and vice versa encourages us to expand experimental
observations to optimizers studied in our benchmark.

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
o
rm

Lion

Cosine Linear WSD

(a) “Bump” for Lion (large γ).

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

SF-AdamW

(b) Gradient norm increases.

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

G
ra
d
ie
n
t
N
or
m

Signum

Cosine Linear WSD

(c) “Bump” for Signum.

Figure 21: Gradient norm patterns for different schedulers. In our experiments with learning
rate schedulers (Figure 8), we also track a gradient norm changes for all optimizers, showing how
it is affected by the choice of the scheduler. We use our cosine baseline, linear scheduler with the
same optimal learning rate as for cosine, and the WSD scheduler with a rule of thumb described
in Appendix G. We found that gradient norm evolution for majority of optimizers resembles the
SF-AdamW pattern in (b). Exceptions are sign-based methods—Signum (c), and Lion (a).

Prior works (Kosson et al., 2024b; Defazio, 2025) study the connection between gradient norm
patterns, weight decay, and learning rate. Kosson et al. (2024b) explore how weight decay influences
the update behavior of individual neurons in deep neural networks. The authors show that weight
decay causes the weight norm to reach a stable equilibrium magnitude. At this equilibrium point,
the opposing effects of gradient updates (which increase the norm) and weight decay (which reduce
it) cancel each other out. Importantly, this study highlights the effectiveness of the decoupled weight
decay for optimization over ℓ2 regularization, noting that the gradient norm varies between neurons
or layers for ℓ2 regularization which is not the case for decoupled weight decay. In our experiments,
we study how (decoupled) weight decay influences gradient norms—see Figure 23. We use the
cosine learning scheduler and the best other hyperparameters found for optimizers, sweeping the
weight decay across three critic values: 0, the standard one of 0.1, and the “large” weight decay
of 0.5. Basically, these gradient norms were tracked during weight decay ablation and correspond
to Figures 5 and 15. We observe that runs without weight decay typically result in gradient norm
curves that are more flattened and with a smaller magnitude compared to runs with λ ∈ {0.1, 0.5}.
Exceptions are sign-based methods, Muon, AdEMAMix, and Sophia. Using the large weight decay
term of 0.5 results in a dramatic increase in the gradient norms towards the end of the training.
Nevertheless, we present figures for long training runs of 7× Chinchilla optimal duration for 124M
models (resp. 16.8B tokens and 128k steps)—where runs with λ = 0.1 outperform ones with
λ ∈ {0, 0.5}—we emphasize that the same patterns of the gradient norms are also observed in
shorter runs where λ = 0.5 still demonstrates the best performance.

Another key factor influencing the gradient norms is the learning rate. As with previous ablations on
gradient norms (Figures 22 and 23), we follow our benchmarking setup (§ 3). During the learning
rate sweep (Figures 6 and 18), we track the gradient norms presented in Figure 24. Notably, smaller
learning rates result in larger gradient norm magnitudes, with exceptions for sign-based Signum
and Lion. We also observe a dramatic increase in gradient norms for Muon with γmax = 0.0001,
which we attribute to the large difference between learning rates for 1D and 2D parameters, the
latter typically set around 0.01 (see the “Learning rate Muon” row in Table 12). For Prodigy with

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:1

0:2

0:3

0:4

G
ra
d
ie
n
t
N
or
m

Sophia

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:1

0:2

0:3

0:4

G
ra
d
ie
n
t
N
or
m

Muon

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

AdamW

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

ADOPT

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

SOAP

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:1

0:2

0:3

0:4

G
ra
d
ie
n
t
N
or
m

AdEMAMix

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

Prodigy

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:1

0:2

0:3

0:4
G
ra
d
ie
n
t
N
o
rm

MARS

Cosine Linear WSD

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:2

0:3

0:4

0:5

0:6

G
ra
d
ie
n
t
N
o
rm

D-Muon

Cosine Linear WSD

Figure 22: Gradient norm patterns for cosine, linear, and WSD γ-schedulers. We run all op-
timizers on 124M models and track the gradient norms (before clipping) for runs using different
γ-schedulers. For most optimizers, we see that gradient norms tend to increase over the course of
training with cosine and linear schedules. In contrast, WSD tends to produce flatter gradient norm
trajectories, with consistently lower magnitudes toward the end of training compared to the other
schedulers. Since the WSD scheduler maintains a constant learning rate until the cooldown phase
(the final 20% of the training length), we observe a more stable gradient norm behavior in later
stages. In this regard, our findings align with prior works (Kosson et al., 2024b; Defazio, 2025),
which explore a connection between the learning rate schedule and gradient norm dynamics. Inter-
estingly, Signum and Lion—see Figure 21—exhibit a pronounced drop in gradient norm during
the cooldown phase, setting them apart from the other optimizers.

γmax = 10 the explosion in gradient norms might be caused by the critical value of the learning rate,
which leads to divergence if increased.

Takeaway 14. (I) The WSD scheduler produces stable, flat gradient norm trajectories, contrast-
ing with the increasing norms from cosine and linear schedules. (II) The impact of weight decay
is optimizer-specific, with no single value (e.g., 0 or 0.1) universally yielding optimal stability;
larger decay often increases norms late in training. (III) Smaller learning rates typically lead to
larger gradient norms, a trend from which sign-based methods notably deviate.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Sophia

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Signum

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Lion

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

Muon

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

SF-AdamW

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

AdamW

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

ADOPT

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0
G
ra
d
ie
n
t
N
or
m

SOAP

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
o
rm

AdEMAMix

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
o
rm

Prodigy

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

MARS

wd0:1 nowd wd0:5

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

D-Muon

wd0:1 nowd wd0:5

Figure 23: Gradient norm patterns for weight decay sweep. We complement our weight decay
ablation (Figures 5 and 15) by tracking the gradient norms for all the optimizers studied in our bench-
mark. To highlight the effect of changing the weight decay, we use the same cosine γ-scheduler
for all optimizers and keep the other best hyperparameters found, sweeping only the weight decay
values as described in § 3—i.e., we fix the maximum learning rate and only change the weight de-
cay. For Muon, we only sweep the weight decay for {embeds, scalar params, lm head} (as in
the initial implementation, the weight decay has not been applied to matrix parameters), while for
MARS, we only sweep the weight decay of 2D parameters. Our observations reveal that, regard-
less of optimizer used, runs with a larger weight decay result in higher gradient norms. For Muon,
AdEMAMix, Sophia, and sign-based methods, runs with moderate λ = 0.1 result in the most flat-
tened and smallest gradient norms in magnitude. While for AdamW-like methods, D-Muon, SOAP,
Prodigy, and SF-AdamW, this holds for λ = 0. We attribute the discrepancies between D-Muon
and Muon to the latter’s absence of weight decay for matrix parameters. As shown in Figures 5
and 15, AdEMAMix can benefit from large weight decay for longer training durations. Runs of
AdEMAMix with λ = 0.5 are still outperform those with λ = 0.1. Interestingly, this is reflected in
the gradient norms, as the absolute values corresponding to λ = 0.5 are much smaller than those of
the respective runs of other AdamW-like optimizers.

Learning rate decaying for 124M model. Prior ablation studies on 210M models (Figure 9)
demonstrated that decaying the learning rate down to 10% of its maximum value underperforms
compared to 0.01, 0.001 × γmax. To generalize this finding, we conduct the same ablation on a
smaller 124M model. As before, we use three γ-schedulers—cosine, linear, and WSD, utilizing
the best hyperparameters for AdamW at this scale, training for 16.8B tokens with the batch size
of 256 × 512 tokens. We γmax = 0.001—a robust and well-adopted value—and sweep the final
learning rate γend across {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} × γmax. We present the results of
this ablation in Figure 25. Recently, the question of the learning rate decaying has been an interesting
topic of discussion (Bergsma et al., 2025; Schaipp et al., 2025; Hägele et al., 2024), with works
focusing on the explanations of the WSD scheduler pointing to the possible impact of decaying γ
to zero (or very small magnitudes). Importantly, our ablations for models of two scales—124M
and 210M—suggest that the optimal choice of γend may depend on the model scale. For example,
γend = 0.01 × γmax delivers the best performance for 210M model trained with WSD, while for

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Sophia

LR0:0001

LR0:0003

LR0:0005

LR0:001

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

G
ra
d
ie
n
t
N
or
m

Signum

LR0:0001

LR0:0003

LR0:0005

LR0:001

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Lion

LR0:0001

LR0:0003

LR0:0005

LR0:001

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:5

0:8

1:0

1:2

1:5

G
ra
d
ie
n
t
N
or
m

Muon

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

SF-AdamW

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
or
m

AdamW

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
o
rm

ADOPT

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0
G
ra
d
ie
n
t
N
o
rm

SOAP

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

1:0

G
ra
d
ie
n
t
N
o
rm

AdEMAMix

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

Prodigy

LR0:5

LR1

LR2

LR10

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:1

0:2

0:3

0:4

G
ra
d
ie
n
t
N
o
rm

MARS

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:5

1:0

1:5

2:0

G
ra
d
ie
n
t
N
or
m

D-Muon

LR0:0001

LR0:0003

LR0:0005

LR0:001

LR0:002

Figure 24: Gradient norm patterns for learning rate sweep. In this experiment, we complement
the result on the learning rate sweep for optimizers (Figures 6 and 18) by tracking the gradient
norms. We follow the same setup as for the γ-sensitivity ablation, varying the learning rates while
training 124M language models for 16.8B tokens using a cosine γ-scheduler with γend = 0.01 ×
γmax. Except for Lion and Signum, we see that smaller γmax leads to larger magnitude of the
gradient norms—unless the learning rate is high enough to nearly lead to divergence, e.g., γmax = 10
for Prodigy. Interestingly, we connect the “bump” shape of the gradient norms for sign-based
methods with the fact that γmax = 0.001, used for them, is close to the “critical” value, an increase
of which also leads to divergence—and our experiments with these optimizers on larger models
support this, as we were able to decrease γ in order to train properly.
124M model γend = 10−6 × γmax takes the lead, which is closer to decaying to zero, as in prior
works (Hägele et al., 2024; Schaipp et al., 2025). We also highlight that increasing the model size
decreases the optimal learning rate for the model, thus the very small values of γend might not affect
the final performance much, while slowing the training at the latest stage, which is undesirable for
modern large-scale pretraining tasks. Furthermore, we do not conduct the learning rate decaying
ablations for different optimizers, utilizing only AdamW. Thus, we point out that it is possible for
γend to depend on the optimizer choice as well—this is an interesting branch of the research on
optimizers to explore in future work.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

10¡4 10¡5 10¡6 10¡7 10¡8 10¡9

Final Learning Rate

3:18

3:19

3:21

F
in
al
V
al
id
at
io
n
L
os
s

Cosine (AdamW; 124M; max LR 10¡3)

(a)

10¡4 10¡5 10¡6 10¡7 10¡8 10¡9

Final Learning Rate

3:17

3:18

3:19

3:20

3:21

3:22

F
in
al
V
al
id
at
io
n
L
os
s

Linear (AdamW; 124M; max LR 10¡3)

(b)

10¡5 10¡6 10¡7 10¡8 10¡9 10¡10

Final Learning Rate (5£)

3:18

3:19

3:21

F
in
al
V
al
id
at
io
n
L
os
s

WSD (AdamW; 124M; max LR 5£ 10¡4)

(c)

Figure 25: Do not decay the learning rate down to 10%: ablation on 124M models. We extend
our ablation on learning rate decay from Figure 9 to studying the impact of the change of model
parameters—reducing it from 210M to 124M. Consistent with our previous results, decaying the
learning rate only down to 10% of the maximum results in significantly worse final performance,
indicating the need for further decay. Notably, for the linear (b) and WSD (c) schedulers, the best
choice of γend differs from that observed at 210M. For linear, the optimal setting shifts to γend =
10−4×γmax (vs. 10−3×γmax at 210M), and for WSD to γend = 10−6×γmax (vs. 10−2×γmax at
210M); see Figure 9 (b,c). Overall, while the differences in final performance beyond 0.1 × γmax

are relatively small, these results highlight that the optimal γend depends on model size, which in
turn influences the appropriate learning rate schedule.

0 32k 64k 128k 256k

Steps

3:0

3:5

4:0

4:5

5:0
V
a
li
d
at
io
n
L
os
s Sophia

Figure 26: Sophia diverges in the large-
batch setup, when training for many iter-
ations. In the small-batch setup, we ob-
served that Sophia exhibited convergence is-
sues. With batch size 256 × 512, Sophia ini-
tially converges reliably across all training du-
rations for 124M models used in our bench-
marking. However, when extending training be-
yond 16.8B tokens, divergence reappears. To
clearly visualize so, we present the best stable
run (T = 128k steps, 16.8B tokens) with the
unstable one (T = 256k steps, 33.6B tokens),
using identical hyperparameters. The dashed
line marks the iteration t = 129720 where di-
vergence begins. This instability raises serious
concerns about the practicality of Sophia for
long training runs at scale.

Fail of Sophia. Another striking effect we
observed throughout our benchmarking experi-
ments is the convergence issues of the Sophia
optimizer. In the main text (see Takeaway 1),
we reported that “Sophia diverges in the small-
batch setting when trained beyond the Chinchilla
optimal horizon, even with sufficiently small
learning rates.” Later, we also noted that in
the large-batch regime “Sophia exhibits conver-
gence issues when extending the training run, di-
verging shortly after 130k steps.” These phenom-
ena are particularly puzzling, since Sophia does
converge in long runs of 336k steps on MoE mod-
els. Figure 27 demonstrates loss curves of 124M
Llama model trained with a small batch size of
32×512 tokens and using the cosine γ-scheduler.
Initially, we used γmax = 0.001, which proved
too large for this setup, so we switched to γmax ∈
{1e−4, 3e−4, 5e−4}. For runs up to T = 64k
steps, training converged properly. However, in-
creasing the number of steps beyond this point led
to divergence (see Figure 27 (a)). Interestingly,
the divergence onset occurred at almost the same
iteration for both 3e−4 and 5e−4 learning rate
values. For reference, training with T = 128k
steps in the small-batch setup results in ∼ 2.1B
tokens, while the Chinchilla optimal horizon for
this model is about 2.5B. Thus, Sophia fails to
converge with such a small batch size even before
reaching the optimal horizon. When switching to
a larger batch size of 256× 512, we initially observed stable convergence across training durations
from 1B to 16.8B tokens (see Figure 3 (b)). The same held true for an even larger batch size of
512 × 512 tokens, where Sophia converged for 64k iterations, i.e., 16.8B tokens (see Figure 4,
left). However, doubling the training steps with the 256 × 512 batch size again led to divergence
(see Figure 26 and Figure 4, right). Using the same hyperparameters that worked well for 16.8B
tokens, we extended training to 33.6B tokens (≡ 256k iterations). Strangely, shortly after reaching
16.8B tokens, Sophia diverged, with the failure occurring precisely at t = 129720 (marked by the
dashed line). We do not attribute these issues to implementation bugs, since Sophia converges in
much longer runs (336k steps) with larger 520M models (see Figure 41). Instead, we caution prac-

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

titioners against relying on Sophia in its current form and emphasize that there remains substantial
room for improvement. We also note that previous benchmarking work (Kaddour et al., 2023) eval-
uated Sophia only on BERT (Devlin et al., 2019) and T5 (Raffel et al., 2023) pretraining tasks
(encoder-only and encoder-decoder architectures, respectively).

0 64k 128k 256k 384k 512k

Steps

3:0

3:5

4:0

4:5

5:0

V
al
id
at
io
n
L
os
s Sophia; 5e¡4

Sophia; 3e¡4

(a) Divergence after ∼ 2.1B to-
kens.

0 64k 128k 256k 384k 512k

Steps

0:0

0:1

0:2

0:3

V
a
li
d
a
ti
o
n
A
cc
u
ra
cy

Sophia; 5e¡4

Sophia; 3e¡4

(b) Next-token prediction accuracy.

0 64k 128k 256k 384k 512k

Steps

0

500

1000

1500

2000

2500

G
ra
d
ie
n
t
N
or
m Sophia; 5e¡4

Sophia; 3e¡4

(c) Exploded gradient norms.

Figure 27: Sophia diverges in the small-batch setting even with sufficiently small learn-
ing rate. We train 124M Llama models with batch size 32 × 512 tokens for T ∈
{64, 128, 256, 384, 512, 1024}k iterations. Sophia diverges with the typical learning rate γmax =
0.001, and even at smaller values (e.g., 3e−4, 5e−4) it still fails shortly after 2.1B tokens (≡ 128k
steps). Figures (a–c) show loss, next-token prediction accuracy, and gradient norms, respectively.
For both reported γmax values, divergence occurs at nearly the same iteration (within 10k steps,
∼ 164M tokens). We do not attribute this instability to implementation bugs, since Sophia con-
verges on larger MoE models for longer horizons (Figure 41). Whether this instability is related
to the Chinchilla optimal horizon remains unclear; however, with a larger batch size (256 × 512),
Sophia again fails once training exceeds 16.8B tokens (see Figure 26).

Takeaway 15. (I) Sophia diverges in the small-batch setting, even with sufficiently small
learning rate. (II) When training with an increased batch size, Sophia starts to diverge after
exceeding some limit in iterations—nearly 7× Chinchilla optimal horizon in our experiments.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Clipping & SF-AdamW. Defazio et al. (2024b), when introducing the schedule-free concept, em-
phasized that gradient clipping should be disabled for SF-AdamW. Motivated by this claim, we paid
particular attention to clipping during tuning. Following our setup (§ 3), we trained 124M models
with a batch size of 256 × 512 tokens for up to 128k steps (≡ 16.8B tokens). While sweeping the
main hyperparameters of SF-AdamW—(β1, β2), γ, λ, Twarmup—we also varied the gradient clipping
threshold across {0.5, 1} and tested runs without clipping, as suggested in the original paper. Our
results, summarized in Figure 28, show a clear discrepancy with prior claims. Disabling clipping
consistently produced unstable training, with highly spiky loss curves (Figure 28a). To mitigate this,
we reduced the learning rate from 0.001 to 0.0005, which largely stabilized the runs (Figure 28b).
However, even under this adjustment, the best clipped run—with the clipping threshold of 0.5—still
outperformed the no-clipping alternative. Thus, contrary to Defazio et al. (2024b), we find gradient
clipping to be a critical hyperparameter for the stability of SF-AdamW.

8:4 16:8

Tokens (B)

3:2

3:6

4:0

4:4

V
al
id
at
io
n
L
os
s

SF-AdamW

SF-AdamW; no clipping

(a) Disabling clipping causes instability to
SF-AdamW.

8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

SF-AdamW

SF-AdamW;LR 5e¡4; no clipping

SF-AdamW;LR 5e¡4

(b) Reducing γ helps, but the clipped baseline is better.

Figure 28: Clipping is significant for Schedule-Free. Contrary to the claims of Defazio et al.
(2024b), we find that gradient clipping remains a critical hyperparameter for SF-AdamW. As shown
in (a), disabling clipping causes severe training instabilities. To mitigate these undesired loss dy-
namics, we reduced the learning rate from 0.001 to 0.0005, which stabilized training (b). However,
even under this adjustment, the clipped runs still outperform those without clipping.

Takeaway 16. Gradient clipping is crucial for stability of Schedule-Free AdamW.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Betas sensitivity. The impact of the beta parameters on optimizers—especially in Adam-like
methods—has been studied both theoretically (Reddi et al., 2019; Défossez et al., 2022; Zaheer et al.,
2018) and empirically (Pagliardini et al., 2024; Marek et al., 2025; Busbridge et al., 2023). How-
ever, many large-scale works in industry (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al.,
2023; Team OLMo, 2024b; Jaghouar et al., 2024) either do not tune the betas at all or simply adopt
conventional defaults (β1 = 0.9, β2 = 0.95). Earlier in this manuscript (Takeaway 9), we argued
that betas should be tuned in tandem with training duration—a conclusion supported by extensive
ablations and hyperparameter sweeps. Here, we demonstrate the most striking effects of tuning beta
parameters, with a particular focus on β2. Our ablation focuses on “parameter-free” methods such as
Prodigy (Figure 30), SF-AdamW (Figure 31), and the Adam-like optimizer ADOPT (Figure 29).

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
o
ss

ADOPT; ¯2 =0:5

ADOPT; ¯2 =0:999

Figure 29: ADOPT still needs β2. One of
the main theoretical claims of Taniguchi et al.
(2024)—that ADOPT converges with any β2.
The authors verify those on a toy problem moti-
vated by Reddi et al. (2019). However, in LLM
training, the choice of β2 still matters signifi-
cantly. Our results demonstrate that, despite the-
oretical guarantees, performance strongly de-
pends on tuning β2 in practice.

We highlight that: (I) despite the theoretical con-
vergence guarantees of ADOPT for any β2, in
practice the performance gap between the best
and a poorly chosen β2 remains substantial; (II)
when the batch size is small (32 × 512 tokens),
Prodigy is very sensitive to β2, even diverg-
ing when changing it from 0.999 to 0.9999, how-
ever, applying the bias correction—see line
7 of Algorithm 13—fixes this issue; (III) prior
works (Hägele et al., 2024; Song et al., 2025)
question a sensitivity of SF-AdamW to β2, which
also studied by Defazio et al. (2024b) on image
classification tasks, we confirm that changes in
betas, especially β2, highly affects the overall
performance, in Figure 31 (b) we compare our
best found (β1 = 0.9, β2 = 0.9999) hyperpa-
rameters with default (β1 = 0.9, β2 = 0.95)
used by Defazio et al. (2024b), and (β1 = 0.95,
β2 = 0.99) noticed by Hägele et al. (2024).

1 2:1 4:2

Tokens (B)

3:5

4:0

4:5

5:0

5:5

6:0

V
al
id
at
io
n
L
os
s

Prodigy; ¯2 =0:9999

Prodigy; ¯2 =0:9999

Prodigy; ¯2 =0:999

Prodigy; ¯2 =0:999

(a) Minor change in β2 leads to divergence.

0:5 1

Tokens (B)

3:5

4:0

4:5

5:0

5:5

6:0

V
al
id
at
io
n
L
os
s

Prodigy; ¯2 =0:9999

Prodigy; ¯2 =0:9999; bias correction

(b) Bias correction resolves issues with divergence.

Figure 30: Prodigy is sensitive to beta parameters in the small-batch setting. In this experi-
ment, we follow our setup (§ 3) with a small batch size of 32× 512 tokens, training 124M models
with the best hyperparameters while sweeping β2. Although β2 = 0.999 yields the best results in
this setting (see Table 17), even a slight change to β2 = 0.9999 causes divergence. This occurs be-
cause (β1, β2) directly affect the internal statistics rt, st, which determine the optimizer’s effective
learning rate. As shown in (b), enabling bias correction (see line 7 of Algorithm 13) effectively
resolves this instability.

Takeaway 17. (I) Prodigy diverges with a minor change in β2, when the batch size is small.
Using bias correction should resolve this issue. (II) SF-AdamW is sensitive to (β1, β2); we find
that typically large β2 values (e.g., 0.9999) are beneficial for schedule-free runs. (III) Despite
the established convergence theory for any β2, ADOPT still requires careful tuning of this hyper-
parameter.

Muon’s Newton-Schulz iterations. We briefly study the impact of Newton-Schulz iterations on the
Muon optimizer, focusing on the first version of Muon with weight decay applied only to 1D param-

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

¯2 =0:999 ¯2 =0:9999 ¯2 =0:99999
3:206

3:207

3:208

3:209

3:210

F
in
al
V
al
id
at
io
n
L
os
s

(a) β2 sweep with fixed β1 = 0.9.

8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

V
a
li
d
a
ti
on

L
os
s

SF-AdamW; ¯1 =0:9; ¯2 =0:9999

SF-AdamW; ¯1 =0:9; ¯2 =0:95

SF-AdamW; ¯1 =0:95; ¯2 =0:99

(b) Comparison with Defazio (Defazio et al.,
2024b) and Hägele (Hägele et al., 2024).

Figure 31: Impact of beta parameters on Schedule-Free. We elaborate further on the question
of the sensitivity of SF-AdamW to β2. For language modeling, Defazio et al. (2024b) initially
suggested using default (β1 = 0.9, β2 = 0.95). Then, Hägele et al. (2024) revisited hyperparameter
tuning of the schedule-free optimizer, proposing to apply (β1 = 0.95, β2 = 0.99), which improved
the performance a lot. Based on our tuning, we claim that (β1 = 0.9, β2 = 0.9999) achieves the best
performance at this scale—see (b). In addition, we fix β1 = 0.9 and report the result with sweep
of β2 ∈ {0.999, 0.9999, 0.99999}, showing that the large and unconventional value of β2 = 0.9999
is indeed the best in schedule-free runs. We also notice that SF-AdamW requires a slightly larger
optimal β2, compared to all other optimizers.
eters. Recent research (Ahn & Xu, 2025; Amsel et al., 2025; Grishina et al., 2025) has extensively
explored the Newton-Schulz orthogonalization procedure, examining its impact on the wall-clock
speed, communication efficiency on many GPUs, and numerical precision formats. Additionally,
the theoretical implications of orthogonalization procedures on optimizer convergence have been
investigated in (Kovalev, 2025; Riabinin et al., 2025). In this ablation, we focus solely on the final
loss performance of Muon, setting aside other considerations such as computational efficiency or
wall-clock time. Following the tuning setup (§ 3) for smaller 124M parameter models with batch
size of 256× 512 tokens, we train for 2.1B tokens (≡ 16k steps), slightly below the Chinchilla op-
timal training horizon. Once the main hyperparameters of Muon are properly tuned, we sweep the
number of Newton-Schulz iterations TNS ∈ {1, 5, 10, 20}. The default setting for both Muon (Al-
gorithm 8) and D-Muon (Liu et al., 2025) is TNS = 5. Our results indicate that TNS ∈ {5, 10},
and 20 yield comparable performance, with TNS = 5 slightly outperforming the others. However,
setting TNS = 1 significantly degrades performance. These findings are summarized in Figure 32.
Importantly, we always use Nesterov momentum, when running Muon-like methods.

1 5 10 20

Newton-Schulz Steps

3:3

3:4

3:5

3:6

F
in
al
V
al
id
at
io
n
L
os
s

Muon; Trained on 2:1B Tokens (124M)

Figure 32: Muon’s dependence on the number of Newton-Schulz iterations. We perform a
short ablation targeting the final loss of Muon (Algorithm 8) by varying the number of Newton-
Schulz iterations. Training is done for 16k steps with a batch size of 256 × 512 tokens, sweeping
TNS ∈ {1, 5, 10, 20}. We find that increasing TNS beyond 5 does not improve performance, while
unnecessarily increasing wall-clock time.
Signum configurations. We consider the Signum optimizer (Algorithm 6), which, perhaps unex-
pectedly, demonstrates strong performance at a small scale and competes effectively with AdamW
when batch sizes are large (Figure 4 (left)). A key factor contributing to this performance is the
decoupled weight decay. However, a fixed weight decay alone does not fully account for Signum’s
efficiency. Another important ingredient is the momentum mechanism. In this ablation, we study
two momentum configurations: Nesterov momentum (Nesterov, 1983) (our default, in Algorithm 6)
and dampening, which is commonly used in PyTorch’s implementation of SGD. We also compare
both with the “plain” Signum, which uses conventional momentum without Nesterov. To give a

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

better understanding of these concepts, we provide a brief algorithmic description in Appendix C.2
and below:

1. Dampening update: {
mt ← βmt−1 + (1− τ)gt,

xt+1 ← xt − γt (sign (mt) + λxt) .

2. The “plain” update of Signum without Nesterov momentum:{
mt ← βmt−1 + gt,

xt+1 ← xt − γt (sign (mt) + λxt) .

2:1 16:8

Tokens (B)

22

24

26

28

30

32

F
in
al
V
a
li
d
at
io
n
P
er
p
le
x
it
y Nesterov Dampening Plain

Figure 33: Comparison of different update
rules for Signum. We evaluate three variants
of the Signum update: Nesterov (our default),
dampening—which resembles an EMA of mt

when the dampening parameter τ equals the
momentum β—and the “plain” Signum with-
out Nesterov momentum or dampening. Valida-
tion perplexity is reported for two training hori-
zons in (256×512) batch size setting. The Nes-
terov variant corresponds to the runs included
in our main benchmarking results (Figures 3
and 12). While Nesterov style momentum con-
sistently achieves the best performance, the rel-
ative perplexity gap compared to the other vari-
ants decreases as the training horizon increases.

That is, the dampening update rule with τ = β
resembles the basic EMA we used to see in meth-
ods such as AdamW—line 5 of Algorithm 1.
And the “plain” Signum follows the conven-
tional momentum style of SGD used in its Py-
Torch implementation 7.

The results of the comparison are shown in Fig-
ure 33. We ran three variations of the method for
2.1B and 16.8B in the “large” batch setup, and
reported the final perplexity (PPL). For the Nes-
terov momentum version (our default), we use
β = 0.95 found through careful tuning. For the
damping version, we found that τ = 0.9 is the
best, i.e. the explicit momentum update at each
iteration results in mt ← 0.95 ·mt−1 + 0.1 · gt;
we found this configuration to be slightly better
than τ = β = 0.95. The same β = 0.95 is
used in the “plain” Signum configuration. In
all cases, the method with Nesterov momentum
leads with a significant margin (for LLM pre-
training) of ∼ 0.45 PPL for 2.1B tokens run and
∼ 0.11 PPL for long 16.8B tokens training over
dampening and plain Signum variations. Inter-
estingly, these margins vanish with the increased
training horizon. We highlight the importance of
Nesterov momentum for Signum runs in Take-
away 18. We also notice that Nesterov momen-
tum slowdowns training, but not significantly, as

our wall-clock time ablation reveals that Signum, with Nesterov momentum, is still the fastest
method in various scenarios.

Takeaway 18. Signum with Nesterov momentum (our PyTorch implementation) consistently
outperforms both the dampening variant (EMA-like) and the basic version without Nesterov.

MARS types. In addition to the MARS optimizer that leverages Algorithm 14 to optimize 2D pa-
rameters, and AdamW to optimize 1D parameters and lm head, we also study MARS-Lion and
MARS-Shampoo methods—Algorithms 15 and 16 respectively. Before delving into the experi-
mental details, we note that it is possible to use MARS-like methods for all parameters of LLM,
however, this would be inefficient and in the original codebase8, the default choice is to optimize
all 1D parameters with AdamW. Therefore, we do the same in our experiments. For this ablation,
we utilize 124M model and train for T ∈ {8, 16, 32, 48, 64, 128}k with batch size of 256 × 512
(we report plots only for this batch setting), varying γ-schedulers and Twarmup. We observe similar
patterns regarding the impact of weight decay on these methods—for the majority of the training

7torch.optim.SGD
8https://github.com/AGI-Arena/MARS

52

https://docs.pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://github.com/AGI-Arena/MARS

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

the loss curves with λ = 0 look “convex” and lie below the curves corresponding to λ = 0.1,
but then runs with the non-zero weight decay take the lead. Regarding tuning MARS-Lion and
MARS-Shampoo, we found interesting observations related to our previous experience in hyperpa-
rameter tuning. MARS-Lion, despite optimizing only 1D parameters with Lion, is also sensitive to
warmup, as the latter method, and benefits from longer warmup durations—see Figure 34 (c). Sim-
ilarly to Lion, MARS-Lion also prefers the WSD scheduler (Figure 34 (b)) that outperforms the
corresponding runs with the cosine baseline. Notably, the best (β1, β2) parameters of MARS-Lion
coincide with those found for Lion in Table 10 and in (Chen et al., 2023). Of all the MARS versions,
MARS-Shampoo performs the worst. We also note that this variant of MARS is not included in the
original paper’s (Yuan et al., 2024) experiments on LLMs. In our setup with batch size of 256× 512
both MARS (MARS-AdamW) and MARS-Lion do not outperform the AdamW baseline. However,
this may be due to the smaller batch size: in the original work, the authors use 480×1024 (≡ 492M
tokens) batch size, and our experiments with the larger batch size of 1984 × 512 (≡ 1B tokens)—
see Figure 1—reveal that both MARS-AdamW and Lion greatly benefit from the increased batch
size. Therefore, we highlight that it may be the case that MARS-Lion can outperform AdamW in
some cases.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
os
s

8k 16k 32k 48k 64k 128k

MARS-Shampoo

MARS-Lion

MARS

(a) MARS family of methods.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
al
id
at
io
n
L
os
s

8k 16k 32k 48k 64k 128k

MARS-Shampoo (Cosine; WSD)

MARS-Lion (Cosine; WSD)

MARS (Cosine; WSD)

(b) Sensitivity to γ-schedulers.

0:27B 1B 4:2B

Warmup Tokens (B)

3:19

3:21

3:22

3:24

3:25

3:27

F
in
al
V
al
id
at
io
n
L
os
s MARS-Shampoo

MARS-Lion

MARS

(c) Warmup ablation.

Figure 34: MARS family of optimizers. We study three MARS-based algorithms: MARS-AdamW
(just MARS in our work), MARS-Lion, and MARS-Shampoo. In this ablation, our goal is to
complement our MARS runs with experiments for other similar methods, and support findings for
these optimizer with our previous experience in tuning Lion. We replicate the setup from § 3 and
train with the batch size of 256 × 512 for the same training durations as in Section 4.1. In (a),
we show that, indeed, MARS-AdamW outperforms other alike methods, as reported in (Yuan et al.,
2024) regarding the MARS-Lion optimizer. Interestingly, in (b), we show that the choice of γ-
scheduler for MARS-based methods also depends on optimizer, as such, WSD runs of MARS-Lion
outperform itself with cosine. Dashed blue and dark blue lines correspond to the AdamW baseline
with cosine and WSD schedulers, respectively. Furthermore, in the same way as Lion benefits
from larger warmup (Figure 7), MARS-Lion also improves with 8k steps (≡ 1B tokens) warmup,
however, this improvement is not as dramatic (c).

Takeaway 19. Among current MARS variants, MARS-AdamW is the best. Notably, other
modifications—MARS-Shampoo and MARS-Lion are differently affected by γ-schedulers and
warmup. MARS-Lion prefers the WSD scheduler over cosine, and shows the greatest stability
to warmup sweep among all MARS-based methods.

On learning rates of Prodigy. Throughout our benchmarking results (Figures 1, 12 and 37),
Prodigy consistently ranks among the top 6 optimizers, performing close to AdamW at smaller
scales and maintaining strong performance even when applied to MoE architectures. Interestingly,
when training 124M models with an increased batch size of 512 × 512 tokens, Prodigy outper-
forms the AdamW baseline, suggesting that its critical batch size (Erdil, 2024; Zhang et al., 2024a;
Hoffmann et al., 2022) may be larger than that of AdamW. While highly efficient, Prodigy is
generally easy to tune, except for its sensitivity to β2 (Figure 30) in the small-batch setup. This
robustness is attributed to its adaptive learning rate mechanism, which relies on two exponential
moving average sequences{

rt ←
√
β2rt−1 + (1−

√
β2)γtd

2
t ⟨gt,x0 − xt⟩,

st ←
√
β2st−1 + (1−

√
β2)γtd

2
tgt,

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

that control the learning rate magnitude with a multiplier of

dt+1 ← max

{
dt,

rt
∥st∥1

}
.

At first, we define the effective learning rate of Prodigy as:

γeff
t+1 := γtdt, (2)

thus, when bias correction is applied—which we found necessary to ensure stability for small
batches—Equation (2) becomes:

γeff
t+1 = γdt

√
1− βt

2

1− βt
1

,

where γ—the learning rate—is usually set to 1 for Prodigy, which we confirmed to work the best
through the sweeps in Figures 6 and 18.

When introducing the concept of the effective learning rate γeff, we note that it depends on the mo-
mentum parameters (β1, β2), the base learning rate γ, and the EMA sequences st, rt. Moreover,
applying a γ-scheduler further influences how γ evolves over iterations. To study these interactions,
we examine the dynamics of the effective learning rate (Equation (2)) under different schedulers
(Equation (2)). For this purpose, we train a small 124M model with the batch size of 256× 512 to-
kens. The training horizon is short—8k steps—with a warmup of 1000 steps, and β2 = 0.999—the
best for Prodigy in this setup according to our tuning. We also set the learning rate of Prodigy
to 1 as in our best benchmarking runs. As in previous experiments, we apply WSD and cosine
γ-schedulers, and additionally show a run without any scheduler. For the WSD scheduler in this ab-
lation, we do not rescale γ to half the optimal value for cosine, as we are interested in the dynamics
of γeff

t rather than the final performance; observing it without rescaling provides a clearer picture.
Figure 35 (a) shows the dynamics of the effective learning rate γeff

t , while (b) illustrates the effect
of applying scheduling to γ = 1. The starting points of the curves differ slightly due to variations
in the final learning rate—cosine decays γt down to 0.01, whereas WSD decays it to zero using
the (1−

√
x) decay pattern—however, those differences do not affect the qualitative shape of the

figures obtained.

Interestingly, across all schedulers, we observe a common pattern—the effective learning rate
warmup is longer than Twarmup = 1000 steps—meaning that Prodigy experiences an “implicit
warmup” beyond the explicitly set value. Another notable observation is that when using the co-
sine scheduler with γ = 1, the maximal effective learning rate reaches γeff

max ∼ 1.08× larger than
the learning rate of AdamW we use in a similar setting (0.001). Consequently, setting Prodigy’s
learning rate to the default value of 1 produces dynamics closely matching those of AdamW. This
insight could be useful for practitioners as a proxy for tuning Adam-like optimizers: one can launch
Prodigy with γ = 1, track the effective learning rate (Equation (2)), and then set the AdamW peak
learning rate to γeff

max. We highlight this one more time in Takeaway 21.

Takeaway 20. We explain the effectiveness of Prodigy in “learning rate-free” training through
the concept of the effective learning rate (Equation (2)). Determined by two EMA sequences,
the effective learning rate mimics the behavior and magnitude of the learning rate in AdamW-
like methods. Importantly: (I) the magnitudes of the effective learning rate are close to those of
AdamW; (II) effective learning rate ensures an implicit warmup that is longer than initially set.

Takeaway 21. We point out that it might be interesting for researchers to try Prodigy as a
proxy for learning rate tuning of Adam-like methods, e.g., (I) tune betas of Prodigy, (II) set
γ = 1, (III) track γeff

t , and (IV) look at the γeff
max and set the learning rate of the Adam-like

method to this value.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

1000 4000 8000

Steps

0:0

0:2

0:4

0:6

0:8

1:0

1:25

£10¡3

Cosine

WSD

no scheduler

(a) Effective learning rate of Prodigy.

1000 4000 8000

Steps

0:0

0:2

0:4

0:6

0:8

1:0

(b) Learning rate of Prodigy.

Figure 35: EMA sequences of Prodigy result in the effective learning rate that emulates the
dynamics of learning rate that we used to observe for AdamW. Fixing the peak learning rate at
γ = 1 (following Mishchenko & Defazio (2024)), the EMA sequences rt and st (lines 8, 9
of Algorithm 13) result in the effective learning rate shown in (a). The dashed line indicates the
warmup duration. Across all schedulers and the run without a γ-scheduler, the warmup of γeff

t (a)
is consistently longer than that of γt (b), providing an implicit warmup. With cosine and WSD
schedulers, the peak γeff

t exceeds that of the run without a scheduler. Notably, the peak effective
learning rates, especially for the cosine scheduler, are very close to the default value 0.001 used
for AdamW at this model scale. This demonstrates that Prodigy may guide practitioners in tuning
learning rates for Adam-like optimizers.

F.2 ABLATIONS FOR 210M MODEL

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.0

3.1

3.2

3.3

3.4

3.5

F
in

al
V

al
id

at
io

n
L
os

s

8k 16k 32k 48k 64k 128k

Ranking (↓)

Sophia

SF-AdamW

Signum

Lion

MARS

Prodigy

AdamW

D-Muon

ADOPT

SOAP

AdEMAMix

Figure 36: Ranking of optimizers for 210M
models with the batch size of 256× 512 to-
kens. Increasing a model size from 124M to
210M results in almost identical ranking of opti-
mizers compared to Figure 3 (b). At this scale, we
observe a smooth transition in our benchmarking.

Results with a batch size of 256× 512. In
this section, we verify if our selected hyper-
parameters from smaller 124M allow accurate
transfer to a slightly larger model. We point
out that the most important hyperparameters to
be sweeped are learning rate and gradient clip-
ping. Regarding the learning rate, we observe
that it only becomes a sensitive choice for sign-
based methods, while the optimal hyperparam-
eters for AdamW remain the same. After re-
tuning the learning rate for sign-based optimiz-
ers (see Appendix G.2), we replicate the setup
from § 3: we stay in the “large” batch regime
and train for the same number of steps (tokens)
as in Figure 3 (b). We report our benchmarking
for 210M models in Figure 36 and the training
dynamics of optimizers in Figure 37.

In this section, we complement our ablations
from the main part with experiments specifi-
cally targeting 210M models. Compared to
124M ablations (§ F.1), we perform fewer studies here. We focus on two aspects: the sensitivity of
ADOPT to its ε hyperparameter, and the impact of weight initialization in LLMs and its interaction
with the warmup.

Complementing benchmarking results of 210M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 37. The presented runs correspond to
those in Figure 36.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

Sophia

SF-AdamW

Signum

Lion

(a) Underperforming AdamW.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

MARS

Prodigy

AdamW

D-Muon

(b) Underperformers & D-Muon.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

ADOPT

SOAP

AdEMAMix

(c) Best optimizers.

Figure 37: Comparing optimizers for training a 210M parameter LLM. We plot the training
dynamics of: (a,b) optimizers that underperform AdamW for pretraining a 210M model; (c) opti-
mizers that outperform AdamW in this setup. A complete ranking of methods in this setting is in
Figure 36.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

4:0

V
al
id
at
io
n
L
os
s

"=10¡3

"=10¡4

"=10¡5

"=10¡6

"=10¡7

"=10¡8

"=10¡9

"=10¡10

Figure 38: ADOPT’s sensitivity to ε. Interest-
ingly, the suggested by the authors ε = 10−6 is
the best hyperparameter for this method. There
is not a noticeable difference in convergence for
ε = {10−6, 10−7, 10−8, 10−9, 10−10}, but the
values of 10−5 and above give a much morse
results.

ADOPT is sensitive to the epsilon hyperapame-
ter, but the suggested ε = 10−6 is the best.
Among the many important hyperparameters,
some receive less attention despite their influ-
ence. For Adam-like methods, one such param-
eter is ε in the denominator of the update rule.
While the default and widely accepted value for
AdamW is 10−8, there is ongoing discussion in the
community regarding other values that can sig-
nificantly degrade training (Team OLMo, 2024a;
He et al., 2024). The ADOPT optimizer also in-
cludes this hyperparameter—see line 6 of Al-
gorithm 2. Interestingly, the authors recommend
using a larger value of ε = 10−6, which is higher
than the conventional choice for AdamW. We per-
form a sweep over ε, keeping all other hyperpa-
rameters at their best values, and report the results
in Figure 38. As suggested by Taniguchi et al.
(2024), ε = 10−6 outperforms all other tested
values, with a noticeable margin for ε ≤ 10−5.

Changing weight initialization and the effect on warmup. A common approach to weight ini-
tialization in LLMs is the truncated Gaussian distribution with a predefined standard deviation (std).
In popular codebases for scalable training (Shoeybi et al., 2020; Rasley et al., 2020; Team OLMo,
2024a), the default std is 0.02. Notably, in DeepSeek-V3 (DeepSeek-AI, 2024b), the default std
is reduced to 0.006. Previously established connections between weight initialization and warmup
report twofold results: ones (Huang et al., 2020; Zhu et al., 2021) state that with a smaller std, one
can reduce or even eliminate the need for warmup, while others (Kalra & Barkeshli, 2024; Kosson
et al., 2024a) highlight the importance of warmup for small weight initializations. In our experi-
ments, we investigate how both initialization styles interact with the warmup duration and the batch
size scaling. Specifically, we compare the DeepSeek style initialization (std = 0.006) with the
conventional initialization (std = 0.02). We use two batch size settings: 512 × 512 tokens and
256× 512 tokens, training Llama-based models for two horizons T ∈ {32, 128}k steps and sweep-
ing Twarmup ∈ {50, 500, 1000, 2000} iterations. For this ablation, we use only AdamW with all other
hyperparameters set to the best values identified from tuning of 210M models. We report the results
in Figure 39. Overall, we observe that smaller weight initialization favors longer warmup durations
and performs significantly worse with short warmup. Increasing the batch size reduces this gap for
shorter warmups, suggesting an interplay between initialization scale, warmup duration, and batch
size.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

50 500 1000 2000

Warmup Steps

2:96

3:04

3:12

3:20
F
in
a
l
V
al
id
at
io
n
L
os
s

Batch Size 512

32k steps; std 0:02

32k steps; std 0:006

128k steps; std 0:02

128k steps; std 0:006

50 500 1000 2000

Warmup Steps

3:0

3:1

3:2

3:3

F
in
a
l
V
al
id
at
io
n
L
o
ss

Batch Size 256

32k steps; std 0:02

32k steps; std 0:006

128k steps; std 0:02

128k steps; std 0:006

Figure 39: Weight initialization with smaller std prefers longer warmup. We compare final loss
of models trained with AdamW using two weight initializations: the conventional std = 0.02 and a
smaller std = 0.006 as in DeepSeek. We vary the training horizon, warmup duration, and batch size
(without changing the number of iterations). Our results indicate that smaller initialization benefits
from longer warmup, leading to better performance compared to std = 0.02. However, with very
short warmup, the conventional initialization outperforms the smaller one. Interestingly, increasing
the batch size reduces the performance gap between the two initializations for longer training runs.

Takeaway 22. Weight initialization with smaller standard deviation, as in DeepSeek, benefits
from longer warmup but underperforms with very short warmup. Increasing the batch size
reduces the performance gap between small and conventional initializations.

F.3 ABLATIONS FOR 720M MODEL

Complementing benchmarking results of 720M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond to
those in Figure 1.

We observe that sign-based methods and Sophia require careful re-tuning of the learning rate to
converge on larger models. Notably, despite increasing the training horizon in terms of tokens, with
larger batch size, the number of steps is reduced compared to our runs in § 4.1 and § 4.2; in this part
of the benchmarking, we consider runs of {8, 16, 48}k iterations (the Chinchilla optimal duration at
∼ 14.4k). This reduction in steps necessitates re-tuning optimizer-related hyperparameters such as
β2. We describe hyperparameter changes in Appendix G.4.

Studying the training dynamics (Figure 40), we find that SF-AdamW, and sign-based Lion and
Signum scale poorly. Sophia can outperform our AdamW for short runs of 8k iterations, but
then degrades significantly. Interestingly, MARS greatly benefits from this setup, emerging the
second best-performing optimizer, closely following AdEMAMix: as it benefits from large batch
size (see Figure 4 (left)), and does not degrade with increased model size unlike Signum, and
Lion. On another hand, Prodigy was proven to be more beneficial at larger batch size, however,
this setup it occured to be less performant. D-Muon is consistent across all settings we have tried,
while Muon degrades when scaling model size (Figure 16 (c)).

As in (Vyas et al., 2024), we find that SOAP outperforms AdamW at the Chinchilla optimal duration
and below. However, in longer training, AdamW narrows the gap and eventually surpasses SOAP.
Another claim regarding the SOAP optimizer—that it is more beneficial, when the batch size is
sufficiently large—remains quite questionable: (I) as Figure 10 (runs with 2M batch size) suggests
that the matter of SOAP being better than AdamW is conditioned by the setup choice, which when
properly tuned turns that AdamW becomes better even at Chinchilla optimal duration; (II) when
considering 1M batch size setup in Figures 1 and 40, the performance gain of SOAP over AdamW
is less pronounced than in our settings with smaller batches for 124M and 210M models (see
Figures 12 (b) and 37 (c)).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

8 16 48

Tokens (B)

2:8

2:9

3:0

3:1

3:2

3:3

V
al
id
at
io
n
L
os
s

SF-AdamW

Signum

Lion

Sophia

(a) Underperforming AdamW (I).

8 16 48

Tokens (B)

2:8

2:9

3:0

3:1

3:2

3:3

V
al
id
at
io
n
L
os
s

Prodigy

ADOPT

SOAP

AdamW

(b) Underperforming AdamW (II).

8 16 48

Tokens (B)

2:8

2:9

3:0

3:1

3:2

3:3

V
al
id
at
io
n
L
os
s

D-Muon

MARS

AdEMAMix

(c) Outperforming AdamW.

Figure 40: Comparing optimizers for training a 720M parameter LLM. We conduct runs with
the batch size of 1M tokens. While previous ablations (see Figure 4) reveal that sign-based methods
can outperform AdamW at sufficiently large batches, this advantage does not persist when scaling
model size. On another hand, MARS, that also benefits from the increased batch size, along with
AdEMAMix dominates over other optimizers with a huge gap.

F.4 ABLATIONS FOR 520M MOE MODEL

Complementing ablations regarding transfer to MoE models. In addition to results from the
main part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond
to those in Figure 11.

5:5 44

Tokens (B)

2:9

3:0

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

42k 336k

Sophia

SF-AdamW

Signum

MARS

5:5 44

Tokens (B)

2:9

3:0

3:1

3:2

3:3

3:4

3:5

3:6

V
al
id
at
io
n
L
os
s

42k 336k

Lion

Prodigy

AdamW

ADOPT

Figure 41: Comparing optimizers for training a 520M parameter MoE. Training dynamics of
leading optimizers is in Figure 2. Results closely remind those in Figure 12 (a,b). The AdamW
baseline by far outperforms Sophia, SF-AdamW, MARS, and sign-based methods for 44B training
horizon. Remarkably, in the same way as Prodigy followed AdamW in Figure 12 (b), we observe
a similar situation for the MoE model.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

F.5 WALL-CLOCK PERFORMANCE OF OPTIMIZERS ACROSS MODELS OF DIFFERENT SCALE

30 52 80 360 720 1026
Model Size (M)

0

50

100

150

200

250

300

350

400

W
a
ll
-c
lo
ck
T
im
e

124 150 210

SOAP

AdEMAMix

Muon

AdamW

30 52 80 124

30

40

50

60

Figure 42: Wall-clock time comparison. SOAP
slows down the most as model size increases.

After conducting experiments for models of
different sizes, we are ready to present the wall-
time comparison for each method. For this
purposes, we use a single GPU, and run each
optimizer for 100 iterations on a small batch
size of 16 without gradient accumulation and
torch.compile. In this ablation, we con-
sider a wider range of model sizes (30M–1B).
We run each method 5 times with different
seeds, compute the standard deviation, and re-
port the mean wall-clock time per 100 iterations
for each model configuration. We observe that
all methods take the roughly the same or very
close time to complete 100 iterations, with the exception of SOAP. We point out that wall-clock
time for all optimizers exhibits a linear dependence on the model size (“model size” axis is rescaled
in plots). However, SOAP slows down faster and we may expect a slowdown further, due to its
preconditioner matrices operations which are fast only for certain matrices that are smaller than a
predefined size. See details of this ablation in Appendix F.5, and Figures 43 and 44.

Takeaway 23. Most optimizers exhibit similar wall-time performance, with sign-based methods
being slightly faster (Figure 43). SOAP is the main exception, showing a notable slowdown as
model size increases.

We complement the wall-clock performance analysis from (Figure 42) by presenting complete re-
sults for all optimizers. The experimental setup is simple and consistent: we use a batch size of
16 (16 × 512 tokens), run for 100 iterations on a single GPU, without gradient accumulation, and
we do not apply torch.compile. Precise model configurations for all scales (30M–1B) are
reported in Table 2.

Table 2: Configurations for our Llama-like models for the wall-clock experiments.

Parameters 30M 52M 80M 124M 150M 210M 360M 720M 1026M
Hidden size 384 512 768 768 768 768 1024 2048 1792

Attention heads 6 8 6 12 12 12 16 16 14
Layers 8 8 6 12 16 24 24 12 24
Init. std 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Use bias no no no no no no no no no

RMSNorm epsilon 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE

Figure 43 shows a bar plot summarizing wall-clock time comparisons for all optimizers. Addi-
tionally, Figure 44 visualizes the per-optimizer behavior when scaling model size, omitting SOAP,
AdEMAMix, Muon, and AdamW, as their results are already presented in the main part—see Fig-
ure 42.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

30M 52M 80M
Model Size

25

28

30

32

35

38

40

42

45

W
a
ll
-c
lo
ck
T
im
e

Signum

AdEMAMix

Lion

MARS

AdamW

Muon

SF-AdamW

Prodigy

ADOPT

SOAP

Sophia

124M 150M 210M
Model Size

40

48

56

64

72

80

88

96

W
al
l-
cl
oc
k
T
im
e

Signum

AdEMAMix

Lion

MARS

AdamW

Muon

SF-AdamW

Prodigy

ADOPT

SOAP

Sophia

360M 720M 1026M
Model Size

80

120

160

200

240

280

320

360

400

W
al
l-
cl
oc
k
T
im
e

Signum

AdEMAMix

Lion

MARS

AdamW

Muon

SF-AdamW

Prodigy

ADOPT

SOAP

Sophia

Figure 43: Wall-clock time performance: gathered. We report the wall-clock time (in seconds)
for training each model for 100 iterations using a small batch size of 16 × 512 tokens on a single
GPU, without gradient accumulation or torch.compile. Bars show the ranking of optimizers
from fastest (Signum) to slowest (SOAP) gathered across all model scales. While the differences
between most optimizers are small, SOAP is consistently slower. The absolute times may vary
depending on the hardware, but the relative patterns remain consistent.

G HYPERPARAMETER TUNING

How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algo-
rithms, starting with smaller models (124M, 210M) and extrapolating to larger, 583M and 720M
models. Our tuning process for 124M model focused on two primary settings: “small” batch set-
ting (32 batch size) and “large” batch setting (256 batch size). For both settings, we use a sequence
length of 512 tokens, resulting in 16k and 130k tokens per batch, respectively. If the batch cannot
fit into memory, we use gradient accumulation steps, while maintaining the effective batch size.

We also include ablations on even larger batch size for 124M models, where we train on 512 batch
size (260k tokens correspondingly). We train 583M models on the batch size of 3936, preserving
the basic sequence length of 512, that is, ∼ 2M tokens. And the larger models for benchmarking
purposes—of 720M—were trained on the batch size of 1984, resulting in ∼ 1M tokens.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

30 52 80 360 720 1026
Model Size (M)

25

50

75

100

125

150

175

200

W
al
l-
cl
oc
k
T
im
e

124 150 210

Signum

30 52 80 360 720 1026
Model Size (M)

25

50

75

100

125

150

175

200

W
al
l-
cl
oc
k
T
im
e

124 150 210

Lion

30 52 80 360 720 1026
Model Size (M)

25

50

75

100

125

150

175

200

225

W
al
l-
cl
oc
k
T
im
e

124 150 210

SF-AdamW

30 52 80 360 720 1026
Model Size (M)

25

50

75

100

125

150

175

200

225

W
al
l-
cl
oc
k
T
im
e

124 150 210

ADOPT

30 52 80 360 720 1026
Model Size (M)

25

50

75

100

125

150

175

200

225

W
a
ll
-c
lo
ck
T
im
e

124 150 210

Sophia

30 52 80 360 720 1026
Model Size (M)

50

100

150

200

250

W
a
ll
-c
lo
ck
T
im
e

124 150 210

MARS

30 52 80 360 720 1026
Model Size (M)

50

100

150

200

250

W
a
ll
-c
lo
ck
T
im
e

124 150 210

Prodigy

Figure 44: Wall-clock time performance: individual. Complementing Figures 42 and 43, this
figure shows the evolution of wall-clock time per 100 iterations for each optimizer as model size
increases. Optimizers already shown in the main part are omitted. To improve visualization, the
abscissa is re-scaled to highlight the increase in wall-clock time with model size.

We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal
training length using cosine learning rate scheduler (except for SF-AdamW):

• for 124M models we tune at 2.1B tokens for both “small” (32) and “large” (256) batch size setting
(see Appendix G.1),

• for 210M models we replicate training runs with the best hyperparameters found at 124M scale,
except for the learning rate (see Appendix G.2),

• at 583M scale, we only ablate the effect of the z-loss regularizer while training with AdamW and
SOAP on a near-Chinchilla optimal number of tokens (see Appendix G.3),

• for 720M models we tune at 16B tokens (see Appendix G.4),

• our MoE setting we discuss in-depth in Appendix G.5.

We present the configurations for different training horizons in Tables 3, 4, 6, 5.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Table 3: Lengths of training for “Small” batch settings (32× 512).

Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 2.5B
210M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 4.2B

Table 4: Lengths of training for “Large” batch settings (256× 512).

Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 2.5B
210M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 4.2B

Table 5: Lengths of training for 2M (3936× 512) batch size setting.

Parameters Tokens (Iterations) Chinchilla Tokens
583M 13B (6.5k) 11.7B

Table 6: Lengths of training for 1M (1984× 512) batch size setting.

Parameters Tokens (Iterations) Chinchilla Tokens
720M 8B (8k) 16B (16k) 48B (48k) 14.4B

Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M
model and re-tuned the learning rate, beta parameters, and gradient clipping. For dense LLMs,
summarize this process in Appendices G.1, G.2, G.3, G.4, and cover the MoE setup in Appendix G.5.

Additionally, when we report the effect of a particular hyperparameter, we assume that the remaining
hyperparameters of the algorithm have already been tuned. Thus, the results isolate and highlight
only the impact of the chosen hyperparameter on overall performance.

Hyperparameters used in our experiments with learning rate schedulers. Once we found the
best setting for each method using cosine learning rate scheduler, we are ready to obtain the optimal
performance of our method with WSD (Hu et al., 2024) and linear schedulers. For the latter one, we
use the same hyperparameters as for the cosine scheduler. However, for WSD, we follow the rule of
thumb from (Hägele et al., 2024):

• use half the optimal learning rate for the cosine scheduler,

• use 20% of iterations for cooldown phase,

• use (1−
√
x) decay shape for the cooldown phase,

the only difference is that we do not employ stochastic weight averaging (Izmailov et al., 2019).

Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate.
For Muon and MARS, we reduce both AdamW’s learning rate and the learning rate for non-1D pa-
rameters. This approach ensures a fair comparison while accounting for the unique properties of
each optimizer.

Importantly, the rule of thumb (Hägele et al., 2024) for using the decay shape (1−
√
x) works better

in our setting. We use exactly this shape during the cooldown phase of the WSD scheduler for all
optimizers.

We report a series of comparisons between different schedulers in Figures 8, 19 and 20.

It has been shown (Hägele et al., 2024; Bergsma et al., 2025) that annealing the learning rate to
smaller values than 10% of the maximum learning rate improves performance. We consider three
mentioned schedulers, and report the ablation on the learning rate decay for the 210M models in
Figure 9, and for the 124M models in Figure 25. In the tables that show the greed-search across
hyperparameters we mention the learning rate decay factor (Final learning rate X × max LR) only
for those optimizers, where we performed the corresponding ablation for. If this field is omitted
from the table, we use 0.01×γmax for this method regardless of the learning rate scheduler applied.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

G.1 124M PARAMETERS MODEL

Below, we provide tables with complete information regarding hyperparameter tuning for 124M
models including the important sweeps (weight decay, warmup, etc.) conducted for our ablations.

Table 7: AdamW hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 5000, 8000 500, 1000,2000, 3000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1

AdamW β1 0.5,0.8, 0.9 0.8, 0.9
AdamW β2 0.95,0.999 0.95, 0.99,0.999, 0.9999

Final learning rate X×max cosine LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max WSD LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max linear LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Table 8: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

ADOPT β1 0.9 0.8,0.9
ADOPT β2 0.999, 0.9999 0.5,0.999, 0.9999
ADOPT ε 10−6 10−6

Table 9: AdEMAMix hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1
AdEMAMix β1 0.5,0.8, 0.9 0.8,0.9
AdEMAMix β2 0.999 0.999, 0.9999
AdEMAMix β3 0.999,0.9999, 0.99995 0.999, 0.9999
AdEMAMix α 5,8, 12 8

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

Table 10: Lion hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.00005,0.0001, 0.0005, 0.001 0.0001, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000 2000, 8000,32000
Weight decay no, 0.1, 0.2,0.5 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Lion β1 0.7,0.9, 0.99 0.5,0.9
Lion β2 0.9,0.99, 0.999 0.99, 0.999

Table 11: Signum hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0003, 0.0005,0.001 0.0001, 0.00030.0005, 0.0003,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000,8000, 32000
Weight decay no, 0,0.1, 0.5 no, 0,0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1 no, 0.5, 1

Momentum no, 0.9,0.95 no, 0.9,0.95, 0.99
Nesterov momentum no, yes no, yes

Table 12: Muon hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate AdamW 0.0001, 0.0003, 0.0005,0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002
Learning rate Muon 0.001,0.01, 0.02 0.001,0.01, 0.02

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5 no, 0.5, 1.0
Momentum Muon 0.9, 0.95,0.99 0.95, 0.99

Optimizer for 1D layers AdamW AdamW
Optimizer for 1D layers, β1 0.8, 0.9 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999, 0.9999 0.99,0.999, 0.9999

Newton-Schulz a 3.4445 3.4445
Newton-Schultz b −4.7750 −4.7750
Newton-Schultz c 2.0315 2.0315

Newton-Schultz iterations 5 1,5, 10, 20
Nesterov momentum no, yes no, yes

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

Table 13: D-Muon hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005, 0.001,0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5 no, 0.5, 1.0

Momentum D-Muon 0.95 0.95
Optimizer for 1D layers AdamW AdamW

Optimizer for 1D layers, β1 0.8, 0.9 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999, 0.9999 0.99,0.999, 0.9999

Newton-Schulz a 3.4445 3.4445
Newton-Schultz b −4.7750 −4.7750
Newton-Schultz c 2.0315 2.0315

Newton-Schultz iterations 5 5
Nesterov momentum yes yes

Table 14: SOAP hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.005,0.001 0.0001, 0.0003, 0.0005, 0.001,0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Preconditioner dimension 10000 10000
Preconditioning frequency 1, 5,10 1, 5,10

SOAP β1 0.8,0.9 0.8,0.9, 0.95
SOAP β2 0.95, 0.99,0.999, 0.9999 0.95, 0.99,0.999, 0.9999

Table 15: Sophia hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0003, 0.0005, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002, 0.01

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000, 3000 2000, 8000,32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Estimator Gauss-Newton-Bartlett Gauss-Newton-Bartlett
Estimator frequency 10 10

Sophia β1 0.9 0.8,0.9
Sophia β2 0.95,0.999, 0.9999, 0.99999 0.95,0.999, 0.9999, 0.99999
Sophia ρ 0, 0.03,0.04 0, 0.03,0.04

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Table 16: Schedule-Free AdamW hyperparameter tuning for our 124M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001, 0.005 0.0001, 0.0003, 0.0005, 0.001,0.002, 0.005

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000,8000, 12000, 16000, 32000
Weight decay no, 0.05,0.1, 0.5 no, 0.05,0.1, 0.5

Learning rate decay scheduler no no
Gradient clipping no, 0.5 no, 0.5, 1

Schedule-Free AdamW β1 0.9, 0.95, 0.98 0.9, 0.95, 0.98
Schedule-Free AdamW β2 0.95, 0.99, 0.999,0.9999, 0.99999 0.95, 0.99, 0.999,0.9999, 0.99999

Table 17: Prodigy hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.5,1 0.5,1, 2, 10, 100

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler no, WSD, cosine no, WSD, cosine, linear
Gradient clipping no, 0.5, 1 no, 0.5, 1
Prodigy β1 0.9 0.8,0.9
Prodigy β2 0.99,0.999, 0.9999 0.999, 0.9999

Prodigy bias correction no, yes no, yes

Table 18: MARS (MARS-AdamW) hyperparameter tuning for our 124M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate AdamW 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003
Learning rate MARS 0.001,0.003 0.001,0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine, linear

Gradient clipping 0.5 0.5
Optimizer for 1D layers AdamW AdamW

Optimizer for 1D layers β1 0.8, 0.9 0.8, 0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.023, 0.024,0.025 0.023, 0.024,0.025

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

Table 19: MARS-Lion hyperparameter tuning for our 124M parameter large language mod-
els. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate Lion 0.0001, 0.0005, 0.001, 0.003 0.0001, 0.0005, 0.001, 0.003
Learning rate MARS 0.0001, 0.001, 0.003 0.0001, 0.001, 0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine

Gradient clipping 0.5 0.5
Optimizer for 1D layers Lion Lion

Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95,0.99, 0.999 0.95,0.99, 0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

Table 20: MARS-Shampoo hyperparameter tuning for our 124M parameter large language
models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate Shampoo 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003

Learning rate MARS 0.001,0.003 0.001,0.003
Batch size 32 256

Sequence length 512 512
Number of warmup steps 2000,3000 2000, 8000, 32000

Weight decay MARS no, 0.1 no, 0.1, 0.5
Weight decay for 1D layers 0.1 0.1

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5

Optimizer for 1D layers Shampoo Shampoo
Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

G.2 210M PARAMETERS MODEL

For 210M models we perform training runs only with the batch size of 256 × 512 to-
kens, utilizing the same training durations as for 124M model with this batch size,
i.e., {8k, 16k, 32k, 48k, 64k, 128k}, which corresponds to the following counts in tokens:
{1B, 2.1B, 4.2B, 6.3B, 8.4B, 16.8B}.
We also replicate almost identical hyperparameters to those of the training of the 124M model
to verify whether the smooth transition Takeaway 3 in the final ranking of optimizers and their
sensitivity to hyperparameters will be observed.

Table 21: AdamW hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 50, 500, 1000,2000
Weight decay no, 0.1

Learning rate decay scheduler WSD, cosine, linear
Gradient clipping 0.5

AdamW β1 0.8,0.9
AdamW β2 0.95, 0.99,0.999, 0.9999

Final learning rate X×max cosine LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max WSD LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max linear LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Table 22: ADOPT hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping no, 0.5, 1

ADOPT β1 0.9
ADOPT β2 0.5,0.999, 0.9999
ADOPT ε 10−3, 10−4, 10−5,10−6, 10−7, 10−8, 10−9, 10−10,

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Table 23: AdEMAMix hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
AdEMAMix β1 0.9
AdEMAMix β2 0.999
AdEMAMix β3 0.999
AdEMAMix α 8

Table 24: Lion hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Lion β1 0.9
Lion β2 0.99

Table 25: Signum hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Momentum 0.9,0.95, 0.99
Nesterov momentum yes

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Table 26: Muon hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate AdamW 0.001
Learning rate Muon 0.01

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
Momentum Muon 0.95

Optimizer for 1D layers AdamW
Optimizer for 1D layers, β1 0.8
Optimizer for 1D layers, β2 0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Nesterov momentum yes

Table 27: D-Muon hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Momentum D-Muon 0.95
Optimizer for 1D layers AdamW

Optimizer for 1D layers, β1 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Newton-Schultz iterations 5
Nesterov momentum yes

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Table 28: SOAP hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9
SOAP β2 0.999

Table 29: Sophia hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Estimator Gauss-Newton-Bartlett
Estimator frequency 10

Sophia β1 0.9
Sophia β2 0.999
Sophia ρ 0.04

Table 30: Schedule-Free AdamW hyperparameter tuning for our 210M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000,8000
Weight decay 0.1

Learning rate decay scheduler no
Gradient clipping 0.5

Schedule-Free AdamW β1 0.9
Schedule-Free AdamW β2 0.9999

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

Table 31: Prodigy hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 1

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
Prodigy β1 0.9
Prodigy β2 0.999

Prodigy bias correction yes

Table 32: MARS (MARS-AdamW) hyperparameter tuning for our 210M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate AdamW 0.001
Learning rate MARS 0.003

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay MARS 0.1

Weight decay for 1D layers 0.1
Learning rate decay scheduler cosine

Gradient clipping 0.5
Optimizer for 1D layers AdamW

Optimizer for 1D layers β1 0.8, 0.9
Optimizer for 1D layers β2 0.999

MARS β1 0.95
MARS β2 0.99

VR scaling factor η 0.024,0.025

G.3 583M PARAMETERS MODEL

For models of 583M scale, we ablate the difference between our setup and the one from Vyas et al.
(2024). The main changes compared to our setup include: learning rate decay down to 10% of the
maximum, usage of z-loss regularizer in addition to the cross-entropy loss, smaller decoupled weight
decay of 0.0001. We also point out that SOAP performance in (Vyas et al., 2024) was measured on
the Chinchilla optimal number of tokens and with 2M tokens batch size. Thus, in Section 4.3
we ablate the differences between our settings on the same training horizons. A complete list of
hyperparameters used for our AdamW and SOAP models in this ablations are presented in Table 33.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Table 33: AdamW hyperparameter tuning for our 583M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 2M batch setting
Learning rate 0.001,0.005

Batch size 3936
Sequence length 512

Number of warmup steps 1200
Weight decay 0.0001,0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

AdamW β1 0.9,0.95
AdamW β2 0.95, 0.99

Final learning rate X×max cosine LR 10−1,10−2

z-loss regularization no, 0.0001

Table 34: SOAP hyperparameter tuning for our 583M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 2M batch setting
Learning rate 0.001,0.005

Batch size 3936
Sequence length 512

Number of warmup steps 1200
Weight decay 0.0001,0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9,0.95
SOAP β2 0.95, 0.99, 0.999

Final learning rate X×max cosine LR 10−1,10−2

z-loss regularization no, 0.0001

G.4 720M PARAMETERS MODEL

In this section, we provide a complete information about the hyperparameter search for the largest
models used in our benchmarking experiments. Deriving insights from our ablations (Figures 13,
30 and 31) on the smaller scale, we suggest to re-tune beta parameters of optimizers as changing the
training iterations—see Takeaways 9 and 17 for this conclusions.

Tables below cover our tuning outcomes for all methods. We highlight that, when training with large
batches of 1M tokens, we use the smaller number of iterations for our runs: T ∈ {8, 16, 48}k(B)
steps (tokens)—see Table 6. Thus, according to Takeaway 9, we find that smaller β2 parameter gives
better results for SOAP, D-Muon (for 1D parameters), and Prodigy.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

Table 35: AdamW hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1, 0.5

AdamW β1 0.8,0.9, 0.95
AdamW β2 0.95, 0.99,0.999

Table 36: ADOPT hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

ADOPT β1 0.9,0.95
ADOPT β2 0.95, 0.99,0.999
ADOPT ε 10−6

Table 37: AdEMAMix hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001, 0.002

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
AdEMAMix β1 0.9
AdEMAMix β2 0.95,0.999
AdEMAMix β3 0.999, 0.9999
AdEMAMix α 8

G.5 520M PARAMETERS MOE MODEL

We extend our comparison of optimizers beyond dense models to include Mixture of Experts (MoE)
architectures. Starting from our Llama-like transformer with tied embeddings, we construct an
MoE variant following the Switch-Transformer implementation (Fedus et al., 2022). The model
employs classical linear gating with softmax and top-k routing (k = 2) over 8 experts. We retain
the SwiGLU activation functions (Shazeer, 2020), RMSNorm layers (Zhang & Sennrich, 2019), and
RoPE embeddings (Su et al., 2023) exactly as in our dense LLMs. Keeping the same hidden size,
number of layers, and attention heads as the 124M dense model, this results in a∼ 520M parameter
MoE architecture. A detailed specification of this model is provided in Table 47.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

Table 38: Lion hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.00005, 0.0001,0.0002, 0.0003, 0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1,1

Lion β1 0.9
Lion β2 0.99

Table 39: Signum hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001,0.0002, 0.0003, 0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1, 1

Momentum 0.9,0.95, 0.99
Nesterov momentum yes

Table 40: Muon hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate AdamW 0.0005,0.001, 0.002
Learning rate Muon 0.01

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
Momentum Muon 0.95

Optimizer for 1D layers AdamW
Optimizer for 1D layers, β1 0.8, 0.9, 0.95
Optimizer for 1D layers, β2 0.95, 0.99,0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Nesterov momentum yes

For training, we use a batch size of 256 × 512. Optimizer hyperparameters are taken directly from
Appendix G.2, with one adjustment: the learning rate for Sophia is set to 0.0005 instead of 0.001.
The purpose of this ablation is to evaluate how optimizers, tuned on dense models, perform when
directly transferred to MoE models. In practical scenarios, practitioners often reuse well-established
hyperparameters tuned on dense LLMs; hence, we argue that our comparison on the 520M MoE
model reflects realistic small-scale deployment settings.

We report our configurations for training runs in Table 48.

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

Table 41: D-Muon hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0005,0.001, 0.002, 0.003, 0.005

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Momentum D-Muon 0.95
Optimizer for 1D layers AdamW

Optimizer for 1D layers, β1 0.8,0.9, 0.95
Optimizer for 1D layers, β2 0.95, 0.99, 0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Newton-Schultz iterations 5
Nesterov momentum yes

Table 42: SOAP hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9,0.95
SOAP β2 0.95, 0.99, 0.999

Table 43: Sophia hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Estimator Gauss-Newton-Bartlett
Estimator frequency 10

Sophia β1 0.9,0.95
Sophia β2 0.95, 0.99,0.999
Sophia ρ 0.04

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

Table 44: Schedule-Free AdamW hyperparameter tuning for our 720M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000,8000
Weight decay 0.1

Learning rate decay scheduler no
Gradient clipping no, 0.1

Schedule-Free AdamW β1 0.9, 0.95
Schedule-Free AdamW β2 0.95, 0.99, 0.999,0.9999

Table 45: Prodigy hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.5,1, 2

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
Prodigy β1 0.9,0.95
Prodigy β2 0.95,0.99, 0.999

Prodigy bias correction yes

Table 46: MARS (MARS-AdamW) hyperparameter tuning for our 720M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate AdamW 0.001
Learning rate MARS 0.003

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay MARS 0.1

Weight decay for 1D layers 0.1
Learning rate decay scheduler cosine

Gradient clipping 0.1
Optimizer for 1D layers AdamW

Optimizer for 1D layers β1 0.8, 0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999

MARS β1 0.95
MARS β2 0.99

VR scaling factor η 0.024,0.025

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Table 47: Configurations for our Llama-based MoE model.

Parameters 520M
Hidden size 768

Attention heads 12
Layers 12
Init. std 0.02
Use bias no

RMSNorm epsilon 0.00001
Positional encoding RoPE

MoE router loss load balancing loss (Fedus et al., 2022) (Eq. 4) & router z-loss (Zoph et al., 2022) (Eq. 5)
Experts per layer 8
Shared experts 0
Top-k routing (k) 2

MoE softmax order top-k→ softmax

Table 48: Lengths of training for the MoE model in “Large” batch size setting (256× 512).

Parameters Tokens (Iterations) Chinchilla Tokens
520M 5.5B (42k) 44B (336k) 10.4B

78

	Introduction
	Background & Related Work
	Experimental Setup
	Results
	Benchmarking & Ablations at Small Scale: Training 124M Models
	Benchmarking & Ablations at Medium Scale: Training 210M Models
	Scaling Up: Benchmarking models of 583M and 720M Parameters
	Extension to MoEs

	Appendix
	Discussion
	Optimizers we study
	AdamW, ADOPT, AdEMAMix
	Sign-based methods: Lion and Signum
	Muon & D-Muon, SOAP, Sophia
	Schedule-Free AdamW, Prodigy
	MARS

	Implementation
	Model & Data
	Additional Results
	Ablations for 124M model
	Ablations for 210M model
	Ablations for 720M model
	Ablations for 520M MoE model
	Wall-clock performance of optimizers across models of different scale

	Hyperparameter tuning
	124M parameters model
	210M parameters model
	583M parameters model
	720M parameters model
	520M parameters MoE model

