BENCHMARKING OPTIMIZERS FOR LARGE LANGUAGE MODEL PRETRAINING

Anonymous authors

Paper under double-blind review

https://anonymous.4open.science/r/llm-opt-bench-7B81

ABSTRACT

The recent development of Large Language Models (LLMs) has been accompanied by an effervescence of novel ideas and methods to better optimize the loss of deep learning models. Claims from those methods are myriad: from faster convergence to removing reliance on certain hyperparameters. However, the diverse experimental protocols used to validate these claims make direct comparisons between methods challenging. This study presents a comprehensive evaluation of recent optimization techniques across standardized LLM pretraining scenarios, systematically varying model size, batch size, and training duration. Through careful tuning of each method, we provide guidance to practitioners on which optimizer is best suited for each scenario. For researchers, our work highlights promising directions for future optimization research. Finally, by releasing our code and making all experiments fully reproducible, we hope our efforts can help the development and rigorous benchmarking of future methods.

1 Introduction

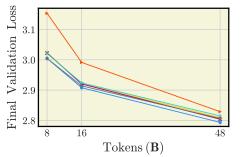
Over the past five years, Large Language Models (LLMs) (DeepSeek-AI, 2024b; OpenAI, 2024; Gemini Team, 2024; Llama Team, 2024) have shown growth in performance and size, demonstrating proficiency in various downstream tasks (Snell et al., 2024; Brown et al., 2020; Wei et al., 2023). The success of LLM pretraining hinges on three key pillars: high-quality data (Penedo et al., 2024b; Li et al., 2024), architectural innovations (Jiang et al., 2024; DeepSeek-AI, 2024b), and scalable optimization techniques (Jaghouar et al., 2024; Shah et al., 2024; Charles et al., 2025).

Among these, the choice of optimizer has remained notably consistent in recent years, with Adam (W) (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) dominating deep learning for nearly a decade. However, recent advances (Jordan et al., 2024b; Liu et al., 2025; Vyas et al., 2024; Pagliardini et al., 2024; Pethick et al., 2025; Frans et al., 2025; Defazio et al., 2024b) challenge this status quo, offering alternatives that surpass AdamW in speed, communication efficiency (Ahn & Xu, 2025) or final downstream performance on various benchmarks (Dahl et al., 2023; Karpathy, 2022), particularly for autoregressive language modeling (Radford & Narasimhan, 2018). Despite these innovations, current benchmarks and ablation studies (Zhao et al., 2025; Morwani et al., 2025; Kaddour et al., 2023) remain narrow in scope, often examining only isolated aspects of optimizer design (Kasimbeg et al., 2025). This lack of systematic comparison makes it difficult to obtain trustworthy insights for practitioners or identify the next promising research directions.

In this work, our goal is to revisit the problem of benchmarking optimizers for LLM pretraining. We do so through standardized experiments which vary important parameters such as batch size, model size, and the number of training iterations. This allows us to formulate an up-to-date list of best-performing methods for the community of researchers and practitioners. We demonstrate the efficiency of each considered method through careful tuning, and present insightful ablations along the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable regardless of the optimizer chosen.

We summarize our contributions as follows:

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting



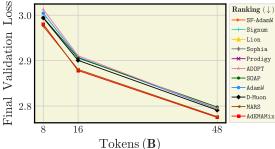


Figure 1: Ranking of optimizers for 720M Llama-based models. We plot the *final validation loss* obtained by the best-tuned optimizers on the FineWeb dataset. We use a batch size of 1M tokens and train multiple methods beyond and below the Chinchilla optimal duration, which is 14.4B for model of this size. Ademalia and Mars are the best optimizers in this setup, with a noticable gap in performance compared to other methods. We also plot the Adamw baseline in both figures to distinguish the group of methods that consistently perform worse than Adamw from the group of optimizers that outperform it for some training durations. See § 3 and Appendix G for a detailed description of our experimental setup, including hyperparameters.

for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in several relevant training regimes, for both dense and Mixture of Experts (MoE) architectures.

(<u>Contribution 2</u>) We perform comprehensive ablations of critical training hyperparameters—including warmup duration, initialization schemes, gradient clipping, final learning rates, and learning rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts,

evaluation pipelines, and hyperparameter configurations, to enable reproducible research and facilitate future optimizer development.

For practitioners, our work provides an evidencebased answer to the burning question: "Is Adam still the most effective optimizer in the age of LLMs, or can we achieve better performance at scale with novel optimizers?".

For researchers, our work delivers a unified benchmarking framework for LLM pretraining, along with extensive ablation studies which systematically evaluate both popular and overlooked optimizer designs—revealing previously unexplored tradeoffs between efficiency, stability, and final model performance. Overall, our findings not only challenge long-held assumptions about optimizer selection but also establish a foundation for future advances in large-scale model training. By bridging the gap between theoretical innovation and practical deployment, this work aims to accelerate progress in both research and industry applications of LLM training.

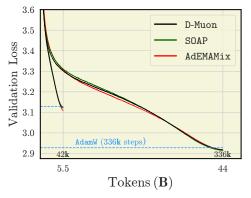


Figure 2: Training dynamics of leading optimizers on 520M MoE model pretraining. We use a batch size of 131k tokens, and train models for both short runs, i.e., less than Chinchilla optimal duration, and for extended runs beyond this regime. The dashed blue lines correspond to the final validation loss of AdamW baselines trained for both 42k and 336k steps.

2 Background & Related Work

Optimizers. While computer vision models often show comparable performance between SGD (Robbins & Monro, 1951) and AdamW (Zhang et al., 2020b), the landscape differs dramatically in LLM training (Srećković et al., 2025). Recent work (Zhang et al., 2024b) demonstrates that adaptive methods like AdamW provide substantially better optimization characteristics for transformer-based language models. The question of why AdamW works so well has been a long-standing topic of research (Balles & Hennig, 2020; Orabona, 2020; Zhang et al., 2020a; Kunstner et al., 2024; Kunstner, 2024). Modern methods often inherit AdamW's core ideas in their structure, such as ADOPT (Taniguchi et al., 2024) and AdemMamix (Pagliardini et al., 2024). ADOPT has been motivated by solving long-standing convergence issues in AdamW. By normalizing the second-order moment prior to the momentum update, they eliminate the non-convergence issues of AdamW on

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125 126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149 150

151

152

153

154

155

156

157

158

159

160

161

smooth non-convex functions. Meanwhile AdEMAMix extends AdamW with an additional slower momentum buffer, i.e., a slower exponential moving average (EMA), which allows the use of much larger momentum values, accelerating convergence. One interpretation of AdamW's effectiveness lies in its sign-based update (Kunstner et al., 2023): without the exponential moving average (EMA), AdamW resembles signSGD (Bernstein et al., 2018). Recent works (Zhao et al., 2025; Karimireddy et al., 2019) has shown that Signum (signSGD with momentum), can perform comparably to AdamW. The community also discussed Lion (Chen et al., 2023), a method with a similar signbased structure. Signum and Lion offer memory benefits due to the use of only a single instead of Adam's two buffers for optimizer states. Another family of methods stems from AdamW's approximate second-order structure. This idea has given rise to Sophia (Liu et al., 2024), where the diagonal of the Fisher information matrix is used as the second moment estimate. Exploiting the matrix structure of model weights and optimizer states has led to methods such as SOAP (Vyas et al., 2024), Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025), including their extentions (Liu et al., 2025; Riabinin et al., 2025; Ahn & Xu, 2025). The parameter-free concept (Orabona & Pál, 2016) has led to the development of Schedule-Free AdamW (SF-AdamW) (Defazio et al., 2024b) and Prodigy (Mishchenko & Defazio, 2024). These optimizers do not require a decreasing learning rate schedule, making them relevant for continual training. Last but not least, MARS (Yuan et al., 2024), builds upon this line of research and incorporates a variance reduction mechanism in its update rule.

Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some benchmarks are designed for short speedruns in terms of training or validation loss (Jordan et al., 2024a), while others focus on a downstream target metric after training (Zhao et al., 2025; Dahl et al., 2023; Schmidt et al., 2021). Methods that perform well in short speedruns might not be optimal for longer training horizons as in real LLM training runs (see Figure 3 (a), or Figures 37 and 40 (b)). "But what constitutes a sufficiently long horizon?" "What should be the compute budget for LLM training?" These are questions explored by scaling laws (Kaplan et al., 2020). Early benchmarks for optimizers and other ablation studies often rely on Chinchilla scaling laws (Hoffmann et al., 2022) with a ratio of roughly 20 tokens per parameter needed for pretraining. However, recent research (Li et al., 2025a; Porian et al., 2024; Sardana et al., 2024) argues that this is far from sufficient for production-ready models. Another important issue is the choice of loss function. Recent setups have used an auxiliary z-loss (Yang et al., 2023; Chowdhery et al., 2022) in addition to cross-entropy, which requires further investigation. We believe that this choice is influenced by the use of the OLMo (Team OLMo, 2024b) codebase, which we also address in our work. Additionally, we found that previous setups for comparing optimizers do not align with recent best practices regarding weight decay, learning rate decay, and overall hyperparameter tuning. All of these questions are revisited in our work. We also encourage the reader to refer to the concurrent work of Wen et al. (2025). Overall, our findings are well aligned, we both find Muon and SOAP outperforming AdamW in many settings. A few differences: we find MARS beating D-Muon at 1M tokens batch size, and also AdEMAMix is the best in the majority of our runs. We attribute differences regarding MARS to discrepancies in the batch size, Wen et al. (2025) uses a large sequence length of 4096. In addition, the authors do not try AdEMAMix, therefore such a comparison in their setup remains questionable.

3 EXPERIMENTAL SETUP

Notations. We use the following notations. Let γ be the learning rate, λ the weight decay coefficient, and T the total number of iterations. Momentum-related parameters are represented by β .

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we write in parentheses the optimizer-specific hyperparameters we tuned: $AdamW(\beta_1, \beta_2)$, $ADOPT(\beta_1, \beta_2)$, $AdEMAMix(\beta_1, \beta_2, \beta_3, \alpha)$, $Lion(\beta_1, \beta_2)$, $Signum(\beta)$, $Muon(\gamma^M, \beta, \beta_1, \beta_2)$, $D-Muon(\beta, \beta_1, \beta_2)$ (Liu et al., 2025), $SOAP(\beta_1, \beta_2)$ and preconditioning frequency, $Sophia(\rho, \beta_1, \beta_2)$, $SF-AdamW(\beta_1, \beta_2)$, $Prodigy(\beta_1, \beta_2)$,

Models & Data. For most experiments, we use a Llama-like transformer (Llama Team, 2024) architecture with weight tying (Press & Wolf, 2017), including SwiGLU activations (Shazeer, 2020),

RMSNorm (Zhang & Sennrich, 2019), and RoPE embeddings (Su et al., 2023). We experiment with four sizes of models: 124M, 210M, 583M, 720M. In addition to our dense models, we also benchmark optimizers on a Llama-based 520M MoE model, the corresponding setup is described in § 4.4 and Appendix G. We train on a 100B tokens¹ subset of FineWeb (Penedo et al., 2024a). It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the GPT-2 tokenizer prior to splitting into train and validation sequences.

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens. For clarity, we often report the batch size in tokens by writing batch size \times sequence length. For the 124M model, we use batch sizes of $32\times512=16\mathbf{k},\,256\times512=131\mathbf{k},\,$ and $512\times512=262\mathbf{k}$ tokens; for the 210M model and 520M MoE model, we use a batch size of $256\times512=131\mathbf{k};$ for the 583M model, we leverage the batch size of $3936\times512=2\mathbf{M}$ tokens, finally, we use a batch size of $1984\times512=1\mathbf{M}$ tokens for the 720M model. Depending on the model size, we vary the number of iterations—also measured in tokens for compatibility with scaling laws and to accommodate different batch size settings. We train 124M and 210M models for equal durations of $\{1,2.1,4.2,6.3,8.4,16.8\}\mathbf{B}$ tokens. This corresponds to $T\in\{64,128,256,384,512,1024\}\mathbf{k}$ iterations for a batch size of 32, and $T\in\{8,16,32,48,64,128\}\mathbf{k}$ iterations for a batch size of 256. For 583M models, we train on 13B tokens, corresponding to 6.5k iterations. In the setup with 720M model, we have $T\in\{8,16,48\}\mathbf{k}$ iterations for a batch size of 1M tokens. Thus, for all model scales, we include both Chinchilla optimal lengths of training and beyond. More details are available in Appendix E.

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works introducing optimizers (Vyas et al., 2024), benchmarkings (Zhao et al., 2025), or pretraining recipes for LLMs (Jaghouar et al., 2024; Chowdhery et al., 2022; Yang et al., 2023; Brandfonbrener et al., 2024), use a z-loss regularizer in addition to cross-entropy. We found that this has little impact and, therefore, do not use z-loss. An ablation showing results with and without z-loss is in § 4.

Hyperparameter Tuning. Training LLMs is a computationally intensive task (Erdil, 2024). As a guidance, practitioners often rely on insights gathered at lower scales, scaling laws (OpenAI, 2024; DeepSeek-AI, 2024a; Sardana et al., 2024; Li et al., 2025b), and other rules (Yang et al., 2022; Dey et al., 2024; Blake et al., 2025; Kumar et al., 2024). It is also commonplace to run experiments for only a shorter duration of training, as a way to test certain hyperparameters prior to extending the training horizon to more iterations. Because a full grid search over every hyperparameter, for each setting and optimizer, would be too costly, we resort to a similar approach. More precisely, for each model size, batch size, and optimizer, we extensively tune optimization hyperparameters for a number of training tokens which are near-Chinchilla optimal, e.g., we pick {2.1, 16}B tokens for tuning {124,720}M models (see Appendix G). We then keep those hyperparameters when we increase the number of iterations. While we found that the sensitivity to several hyperparameters can change as we increase the training horizon—see Figure 13—we found this approach simple and yet effective. The hyperparameters being considered depend on the optimizer. We proceeded from small to large model scale, and used insights gathered at smaller scales to guide the hyperparameter search at larger scales. Our hyperparameter sweeps are summarized in Appendix G. We present the clarifications regarding the connection between the number of iterations and tokens for different batch size settings, as well as the Chinchilla optimal training durations for our models in Tables 3, 4, 5, 6, and 48. As learning rate schedulers, we compare cosine (Loshchilov & Hutter, 2017), linear and warmupstable-decay (WSD) (Hu et al., 2024; Zhai et al., 2022; Hägele et al., 2024). Unless specified, we use a cosine scheduler. Results with WSD and linear schedulers are discussed in § 4. Recent works also emphasize the importance of sufficiently decaying the learning rate (Bergsma et al., 2025; Schaipp et al., 2025; Hägele et al., 2024; Li et al., 2025b; DeepSeek-AI, 2024b). As such, we take care to decay to $0.01 \times \gamma_{\rm max}$ instead of the often used $0.1 \times \gamma_{\rm max}$ (Hoffmann et al., 2022; Touvron et al., 2023; Biderman et al., 2023; Workshop, 2023; Team OLMo, 2024b;a; Zhao et al., 2025). To give an idea of how much effort was put into tuning each method, across all model sizes, batches and iterations, we trained a total of 2900 models, and have spent roughly 30000 GPU hours. See more details in Appendices D and G.

4 RESULTS

We structure our story starting with smaller models and batch sizes, and gradually scaling up to larger configurations. In some instances, we complement the core benchmarking results with additional ablations and possible best-practices.

¹https://huggingface.co/datasets/HuggingFaceFW/fineweb

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 we decided not to include Sophia at this stage of our benchmarking. 232 233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

253

254

255

256

257

258

259

260

261

262

264

265 266

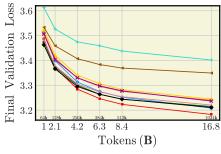
267

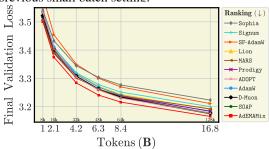
268

269

4.1 BENCHMARKING & ABLATIONS AT SMALL SCALE: TRAINING 124M MODELS **Results with "small" batches.** We first report results when using batches of 32×512 tokens in Figures 3 (a) and 12 (a). We tune the hyperparameters by training for 2.1B tokens (128k iterations) and then keep those hyperparameters for all other training durations. The best hyperparameters are reported in Appendix G.1. We observe how, for the smallest number of iterations we considered (1B tokens $\equiv 64k$), SOAP, ADOPT, AdEMAMix, D-Muon, Prodigy, and SF-AdamW all outperform AdamW, with D-Muon being the best. As we increase the number of iterations, AdEMAMix takes the lead while AdamW becomes a second, and closes the gap with D-Muon and SOAP. A signbased methods such as Lion and Signum are expected to perform poorly when the batch size is small. Intuitively, this is due to the $sign(\cdot)$ operator being sensitive to gradient noise (Tomihari & Sato, 2025; Kornilov et al., 2025). As described in its original paper, MARS also performs poorly when the batch size is small. We found Prodigy, the basic Muon (see Figures 16 and 17 (a)) and SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy suffers from the lack of bias correction of the learning rate, as well as being sensitive to (β_1, β_2) (see Figure 30). Importantly, when the batch size is sufficiently small, we observe that Sophia diverges when increasing the number of iterations, even if decreasing the learning rate (see Figure 27). Thus,

Results with "large" batches. We now report results when using batches of 256×512 tokens— $8 \times$ larger than for our "small" batch setting. Results in Figures 3 (b) and 12 (b) show how Signum, MARS, Lion, Prodigy greatly benefit from the increased batch size. Remarkably, we observe that the Prodigy method scales similarly to AdamW. We emphasize the possible community interest in this algorithm, as its effective learning rate—determined by two EMA sequences—emulates the learning rate behavior of Adamw. When the scheduler is applied and γ_{max} of Prodigy is set to 1 (its default value), these EMAs result in the maximal effective learning rate, which closely matches that of AdamW—see Figure 35. For a small number of iterations (e.g. $T \in \{8\mathbf{k}, 16\mathbf{k}\}$ corresponding to $1\mathbf{B}$ and $2\mathbf{B}$ tokens), all methods outperform AdamW except for SF-AdamW and Sophia. As we increase the number of iterations ADOPT, D-Muon, SOAP, and AdEMAMix take the lead. In particular, AdEMAMix has a consistent lead over other methods. While we anticipated—in accordance with Vyas et al. (2024)—that SOAP would greatly benefit from the larger batch size, its behavior remains relatively consistent compared to our previous small batch setting.





(a) Batch size 32×512 tokens.

(b) Batch size 256×512 tokens.

Figure 3: Ranking of optimizers for 124M models with "small" and "large" batch sizes. In both (a) and (b), we show the *final validation loss* for different training durations, corresponding to different numbers of tokens. Above each token number, we write the number of training iterations corresponding. In (a), we use a "small" batch size of 32×512 tokens. In (b), we use a larger batch size of 256×512 tokens.

Takeaway 1. After experimenting with both "small" and "large" batch settings, we conclude that: (I) AdEMAMix consistently achieves state-of-the-art performance and robust scaling with training duration; (II) sign-based methods (Signum, Lion), and MARS greatly benefit from the increased batch size; (III) Sophia diverges in the small-batch setting, when trained beyond the Chinchilla optimal horizon, even with sufficiently small learning rate; (IV) SOAP show a surprisingly consistent performance in both settings.

Stability across training horizons. As mentioned in § 3, we tune hyperparameters training on 2.1B tokens and keep those hyperparameters when extending the training horizon. However, when increasing the length of training or scaling batch size, critical hyperparameters of optimizers such as learning rate, betas might change (Busbridge et al., 2023). Thus, we additionally re-tune the methods for 16.8B length of training to show the best results. We found that previously widely

adopted (DeepSeek-AI, 2024b; Wortsman et al., 2023; Zhao et al., 2025; Jaghouar et al., 2024; Hägele et al., 2024; Li et al., 2025b) for AdamW ($\beta_1 = 0.9, \beta_2 = 0.95$) parameters give worse results than $(\beta_1 = 0.9, \beta_2 = 0.999)$. We point that it would be beneficial to further increase the β_2 for AdamW-like optimizers when increasing the length of training. The same applies to β_3 parameter of AdEMAMix, which we increase from 0.999 to 0.9999 when training on 16.8B tokens and beyond (see Appendix F.1 for a detailed ablation on that matter and references therein). Importantly, from Figure 12 (b), we see that SOAP and D-Muon narrow the gap with AdEMAMix. It is interesting to see how the situation changes when the training horizon is extended to $33.6\mathbf{B}$ tokens ($\equiv 256\mathbf{k}$ iterations). For this experiment, we use the batch size of (256×512) , and keep the re-tuned hyperparameters we found for 16.8B tokens run, simply reusing them for longer training. We report insights gathered from this ablation in Figure 4 (right). As in the "small" batch ablation, we emphasize that Sophia exhibits convergence issues when extending the training run, and diverges shortly after 130k steps (Figure 26). Regarding other optimizers, we observe a consistent behavior compared to the one from Figure 3 (b)—all methods remain at the same position in our tier-list. The results suggest that the best hyperparameters found at 16.8B scale are also consistent w.r.t. doubling the number of steps. "But what can one say about scaling batch size while keeping the same amount of tokens seen?"

Increasing the batch size further. We also run an experiment with batches of $512 \times 512 = 262k$ tokens, training for 64k iterations, thus, we keep the total amount of tokens to train on. We show the results of this ablation in Figure 4 (*left*). Noticeably MARS becomes the second best-performing method behind AdEMAMix, followed closely by Prodigy, Lion, ADOPT, and SOAP. Interestingly, Signum performs comparably to AdamW. Our results with batches of $\{131, 262\}k$ tokens show an evidence that sign-based methods greatly benefit from increased batch size, as noticed in many prior works (Chen et al., 2023). Furthermore, the hyperparameter sweeps from (Zhao et al., 2025; Zhang et al., 2024a) suggest that Lion, Signum, AdamW stay consistent w.r.t tuning all hyperparameters except for batch size, where they notice a worsens in performance at large batch sizes above ours 256×512 while we observe a quite opposite results in our setup.

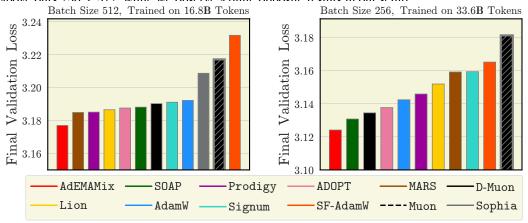
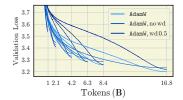
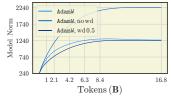


Figure 4: Scaling batch size vs. scaling the number of iterations. Our results demonstrate that: (left) scaling the batch size significantly improves MARS, Signum, Lion and Prodigy making them as good as AdamW even for a long training for 16.8B tokens. Which was not the case in Figure 3 (b), where we still observed a significant gap in performance; and (right): indeed, with scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow and, finally, increases. However, with increase of the AdEMAMix β_3 , the performance gap with SOAP reappears.

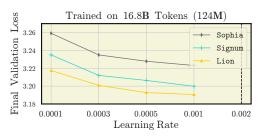
Takeaway 2. (I) Suprisingly, many methods, especially MARS, Prodigy, and sign-based ones, can outperform AdamW while trained on a sufficiently large batches. (II) We also found that in our setup, once optimizers are properly re-tuned for the maximal length of training considered, doubling of number of iterations does not affect the ranking of methods.

Ablations at small scale: 124M models. In this section, we present *ablations with relatively short descriptions* and the most meaningful figures to highlight them. We complement our results from this section in Appendix F.1. We start sequentially with smaller models ablating: **weight decay**, **learning rate sensitivity, warmup, learning rate schedulers**. For each ablation, we provide the corresponding takeaway—see Takeaway 10, 11, 12, 13. Details on hyperparameter searches are provided in Appendix G.





(a) Use large λ for short training. (b) Use $\lambda=0.1$ for long training. (c) Norm grows with smaller λ . Figure 5: Larger weight decay achieves significantly better results when training on fewer tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of 0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations except for the last one. Notably, Signum and Lion with large weight decay perform even better than AdamW with the same learning rate. In (b), we also consider a setting without weight decay. We observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers (see Appendix F.1), while the typical weight decay of 0.1 remains the best for longer training. In (c), we ablate the impact od weight decay on the model's ℓ_2 norm. See Figure 15 for detailed ablation.



(a) Sign-based, and Sophia diverge with large γ .

(b) Parabolic shape for most optimizers.

Figure 6: **Optimal learning rate stability across optimizers.** The optimal learning rate determined during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge with increasing learning rate. Interestingly, in (b), SF-AdamW, SOAP, and D-Muon demonstrate their best performance with a large learning rate of 0.002, while MARS maintains remarkably consistent performance across the learning rate sweep. See Figure 18 and Appendix F.1 for more details.

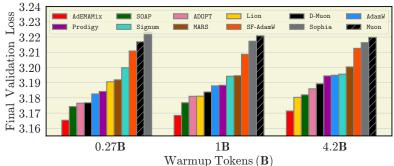
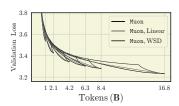
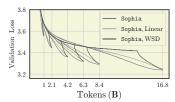


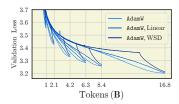
Figure 7: Warmup ablation. For 124M model trained on the batches of 256×512 tokens, we perform a sweep over the linear warmup durations of $\{1.56\%, 6.25\%, 25\%\}$ of the length of training, which corresponds to $\{2, 8, 32\}$ k steps, respectively. Clearly, sign-based optimizers, Sophia, and SF-AdamW benefit from the increased warmup.

4.2 Benchmarking & Ablations at Medium Scale: Training **210M** Models We report the complete ablation and benchmarking of 210M models in Section 4.2. Figure 36 demonstrated the ranking of optimizers in this setup, and Figure 37 depicts the training dynamics. We use the same 256×512 batch size for these models.

Takeaway 3. We do not observe a much of a change in ranking of optimizers for 210M model, compared to benchmarking on 124M. At the same time, we replicated almost identical hyperparameters for all optimizers, except for the learning rate for sign-base methods. We also point out that sign-based methods are more sensitive to the learning rate while scaling the model size. As that, we changed the peak learning rate from 10^{-3} to $5 \cdot 10^{-4}$ for Lion and Signum.

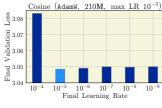


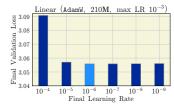


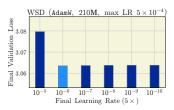


- (a) Muon "prefers" WSD.
- (b) No preference for Sophia.
- (c) Cosine & AdamW.

Figure 8: Comparisons between cosine, WSD, and the linear schedulers. Notably, schedulers behave differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD across most training durations. Sophia exhibits an almost perfect match between all three schedulers. However, for AdamW, along with the majority of other optimizers studied (see Figure 20), we get a better performance with cosine. We also report a detailed comparison for all optimizers in Appendix F.1, and cover additional ablations on another dataset (see Figure 19). We also study their gradient norm patterns and report results in Figure 21, and in Figure 22.







- (a) Cosine, $\gamma_{\text{end}} = 0.01 \times \gamma_{\text{max}}$.
- (b) Linear, $\gamma_{\rm end} = 0.001 \times \gamma_{\rm max}$.
- (c) WSD, $\gamma_{\text{end}} = 0.01 \times \gamma_{\text{max}}$.

Figure 9: Decaying the learning rate down to $0.01 \times \gamma_{\max}$ and beyond, instead of only to 10%. We run a 210M Llama model, and observe a common pattern for different schedulers that decreasing the learning rate to moderate $0.01 \times \gamma_{\max}$ value is a better choice than decreasing it down to zero. Interestingly, the linear learning rate scheduler for models at a given scale, requires $0.001 \times \gamma_{\max}$. See Figure 25 for corresponding ablation for 124M model.

Takeaway 4. Decaying the learning rate further than 10% of the maximal significantly improves the results. However, for different schedulers, the best final learning rate is different.

4.3 Scaling Up: Benchmarking models of **583M** and **720M** Parameters

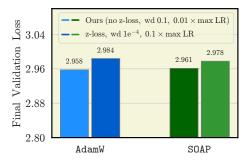


Figure 10: **Ablation of** z-loss regularization. Incorporating the z-loss regularizer does not improve the final loss or reduce the spikiness of the loss curves. Moreover, combining z-loss with small weight decay and decaying γ down to 10%, further degrades overall performance. Notably, these changes can reverse the relative ranking of optimizers compared to the results reported by Vyas et al. (2024).

Comparison between our setting and Vyas et al. (2024). We pick two methods: AdamW, SOAP, and run experiments with a larger model of 583M parameters, and a large batch size of 2M tokens. The goal is to get closer to one of the settings described in (Vyas et al., 2024), i.e., train for the Chinchilla optimal amount of tokens and use the same batch size. Therefore, we train for 6500 iterations, corresponding to 13B tokens. We found several key differences between our codebase and (Team OLMo, 2024a), used by Vyas et al. (2024): (I) we decay the learning rate to $0.01 \times \gamma_{\rm max}$ instead of $0.1 \times \gamma_{\rm max}$, with $\gamma_{\rm max}$ being the maximum learning rate, (II) we use typical weight decay values of e.g. 0.1 instead of smaller values such as 0.01 or 0.0001, (III) we do not use a z-loss in addition to ours. Our ablations in Figures 9 and 25 already confirm that properly decaying the learning rate has an important effect on optimization. Regarding z-loss and weight decay, we run an ablation to compare both settings and conclude that removing the z-loss and increasing the weight decay to 0.1 improves the results. We remind that hyperparameter choice in (Vyas et al., 2024) has been suggested by popular codebases for LLM pretraining (Team OLMo, 2024a;b; Biderman et al., 2023). In that view, we pose the following observation to practitioners.

Takeaway 5. Hyperparameter choices commonly imposed by popular codebases—such as final learning rate, z-loss regularization, and weight decay—substantially affect both absolute performance and the relative ranking of optimizers at Chinchilla scale.

Results on 720M parameter model & 1M batch size. To expand our ablations towards more practical scales, we train a 720M parameter model with a batch size of 1M tokens. As previously, we include both the Chinchilla optimal horizon and beyond, following the setup in § 3. Our goal is to characterize how optimizer performance evolves with increased model size, batch size, and total tokens seen. The best optimizers are reported in Figure 1. In Appendix F.3 we report training dynamics for all optimizers—see Figure 40.

Takeaway 6. (I) At larger scale of model and batch size, AdEMAMix and MARS dominate, by far outperforming others—see Figure 1. (II) Despite training with large batches, Signum and Lion scale poorly. (III) D-Muon is consistent across all our benchmarking setups.

4.4 EXTENSION TO MOES

The goal of ablating optimizer performance on MoE models is to assess whether our previous benchmarking results transfer smoothly to a new type of architecture. To show this smooth transition, we utilize an old batch size setup and keep untuned all optimizer-related hyperparameters found for the corresponding dense model—simulating a situation as one would do in practice without much time for running dozens of experiments on new architectures.

Setup & Comparison. Besides training dense Llama-like transformers, we also cover a comparison for MoE architectures (Shazeer et al., 2017). Our variant of MoE is based on the Switch-Transformer implementation (Fedus et al., 2022). We use a classical linear gating with softmax and top-k routing (k=2) and 8 experts. The activation functions remains the same as for the dense base model from § 3. Given configuration of 124M dense Llama model, we result in approximately 520M parameter MoE model. In this setting, we train with a batch size of 256×512 for $T \in \{42, 336\}$ k iterations ($\{5.5, 44\}$ B tokens). If we assume that Chinchilla scaling law is applicable to this model, then it results in 10.4B tokens. See Appendix G.5 for more details.

Ranking (\ \)

Sophia

Signum

MARS

Lion

AdamW

ΔDΩΡΤ

SOAP

AdEMAMix

Prodigy

SF-AdamW

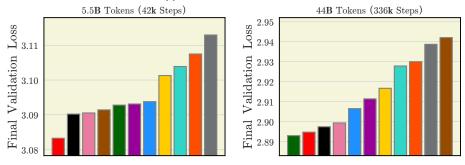


Figure 11: Ranking optimizers for 520M MoE models with 256×512 batch size. We report results for models trained for both 42k iterations (*left*), and 336k (*right*). MoE configuration correspond to one of the 124M dense model. Optimizer rankings closely mirror those in Figure 3 (b), indicating that our benchmarking results transfer smoothly from dense models to MoEs. We also see that SOAP outperforms AdEMAMix in 336k steps run (see also Figure 2), however, with re-tuned beta parameters we might expect the opposite results in longer training (see Figures 4 and 13 (b)).

Takeaway 7. Benchmarking results obtained for dense models transfer to corresponding MoEs.

REFERENCES

- Kwangjun Ahn and Byron Xu. Dion: A communication-efficient optimizer for large models, 2025. URL https://arxiv.org/abs/2504.05295.
 - Essential AI,:, Ishaan Shah, Anthony M. Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, Khoi Nguyen, Kurt Smith, Michael Callahan, Michael Pust, Mohit Parmar, Peter Rushton, Platon Mazarakis, Ritvik Kapila, Saurabh Srivastava, Somanshu Singla, Tim Romanski, Yash Vanjani, and Ashish Vaswani. Practical efficiency of muon for pretraining, 2025. URL https://arxiv.org/abs/2505.02222.
 - Noah Amsel, David Persson, Christopher Musco, and Robert M. Gower. The polar express: Optimal matrix sign methods and their application to the muon algorithm, 2025. URL https://arxiv.org/abs/2505.16932.
 - Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang. ASGO: Adaptive structured gradient optimization, 2025. URL https://arxiv.org/abs/2503.20762.
 - Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic gradients, 2020. URL https://arxiv.org/abs/1705.07774.
 - C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. *Applied Numerical Mathematics*, 57(11):1214–1229, 2007. ISSN 0168-9274. doi: https://doi.org/10.1016/j.apnum.2007.01.003. URL https://www.sciencedirect.com/science/article/pii/S0168927407000244. Numerical Algorithms, Parallelism and Applications (2).
 - Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness. Straight to zero: Why linearly decaying the learning rate to zero works best for llms, 2025. URL https://arxiv.org/abs/2502.15938.
 - Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology, 2024. URL https://arxiv.org/abs/2409.20325.
 - Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd: Compressed optimisation for non-convex problems, 2018. URL https://arxiv.org/abs/1802.04434.
 - Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.
 - Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Y. Prince, Björn Deiseroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr. u-\mup: The unit-scaled maximal update parametrization, 2025. URL https://arxiv.org/abs/2407.17465.
 - David Brandfonbrener, Nikhil Anand, Nikhil Vyas, Eran Malach, and Sham Kakade. Loss-to-loss prediction: Scaling laws for all datasets, 2024. URL https://arxiv.org/abs/2411.12925.
 - Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.
 - Dan Busbridge, Jason Ramapuram, Pierre Ablin, Tatiana Likhomanenko, Eeshan Gunesh Dhekane, Xavier Suau, and Russ Webb. How to scale your ema, 2023. URL https://arxiv.org/abs/2307.13813.

- David Edwin Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Preconditioned spectral descent for deep learning. In *Neural Information Processing Systems*, 2015. URL https://api.semanticscholar.org/CorpusID:2968174.
 - Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably and robustly: Scaling laws for diloco, 2025. URL https://arxiv.org/abs/2503.09799.
 - Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization algorithms, 2023. URL https://arxiv.org/abs/2302.06675.
 - Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gasnikov, Samuel Horváth, Martin Takáč, and Eduard Gorbunov. Gradient clipping improves adagrad when the noise is heavy-tailed, 2024. URL https://arxiv.org/abs/2406.04443.
 - Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, and Hyung Won. Palm: Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.
 - George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry, Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan, Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura, Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, 2023.
 - Francesco D'Angelo, Maksym Andriushchenko, Aditya Varre, and Nicolas Flammarion. Why do we need weight decay in modern deep learning?, 2024. URL https://arxiv.org/abs/2310.04415.
 - Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/2205.14135.
 - DeepSeek-AI. Deepseek llm: Scaling open-source language models with longtermism, 2024a. URL https://arxiv.org/abs/2401.02954.
 - DeepSeek-AI. Deepseek-v3 technical report, 2024b. URL https://arxiv.org/abs/2412.19437.
 - Aaron Defazio. Why gradients rapidly increase near the end of training, 2025. URL https://arxiv.org/abs/2506.02285.
 - Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay learning rate schedules and further refinements, 2024a. URL https://arxiv.org/abs/2310.07831.
 - Aaron Defazio, Xingyu Alice Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok Cutkosky. The road less scheduled, 2024b. URL https://arxiv.org/abs/2405.15682.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.04805.
 - Nolan Dey, Quentin Anthony, and Joel Hestness. The practitioner's guide to the maximal update parameterization. https://www.cerebras.ai/blog/the-practitioners-guide-to-the-maximal-update-parameterization, September 2024.
 - Timothy Dozat. Incorporating Nesterov Momentum into Adam, 2016. URL https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ. ICLR 2016 Workshop.

598

600 601

602

603

604

605

606

607 608

609

610 611

612

613

614

615

616

617

618

619

620

621

622

623 624

625

626

627

628

629 630

631

632

633

634

635 636

637

641

642

- Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of language models from the loss perspective, 2025. URL https://arxiv.org/abs/2403. 15796.
 - John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011. URL http://jmlr.org/papers/v12/duchi11a.html.
 - Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of adam and adagrad, 2022. URL https://arxiv.org/abs/2003.02395.
 - Erdil. Data movement bottlenecks large-scale Ege to model Scaling 1e28 flop, 2024. URL https://epoch.ai/blog/ data-movement-bottlenecks-scaling-past-1e28-flop. Accessed: 01-19.
 - William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.03961.
 - Kevin Frans, Sergey Levine, and Pieter Abbeel. A stable whitening optimizer for efficient neural network training, 2025. URL https://arxiv.org/abs/2506.07254.
 - Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on downstream tasks, 2024. URL https://arxiv.org/abs/2403.08540.
 - Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse text for language modeling, 2020a. URL https://arxiv.org/abs/2101.00027.
 - Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020b.
 - Google Gemini Team. Gemini: A family of highly capable multimodal models, 2024. URL https://arxiv.org/abs/2312.11805.
 - Athanasios Glentis, Jiaxiang Li, Andi Han, and Mingyi Hong. A minimalist optimizer design for llm pretraining, 2025. URL https://arxiv.org/abs/2506.16659.
 - Alex Graves. Generating sequences with recurrent neural networks, 2014. URL https://arxiv.org/abs/1308.0850.
 - Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration for orthogonalization via chebyshev-type polynomials, 2025. URL https://arxiv.org/abs/2506.10935.
- Lei Guan. AdaPlus: Integrating nesterov momentum and precise stepsize adjustment on adamw basis, 2023. URL https://arxiv.org/abs/2309.01966.
 - Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization, 2018. URL https://arxiv.org/abs/1802.09568.
- Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding and minimising outlier features in neural network training, 2024. URL https://arxiv.org/abs/2405.19279.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. URL https://arxiv.org/abs/1512.03385.

- Nicholas J. Higham. *Functions of Matrices*. Society for Industrial and Applied Mathematics, 2008. doi: 10.1137/1.9780898717778. URL https://epubs.siam.org/doi/abs/10.1137/1.9780898717778.
- Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning, lecture 6e rmsprop: Divide the gradient by a running average of its recent magnitude, 2012. URL https://www.cs.toronto.edu/~hinton/coursera/lectures/6a.pdf. Coursera Lecture Notes.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/2203.15556.
- Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language models with scalable training strategies, 2024. URL https://arxiv.org/abs/2404.06395.
- Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization through better initialization. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 4475–4483. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/huang20f.html.
- Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024. URL https://arxiv.org/abs/2405.18392.
- Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization, 2019. URL https://arxiv.org/abs/1803.05407.
- Sami Jaghouar, Jack Min Ong, Manveer Basra, Fares Obeid, Jannik Straube, Michael Keiblinger, Elie Bakouch, Lucas Atkins, Maziyar Panahi, Charles Goddard, Max Ryabinin, and Johannes Hagemann. Intellect-1 technical report, 2024. URL https://arxiv.org/abs/2412.01152.
- Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.
- Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrunning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/modded-nanogpt.
- Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https://kellerjordan.github.io/posts/muon/.
- Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no gain: Revisiting efficient training algorithms for transformer-based language models, 2023. URL https://arxiv.org/abs/2307.06440.

- Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms and improvements, 2024. URL https://arxiv.org/abs/2406.09405.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.08361.
 - Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes signSGD and other gradient compression schemes. In *ICML 2019 International Conference on Machine Learning*, pp. 3252–3261. PMLR, 2019.
 - Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.
 - Priya Kasimbeg, Vincent Roulet, Naman Agarwal, Sourabh Medapati, Fabian Pedregosa, Atish Agarwala, and George E. Dahl. How far away are truly hyperparameter-free learning algorithms?, 2025. URL https://arxiv.org/abs/2505.24005.
 - Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https://arxiv.org/abs/1412.6980.
 - Nikita Kornilov, Philip Zmushko, Andrei Semenov, Mark Ikonnikov, Alexander Gasnikov, and Alexander Beznosikov. Sign operator for coping with heavy-tailed noise in non-convex optimization: High probability bounds under (l_0, l_1) -smoothness, 2025. URL https://arxiv.org/abs/2502.07923.
 - Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate warmup in gpt training, 2024a. URL https://arxiv.org/abs/2410.23922.
 - Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay balances learning across neural networks, 2024b. URL https://arxiv.org/abs/2305.17212.
 - Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean trust-region optimization, 2025. URL https://arxiv.org/abs/2503.12645.
 - Tanishq Kumar, Zachary Ankner, Benjamin F. Spector, Blake Bordelon, Niklas Muennighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision, 2024. URL https://arxiv.org/abs/2411.04330.
 - Frederik Kunstner. Why do machine learning optimizers that work, work? PhD thesis, University of British Columbia, 2024. URL https://open.library.ubc.ca/collections/ubctheses/24/items/1.0445444.
 - Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the main factor behind the gap between sgd and adam on transformers, but sign descent might be, 2023. URL https://arxiv.org/abs/2304.13960.
 - Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed class imbalance and why adam outperforms gradient descent on language models, 2024. URL https://arxiv.org/abs/2402.19449.
 - Houyi Li, Wenzhen Zheng, Qiufeng Wang, Zhenyu Ding, Haoying Wang, Zili Wang, Shijie Xuyang, Ning Ding, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Farseer: A refined scaling law in large language models, 2025a. URL https://arxiv.org/abs/2506.10972.
 - Houyi Li, Wenzhen Zheng, Qiufeng Wang, Hanshan Zhang, Zili Wang, Shijie Xuyang, Yuantao Fan, Shuigeng Zhou, Xiangyu Zhang, and Daxin Jiang. Predictable scale: Part i optimal hyperparameter scaling law in large language model pretraining, 2025b. URL https://arxiv.org/abs/2503.04715.
 - Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training sets for language models. *Advances in Neural Information Processing Systems*, 37:14200–14282, 2024.

- Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
 Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences on accelerating data parallel training, 2020. URL https://arxiv.org/abs/2006.
 15704.
 - Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-stream: Implicit bias matters for language models, 2022. URL https://arxiv.org/abs/2210.14199.
 - Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic second-order optimizer for language model pre-training, 2024. URL https://arxiv.org/abs/2305.14342.
 - Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin, Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is scalable for llm training, 2025. URL https://arxiv.org/abs/2502.16982.
 - AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.
 - Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017. URL https://arxiv.org/abs/1608.03983.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/abs/1711.05101.
 - Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. SWAN: SGD with normalization and whitening enables stateless llm training, 2025. URL https://arxiv.org/abs/2412.13148.
 - Martin Marek, Sanae Lotfi, Aditya Somasundaram, Andrew Gordon Wilson, and Micah Goldblum. Small batch size training for language models: When vanilla sgd works, and why gradient accumulation is wasteful, 2025. URL https://arxiv.org/abs/2507.07101.
 - James Martens. New insights and perspectives on the natural gradient method, 2020. URL https://arxiv.org/abs/1412.1193.
 - Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed precision training, 2018. URL https://arxiv.org/abs/1710.03740.
 - Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free learner, 2024. URL https://arxiv.org/abs/2306.06101.
 - Depen Morwani, Nikhil Vyas, Hanlin Zhang, and Sham Kakade. Connections between schedule-free optimizers, ademamix, and accelerated sgd variants, 2025. URL https://arxiv.org/abs/2502.02431.
 - A.S. Nemirovskii and Yu.E. Nesterov. Optimal methods of smooth convex minimization. *USSR Computational Mathematics and Mathematical Physics*, 25(2):21–30, 1985. ISSN 0041-5553. doi: https://doi.org/10.1016/0041-5553(85)90100-4. URL https://www.sciencedirect.com/science/article/pii/0041555385901004.
 - Yu. Nesterov and V. Shikhman. Quasi-monotone Subgradient Methods for Nonsmooth Convex Minimization. *Journal of Optimization Theory and Applications*, 165(3):917–940, June 2015. doi: 10.1007/s10957-014-0677-5. URL https://ideas.repec.org/a/spr/joptap/v165y2015i3d10.1007_s10957-014-0677-5.html.
 - Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence $o(1/k^2)$, 1983. URL https://api.semanticscholar.org/CorpusID: 202149403.

- OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
 - Francesco Orabona. Neural networks (maybe) evolved to make adam the best optimizer, 2020. URL https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/.
 - Francesco Orabona and Dávid Pál. Open problem: Parameter-free and scale-free online algorithms. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir (eds.), 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine Learning Research, pp. 1659–1664, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR. URL https://proceedings.mlr.press/v49/orabona16.html.
 - Antonio Orvieto and Robert Gower. In search of adam's secret sauce, 2025. URL https://arxiv.org/abs/2505.21829.
 - Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older, 2024. URL https://arxiv.org/abs/2409.03137.
 - Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library, 2019. URL https://arxiv.org/abs/1912.01703.
 - Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at scale, 2024a. URL https://arxiv.org/abs/2406.17557.
 - Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin Jaggi, Leandro von Werra, and Thomas Wolf. Fineweb2: A sparkling update with 1000s of languages, December 2024b. URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-2.
 - Bowen Peng, Jeffrey Quesnelle, and Diederik P. Kingma. Demo: Decoupled momentum optimization, 2024. URL https://arxiv.org/abs/2411.19870.
 - Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and Volkan Cevher. Training deep learning models with norm-constrained lmos, 2025. URL https://arxiv.org/abs/2502.07529.
 - Boris Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr Computational Mathematics and Mathematical Physics*, 4:1–17, 1964. URL https://api.semanticscholar.org/CorpusID:120243018.
 - Boris Polyak. New method of stochastic approximation type. *Automation and Remote Control*, 1990, 01 1990.
 - Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving discrepancies in compute-optimal scaling of language models, 2024. URL https://arxiv.org/abs/2406.19146.
 - Ofir Press and Lior Wolf. Using the output embedding to improve language models, 2017. URL https://arxiv.org/abs/1608.05859.
 - Zeju Qiu, Simon Buchholz, Tim Z. Xiao, Maximilian Dax, Bernhard Schölkopf, and Weiyang Liu. Reparameterized llm training via orthogonal equivalence transformation, 2025. URL https://arxiv.org/abs/2506.08001.
 - Alec Radford and Karthik Narasimhan. Improving language understanding by generative pretraining. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.
 - Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI*, 2019.

- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023. URL https://arxiv.org/abs/1910.10683.
 - Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.02054.
 - Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System optimizations enable training deep learning models with over 100 billion parameters. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '20, pp. 3505–3506, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https://doi.org/10.1145/3394486.3406703.
 - Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019. URL https://arxiv.org/abs/1904.09237.
 - Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making Muon & Scion great again! (bridging theory and practice of lmo-based optimizers for llms), 2025. URL https://arxiv.org/abs/2505.13416.
 - Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. *The Annals of Mathematical Statistics*, 22(3):400 407, 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/10.1214/aoms/1177729586.
 - David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988. URL https://api.semanticscholar.org/CorpusID:108279905.
 - Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/abs/2401.00448.
 - Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surprising agreement between convex optimization theory and learning-rate scheduling for large model training, 2025. URL https://arxiv.org/abs/2501.18965.
 - Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley benchmarking deep learning optimizers, 2021. URL https://arxiv.org/abs/2007.01547.
 - Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL https://arxiv.org/abs/2407.08608.
 - Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/2002.05202.
 - Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017. URL https://arxiv.org/abs/1701.06538.
 - Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. URL https://arxiv.org/abs/1909.08053.
 - Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/2408.03314.
 - Minhak Song, Beomhan Baek, Kwangjun Ahn, and Chulhee Yun. Through the river: Understanding the benefit of schedule-free methods for language model training, 2025. URL https://arxiv.org/abs/2507.09846.

- Teodora Srećković, Jonas Geiping, and Antonio Orvieto. Is your batch size the problem? revisiting the Adam-SGD gap in language modeling, 2025. URL https://arxiv.org/abs/2506. 12543.
 - DiJia Su, Andrew Gu, Jane Xu, Yuandong Tian, and Jiawei Zhao. GaLore 2: Large-scale llm pretraining by gradient low-rank projection, 2025. URL https://arxiv.org/abs/2504.20437.
 - Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.
 - Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of the 30th International Conference on Machine Learning*, Proceedings of Machine Learning Research, pp. 1139–1147, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.press/v28/sutskever13.html.
 - Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara, Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt: Modified adam can converge with any β_2 with the optimal rate, 2024. URL https://arxiv.org/abs/2411.02853.
 - Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from pre-training and fine-tuning transformers, 2022. URL https://arxiv.org/abs/2109.10686.
 - Team OLMo: OLMo: Accelerating the science of language models, 2024a. URL https://arxiv.org/abs/2402.00838.
 - Team OLMo. 2 OLMo 2 furious, 2024b. URL https://arxiv.org/abs/2501.00656.
 - Akiyoshi Tomihari and Issei Sato. Understanding why adam outperforms sgd: Gradient heterogeneity in transformers, 2025. URL https://arxiv.org/abs/2502.00213.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.
 - Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and Sham Kakade. SOAP: Improving and stabilizing shampoo using Adam, 2024. URL https://arxiv.org/abs/2409.11321.
 - Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between the upper bound and the lower bound of adam's iteration complexity, 2023. URL https://arxiv.org/abs/2310.17998.
 - Mingze Wang, Jinbo Wang, Jiaqi Zhang, Wei Wang, Peng Pei, Xunliang Cai, Weinan E, and Lei Wu. GradPower: Powering gradients for faster language model pre-training, 2025. URL https://arxiv.org/abs/2505.24275.
 - Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models, 2022. URL https://arxiv.org/abs/2206.07682.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
 - Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where to find them, 2025. URL https://arxiv.org/abs/2509.02046.

- BigScience Workshop. BLOOM: A 176b-parameter open-access multilingual language model, 2023. URL https://arxiv.org/abs/2211.05100.
 - Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale transformer training instabilities, 2023. URL https://arxiv.org/abs/2309.14322.
 - Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov momentum algorithm for faster optimizing deep models, 2024. URL https://arxiv.org/abs/2208.06677.
 - Chengyin Xu, Kaiyuan Chen, Xiao Li, Ke Shen, and Chenggang Li. Unveiling downstream performance scaling of llms: A clustering-based perspective, 2025. URL https://arxiv.org/abs/2502.17262.
 - Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv preprint arXiv:2309.10305*, 2023.
 - Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks via zero-shot hyperparameter transfer, 2022. URL https://arxiv.org/abs/2203.03466.
 - Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power of variance reduction for training large models, 2024. URL https://arxiv.org/abs/2411.10438.
 - Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/90365351ccc7437a1309dc64e4db32a3-Paper.pdf.
 - Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers, 2022. URL https://arxiv.org/abs/2106.04560.
 - Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https://arxiv.org/abs/1910.07467.
 - Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster, and Sham Kakade. How does critical batch size scale in pre-training?, 2024a. URL https://arxiv.org/abs/2410.21676.
 - Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? *Advances in Neural Information Processing Systems*, 33:15383–15393, 2020a.
 - Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?, 2020b. URL https://arxiv.org/abs/1912.03194.
 - Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why transformers need adam: A hessian perspective, 2024b. URL https://arxiv.org/abs/2402.16788.
 - Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing what makes a good optimizer for language models. *ICLR*, 2025. URL https://arxiv.org/abs/2407.07972.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experi-ences on scaling fully sharded data parallel, 2023. URL https://arxiv.org/abs/2304. 11277. Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W. Ronny Huang, and Tom Goldstein. Gradinit: Learning to initialize neural networks for stable and efficient training, 2021. URL https:// arxiv.org/abs/2102.08098. Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z. Pan, Zhangyang Wang, and Jinwon Lee. APOLLO: SGD-like memory, Adamw-level perfor-mance, 2025. URL https://arxiv.org/abs/2412.05270. Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL https://arxiv.org/abs/2202.08906.

A	Aı	PPENDIX					
C	ONTI	ENTS					
1	Intr	oduction	1				
2	Bacl	kground & Related Work	2				
3	Exp	erimental Setup	3				
4	Resu	ılts	4				
	4.1	Benchmarking & Ablations at Small Scale: Training 124M Models	5				
	4.2	Benchmarking & Ablations at Medium Scale: Training 210M Models	7				
	4.3	Scaling Up: Benchmarking models of 583M and 720M Parameters	8				
	4.4	Extension to MoEs	9				
A	App	endix	21				
В	Disc	ussion	22				
C	Optimizers we study						
	C.1	AdamW, ADOPT, AdEMAMix	23				
	C.2	Sign-based methods: Lion and Signum	25				
	C.3	Muon & D-Muon, SOAP, Sophia	28				
	C.4	Schedule-Free AdamW, Prodigy	31				
	C.5	MARS	32				
D	Imp	lementation	34				
E	Mod	lel & Data	35				
F	Add	itional Results	35				
	F.1	Ablations for 124M model	35				
	F.2	Ablations for 210M model	55				
	F.3	Ablations for 720M model	57				
	F.4	Ablations for 520M MoE model	58				
	F.5	Wall-clock performance of optimizers across models of different scale	59				
G	Hyperparameter tuning						
	G.1	124M parameters model	63				
	G.2	210M parameters model	68				
	G.3	583M parameters model	72				
	C 1	720M parameters model	73				

B DISCUSSION

1134

11351136

1137 1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

A summary of results. In this work, we benchmarked many interesting to community optimizers across architectural changes, model scales, training durations and batch sizes. After an extensive hyperparameter tuning, we revealed ablations for each optimizers showing their sensitivity to certain of them. We questioned flaws in popular code base for LLM pretraining—so important for careful benchmarking and the overall model performance. Regarding the benchmarking setup, we built a rankings of optimizers in each setup considered, if consider the global result and the question of the effectiveness of AdamW for LLMs, we point that there are new reliable optimizers that would be beneficial at scale—Ademamix, D-Muon, Mars. We point that methods such as ADOPT and Prodigy scale similarly to AdamW, and also worth a try for production purposes.

Our advices on tuning each method. Overall, we validate both widely used hyperparameters such as $\lambda = 0.1$ and $T_{\text{warmup}} \approx 2$ k, and explore the sensitivity of optimizers to γ -schedulers, γ -decay, and optimizer-related hyperparameters. Notably, a large weight decay ensures faster convergence when training for fewer iterations, and large warmup of 25% of the total training duration T is beneficial for sign-based methods, Sophia, and SF-AdamW. For Lion—as mentioned in (Chen et al., 2023)—we find that the best value for β_1 is consistently 0.99. The mechanism for Lion appears similar to AdEMAMix, suggesting that Lion could perform better with larger β_1 , which would require schedulers. We also pose an interesting observation toward Prodigy: while it may not be so efficient with very small batch sizes, with scaling of the model size and the batch size, it becomes almost as competitive as AdamW. MARS also benefits from large batches and continues to improve performance as the model size scales. For MARS, when optimizing 1D parameters with AdamW, we found that it is better to keep (β_1, β_2) of AdamW; for our largest models, $\beta_1 = 0.8$ performs slightly better than $\beta_1 = 0.9$. Additionally, MARS betas determined for 2D parameters in (Yuan et al., 2024) also seem to be the best in our settings. Basic Muon performs poorly at relatively small batch sizes (32, 256) across different model sizes and training lengths; however, applying weight decay to 2-dimensional parameters, as in D-Muon, resolves this and yields a robust optimizer across all benchmarking scenarios we considered. AdEMAMix remains the best optimizer overall, scaling efficiently with bath size, model size, and training horizons. Importantly, increasing β_2 for longer training substantially benefits AdEMAMix and other AdamW-like methods. Moreover, AdEMAMix allows using a large weight decay term λ during prolonged training, e.g., runs of 128k iterations with $\lambda = 0.5$ still slightly outperform those with $\lambda = 0.1$. Beyond optimizer-specific hyperparameters, we show that the choice of γ -scheduler also depends on the optimizer selected. Regarding the learning rate, decaying γ below $0.1 \times \gamma_{max}$ is important, as it significantly improves the optimization performance.

Limitations. We conduct our benchmarking experiments on models of up to 720M parameters, with long training runs of almost 50B tokens. The insights we find vary across scales, and training behavior may change further at practical scales and with extremely long training durations (Wei et al., 2022; Tay et al., 2022). Especially when certain optimizers are not widely supported by modern sharding frameworks (Zhao et al., 2023; Rajbhandari et al., 2020; Rasley et al., 2020) at the moment. Throughout this work, we study the loss dynamics, leaving aside downstream performances. Although these often scale reliably with loss (Du et al., 2025; Gadre et al., 2024), there are also counterexamples (Xu et al., 2025; Liu et al., 2022). Bridging the gap between loss minimization and downstream task performance is important, as downstream abilities are ultimately the main metric of interest. We leave a deeper investigation of this connection to future research. We also do not cover previously explored Adan (Xie et al., 2024), NAdam (W) (Dozat, 2016), Shampoo (Gupta et al., 2018) optimizers, as well as recently introduced Scion (Pethick et al., 2025), novel variations of Muon (Qiu et al., 2025; An et al., 2025; Ahn & Xu, 2025), and others (Peng et al., 2024; Defazio, 2025; Guan, 2023; Wang et al., 2025). In addition, it is important to come up with a unified benchmark of optimizers for memory-efficient pretraining (Glentis et al., 2025; Zhu et al., 2025; Ma et al., 2025; Su et al., 2025), as they become more popular and argue that they might even outperform the AdamW baseline. We emphasize that there is still a huge branch of research on optimizers left to explore.

C OPTIMIZERS WE STUDY

In this section, we describe all considered algorithms, presenting them in a unified formalism. We start with notation and then discuss the algorithms according to their logical grouping:

- 1. Adam-like methods: AdamW (Algorithm 1), ADOPT (Algorithm 2), and AdEMAMix (Algorithm 3).
- 2. Sign-based methods: Lion (Algorithm 4), Signum (Algorithms 5 and 6).
- 3. Approximate second-order optimizers: Muon (Algorithm 8), SOAP (Algorithm 10), and Sophia (Algorithm 11).
 - 4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm 12), Prodigy (Algorithm 13).
 - 5. MARS methods: (Algorithms 14, 15, 16).

Notation. In our work, we denote vectors and matrices in bold, and scalars in regular type. Let $\mathcal{L}:\mathcal{D}\to\mathbb{R}$ be an empirical loss function parameterized by \boldsymbol{x} and mapping a batch of inputs $\boldsymbol{\xi}\subset\mathcal{D}$ to \mathbb{R} . As $\boldsymbol{g}=\nabla_{\boldsymbol{x}}\mathcal{L}(\boldsymbol{x},\boldsymbol{\xi})$, we denote a stochastic gradient of the loss w.r.t. parameters \boldsymbol{x} . For brevity, we omit \boldsymbol{x} in ∇ and write $\nabla\mathcal{L}(\boldsymbol{x},\boldsymbol{\xi})$. We use the following standardized notation for specific symbols in our work: batch size— $|\boldsymbol{\xi}|$, learning rate— γ , weight decay— λ , momentum— β , iteration counter t with the total number of iterations—T. And basic notation for symbols in the algorithms: $\boldsymbol{m}, \boldsymbol{v}$ —are first and second moment estimates, respectively, with their bias corrected versions $\hat{\boldsymbol{m}}, \hat{\boldsymbol{v}}$, and beta parameters— (β_1, β_2) . We denote the dot product of two vectors $\boldsymbol{z}, \boldsymbol{y}$ as $\langle \boldsymbol{z}, \boldsymbol{y} \rangle$, while $\boldsymbol{z} \odot \boldsymbol{y}$ stands for their element-wise product. All division and addition operations in the described algorithms are element-wise.

1213 1214 C.1 ADAMW, ADOPT, ADEMAMIX

 $\label{eq:Adamw.our} \textbf{Adamw.} \ \ \text{Our baseline} \\ \textbf{$-$Adam\,(W)$, has become a de facto optimizer for deep learning, demonstrating impressive performance across diverse domains} \\ \textbf{$-$from tabular data to diffusion and language models.}$

The method originated from the ideas of Adagrad (Duchi et al., 2011) and RMSProp (Graves, 2014), which utilize a second moment estimate \boldsymbol{v} in their update rule. However, Adam (W) enhanced this prior scheme by incorporating momentum (Nemirovskii & Nesterov, 1985; Sutskever et al., 2013), establishing itself as a state-of-the-art method for a wide range of tasks. All other algorithms we consider also employ a similar, if not identical, momentum scheme.

A key difference between Adam and AdamW is the use of decoupled weight decay (Loshchilov & Hutter, 2019) in the latter. We adopt the decoupled weight decay scheme for all methods to ensure consistency, as correct weight decay is critical for optimizer comparison, hyperparameter tuning, and final performance. The importance of the correct weight decay implementation is clearly observable, e.g., for Signum.

Algorithm 1 AdamW

```
1231
                   1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
1232
1233
                   2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
1234
                   3: for t \in [T] do
                   4:
                                  \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
1236
                   5:
                                  \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t
                                 v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t \odot g_t
1237
                   6:
                                 \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t), \ \hat{\boldsymbol{v}}_t \leftarrow \boldsymbol{v}_t/(1-\beta_2^t)
                                 oldsymbol{x}_{t+1} \leftarrow oldsymbol{x}_t - \gamma_t \left( rac{\hat{oldsymbol{m}}_t}{\sqrt{\hat{oldsymbol{v}}_t} + arepsilon} \lambda oldsymbol{x}_t 
ight)
1239
                   8:
1240
                   9: end for
1241
                  10: Return: x_T
```

ADOPT. Recently, Taniguchi et al. (2024) proposed a modification of Adam, by removing the current gradient g_t from the second moment estimate v_t and altering the order of the momentum update m_t and normalization. As shown in line 8 of Algorithm 2, the parameter update depends only on the previous value of the second moment estimate v_{t-1} . The authors analyze the convergence of ADOPT with the following update rule:

$$\boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \frac{\boldsymbol{g}_t}{\max\{\sqrt{\boldsymbol{v}_{t-1}}, \varepsilon\}},$$

$$\boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \boldsymbol{m}_t$$
.

However, the practical implementation differs in a few details. To tackle instabilities caused by near-zero gradients during the early stages of training, the authors propose using a clipping on $g_t/\max\{\sqrt{v_{t-1}},\varepsilon\}$, which we formalize as the clamp operation. Given a vector g and a positive scalar c, it is defined as:

$$\operatorname{clamp}\left(\boldsymbol{g},c\right)^{(I)} = \min\left\{\max\left\{g^{(I)},-c\right\},c\right\}. \tag{1}$$

▶ Update clipping value schedule

Thus, the element-wise clamp operation preserves g_t from the division by near-zero values.

The authors theoretically claim that ADOPT achieves the optimal convergence bound for smooth non-convex objectives, regardless of the choice of the β_2 parameter. We empirically investigate this claim and observe that, contrary to the theoretical results, there is a significant performance gap for different choices of β_2 in practice—see Figure 29. Also, the effect of ε in Algorithm 2 is intriguing: in contrast to the typical $\varepsilon=10^{-8}$ value for AdamW, the authors pose that for ADOPT mechanism the smaller value of 10^{-6} is more suitable. We notice that this also holds in practice for the method, and we provide the corresponding ablation in Figure 38.

Algorithm 2 ADOPT

1242

1243

1244

1245

1246

1247

1248 1249

1250

1251

1252

1253

1254

1255 1256

1257

1258

1259

1260

1261

1262

1263

1264 1265

1266

1267 1268

1269

1272 1273

1276

1277 1278

1279

1280

1281

1282

1283

1284

1285 1286

1287

1288

1289 1290

1295

- 1: **Input:** Initial parameters x_0 , number of iterations T, learning rate γ_t , weight decay λ , β_1 , β_2 ,
- 2: Initialize: $m_0 \leftarrow 0$, $v_0 \leftarrow \nabla \mathcal{L}(x_0, \xi_0) \odot \nabla \mathcal{L}(x_0, \xi_0)$
- 3: **for** $t \in [T]$ **do**
- 1270 $g_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$ $c_t \leftarrow t^{1/4}$

 - $\begin{aligned} & \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1-\beta_1) \mathtt{clamp}\left(\frac{\boldsymbol{g}_t}{\max\{\sqrt{v_{t-1}}, \varepsilon\}}, c_t\right) \\ & \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1-\beta_2) \boldsymbol{g}_t \odot \boldsymbol{g}_t \end{aligned}$
 - - $\boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t \gamma_t \left(\boldsymbol{m}_t + \lambda \boldsymbol{x}_t \right)$ \triangleright Update without v_t
 - 9: **end for**
 - 10: **Return:** x_T

Ademanix. Another Adam-like optimizer we study is Ademanix (Pagliardini et al., 2024). This work argues that using a single EMA to accumulate past gradients in the first moment estimate mcan be suboptimal, as it cannot simultaneously prioritize both immediate past and older gradients. In Algorithm 3, the authors incorporate two EMAs: one—Adam-like EMA for m (fast), and another a slow EMA m^{slow} (see line 7) with an additional β_3 parameter. In the update rule, fast and slow EMAs are balanced with the constant factor α (see line 10 of Algorithm 3). This algorithmic design enables AdEMAMix to benefit from older gradients, resulting in smoother loss curves during training.

To mitigate the effect of early instabilities, the authors use two additional schedulers for α and β_3 alpha_scheduler and beta_scheduler, formalized in our work as follows:

$$\texttt{alpha_scheduler}(t,\alpha,T_\alpha) = \min\left\{\frac{t\alpha}{T_\alpha},\alpha\right\},$$

$$\mathtt{beta_scheduler}(t,\beta_3,\beta_{\mathtt{start}},T_{\beta_3}) = \min \left\{ \exp \left(\frac{\log(\beta_{\mathtt{start}})\log(\beta_3)}{\left(1 - \frac{t}{T_{\beta_3}}\right)\log(\beta_3) + \frac{t}{T_{\beta_3}}\log(\beta_{\mathtt{start}})} \right), \beta_3 \right\}.$$

In all experiments, we set $\beta_{\text{start}} = \beta_1$, and the warmup parameters equal to the length of training: $T_{\alpha} = T_{\beta_3} = T$.

Although these schedulers may seem at odds with the WSD scheduler (Hu et al., 2024), setting T_{α}, T_{β_3} longer than the first WSD checkpoint does not noticeably harm performance. Thus, AdEMAMix can still be combined with recent findings regarding the WSD scheduler.

Algorithm 3 AdEMAMix

1296

1297

1298

1299 1300

1315 1316

1317 1318

1319

1320

1321

1322

1323

1324 1325

1326

1327

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339 1340

1341

1342

1344

1345

1347

1348

1349

```
1301
                       1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
1302
                               \beta_3, \beta_{\mathrm{start}}, \alpha, beta_scheduler, alpha_scheduler, warmup parameters T_{\beta_3} and T_{\alpha}, \varepsilon.
1303
                       2: Initialize: m_0 \leftarrow 0, m_0^{\mathrm{slow}} \leftarrow 0, v_0 \leftarrow 0
1304
                       3: for t \in [T] do
1305
                                        \beta_3(t) \leftarrow \mathtt{beta\_scheduler}(t, \beta_3, \beta_{\mathtt{start}}, T_{\beta_3}), \alpha(t) \leftarrow \mathtt{alpha\_scheduler}(t, \alpha, T_{\alpha})
                               Update \beta_3 and \alpha schedulers
                       5:
                                       \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
                                       m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
m_t^{\text{slow}} \leftarrow \beta_3(t) m_{t-1}^{\text{slow}} + (1 - \beta_3(t)) g_t
                       6:
                       7:

    □ Update slow EMA

                                      egin{aligned} & oldsymbol{v}_t \leftarrow eta_2 oldsymbol{v}_{t-1} + (1-eta_2) oldsymbol{g}_t \odot oldsymbol{g}_t \ & \hat{oldsymbol{m}}_t \leftarrow oldsymbol{m}_t / (1-eta_1^t), \ & \hat{oldsymbol{v}}_t \leftarrow oldsymbol{v}_t / (1-eta_2^t) \ & oldsymbol{x}_{t+1} \leftarrow oldsymbol{x}_t - \gamma_t \left( rac{\hat{oldsymbol{m}}_t + lpha(t) oldsymbol{m}_t^{	ext{slow}}}{\sqrt{\hat{oldsymbol{v}}_t + arepsilon}} + \lambda oldsymbol{x}_t 
ight) \end{aligned}
1310
1311
                     10:
1313
                     11: end for
                     12: Return: \boldsymbol{x}_T
```

C.2 SIGN-BASED METHODS: LION AND SIGNUM

Another branch of methods includes sign-based methods, represented by Lion and Signum. To some extent, one can classify Adam as a sign-based optimizer also, but we mention only Lion and Signum as they explicitly incorporate the sign operation in the update rule.

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pretraining. However, our results demonstrate that, with sufficiently large batch sizes and at moderate model scales, these optimizers perform on par with Adam, and in some cases even outperform it.

Lion. The first sign-based method we study is Lion (Chen et al., 2023). This optimizer is symbolically discovered in the program space of first-order optimization primitives. Lion updates its EMA of m after updating the parameters and has additional term $(1-\beta_1)g$ which adds to the momentum. This interpolation $\beta_1 m_{t-1} + (1-\beta_1)g_t$ (see line 6 of Algorithm 4) makes the symbolic-discovered idea behind Lion similar to the idea of the AdEMAMix optimizer.

Algorithm 4 Lion

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2.

2: Initialize: m_0 \leftarrow \mathbf{0}

3: for t \in [T] do

4: g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)

5: m_t \leftarrow \beta_2 m_{t-1} + (1 - \beta_2) g_t \triangleright Update EMA of g_t

6: x_{t+1} \leftarrow x_t - \gamma_t \left( \text{sign} \left( \beta_1 m_{t-1} + (1 - \beta_1) g_t \right) + \lambda x_t \right)

7: end for

8: Return: x_T
```

Signum. Another sign-based method, which is the adoptation of signSGD—Signum (Bernstein et al., 2018) (or, alternatively, signSGD with momentum). This method differs from Lion in the interpolation term between the EMA of momentum and the current gradient, as well as in the Signum's update rule, where a current EMA is used.

Importantly, while Signum is not yet as widespread for LLM pretraining and has largely remained a theoretical artifact, recent studies have begun to adopt Signum for scalable training (Zhao et al., 2025), primarily due to its memory efficiency compared to AdamW.

In this regard, we would like to highlight that many recent PyTorch (Paszke et al., 2019) implementations of the Signum optimizer are unlikely to be suitable for this method, which impairs its potential performance.

1351

1352

1353

1354 1355

1357

1359

1360

1361

1362 1363

1364

1365

1366 1367

1368

1369 1370

1371

1372

1373

1374

1375 1376 1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387 1388 1389

1391

The main issue with open-source implementations is the use of decoupled weight decay in the Py-Torch implementation of SGDM (SGD with momentum) (Sutskever et al., 2013). Indeed, with decoupled weight decay, the update in Algorithm 5 transforms into:

$$x_{t+1} \leftarrow x_t - \gamma_t \operatorname{sign} \left(\beta m_{t-1} + (1-\beta)g_t - \lambda(1-\beta)g_t\right)$$

which affects the sign of the update, potentially leading to the wrong optimization direction if the weight decay is sufficiently large. See Figures 5 (a) and 15 for the impact of the correct weight decay implementation for sign-based methods like Signum and Lion.

Another popular failure while using Signum is the incorrectly tractable PyTorch implementation of SGD with momentum. It does not include such EMA as line 5 in Algorithm 5, on the other hand, in PyTorch, the momentum update depends on the dampening parameter τ :

$$\boldsymbol{m}_t \leftarrow \beta \boldsymbol{m}_{t-1} + (1-\tau)\boldsymbol{g}_t,$$

where τ is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior in practice, corresponds to the following update:

$$x_{t+1} \leftarrow x_t - \gamma_t \left(\text{sign} \left(\beta m_{t-1} + (1-\tau) g_t \right) + \lambda x_t \right),$$

where the weight decay is decoupled and, consequently, does not affect sign.

However, we found out that the PyTorch implementation of Nesterov momentum (Nesterov, 1983)

$$\boldsymbol{g}_t \leftarrow \boldsymbol{g}_t + \beta \boldsymbol{m}_t,$$

improves Signum. Since enabling Nesterov momentum requires zero dampening τ , we revisited the description of Algorithm 5 and propose more practical, PyTorch-compatible version of Signum in Algorithm 6. We study the role of dampening and Nesterov momentum in our variant of Signum in Figure 33.

Algorithm 5 Signum (basic)

8: **Return:** x_T

Algorithm 6 Signum (our PyTorch variant)

1: **Input:** Initial parameters x_0 , number of itera-

tions T, learning rate γ_t , weight decay λ , mo-

- 1: **Input:** Initial parameters x_0 , number of iterations T, learning rate γ_t , weight decay λ , momentum β .
- 2: Initialize: $m_0 \leftarrow 0$ 3: for $t \in [T]$ do 4: $g_t \leftarrow \nabla \mathcal{L}(x_t, \xi_t)$ 5: $m_t \leftarrow \beta m_{t-1} + (1-\beta)g_t$ 6: $x_{t+1} \leftarrow x_t - \gamma_t \left(\operatorname{sign}(m_t) + \lambda x_t \right)$ 7: end for
- 2: **Initialize:** $m_0 \leftarrow 0$ 3: **for** $t \in [T]$ **do**

mentum β .

- 4: $egin{aligned} egin{aligned} g_t &\leftarrow \mathcal{L}(x_t, oldsymbol{\xi}_t) \ 5: & oldsymbol{m}_t \leftarrow eta oldsymbol{m}_{t-1} + eta oldsymbol{m}_{t-1} \end{aligned}$
- 5: $m_t \leftarrow \beta m_{t-1} + g_t$ 6: $x_{t+1} \leftarrow x_t - \gamma_t \left(\text{sign} \left(\beta m_t + g_t \right) + \lambda x_t \right)$
- 7: end for
- 8: **Return:** x_T

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum, and to ensure reproducibility, we provide our Python code.

Listing 1: Signum code skeleton using PyTorch.

```
1393
           1 from typing import Dict
1394
           3 import torch
1395
           6 class Signum(torch.optim.Optimizer):
1396
                  def __init__(
    self,
1397
                      params,
lr=1e-3,
momentum=0,
1398
1399
                       dampening=0,
weight_decay=0,
1400
                       nesterov=False
                       sign_update=True,
1401
                      if lr < 0.0:
    raise ValueError(f"Invalid learning rate: {lr}")</pre>
1402
                      if momentum < 0.0:
raise ValueError(f"Invalid momentum value: {momentum}")
1403
                       if weight_decay < 0.0:
```

```
1404
                                   raise ValueError(f"Invalid weight_decay value: {weight_decay}")
1405
             23
                             defaults = dict(
1406
                                   lr=lr,
momentum=momentum,
1407
                                   dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
1408
                                   sign_update=sign_update,
1409
                             if nesterov and (momentum <= 0 or dampening != 0):
    raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super().__init__(params, defaults)</pre>
1410
1411
1412
                      def __setstate__(self, state):
    super().__setstate__(state)
    for group in self.param_groups:
        group.setdefault("nesterov", False)
1413
             39
1414
             40
                      @torch.no_grad()
def _init_state(self, example, state=None):
    assert isinstance(example, torch.Tensor)
    assert isinstance(state, Dict) or state is None
             41
1415
             43
1416
                            assert isinstance(state, bitt) of state is None:
    state = {}
state["step"] = 0
state["momentum_buffer"] = torch.clone(example).detach()
1417
1418
             47
1419
                             return state
             50
1420
                       @torch.no_grad()
                       def _compute_update(
    self, grad, state, lr, momentum, nesterov, dampening, sign_update, **kwargs
1421
1422
                             if momentum != 0: # Signum check
  buf = state["momentum_buffer"]
1423
                                   buf.mul_(momentum).add_(grad, alpha=1 - dampening)
1424
                                  grad = grad.add(buf, alpha=momentum)
else:
1425
             60
1426
                                        grad = buf
1427
                         if sign_update:
    grad = grad.sign()
             65
1428
                            return grad * (-lr)
1429
                      @torch.no grad()
1430
             69
                      def step(self, closure=None):
    """Performs a single optimization step.
1431
1432
                                   closure (Callable, optional): A closure that reevaluates the model and returns the loss.
1433
                            loss = None
if closure is not None:
   with torch.enable_grad():
   loss = closure()
1434
1435
1436
                             for group in self.param_groups:
    for p in group["params"]:
        if p.grad is None:
1437
             83
1438
1439
                                         grad = p.grad
state = self.state[p]
1440
1441
                                         if group["weight_decay"] != 0:
    p.mul_(1 - group["lr"] * group["weight_decay"])
             91
1442
                                         if len(state) =
1443
                                                self._init_state(example=p, state=state)
if not group["momentum"]:
1444
                                                      state.pop("momentum_buffer", None)
1445
                                         state["step"] += 1
1446
                                         update = self._compute_update(
            100
1447
                                                state,
1448
                                               group["lr"],
group["momentum"],
group["nesterov"],
group["dampening"],
group["sign_update"],
            103
1449
1450
1451
            109
1452
                                         p.add_(update)
1453
                       return loss
1454
```

C.3 Muon & D-Muon, SOAP, SOPHIA

 The next page of the methods covers algorithms that rather aim to use more information about the problem's curvature (SOAP (Vyas et al., 2024), Sophia (Liu et al., 2024)) or perform fast updates of matrix parameters involving higher order computations (Muon (Jordan et al., 2024b)).

Contrary to chronological order, we discuss them starting from the recent one—Muon and end up with Sophia.

Muon & D-Muon. Specifically designed for speedrun comparisons, Muon surpasses the AdamW baseline on the nanoGPT pretraining benchmark (Jordan et al., 2024a). Claims from the Muon project extend to faster learning, lower memory usage and better sample-efficiency, with a small overhead in wall-clock time.

The reason why Muon is a good option for speedrun pretraining lies in its structure—Muon treats different parameters based on their tensor dimensionality. One-dimensional (1D) parameters, large embedding layers, Layer Norm (or RMSNorm) parameters, and the output layer of LLM (lm_head) are optimized by AdamW. And all parameters with two or more dimensions (e.g., Multi-Head Attention layers) are optimized by Algorithm 7, which we call MuonNon1D.

Inspired by Shampoo's preconditioners (Gupta et al., 2018), the authors of MuonNon1D incorporated an orthogonalization step to compute SVD transformation of the gradient matrix. Before the orthogonalization step, MuonNon1D resembles SGD with Nesterov momentum. To ensure a fast orthogonalization procedure, the authors, inspired by (Bernstein & Newhouse, 2024), use the Newton-Schulz procedure (Higham, 2008). As the number of Newton-Schulz iterations increases, the resulting matrix becomes closer to UV^{\top} from SVD transformation. The authors also mention that Muon can be considered an alternative method of smoothing spectral steepest descent (Carlson et al., 2015), offering a distinct set of memory and runtime trade-offs compared to Shampoo.

Algorithm 7 MuonNon1D (for non-1D parameters)

```
1: Input: Initial non-1D parameters x_0, number of iterations T, learning rate \gamma_t, momentum \beta,
1485
                       number of Newton-Schulz iterations T_{NS}, a, b, c coefficients.
1486
                 2: Initialize: m_0 \leftarrow 0
1487
                 3: for t \in [T] do
1488
                 4:
                             \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
1489
                 5:
                             \boldsymbol{m}_t \leftarrow \beta \boldsymbol{m}_{t-1} + \boldsymbol{g}_t
1490
                             \boldsymbol{g}_t \leftarrow \beta \boldsymbol{m}_t + \boldsymbol{g}_t
                                                                                                     ▶ Practical implementation of Nesterov momentum
                 6:
1491
                             Set: \boldsymbol{w}_0 \leftarrow \boldsymbol{g}_t / \|\boldsymbol{g}_t\|_F
                 7:
1492
                             for n \in [T_{\rm NS}] do
                 8:
                                   \boldsymbol{w}_{n+1} \leftarrow a\boldsymbol{w}_n + b\boldsymbol{w}_n\boldsymbol{w}_n^{\top} + c\left(\boldsymbol{w}_n\boldsymbol{w}_n^{\top}\right)^2\boldsymbol{w}_n
1493
                 9:
                                                                                                                                                  ▶ Newton-Schulz iteration
1494
               10:
1495
               11:
                             \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_t - \gamma_t \boldsymbol{w}_{T_{\text{NS}}}
1496
               12: end for
               13: Return: x_T
1497
1498
```

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the official repository², differs from the actual one, presented in Algorithm 7. In the original code, as well as in our benchmarking, weight decay does not apply to the matrix parameters in the optimizer state of MuonNon1D, meaning that the only weight decay used during training is AdamW's weight decay. From this perspective, we observe that the gap between the final loss values for runs with weight decay of 0.1 and 0 almost disappears, while the run with a weight decay of 0.5 becomes the worst, which is not the case for other optimizers. See Figures 5 and 15 regarding these ablations.

Noticeably, the weight decay issue was addressed in the recent paper (Liu et al., 2025), in which the authors also present a scheme for sharing the learning rate and weight decay between the matrix and non-matrix parameters of the model. They do this via the RMS heuristic: since AdamW has the property of keeping its RMS updates close to 1 (Hinton et al., 2012), particularly around 0.2-0.4 in the practice of LLM training (Liu et al., 2025; AI et al., 2025), they scale the RMS update of

²https://github.com/KellerJordan/modded-nanogpt

Algorithm 8 Muon (general scheme)

```
1513
                   1: Input: Initial parameters x_0, number of iterations T. Muon's parameters: learning rate \gamma_t^{\text{M}}, mo-
1514
                        mentum \beta, number of Newton-Schulz iterations T_{NS}, a, b, c coefficients. AdamW's parameters:
1515
                        learning rate \gamma_t^{\text{A}}, weight decay \lambda, \beta_1, \beta_2, \varepsilon.
1516
                  2: for t \in [T] do
1517
                  3:
                               \textbf{if } \boldsymbol{x}_t \in \{\texttt{embeds}, \texttt{scalar\_params}, \texttt{lm\_head}\} \textbf{ then}
1518
                  4:
                                       \pmb{x}_{t+1}^{\mathtt{A}} \leftarrow \mathtt{AdamW}\left(\pmb{x}_{t}^{\mathtt{A}}, \gamma_{t}^{\mathtt{A}}, \lambda, \beta_{1}, \beta_{2}, \varepsilon, T = 1\right)
1519
                  5:
                                                                                                                                                             ▷ One iteration of AdamW
1520
                  6:
                                       \begin{aligned} & \boldsymbol{x}_t^{\text{M}} \leftarrow \boldsymbol{x}_t \\ & \boldsymbol{x}_{t+1}^{\text{M}} \leftarrow \text{MuonNon1D}\left(\boldsymbol{x}_t^{\text{M}}, \gamma_t^{\text{M}}, T_{\text{NS}}, \beta, a, b, c, T = 1\right) \quad \triangleright \text{ One iteration of MuonNon1D} \end{aligned} 
1521
                  7:
                  8:
1522
                  9:
1523
                 10: end for
1524
                 11: Return: \boldsymbol{x}_{T}^{\mathtt{A}}, \boldsymbol{x}_{T}^{\mathtt{M}}
1525
```

Muon to this range. With these adjustments, practitioners do not need to tune the learning rate and weight decay for 1D and non-1D parameters separately, which is a significant bonus of the newer Muon-like algorithm. We include this variation of Muon under the D-Muon naming.

Our ablations demonstrate that D-Muon scales better than the basic Muon in all settings we have considered so far (see Figures 1, 3, 12, 36, 37 and 40). We also report a detailed comparison of these two similar methods in Figures 16 and 17, and discuss their close connection with the weight decay applied to non-1D parameters in the D-Muon algorithm. Refer to this ablation in § 4.

Another interesting aspect of Muon is the effect of the Newton-Schulz orthogonalization procedure (Bernstein & Newhouse, 2024; Higham, 2008) on optimization. We show how the number of Newton-Schulz steps impacts the performance of Muon in Figure 32. Furthermore, we pose that improving the orthogonalization procedure in methods like Muon, Scion, MARS-Shampoo (see Algorithm 16) could substantially improve their overall performance. Recent work has already begun to explore this avenue (Amsel et al., 2025; Grishina et al., 2025), but a deeper investigation remains an open research challenge.

SOAP. (Vyas et al., 2024) proposed a new, improved modification of Shampoo (Gupta et al., 2018). SOAP reduces the computational overhead by optimizing only two-dimensional layers (2D) via Algorithm 9, while running AdamW for 1D layers. At initialization, the preconditioners are computed via the eigenvector decomposition of the initial gradient matrices eigenbasis $(\nabla \mathcal{L}(\boldsymbol{x}_0, \boldsymbol{\xi}_0) \nabla \mathcal{L}(\boldsymbol{x}_0, \boldsymbol{\xi}_0)^{\top})$: $\nabla \mathcal{L}(\boldsymbol{x}_0, \boldsymbol{\xi}_0) \nabla \mathcal{L}(\boldsymbol{x}_0, \boldsymbol{\xi}_0)^{\top} = \boldsymbol{q} \Lambda \boldsymbol{q}^{-1}$, where Λ stands for the diagonal matrix whose diagonal elements are the corresponding eigenvalues. For subsequent iterations, SOAPNon1D rotates gradients into this slowly changing basis, maintains second-moment statistics in that basis, and periodically updates the basis via QR decomposition (see lines 15, 16 of Algorithm 9) for all 2D layers (except for embeds and lm_head). This is the main computational part of the method.

A key idea behind the SOAP optimizer is:

- 1. Given the slowly changing coordinate basis provided by eigenvectors l and r, SOAP updates its second moment estimates in this basis; that is to say, it runs AdamW in another, a rotated space.
- 2. To update the eigenvectors of l and r, SOAP runs QR decomposition with the preconditioning frequency ϕ .
- In Algorithm 9, setting both q_l and q_r to the identity matrix would result in AdamW.
- The overall SOAP algorithm can be formalized as Algorithm 10.
 - **Sophia.** Despite being named a second-order optimizer, Sophia (Liu et al., 2024) performs an update that is quite similar to Adam's. It also leverages the diagonal preconditioner h, but not the curvature information of the optimization problem, which depends on the non-diagonal terms of the Hessian. One should notice that Sophia was introduced with two types of preconditioner—Hutchinson (Bekas et al., 2007) and Gauss-Newton-Bartlett (Martens, 2020). Since the latter shows more promising performance, we only consider this type of preconditioner for Sophia.

```
1566
                   Algorithm 9 SOAPNon1D (for non-1D parameters)
1567
                     1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
1568
                            preconditioning frequency \phi, \varepsilon.
1569
                     2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
1570
                     3: Initialize preconditioners: q_l, q_r \leftarrow \text{eigenbasis} \left( \nabla \mathcal{L}(x_0, \xi_0) \nabla \mathcal{L}(x_0, \xi_0)^\top \right)
1571
                     4: for t \in [T] do
                                    oldsymbol{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t)
1573
                                   egin{aligned} oldsymbol{g}_t' \leftarrow oldsymbol{q}_l^{	op} oldsymbol{g}_t oldsymbol{q}_t & oldsymbol{m}_t \leftarrow eta_1 oldsymbol{m}_{t-1} + (1-eta_1) oldsymbol{g}_t \ oldsymbol{m}_t' \leftarrow oldsymbol{q}_l^{	op} oldsymbol{m}_t oldsymbol{q}_t \end{aligned}
                                                                                                                                                                                                                     \triangleright Rotate g_t
1574
1575
                                                                                                                                     egin{aligned} m{m_t} \leftarrow m{q_l} & m{m_t} m{q_r} \ m{v_t} \leftarrow m{eta_2} m{v_{t-1}} + (1-eta_2) m{g_t'} \odot m{g_t'} \ m{\gamma_t} \leftarrow m{\gamma_t} rac{\sqrt{1-eta_t^2}}{1-eta_1^t} \ m{x_{t+1}} \leftarrow m{x_t} - m{\gamma_t} \left(m{q_l} rac{m{m_t'}}{\sqrt{m{v_t}} + arepsilon} m{q_r}^	op + \lambda m{x_t}
ight) \end{aligned}
1576
1577
                   10:
                                                                                                                                                                          ▶ Optional: use bias correction
1578
1579
                   11:
                                                                                                                                                                  ▶ Perform update in original space
1580
                                    \boldsymbol{l}_t \leftarrow \beta_2 \boldsymbol{l}_{t-1} + (1 - \beta_2) \boldsymbol{g}_t \boldsymbol{g}_t^{\mathsf{T}}
                   12:
                                                                                                                                                                                      ▶ Update preconditioners
1581
                   13:
                                    \mathbf{r}_t \leftarrow \beta_2 \mathbf{r}_{t-1} + (1 - \beta_2) \mathbf{g}_t^{\top} \mathbf{g}_t
1582
                   14:
                                    if t \equiv 1 \pmod{\phi} then
1583
                   15:
                                             \boldsymbol{q}_l \leftarrow \mathtt{QR}\left(\boldsymbol{l}_t \boldsymbol{q}_l\right)
                   16:
                                             \boldsymbol{q}_r \leftarrow \mathtt{QR}\left(\mathbf{r}_t \boldsymbol{q}_r\right)
                   17:
                                    end if
1585
                   18: end for
1586
                   19: Return: x_T
1587
```

Algorithm 10 SOAP (general scheme)

1588

1590

1592

1593

1594

1595

1596

1597

1598 1599

1604

1605

1606 1607

1609

1610 1611 1612

1613 1614

1615 1616

1617

1618

1619

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
         preconditioning frequency \phi, \varepsilon.
  2: for t \in [T] do
                 \textbf{if } \boldsymbol{x}_t \in \{\texttt{embeds}, \texttt{scalar\_params}, \texttt{lm\_head}\} \textbf{ then}
  3:
                          \begin{aligned} & \boldsymbol{x}_{t}^{\text{A}} \leftarrow \boldsymbol{x}_{t} \\ & \boldsymbol{x}_{t+1}^{\text{A}} \leftarrow \text{AdamW}\left(\boldsymbol{x}_{t}^{\text{A}}, \gamma_{t}, \lambda, \beta_{1}, \beta_{2}, \varepsilon, T = 1\right) \end{aligned} 
  4:
  5:
                                                                                                                                                                       ▷ One iteration of AdamW
  6:
                           \begin{aligned} & \boldsymbol{x}_t^{\text{S}} \leftarrow \boldsymbol{x}_t \\ & \boldsymbol{x}_{t+1}^{\text{S}} \leftarrow \text{SOAPNon1D}\left(\boldsymbol{x}_t^{\text{S}}, \gamma_t, \lambda, \beta_1, \beta_2, \varepsilon, T = 1\right) \end{aligned} 
  7:
                                                                                                                                                         ▷ One iteration of SOAPNon1D
  8:
10: end for
11: Return: x_T^{A}, x_T^{S}
```

Every ϕ iterations, Sophia updates its second moment estimate by computing the gradient \hat{g} of the empirical loss \mathcal{L} given softmax of the logits instead of the true logits. Multiplying by the batch size, we obtain \hat{h} , after that, Sophia updates the EMA of \hat{h} .

Importantly, we found that the algorithmic description of Sophia in the original paper differs in minor details from the code implementation³. Indeed, the update rule in their work is formulated as follows:

$$m{x}_{t+1} \leftarrow m{x}_t - \gamma_t \mathtt{clamp}\left(rac{m{m}_t}{\max\{
hom{h}_t, arepsilon\}}, 1
ight),$$

where clamp is defined as in Equation (1).

On the other hand, the code from the official repository suggests:

Listing 2: Sophia update skeleton using PyTorch.

```
1 # update step
2 step_t += 1
3
```

³https://github.com/Liuhong99/Sophia

Therefore, the update rule of Sophia is misstated in the original paper and should be corrected to match line 16 of Algorithm 11.

Takeaway 8. The actual update rule of Sophia does not match its description in the original paper.

Algorithm 11 Sophia

1627 1628

1629

1630

1631

1633

1654 1655

1656 1657

1658

1659

1661

1662

1663

1664

1665

1668

1669

1671

1672

1673

```
1635
                   1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
                         estimator frequency \phi, scaling factor \rho, \varepsilon.
1637
                   2: Initialize: m_0 \leftarrow 0, h_0 \leftarrow 0
                   3: for t \in [T] do
1639
                   4:
                                oldsymbol{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t)
                                \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{g}_t
1640
                   5:
                                if t \equiv 1 \pmod{\phi} then
1641
                   6:
                   7:
                                       p_t \leftarrow \boldsymbol{\xi}_t
                                                                                                                                                                  1642
                                       p_t \leftarrow \mathtt{softmax}\left(p_t\right)
                   8:

    Sample from logits

1643
                   9:
                                       \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t) \leftarrow p_t
                                                                                                                                                                 \triangleright Loss, where p_t are labels
1644
                                       \hat{\boldsymbol{g}}_t \leftarrow 
abla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
1645
                 10:
                                       \hat{m{h}}_t \leftarrow |m{\xi}_t| \hat{m{g}}_t \odot \hat{m{g}}_t
1646
                 11:
                                       \mathbf{h}_t \leftarrow \beta_2 \mathbf{h}_{t-\phi} + (1-\beta_2)\hat{\mathbf{h}}_t
1647
                 12:
1648
                 13:
                                else
                 14:
                                        \boldsymbol{h}_t \leftarrow \boldsymbol{h}_{t-1}
                 15:
1650
                                oldsymbol{x}_{t+1} \leftarrow oldsymbol{x}_t - \gamma_t \left( 	extst{sign}(oldsymbol{m}_t) \min \left\{ rac{|oldsymbol{m}_t|}{
ho oldsymbol{h}_t + arepsilon}, 1 
ight\} + \lambda oldsymbol{x}_t 
ight)
                 16:
1651
1652
                 17: end for
                 18: Return: x_T
```

C.4 SCHEDULE-FREE ADAMW, PRODIGY

In this section, we outline two more players—Schedule-Free AdamW (Defazio et al., 2024b) and Prodigy (Mishchenko & Defazio, 2024). Both of them have a promising advantages and require less hyperparameter tuning which paves the road to parameter-free optimizers.

Schedule-Free Adamw. Defazio et al. (2024b) introduced the notion of schedule-free optimizers. The underlying idea behind Schedule-Free SGD and Schedule-Free Adamw (SF-Adamw) is to eliminate learning rate schedulers by replacing them with iterate averaging. Specifically, the schedule-free method uses interpolation between Polyak-Ruppert averaging (Polyak, 1990; Ruppert, 1988) and Primal averaging (Nesterov & Shikhman, 2015) for the momentum update, rather than the usual EMA (see line 4 of Algorithm 12). To stabilize scalable training, the authors also propose an internal warmup mechanism (see line 7 of Algorithm 12), which gradually increases the learning rate while ensuring Adam-style bias correction.

An interesting result we observe, is that SF-AdamW shows the best performance with a larger number of warmup iterations compared to other methods—see Figure 7.

Another key point—training with SF-AdamW is sensitive to the choice of beta parameters. Unlike in AdamW, these parameters play distinct roles in SF-AdamW: β_1 determines the interpolation between the z_t and x_t sequences, which acts as a form of schedule-free momentum. Specifically, the term $(1-\beta_1)g_t$ is immediately incorporated into the iterate sequence y_t , while the remainder of g_t is

gradually incorporated through averaging—a mechanism analogous to the momentum EMA, but with a longer delay for the residual contribution. By contrast, β_2 controls the EMA of the second moment estimate with respect to y_t (rather than directly with x_t ; see line 6 of Algorithm 12).

For Adam it is common to analyze in theory the case, when $\beta_2 = 1 - 1/T$ (Reddi et al., 2019; Zaheer et al., 2018; Chezhegov et al., 2024), i.e., the choice of the "optimal" β_2 parameter depends on the length of training. Which, presumably, is also the case for SF-AdamW, making it not fully schedule-free. Hägele et al. (2024) observed this sensitivity to beta parameters, and we go beyond this ablation also (Figure 31).

Importantly, the authors mention that disabling gradient norm clipping is crucial for schedule-free runs; however, we do not observe this in practice and instead find the opposite effect—see Figure 28.

Algorithm 12 SF-AdamW

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma, weight decay \lambda, \beta_1, \beta_2, warmup iterations T_{\text{warmup}}, \varepsilon.

2: Initialize: z_0 \leftarrow x_0, v_0 \leftarrow \mathbf{0}

3: for t \in [T] do

4: y_t \leftarrow (1-\beta_1)z_t + \beta_1x_t

5: g_t \leftarrow \nabla \mathcal{L}(y_t, \xi_t)

6: v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2)g_t \odot g_t

7: \gamma_t \leftarrow \gamma \sqrt{1-\beta_2^t} \min\{1, t/T_{\text{warmup}}\}

8: z_{t+1} \leftarrow z_t - \gamma_t \left(g_t/(\sqrt{v_t} + \varepsilon) + \lambda y_t\right)

9: c_{t+1} \leftarrow \frac{\gamma_t^2}{\sum_{t=0}^t} \gamma_t^2

10: x_{t+1} \leftarrow (1-c_{t+1})x_t + c_{t+1}z_{t+1}

11: end for

12: Return: x_T
```

Prodigy. Mishchenko & Defazio (2024) extended the D-Adaptation framework. Drawing inspiration from the AgaGrad (Duchi et al., 2011) theory, the authors derived an alike step-size rule, giving rise to a new family of methods. While studying the convergence (in the deterministic case) of several proposed algorithms that are based on the gradient descent and dual averaging, the authors also introduced an Adam-like version of their methods—the Prodigy optimizer (Algorithm 13)—that effectively removes the need for hand-tuned learning rates through an intrinsic, adaptive step-size scheme. The EMA of Prodigy specifically includes $d_t \mathbf{g}_t$ sequence rather than the raw gradients \mathbf{g}_t (see lines 5, 6, 8, 9 of Algorithm 13). The new term d_t is determined by two additional EMA sequences, which are also responsible for the adaptive rescaling of the learning rate according to line 10. Mishchenko & Defazio (2024) evaluate Prodigy in practice on language models by running a shallow nanoGPT transformer on the Shakespeare (over-training regime) and BookWiki datasets. We extend the experiments with Prodigy to a larger scale and a greater variety of LLM pretraining settings.

Crucially, Prodigy does not require extensive learning rate tuning. Typically, we initialize $\gamma=1$, as suggested by the authors, and it remains remarkably stable, as demonstrated in our γ -sweeps (Figures 6 and 18). However, Prodigy is still be compatible with learning rate schedules, which we verify experimentally (Figures 8 and 20). We further show that, without any schedulers, d_t sequence behaves similarly to the constant learning rate with warmup (see Figure 35 and related ablations). Moreover, Prodigy scales reliably similar to AdamW, making it a promising choice for future development of parameter-free methods.

C.5 MARS

Very recently, Yuan et al. (2024) introduced MARS—a family of optimizers incorporating modern adaptive (Loshchilov & Hutter, 2019; Chen et al., 2023) and approximate second-order methods (Gupta et al., 2018) methods with a variance reduction update style.

This optimization framework gave a rise to: MARS-AdamW, our main baseline, which we call simply MARS; MARS-Lion; and MARS-Shampoo. We mainly include MARS-AdamW in our ablation studies, but also report results for the other two optimizers (see Figure 34).

Algorithm 13 Prodigy

1728

1744 1745 1746

1747

1748

1749

1750

1751 1752

1753

1754 1755 1756

1757

1758

1759

1760

1761

1762

1763

1764 1765

```
1729
                         1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma, weight decay \lambda, \beta_1, \beta_2, \varepsilon.
1730
                         2: Initialize: d_0 \leftarrow 10^{-6}, \gamma \leftarrow 1, m_0 \leftarrow 0, v_0 \leftarrow 0, r_0 \leftarrow 0, s_0 \leftarrow 0 \triangleright Optional: use scheduler
1731
1732
                         3: for t \in [T] do
1733
                                          \boldsymbol{g}_t \leftarrow \nabla \mathcal{L}(\boldsymbol{x}_t, \boldsymbol{\xi}_t)
                         4:
                                          egin{aligned} oldsymbol{m}_t \leftarrow eta_1 oldsymbol{m}_{t-1} + (1-eta_1) d_t oldsymbol{g}_t \ oldsymbol{v}_t \leftarrow eta_2 oldsymbol{v}_{t-1} + (1-eta_2) d_t^2 oldsymbol{g}_t \odot oldsymbol{g}_t \end{aligned}
1734
                         5:
1735
                                          \gamma_t \leftarrow \gamma \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)
1736
                                                                                                                                                                                                     ▷ Optional: use bias correction
                                         r_t \leftarrow \sqrt{\beta_2} r_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 \langle \boldsymbol{g}_t, \boldsymbol{x}_0 - \boldsymbol{x}_t \rangle
\boldsymbol{s}_t \leftarrow \sqrt{\beta_2} \boldsymbol{s}_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 \boldsymbol{g}_t
d_{t+1} \leftarrow \max \left\{ d_t, \frac{r_t}{\|\boldsymbol{s}_t\|_1} \right\}
1737
1738
1739
                       10:
1740
                                          oldsymbol{x}_{t+1} \leftarrow oldsymbol{x}_{t} - \gamma_{t} d_{t} \left(oldsymbol{m}_{t} / \left(\sqrt{oldsymbol{v}_{t}} + d_{t} arepsilon
ight) + \lambda oldsymbol{x}_{t}
ight)
1741
                      12: end for
1742
                      13: Return: x_T
1743
```

The authors modified the variance reduction update by introducing a scaling parameter η , which we call variance reduction scaling in the outlined algorithms and experiments. This parameter controls the scale of gradient correction—see line 5 of Algorithms 14, 15, and 16.

Importantly, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate the gradient g_t in different stochasticity, meaning that

$$egin{aligned} oldsymbol{g}_t &=
abla \mathcal{L}\left(oldsymbol{x}_t, oldsymbol{\xi}_t
ight), \ oldsymbol{g}_{t-1} &=
abla \mathcal{L}\left(oldsymbol{x}_{t-1}, oldsymbol{\xi}_{t-1}
ight). \end{aligned}$$

In the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers with two or more dimensions. For 1D layers, embeds, scalar parameters and the final layer of neural network, this method utilizes AdamW. This design choice enables efficient and fast training with MARS. Following the practices from the original work, we also use MARS only for 2D layers. Importantly, for MARS-based methods, one need to tune both the AdamW's learning rate $\gamma_t^{\mathtt{A}}$, and the learning rate for 2D parameters, which we denote as γ_t^{M} for compatibility with the Muon pseudocode 8.

MARS (MARS-AdamW). For the AdamW-like algorithm, the difference occurs in the computation of m_t and v_t , where the variance reduction update c_t is used instead of the gradient.

Algorithm 14 MARS (MARS-AdamW)

```
1766
1767
                               1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1, \beta_2,
1768
                                         variance reduction scaling \eta, \varepsilon.
1769
                               2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
1770
                               3: for t \in [T] do
                                                    egin{aligned} & \mathbf{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t) \ & \mathbf{c}_t \leftarrow oldsymbol{g}_t + \eta rac{eta_1}{1-eta_1} \left( oldsymbol{g}_t - oldsymbol{g}_{t-1} 
ight) \ & \mathbf{if} \ \|oldsymbol{c}_t\|_2 > 1 \ \mathbf{then} \end{aligned}
1771
1772
1773
                               6:
1774
                                                                oldsymbol{c}_t \leftarrow oldsymbol{c}_t / \|oldsymbol{c}_t\|_2
                               7:
1775
                               8:
                                                    \begin{aligned} & \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{c}_t \\ & \boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1 - \beta_2) \boldsymbol{c}_t \odot \boldsymbol{c}_t \\ & \hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t / (1 - \beta_1^t), \quad \hat{\boldsymbol{v}}_t \leftarrow \boldsymbol{v}_t / (1 - \beta_2^t) \\ & \boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \gamma_t \left( \frac{\hat{\boldsymbol{m}}_t}{\sqrt{\hat{\boldsymbol{v}}_t + \varepsilon}} + \lambda \boldsymbol{x}_t \right) \end{aligned}
1776
                               9:
                            10:
1777
                            11:
1778
1779
                            12:
1780
                            13: end for
1781
                            14: Return: x_T
```

We point out once again that, for LLM training, we only run Algorithm 14 for 2D parameters, resulting in the following two updates at each iteration:

```
\begin{split} & \boldsymbol{x}_{t+1}^{\text{M}} \leftarrow \text{MARS}\left(\boldsymbol{x}_{t}^{\text{M}}, \boldsymbol{\gamma}_{t}^{\text{M}}, \boldsymbol{\lambda}^{\text{M}}, \boldsymbol{\beta}_{1}^{\text{M}}, \boldsymbol{\beta}_{2}^{\text{M}}, \varepsilon, T = 1\right) & \text{for 2D parameters,} \\ & \boldsymbol{x}_{t+1}^{\text{A}} \leftarrow \text{AdamW}\left(\boldsymbol{x}_{t}^{\text{A}}, \boldsymbol{\gamma}_{t}^{\text{A}}, \boldsymbol{\lambda}^{\text{A}}, \boldsymbol{\beta}_{1}^{\text{A}}, \boldsymbol{\beta}_{2}^{\text{A}}, \varepsilon, T = 1\right) & \text{for 1D parameters,} \end{split}
```

i.e., in the same way as in Algorithms 8 and 10. The same holds for two more versions—MARS-Lion and MARS-Shampoo, which we discuss below.

MARS-Lion. Similarly to the Lion algorithm, the authors use scaled gradient correction c_t with the current gradient. Importantly, Algorithm 15 does not leverage second moment estimates to update 2D parameters. Instead, the updates rely on the sign-based characteristic of Lion integrated with the variance reduction framework.

Algorithm 15 MARS-Lion

1782

1783

1784

1785

1786 1787

1788

1789 1790

1791

1792

1793

1794

1795 1796

1797

1799

1801

1803

1804

1805

1806

1808 1809

1810

1811

1812

1813 1814

1815

1816

1817

1818

1819

1820

1821

1823

1824

1825

1826 1827

1829 1830

1831

1833

1835

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1,
        variance reduction scaling \eta, \varepsilon.
 2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
 3: for t \in [T] do
              oldsymbol{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t)
 4:
              oldsymbol{c}_t \leftarrow oldsymbol{g}_t + \eta rac{eta_1}{1-eta_1} \left( oldsymbol{g}_t - oldsymbol{g}_{t-1} 
ight)
 5:
               if \|c_t\|_2 > 1 then
 6:
                       oldsymbol{c}_t \leftarrow oldsymbol{c}_t / \|oldsymbol{c}_t\|_2
 7:
               end if
 8:
 9:
               \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{c}_t
               oldsymbol{x}_{t+1} = oldsymbol{x}_t - \gamma_t \left( 	extst{sign} \left( oldsymbol{m}_t 
ight) + \lambda oldsymbol{x}_t 
ight)
11: end for
12: Return: x_T
```

MARS-Shampoo. The same holds for MARS-Shampoo. A key point to note is that, to compute SVD of the first moment estimate, the authors also perform the Newton-Schulz steps (Bernstein & Newhouse, 2024; Higham, 2008). In our experiments, we use 5 iterations of this orthogonalization scheme for MARS-Shampoo.

Algorithm 16 MARS-Shampoo

```
1: Input: Initial parameters x_0, number of iterations T, learning rate \gamma_t, weight decay \lambda, \beta_1,
       variance reduction scaling \eta, \varepsilon.
 2: Initialize: m_0 \leftarrow 0, v_0 \leftarrow 0
 3: for t \in [T] do
             oldsymbol{g}_t \leftarrow 
abla \mathcal{L}(oldsymbol{x}_t, oldsymbol{\xi}_t)
             c_t \leftarrow g_t + \eta rac{eta_1}{1-eta_1} \left(g_t - g_{t-1}
ight)
 5:
             \boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{c}_t
 6:
             U_t, \Sigma_t, V_t \leftarrow \mathtt{SVD}(m_t)
                                                                                                          ▶ Use Newton-Schulz orthogonalization
 7:
             oldsymbol{x}_{t+1} = oldsymbol{x}_t - \gamma_t \left( oldsymbol{U}_t oldsymbol{V}_t^{	op} + \lambda oldsymbol{x}_t 
ight)
 8:
 9: end for
10: Return: x_T
```

D IMPLEMENTATION

Our code is based on an extension of nanoGPT⁴ and uses PyTorch (Paszke et al., 2019) as well as FlashAttention (Dao et al., 2022). We incorporate mixed-precision training (Micikevicius et al., 2018), i.e., we train in bfloat16 precision, except for normalization modules and softmax which we train in float32. The optimizer states are also stored in float32. The majority of experiments were performed using a cluster of A100-SXM4-80GB, H100-HBM3-80GB GPUs as well as

⁴https://github.com/karpathy/nanoGPT

GH200-120GB. We trained both in a single GPU regime and in DDP (Li et al., 2020) (from 2 to 8 GPUs per one run). We estimate that the full cost of all experiments for our project to roughly 30000 GPU hours. To give an idea of how much effort was put into tuning each method, across all model sizes, batches and iterations, we trained a total of 2900 models. This includes includes *nearly*: 750 AdamW, 145 ADOPT, 238 Ademamix, 158 Lion, 165 Signum, 231 Muon, 135 D-Muon, 354 SOAP, 199 Sophia, 133 SF-AdamW, 195 Prodigy, 217 MARS-AdamW, 26 MARS-Lion, and 20 MARS-Shampoo models. See Appendix G for details about hyperparameter tuning.

E MODEL & DATA

Architecture details. In our project, we use the Llama-like family of models (Llama Team, 2024). We implement the popular in the community decoder-only transformer with SwiGLU activation functions (Shazeer, 2020), RoPE embeddings (Su et al., 2023), RMSNorm (Zhang & Sennrich, 2019). The vocabulary is based on the GPT2 (Radford et al., 2019) tokenizer ⁵ and contains 50304 tokens. Importantly, our variant of the Llama-based architecture employs weight tying (Press & Wolf, 2017).

The number of parameters in our models is fully configurable, and we present the exact configurations used in our experiment in Table 1.

# Parameters	124M	210M	583M	$720\mathbf{M}$
Hidden size	768	768	1920	2048
# Attention heads	12	12	15	16
# Layers	12	24	11	12
Init. std	0.02	0.02	0.02	0.02
Use bias	no	no	no	no
RMSNorm epsilon	0.00001	0.00001	0.00001	0.00001
Positional encoding	RoPE	RoPE	RoPE	RoPE

Table 1: Configurations for our Llama-like models.

Dataset. Our main findings are obtained on the subset of FineWeb (Penedo et al., 2024a) with 100**B** tokens ⁶, cleaned and deduplicated corpus for LLM pretraining, which we split into train and validation sequences. During training, we evaluate the models with a fixed set of 32 batches of our chosen sequence length (512 for almost all experiments, the same context length as training) to establish the validation loss curves. At the end of the training, we compute the full validation loss and perplexity (this loss is reported as Final Validation Loss in the figures). We also performed our initial results on the subset of the OpenWebText2 dataset (Gao et al., 2020b).

F ADDITIONAL RESULTS

In this section, we complement our results from the main part with extended experiments. We start sequentially with smaller models of 124M and 210M parameters, ablating: warmup, weight decay, learning rate schedulers, gradient norm patterns, learning rate decaying, and other optimizer-related phenomena. We finalize this section with the wall-clock performance of optimizers. Details on hyperparameter searches are provided in Appendix G.

F.1 ABLATIONS FOR **124M** MODEL

At first, we systematically gather all ablations with 124M parameter models. As in § 4.1, we study: the effect of scaling the number of iterations and hyperparameter dependence on T; warmup; the importance of weight decay for optimizers; γ -sensitivity; a comparison of γ -schedulers; gradient norm patters during training; learning rate decaying; and optimizer-specific phenomena for Sophia, SF-AdamW, Prodigy, Muon, Signum, and MARS-based methods.

⁵https://github.com/openai/tiktoken

⁶https://huggingface.co/datasets/HuggingFaceFW/fineweb

Complementing benchmarking results of 124M models. In addition to results from the main part, we show the dynamics of the validation loss in Figure 12. The presented runs correspond to those in Figure 3.

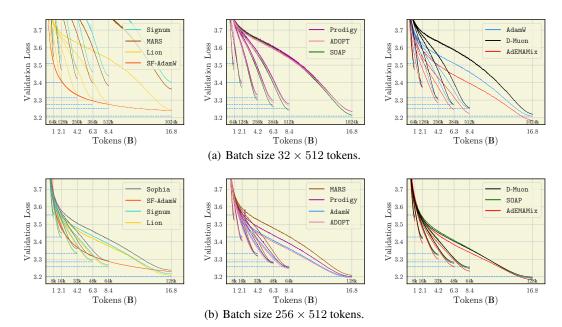


Figure 12: Comparing optimizers for training a 124M parameter LLM. We plot the *validation loss* dynamics obtained by considered optimizers. In (a), we train methods with a "small" batch size of 16k tokens for {64, 128, 256, 384, 512, 1024}k iterations. In (b), we train methods with nearly 8× larger batch size of 131k tokens for {8, 16, 32, 48, 64, 128}k iterations. Thus, in both settings, we result in the same number of tokens models see during the training: {1, 2.1, 4.2, 6.3, 8.4, 16.8}B. We observe that: (I) many methods outperform AdamW in the short runs for 1B or 2.1B tokens; (II) as training on more tokens, AdamW narrows the gap with SOAP and D-Muon, while AdEMAMix emerges as the best-performing method; (III) Signum, MARS, Lion, Prodigy benefit from the increased batch size.

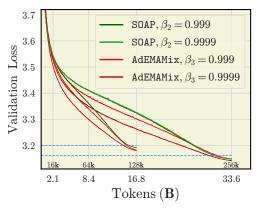
Scaling the number of iterations. We stay in the setup from § 3, training 124M model with batches of 256×512 tokens. Our training runs in Figure 12 (b) demonstrate the the gap between SOAP and Ademamix narrows as the training horizon extends. As for 124M model, we tuned all optimizers on $2.1\mathbf{B}$ tokens length of training, some hyperparameters, particularly those sensitive to the training duration, may become suboptimal for longer runs of $16.8\mathbf{B}$ tokens. For example, the beta parameter (β_2) of the second moment estimate in AdamW-like methods should arguably be re-tuned when the number of iterations is increased (Orvieto & Gower, 2025; Marek et al., 2025; Busbridge et al., 2023), which also makes theoretical claims (Reddi et al., 2019; Défossez et al., 2022; Wang et al., 2023; Zaheer et al., 2018; Taniguchi et al., 2024; Chezhegov et al., 2024). Our extensive tuning on $2.1\mathbf{B}$ yielded the result that for AdamW, SOAP, and Ademamix optimizers, β_2 should be set to 0.999. Importantly, Pagliardini et al. (2024) suggest increasing β_3 of Ademamix, which controls the slow EMA (see line 7 of Algorithm 3), for longer training.

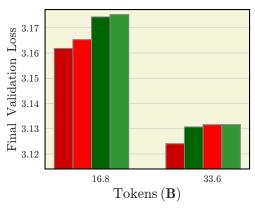
As such, we conducted two experiments.

First, we keep the best hyperparameters found for 2.1B tokens horizon, and extend them to $2\times$ loner duration than the maximum one (16.8B tokens), resulting in a total of 33.6B tokens—it is interesting to observe whether the gap between SOAP and Ademamix finally closes in a longer run. Secondly, we re-tune beta parameters of SOAP and Ademamix for 16.8B and 33.6B runs, and compare results. Our re-tuned values are $\beta_2=0.9999$ for SOAP, and $\beta_3=0.9999$ for Ademamix.

This ablation is described in Figure 13 (a,b). We see that, indeed, without re-tuning, SOAP ends up outperforming AdEMAMix when extending the training horizon further to 33.6B tokens ($\equiv 256k$ iterations). However, with re-tuning of β_2 for SOAP and β_3 for AdEMAMix, the latter optimizer

still takes the lead. Notably, in our experiments, $\beta_3=0.999$ is only better than $\beta_3=0.9999$ when the number of training iterations is less than 32k. Surprisingly, given the many theoretical claims from works analyzing Adam, that β_2 depends on the number of iterations: $\beta_2=\beta_2(T)=1-1/T$, we do not observe this to be a common rule in practice, as many influential settings regarding LLM pretraining (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al., 2023; Team OLMo, 2024b) utilize a typical ($\beta_2=0.95$) even for very long training for trillions of tokens. Therefore, we highlight this oversight in Takeaway 9, proposing to re-tune β_2 hyperparameter of Adam-like methods when changing of the training horizon.





- (a) Training dynamics with different β_3 .
- (b) Increase β_3 for AdEMAMix for longer training.

Figure 13: **Re-tuning beta parameters is significant for longer training.** This experimental setup coincides with the one from Figure 4—where we consider an impact of increasing batch size or number of iterations. We elaborate more on the impact of beta parameters for Ademamix: in (a), we show a training dynamics of Ademamix and SOAP for $T \in \{128, 256\}$ k steps, and (b) demonstrates the final loss. Throughout this experiment we use a batch size of 256×512 tokens and train a 124M model. Our results reveal that increasing β_3 for Ademamix is crucial for long runs. Without these changes, SOAP with $\beta_2 = 0.999$ found via tuning on 16k steps runs ends up outperforming Ademamix with $\beta_3 = 0.999$. Re-tuning β_2 of SOAP does not change the results much, and give almost identical loss curves, however, the training dynamics if Ademamix changes dramatically with β_3 as noticed in (Pagliardini et al., 2024), and gives best results with larger $\beta_3 = 0.9999$.

Takeaway 9. We highlight the overlooked claim that β_2 parameters of Adam-like methods should be re-tuned with training durations. One needs to increase β_2 for longer training. This re-tuning significantly improves the optimizer performance.

Warmup ablation. In this section, we supplement the experiments on warmup from § 4.1. We study the impact of warmup on the final validation loss. Replicating our setup (§ 3), we use the batch size of 256×512 tokens and reuse the best hyperparameters found through tuning, except for T_{warmup} . For all methods, we sweep over $T_{\text{warmup}} \in \{1.56\%, 6.25\%, 25\%\}$ of the total training duration T to examine each method's sensitivity to warmup. Additionally, for AdamW, we extend this sweep to $T_{\text{warmup}} \in \{1.56\%, 5\%, 6.25\%, 10\%, 25\%\}$ of T. We specifically consider 1.56% and 6.25% percentages because the former represents a typical number of warmup steps (2000) for models of our scale, while the latter (6.25% of 128000 steps) aligns with the warmup strategy used in Llama (Llama Team, 2024).

Contrary to the insights from (Zhang et al., 2024a), we observe that 25% of the Cinchilla optimal duration ($620\mathbf{M}$ tokens for $124\mathbf{M}$ model) is far from being the best warmup for pretraining. We emphasize that their results were obtained for $85\mathbf{M}$ models and then extrapolated to larger scales. However, in our setting, we found that the basic 2000 steps were a more suitable warmup option for most optimizers; exceptions include sign-based methods (Signum, Lion), and Sophia with SF-AdamW.

We provide the warmup sweep for AdamW in Figure 14.

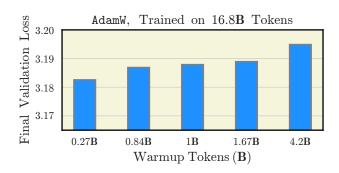


Figure 14: **Warmup sweep for AdamW.** We observe that the smaller yet reasonable warmup value is the best. However, this is not the case for other methods like Signum, Lion, Sophia, and SF-AdamW—see Figure 7.

Takeaway 10. As usual, a warmup duration in LLM pretraining is around 2k steps. However, we reveal that the warmup duration is optimizer-dependent and should be tuned: for SF-AdamW, Sophia, and Signum, longer warmup results in improved final performance, while Lion with increased warmup also surpasses strong baselines such as AdamW.

Weight decay ablation. Prior work analyzing the importance of weight decay λ in model training suggests tuning both λ and the learning rate γ so that their product $\lambda\gamma$ remains constant. D'Angelo et al. (2024) argue that, across different pairs of γ and λ , the lowest error of the model is observed along the contour in the hyperparameter space where $\lambda\gamma=$ const. The authors also establish a connection between the quantity of $\lambda\gamma$ product and an effect of regularization and noise scale in the over-training regime, such as for small computer vision models trained over multiple epochs. Kosson et al. (2024b) highlight that if γ and λ are chosen to result in constant product, the model achieves the same equilibrium rotation value, reflecting a similar effective update size for the weights. While previous studies have analyzed the rule of keeping $\lambda\gamma=$ const primarily on image classification tasks with ResNet-based models (He et al., 2015), Pagliardini et al. (2024) also used this heuristic when tuning hyperparameters for LLM pretraining.

In our study, which focuses solely on language modelling, we demonstrate that using a relatively large weight decay term with a fixed learning rate can significantly accelerate short training runs. Throughout our weight decay ablation experiments, we fix the best value of γ found via tuning on near-Chinchilla optimal T, and sweep the weight decay across $\lambda \in \{0,0.1,0.5\}$, where $\lambda = 0.1$ is the standard value of the decoupled weight decay term in our work. Our results are consistent across optimizers and training horizons: runs with large λ dominate for a small number of iterations, but as the training length increases to $\{8.4,16.8\}\mathbf{B}$ tokens, runs with a moderate $\lambda = 0.1$ begin to outperform (Figures 5 and 15). An important example is Muon. As this optimizer does not use weight decay for 2D parameters, we observe that runs with $\lambda = 0.5$ underperform those with $\lambda \in \{0,0.1\}$ even in short training on $\{1,2.1,4.2,6.3\}\mathbf{B}$ tokens. However, when we consider an implementation of the D-Muon optimizer with learning rate and weight decay shared across all parameters, we again observe a similar pattern to that seen with other methods—larger weight decay dominates when training on fewer tokens.

We highlight these observations for practitioners and suggest that this approach may be useful for short training runs. Our main claim from this section is summarized in Takeaway 11.

Impact of weight decay on Muon. We complement our claims regarding the old implementation of Muon where weight decay has not been applied to matrix parameters. Through comparison with modified D-Muon Liu et al. (2025), we clearly demonstrate the impact of the enabled weight decay for longer training in Figures 16 and 17.

Takeaway 11. The use of weight decay, particularly a large decoupled weight decay term (0.5 and above), can significantly impact the final loss value and optimizer behavior. However, for extended training horizons, a moderate, non-zero weight decay of 0.1 proves to be a robust option.

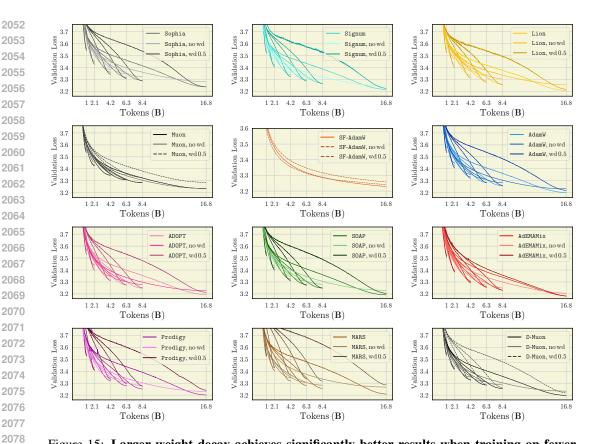


Figure 15: Larger weight decay achieves significantly better results when training on fewer tokens. We observe that the majority of runs with the large weight decay of 0.5 consistently outperform those with weight decay of 0.1 for all training durations except for the long training on 16.8B tokens. Notably, Signum and Lion with large weight decay perform even better than AdamW with the same learning rate—see Figure 5. We also consider a setting without weight decay. We observe that this is suboptimal for most of other optimizers, while the typical weight decay of 0.1 remains the best for long training durations. An interesting pattern emerges for optimizers that treat one-dimensional and two-dimensional parameters differently, such as Muon and MARS. For these, runs with large weight decay (0.5) consistently underperform those with 0.1 and, in some cases, even those without weight decay. For Muon, we attribute this effect to its algorithmic design, in which weight decay is not employed to optimize matrix parameters (see Algorithm 7), in contrast to D-Muon, where the observed patterns are reliably similar to those seen with AdamW. For MARS, we only vary the weight decay corresponding to matrix parameters while keeping 0.1 for all scalar, one-dimensional and final layer parameters. In this case, we conclude that the gap between large and small weight decay values narrows significantly faster.

Learning rate sensitivity. In this part of the work, we meticulously replicate the learning rate sweep process and present comprehensive results. In line with our experimental setup (§ 3), our aim is to determine the true impact of the learning rate and its transferability to longer training horizons. For each optimizer, we only vary the learning rate while maintaining the best hyperparameters obtained during our initial tuning (see Appendices G and G.1) on 2.1B tokens for 124M parameter model. That is, the learning rate has been re-tuned for all optimizers on the training length of 16.8B tokens. We do not present γ -sensitivity for Prodigy in the main part (§ 4) because of the difference in axis scale: we sweep across $\gamma_{\max} \in \{0.5, 1, 2, 10, 100\}$ for this optimizer. We show the results of the learning rate sweep in Figure 18.

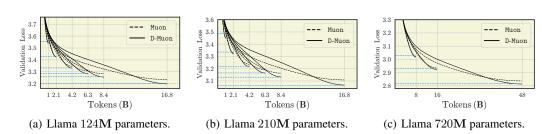


Figure 16: **Importance of weight decay for Muon.** We complement our weight decay ablation with comparison of two version of Muon: one that uses a weight decay for all parameters (D-Muon), and another, with weight decay being applied only to embeddings, scalar parameters, and the final layer. For three scales of models (a,b,c), we show that D-Muon greatly outperforms the basic Muon. We emphasize that the main reason—weight decay, which supports our ablations in Figures 5 and 15.

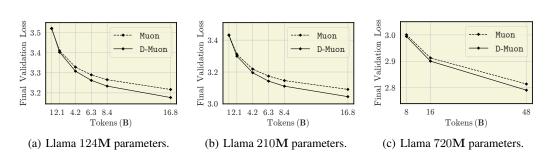


Figure 17: **Weight decay in Muon & D-Muon.** We compare two methods—basic Muon (Jordan et al., 2024b), and D-Muon (Liu et al., 2025) with a weight decay applied to all parameter groups. Across model sizes used in our benchmarking of dense LLMs, we observe a major improvement of D-Muon over Muon. We relate this observation to our ablation on the importance of weight decay across different optimizers, and training horizons. See Figure 16 and Appendix F.1 for more details.

Takeaway 12. For most optimizers, the learning rate $\gamma_{\rm max}$ selected near the Chinchilla optimal horizon transfers smoothly to our $8\times$ longer run. Notably, we found that: (I) sign-based methods and Sophia diverge with larger $\gamma_{\rm max}=2e^{-3}$; (II) while SF-AdamW, SOAP, and D-Muon achieve better performance with such a large learning rate; (III) MARS demonstrates a very consistent performance across γ sweep, which is not typical for other optimizers.

Comparison of learning rate schedulers. In this part of our ablations, we systematically investigate the impact of γ -schedulers on optimizers. As we mention in § 3, we conduct the majority of experiments on the FineWeb dataset (Penedo et al., 2024a). However, here we also present a small ablation on another corpus for LLM pretraining—OpenWebText2 (OWT2) (Gao et al., 2020a)—as the main results of Defazio et al. (2024b) are obtained on the subset of this corpus. We show our results for two batch size settings: 32×512 for OWT2 (Figure 19), and 256×512 for FineWeb (Figure 20).

In Figure 19, we present our initial results in the small-batch setting on the OWT2 dataset (Gao et al., 2020a). We run the WSD scheduler experiments without following the rule of thumb from (Hägele et al., 2024); instead, use a linear decay shape during the learning rate cooldown and set γ to the value that is near-optimal for cosine. Hence, we use $\gamma_{\rm max}=0.001$ with the learning rate decay to $\gamma_{\rm end}=0.01\times\gamma_{\rm max}$ for both cosine and WSD schedulers. This is the only experiment where we do not follow the best-practices of using WSD. Regarding hyperparameter tuning, we observe little shift compared to that found in Appendix G for FineWeb. We only pose that it may be beneficial to additionally re-tune the gradient clipping threshold, as this depends on the "cleanliness" of the dataset. Our ablations (Figure 19) reveal that SF-AdamW can potentially outperform the AdamW baseline with the WSD scheduler. However, the cosine γ -scheduler still takes the lead in this setup.

We also report the final validation loss on the FineWeb dataset (Penedo et al., 2024a) for 124M model trained with the batch size of 256×512 tokens. For WSD, we follow the rule of thumb

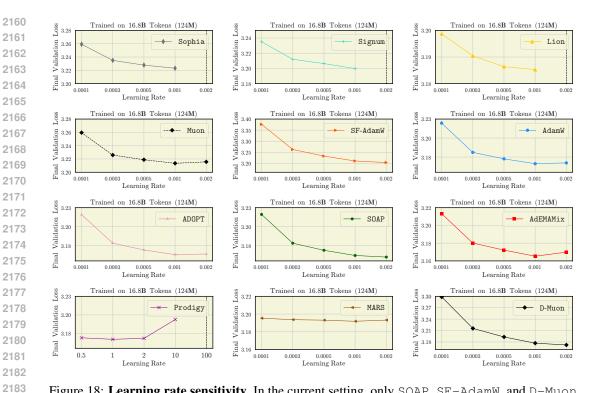
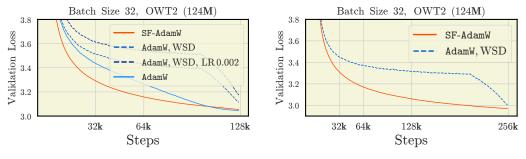


Figure 18: Learning rate sensitivity. In the current setting, only SOAP, SF-AdamW, and D-Muon reach the better performance with the large learning rate of 0.002. Conversely, Sophia and all sign-based methods (Signum and Lion) diverge with this learning rate value. MARS and Prodigy show a remarkably consistent performance across the learning rate sweep. And, Prodigy diverges for sufficiently large value of $\gamma_{\rm max}$ —see Figure 35 for more insights regarding the learning rate of Prodigy.



(a) Cosine scheduler outperforms WSD and (b) Performance gap narrows with longer training. SF-AdamW.

Figure 19: WSD scheduler underperforms both AdamW with cosine scheduler and SF-AdamW. This is the only experiment we conduct on the OpenWebText2 (OWT2) dataset. We follow the small-batch setup, and replicate the best hyperparameters of each optimizer found through our tuning process. Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned, we observe a surprisingly large performance gap between the WSD scheduler and its competitors. Figure (b) suggests that this gap may potentially diminish with extended training.

from Hägele et al. (2024): 20% of the steps for the cooldown, $(1-\sqrt{x})$ decay shape, and the learning rate is half the optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the method. Additionally, we point out that we do not include stochastic weight averaging (Izmailov et al., 2019) in the comparison, which might potentially enhance the overall performance. We ran the linear γ -scheduler with the same learning rates that we found through our tuning for cosine (Figures 6 and 18). We report our findings in Figure 20. All missing optimizers—AdamW, Muon, and Sophia—are in the main part; see Figure 8.

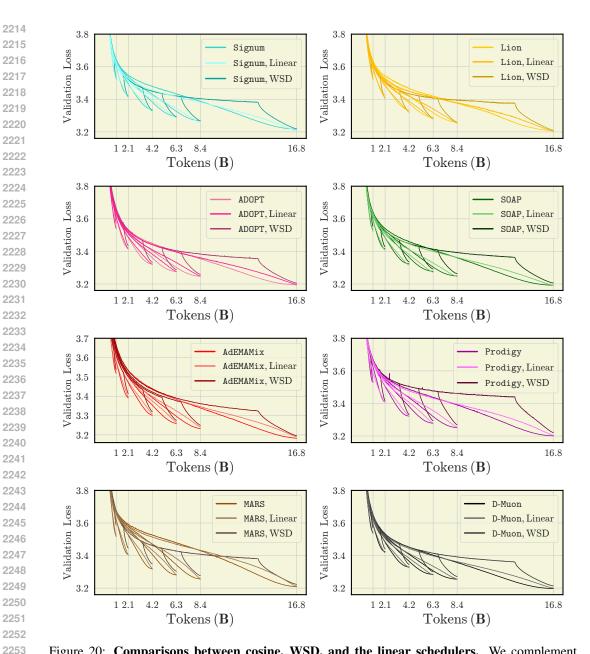


Figure 20: Comparisons between cosine, WSD, and the linear schedulers. We complement results in Figure 8 by extending them to all the optimizers considered in our benchmarking. In most cases, the tuned cosine baseline performs similarly to runs using the linear scheduler, with both slightly outperforming WSD. However, certain optimizers still tend to "prefer" different γ -schedulers. For example, Muon shows a preference in WSD (see Figure 8 (a)), AdamW performs better with the cosine scheduler, Signum and Lion appear to favor the linear scheduler. While the performance differences are not particularly large, they are still meaningful in the context of benchmarking. Therefore, we adopt the cosine scheduler as our default, as even small gaps can substantially impact our setup.

Takeaway 13. A choice of the learning rate scheduler is also optimizer-related. For most methods, the cosine scheduler dominates. However, linear scheduler outperforms or matches cosine and WSD for sign-based methods, SOAP, and MARS. WSD appears to be the best option for Muon. We also study the gradient norm patterns for all optimizers and highlight it for sign-based method, who attain the completely different "bump" shape.

Gradient norm patterns. We systematically track the evolution of gradient norms across weight decay (λ) , maximum learning rate $(\gamma_{\rm max})$, and learning rate scheduler sweeps in Figures 22 to 24. This analysis spans all optimizers in our benchmark, providing insight into how these hyperparameters influence gradient magnitude and stability. Our goal is to determine whether the gradient norm dynamics correlate with improved convergence and whether these trends are optimizer-specific or general. We also investigate whether deviations from expected patterns (e.g., premature flattening or explosive growth) can serve as indicators of suboptimal configuration, potentially informing better tuning heuristics.

Firstly, we study the dynamics of gradient norms while sweeping the learning rate schedulers—see Figure 22. This result complements the one in Figure 21. In general, Defazio et al. (2024a) argue that there exists an interdependence between the learning rate schedule and observed gradient norm patterns, proposing a schedule refinement for optimization algorithms. The observation that γ -scheduler can tract the gradient norm pattern and vice versa encourages us to expand experimental observations to optimizers studied in our benchmark.

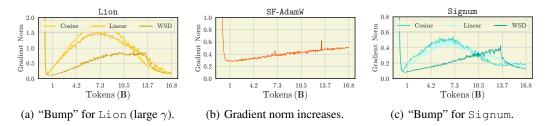


Figure 21: **Gradient norm patterns for different schedulers.** In our experiments with learning rate schedulers (Figure 8), we also track a gradient norm changes for all optimizers, showing how it is affected by the choice of the scheduler. We use our cosine baseline, linear scheduler with the same optimal learning rate as for cosine, and the WSD scheduler with a rule of thumb described in Appendix G. We found that gradient norm evolution for majority of optimizers resembles the SF-AdamW pattern in (b). Exceptions are sign-based methods—Signum (c), and Lion (a).

Prior works (Kosson et al., 2024b; Defazio, 2025) study the connection between gradient norm patterns, weight decay, and learning rate. Kosson et al. (2024b) explore how weight decay influences the update behavior of individual neurons in deep neural networks. The authors show that weight decay causes the weight norm to reach a stable equilibrium magnitude. At this equilibrium point, the opposing effects of gradient updates (which increase the norm) and weight decay (which reduce it) cancel each other out. Importantly, this study highlights the effectiveness of the decoupled weight decay for optimization over ℓ_2 regularization, noting that the gradient norm varies between neurons or layers for ℓ_2 regularization which is not the case for decoupled weight decay. In our experiments, we study how (decoupled) weight decay influences gradient norms—see Figure 23. We use the cosine learning scheduler and the best other hyperparameters found for optimizers, sweeping the weight decay across three critic values: 0, the standard one of 0.1, and the "large" weight decay of 0.5. Basically, these gradient norms were tracked during weight decay ablation and correspond to Figures 5 and 15. We observe that runs without weight decay typically result in gradient norm curves that are more flattened and with a smaller magnitude compared to runs with $\lambda \in \{0.1, 0.5\}$. Exceptions are sign-based methods, Muon, AdEMAMix, and Sophia. Using the large weight decay term of 0.5 results in a dramatic increase in the gradient norms towards the end of the training. Nevertheless, we present figures for long training runs of $7 \times$ Chinchilla optimal duration for 124M models (resp. 16.8B tokens and 128k steps)—where runs with $\lambda = 0.1$ outperform ones with $\lambda \in \{0,0.5\}$ —we emphasize that the same patterns of the gradient norms are also observed in shorter runs where $\lambda = 0.5$ still demonstrates the best performance.

Another key factor influencing the gradient norms is the learning rate. As with previous ablations on gradient norms (Figures 22 and 23), we follow our benchmarking setup (§ 3). During the learning rate sweep (Figures 6 and 18), we track the gradient norms presented in Figure 24. Notably, smaller learning rates result in larger gradient norm magnitudes, with exceptions for sign-based Signum and Lion. We also observe a dramatic increase in gradient norms for Muon with $\gamma_{\rm max}=0.0001$, which we attribute to the large difference between learning rates for 1D and 2D parameters, the latter typically set around 0.01 (see the "Learning rate Muon" row in Table 12). For Prodigy with

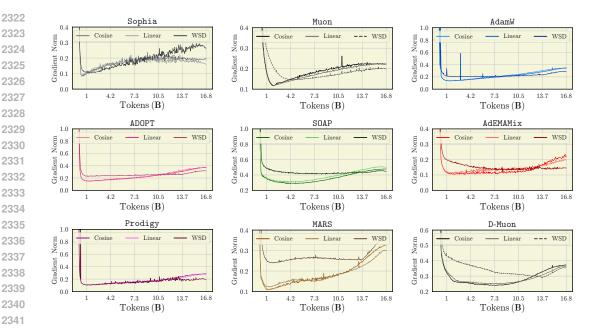


Figure 22: Gradient norm patterns for cosine, linear, and WSD γ -schedulers. We run all optimizers on 124M models and track the gradient norms (before clipping) for runs using different γ -schedulers. For most optimizers, we see that gradient norms tend to increase over the course of training with cosine and linear schedules. In contrast, WSD tends to produce flatter gradient norm trajectories, with consistently lower magnitudes toward the end of training compared to the other schedulers. Since the WSD scheduler maintains a constant learning rate until the cooldown phase (the final 20\% of the training length), we observe a more stable gradient norm behavior in later stages. In this regard, our findings align with prior works (Kosson et al., 2024b; Defazio, 2025), which explore a connection between the learning rate schedule and gradient norm dynamics. Interestingly, Signum and Lion—see Figure 21—exhibit a pronounced drop in gradient norm during the cooldown phase, setting them apart from the other optimizers.

 $\gamma_{\rm max} = 10$ the explosion in gradient norms might be caused by the critical value of the learning rate, which leads to divergence if increased.

Takeaway 14. (I) The WSD scheduler produces stable, flat gradient norm trajectories, contrasting with the increasing norms from cosine and linear schedules. (II) The impact of weight decay is optimizer-specific, with no single value (e.g., 0 or 0.1) universally yielding optimal stability; larger decay often increases norms late in training. (III) Smaller learning rates typically lead to larger gradient norms, a trend from which sign-based methods notably deviate.

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417 2418

2419

2420

2421

2422

2423

2424 2425

2426

2427

2428

2429

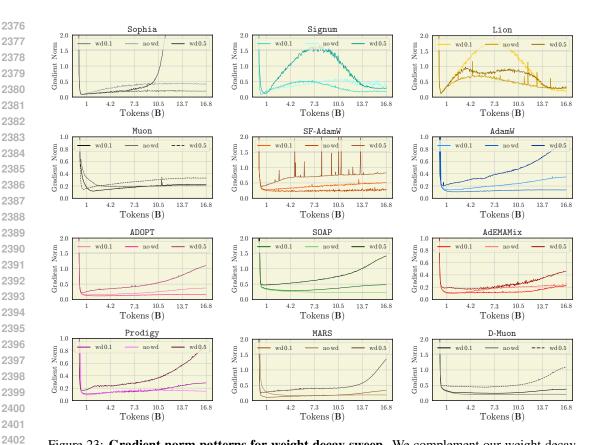


Figure 23: Gradient norm patterns for weight decay sweep. We complement our weight decay ablation (Figures 5 and 15) by tracking the gradient norms for all the optimizers studied in our benchmark. To highlight the effect of changing the weight decay, we use the same cosine γ -scheduler for all optimizers and keep the other best hyperparameters found, sweeping only the weight decay values as described in § 3—i.e., we fix the maximum learning rate and only change the weight decay. For Muon, we only sweep the weight decay for {embeds, scalar_params, lm_head} (as in the initial implementation, the weight decay has not been applied to matrix parameters), while for MARS, we only sweep the weight decay of 2D parameters. Our observations reveal that, regardless of optimizer used, runs with a larger weight decay result in higher gradient norms. For Muon, AdEMAMix, Sophia, and sign-based methods, runs with moderate $\lambda = 0.1$ result in the most flattened and smallest gradient norms in magnitude. While for AdamW-like methods, D-Muon, SOAP, Prodigy, and SF-AdamW, this holds for $\lambda = 0$. We attribute the discrepancies between D-Muon and Muon to the latter's absence of weight decay for matrix parameters. As shown in Figures 5 and 15, AdEMAMix can benefit from large weight decay for longer training durations. Runs of AdEMAMix with $\lambda = 0.5$ are still outperform those with $\lambda = 0.1$. Interestingly, this is reflected in the gradient norms, as the absolute values corresponding to $\lambda = 0.5$ are much smaller than those of the respective runs of other AdamW-like optimizers.

Learning rate decaying for 124M model. Prior ablation studies on 210M models (Figure 9) demonstrated that decaying the learning rate down to 10\% of its maximum value underperforms compared to $0.01, 0.001 \times \gamma_{max}$. To generalize this finding, we conduct the same ablation on a smaller 124M model. As before, we use three γ -schedulers—cosine, linear, and WSD, utilizing the best hyperparameters for AdamW at this scale, training for 16.8B tokens with the batch size of 256×512 tokens. We $\gamma_{\rm max} = 0.001$ —a robust and well-adopted value—and sweep the final learning rate $\gamma_{\rm end}$ across $\{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\} \times \gamma_{\rm max}$. We present the results of this ablation in Figure 25. Recently, the question of the learning rate decaying has been an interesting topic of discussion (Bergsma et al., 2025; Schaipp et al., 2025; Hägele et al., 2024), with works focusing on the explanations of the WSD scheduler pointing to the possible impact of decaying γ to zero (or very small magnitudes). Importantly, our ablations for models of two scales—124M and 210M—suggest that the optimal choice of γ_{end} may depend on the model scale. For example, $\gamma_{\rm end} = 0.01 \times \gamma_{\rm max}$ delivers the best performance for 210M model trained with WSD, while for

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

24692470

2471

24722473247424752476

247824792480248124822483

optimizers to explore in future work.

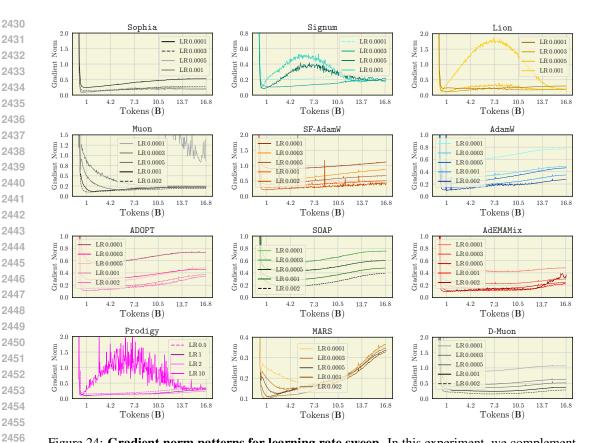
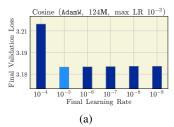


Figure 24: Gradient norm patterns for learning rate sweep. In this experiment, we complement the result on the learning rate sweep for optimizers (Figures 6 and 18) by tracking the gradient norms. We follow the same setup as for the γ -sensitivity ablation, varying the learning rates while training 124M language models for 16.8B tokens using a cosine γ -scheduler with $\gamma_{\rm end} = 0.01 \times$ $\gamma_{
m max}$. Except for Lion and Signum, we see that smaller $\gamma_{
m max}$ leads to larger magnitude of the gradient norms—unless the learning rate is high enough to nearly lead to divergence, e.g., $\gamma_{\rm max} = 10$ for Prodigy. Interestingly, we connect the "bump" shape of the gradient norms for sign-based methods with the fact that $\gamma_{\rm max}=0.001$, used for them, is close to the "critical" value, an increase of which also leads to divergence—and our experiments with these optimizers on larger models support this, as we were able to decrease γ in order to train properly. 124M model $\gamma_{\rm end} = 10^{-6} \times \gamma_{\rm max}$ takes the lead, which is closer to decaying to zero, as in prior works (Hägele et al., 2024; Schaipp et al., 2025). We also highlight that increasing the model size decreases the optimal learning rate for the model, thus the very small values of $\gamma_{\rm end}$ might not affect the final performance much, while slowing the training at the latest stage, which is undesirable for modern large-scale pretraining tasks. Furthermore, we do not conduct the learning rate decaying ablations for different optimizers, utilizing only AdamW. Thus, we point out that it is possible for

 $\gamma_{\rm end}$ to depend on the optimizer choice as well—this is an interesting branch of the research on



2485

2486

24872488

2489

24902491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

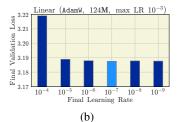
2533

2534

2535

2536

2537



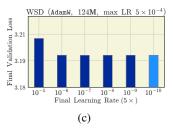


Figure 25: **Do not decay the learning rate down to 10%: ablation on 124M models.** We extend our ablation on learning rate decay from Figure 9 to studying the impact of the change of model parameters—reducing it from 210M to 124M. Consistent with our previous results, decaying the learning rate only down to 10% of the maximum results in significantly worse final performance, indicating the need for further decay. Notably, for the linear (b) and WSD (c) schedulers, the best choice of $\gamma_{\rm end}$ differs from that observed at 210M. For linear, the optimal setting shifts to $\gamma_{\rm end} = 10^{-4} \times \gamma_{\rm max}$ (vs. $10^{-3} \times \gamma_{\rm max}$ at 210M), and for WSD to $\gamma_{\rm end} = 10^{-6} \times \gamma_{\rm max}$ (vs. $10^{-2} \times \gamma_{\rm max}$ at 210M); see Figure 9 (b,c). Overall, while the differences in final performance beyond $0.1 \times \gamma_{\rm max}$ are relatively small, these results highlight that the optimal $\gamma_{\rm end}$ depends on model size, which in turn influences the appropriate learning rate schedule.

Fail of Sophia. Another striking effect we observed throughout our benchmarking experiments is the convergence issues of the Sophia optimizer. In the main text (see Takeaway 1), we reported that "Sophia diverges in the smallbatch setting when trained beyond the Chinchilla optimal horizon, even with sufficiently small learning rates." Later, we also noted that in the large-batch regime "Sophia exhibits convergence issues when extending the training run, diverging shortly after 130k steps." These phenomena are particularly puzzling, since Sophia does converge in long runs of 336k steps on MoE models. Figure 27 demonstrates loss curves of 124M Llama model trained with a small batch size of 32×512 tokens and using the cosine γ -scheduler. Initially, we used $\gamma_{\rm max} = 0.001$, which proved too large for this setup, so we switched to $\gamma_{\max} \in$ $\{1e^{-4}, 3e^{-4}, 5e^{-4}\}$. For runs up to T = 64ksteps, training converged properly. However, increasing the number of steps beyond this point led to divergence (see Figure 27 (a)). Interestingly, the divergence onset occurred at almost the same iteration for both $3e^{-4}$ and $5e^{-4}$ learning rate values. For reference, training with T = 128ksteps in the small-batch setup results in $\sim 2.1 B$ tokens, while the Chinchilla optimal horizon for this model is about 2.5B. Thus, Sophia fails to converge with such a small batch size even before reaching the optimal horizon. When switching to

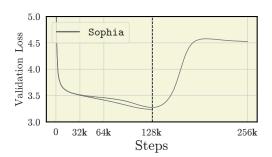
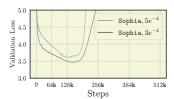
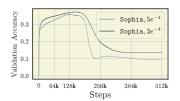


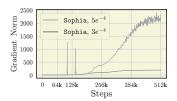
Figure 26: Sophia diverges in the largebatch setup, when training for many iter-In the small-batch setup, we observed that Sophia exhibited convergence issues. With batch size 256×512 , Sophia initially converges reliably across all training durations for 124M models used in our benchmarking. However, when extending training beyond 16.8B tokens, divergence reappears. To clearly visualize so, we present the best stable run (T = 128k steps, 16.8B tokens) with the unstable one (T = 256k steps, 33.6B tokens),using identical hyperparameters. The dashed line marks the iteration t = 129720 where divergence begins. This instability raises serious concerns about the practicality of Sophia for long training runs at scale.

a larger batch size of 256×512 , we initially observed stable convergence across training durations from $1\mathbf{B}$ to $16.8\mathbf{B}$ tokens (see Figure 3 (b)). The same held true for an even larger batch size of 512×512 tokens, where Sophia converged for $64\mathbf{k}$ iterations, i.e., $16.8\mathbf{B}$ tokens (see Figure 4, left). However, doubling the training steps with the 256×512 batch size again led to divergence (see Figure 26 and Figure 4, right). Using the same hyperparameters that worked well for $16.8\mathbf{B}$ tokens, we extended training to $33.6\mathbf{B}$ tokens ($\equiv 256\mathbf{k}$ iterations). Strangely, shortly after reaching $16.8\mathbf{B}$ tokens, Sophia diverged, with the failure occurring precisely at t = 129720 (marked by the dashed line). We do not attribute these issues to implementation bugs, since Sophia converges in much longer runs ($336\mathbf{k}$ steps) with larger $520\mathbf{M}$ models (see Figure 41). Instead, we caution prac-

titioners against relying on Sophia in its current form and emphasize that there remains substantial room for improvement. We also note that previous benchmarking work (Kaddour et al., 2023) evaluated Sophia only on BERT (Devlin et al., 2019) and T5 (Raffel et al., 2023) pretraining tasks (encoder-only and encoder-decoder architectures, respectively).







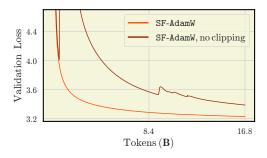
(a) Divergence after $\sim 2.1 \mathbf{B}$ to- (b) Next-token prediction accuracy. kens.

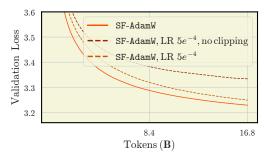
(c) Exploded gradient norms.

Figure 27: Sophia diverges in the small-batch setting even with sufficiently small learning rate. We train 124M Llama models with batch size 32×512 tokens for $T \in \{64,128,256,384,512,1024\}$ k iterations. Sophia diverges with the typical learning rate $\gamma_{\rm max}=0.001$, and even at smaller values (e.g., $3e^{-4},5e^{-4}$) it still fails shortly after 2.1B tokens ($\equiv 128$ k steps). Figures (a-c) show loss, next-token prediction accuracy, and gradient norms, respectively. For both reported $\gamma_{\rm max}$ values, divergence occurs at nearly the same iteration (within 10k steps, ~ 164 M tokens). We do not attribute this instability to implementation bugs, since Sophia converges on larger MoE models for longer horizons (Figure 41). Whether this instability is related to the Chinchilla optimal horizon remains unclear; however, with a larger batch size (256×512), Sophia again fails once training exceeds 16.8B tokens (see Figure 26).

Takeaway 15. (I) Sophia diverges in the small-batch setting, even with sufficiently small learning rate. (II) When training with an increased batch size, Sophia starts to diverge after exceeding some limit in iterations—nearly 7× Chinchilla optimal horizon in our experiments.

Clipping & SF-AdamW. Defazio et al. (2024b), when introducing the schedule-free concept, emphasized that gradient clipping should be disabled for SF-AdamW. Motivated by this claim, we paid particular attention to clipping during tuning. Following our setup (§ 3), we trained 124M models with a batch size of 256×512 tokens for up to 128k steps ($\equiv 16.8\mathbf{B}$ tokens). While sweeping the main hyperparameters of SF-AdamW—(β_1 , β_2), γ , λ , T_{warmup} —we also varied the gradient clipping threshold across $\{0.5,1\}$ and tested runs without clipping, as suggested in the original paper. Our results, summarized in Figure 28, show a clear discrepancy with prior claims. Disabling clipping consistently produced unstable training, with highly spiky loss curves (Figure 28a). To mitigate this, we reduced the learning rate from 0.001 to 0.0005, which largely stabilized the runs (Figure 28b). However, even under this adjustment, the best clipped run—with the clipping threshold of 0.5—still outperformed the no-clipping alternative. Thus, contrary to Defazio et al. (2024b), we find gradient clipping to be a critical hyperparameter for the stability of SF-AdamW.





(a) Disabling clipping causes instability to (b) Reducing γ helps, but the clipped baseline is better. SF-AdamW.

Figure 28: Clipping is significant for Schedule-Free. Contrary to the claims of Defazio et al. (2024b), we find that gradient clipping remains a critical hyperparameter for SF-AdamW. As shown in (a), disabling clipping causes severe training instabilities. To mitigate these undesired loss dynamics, we reduced the learning rate from 0.001 to 0.0005, which stabilized training (b). However, even under this adjustment, the clipped runs still outperform those without clipping.

Takeaway 16. Gradient clipping is crucial for stability of Schedule-Free AdamW.

Betas sensitivity. The impact of the beta parameters on optimizers—especially in Adam-like methods—has been studied both theoretically (Reddi et al., 2019; Défossez et al., 2022; Zaheer et al., 2018) and empirically (Pagliardini et al., 2024; Marek et al., 2025; Busbridge et al., 2023). However, many large-scale works in industry (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al., 2023; Team OLMo, 2024b; Jaghouar et al., 2024) either do not tune the betas at all or simply adopt conventional defaults ($\beta_1 = 0.9, \beta_2 = 0.95$). Earlier in this manuscript (Takeaway 9), we argued that betas should be tuned in tandem with training duration—a conclusion supported by extensive ablations and hyperparameter sweeps. Here, we demonstrate the most striking effects of tuning beta parameters, with a particular focus on β_2 . Our ablation focuses on "parameter-free" methods such as Prodigy (Figure 30), SF-AdamW (Figure 31), and the Adam-like optimizer ADOPT (Figure 29).

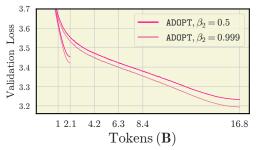
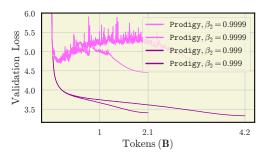
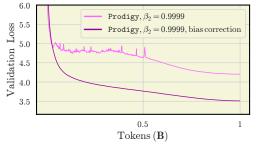


Figure 29: **ADOPT still needs** β_2 . One of the main theoretical claims of Taniguchi et al. (2024)—that ADOPT converges with any β_2 . The authors verify those on a toy problem motivated by Reddi et al. (2019). However, in LLM training, the choice of β_2 still matters significantly. Our results demonstrate that, despite theoretical guarantees, performance strongly depends on tuning β_2 in practice.

We highlight that: (I) despite the theoretical convergence guarantees of ADOPT for any β_2 , in practice the performance gap between the best and a poorly chosen β_2 remains substantial; (II) when the batch size is small (32×512 tokens), Prodigy is very sensitive to β_2 , even diverging when changing it from 0.999 to 0.9999, however, applying the bias correction—see line 7 of Algorithm 13—fixes this issue; (III) prior works (Hägele et al., 2024; Song et al., 2025) question a sensitivity of SF-AdamW to β_2 , which also studied by Defazio et al. (2024b) on image classification tasks, we confirm that changes in betas, especially β_2 , highly affects the overall performance, in Figure 31 (b) we compare our best found ($\beta_1 = 0.9, \beta_2 = 0.9999$) hyperparameters with default ($\beta_1 = 0.9, \beta_2 = 0.95$) used by Defazio et al. (2024b), and ($\beta_1 = 0.95$, $\beta_2 = 0.99$) noticed by Hägele et al. (2024).



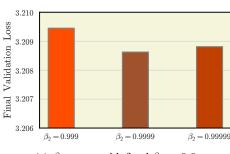


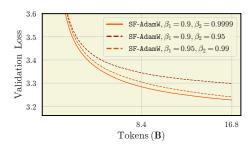
- (a) Minor change in β_2 leads to divergence.
- (b) Bias correction resolves issues with divergence.

Figure 30: **Prodigy** is sensitive to beta parameters in the small-batch setting. In this experiment, we follow our setup (§ 3) with a small batch size of 32×512 tokens, training $124\mathbf{M}$ models with the best hyperparameters while sweeping β_2 . Although $\beta_2 = 0.999$ yields the best results in this setting (see Table 17), even a slight change to $\beta_2 = 0.9999$ causes divergence. This occurs because (β_1, β_2) directly affect the internal statistics r_t , s_t , which determine the optimizer's effective learning rate. As shown in (b), enabling bias correction (see line 7 of Algorithm 13) effectively resolves this instability.

Takeaway 17. (I) Prodigy diverges with a minor change in β_2 , when the batch size is small. Using bias correction should resolve this issue. (II) SF-AdamW is sensitive to (β_1, β_2) ; we find that typically large β_2 values (e.g., 0.9999) are beneficial for schedule-free runs. (III) Despite the established convergence theory for any β_2 , ADOPT still requires careful tuning of this hyperparameter.

Muon's Newton-Schulz iterations. We briefly study the impact of Newton-Schulz iterations on the Muon optimizer, focusing on the first version of Muon with weight decay applied only to 1D param-





(a) β_2 sweep with fixed $\beta_1 = 0.9$.

(b) Comparison with Defazio (Defazio et al., 2024b) and Hägele (Hägele et al., 2024).

Figure 31: **Impact of beta parameters on Schedule-Free**. We elaborate further on the question of the sensitivity of SF-AdamW to β_2 . For language modeling, Defazio et al. (2024b) initially suggested using default ($\beta_1=0.9,\,\beta_2=0.95$). Then, Hägele et al. (2024) revisited hyperparameter tuning of the schedule-free optimizer, proposing to apply ($\beta_1=0.95,\,\beta_2=0.99$), which improved the performance a lot. Based on our tuning, we claim that ($\beta_1=0.9,\,\beta_2=0.9999$) achieves the best performance at this scale—see (**b**). In addition, we fix $\beta_1=0.9$ and report the result with sweep of $\beta_2\in\{0.999,0.9999,0.99999\}$, showing that the large and unconventional value of $\beta_2=0.9999$ is indeed the best in schedule-free runs. We also notice that SF-AdamW requires a slightly larger optimal β_2 , compared to all other optimizers.

eters. Recent research (Ahn & Xu, 2025; Amsel et al., 2025; Grishina et al., 2025) has extensively explored the Newton-Schulz orthogonalization procedure, examining its impact on the wall-clock speed, communication efficiency on many GPUs, and numerical precision formats. Additionally, the theoretical implications of orthogonalization procedures on optimizer convergence have been investigated in (Kovalev, 2025; Riabinin et al., 2025). In this ablation, we focus solely on the final loss performance of Muon, setting aside other considerations such as computational efficiency or wall-clock time. Following the tuning setup (§ 3) for smaller 124M parameter models with batch size of 256×512 tokens, we train for $2.1\mathbf{B}$ tokens ($\equiv 16\mathbf{k}$ steps), slightly below the Chinchilla optimal training horizon. Once the main hyperparameters of Muon are properly tuned, we sweep the number of Newton-Schulz iterations $T_{\rm NS} \in \{1,5,10,20\}$. The default setting for both Muon (Algorithm 8) and D-Muon (Liu et al., 2025) is $T_{\rm NS} = 5$. Our results indicate that $T_{\rm NS} \in \{5,10\}$, and 20 yield comparable performance, with $T_{\rm NS} = 5$ slightly outperforming the others. However, setting $T_{\rm NS} = 1$ significantly degrades performance. These findings are summarized in Figure 32. Importantly, we always use Nesterov momentum, when running Muon-like methods.

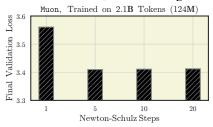


Figure 32: **Muon's dependence on the number of Newton-Schulz iterations.** We perform a short ablation targeting the final loss of Muon (Algorithm 8) by varying the number of Newton-Schulz iterations. Training is done for $16\mathbf{k}$ steps with a batch size of 256×512 tokens, sweeping $T_{\rm NS}\in\{1,5,10,20\}$. We find that increasing $T_{\rm NS}$ beyond 5 does not improve performance, while unnecessarily increasing wall-clock time.

Signum configurations. We consider the Signum optimizer (Algorithm 6), which, perhaps unexpectedly, demonstrates strong performance at a small scale and competes effectively with AdamW when batch sizes are large (Figure 4 (*left*)). A key factor contributing to this performance is the decoupled weight decay. However, a fixed weight decay alone does not fully account for Signum's efficiency. Another important ingredient is the momentum mechanism. In this ablation, we study two momentum configurations: Nesterov momentum (Nesterov, 1983) (our default, in Algorithm 6) and dampening, which is commonly used in PyTorch's implementation of SGD. We also compare both with the "plain" Signum, which uses conventional momentum without Nesterov. To give a

better understanding of these concepts, we provide a brief algorithmic description in Appendix C.2 and below:

1. Dampening update:

2754

2755

2756

27572758

275927602761

27622763

2764

27652766

2767

2768

2769

2770

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

27962797

2798

2799

2801

2802

2803

2804

2805

2806

2807

$$\begin{cases} \boldsymbol{m}_{t} \leftarrow \beta \boldsymbol{m}_{t-1} + (1-\tau)\boldsymbol{g}_{t}, \\ \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_{t} - \gamma_{t} \left(\operatorname{sign} \left(\boldsymbol{m}_{t} \right) + \lambda \boldsymbol{x}_{t} \right). \end{cases}$$

2. The "plain" update of Signum without Nesterov momentum:

$$\begin{cases} \boldsymbol{m}_{t} \leftarrow \beta \boldsymbol{m}_{t-1} + \boldsymbol{g}_{t}, \\ \boldsymbol{x}_{t+1} \leftarrow \boldsymbol{x}_{t} - \gamma_{t} \left(\text{sign} \left(\boldsymbol{m}_{t} \right) + \lambda \boldsymbol{x}_{t} \right). \end{cases}$$

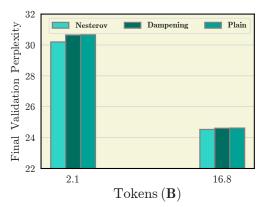


Figure 33: Comparison of different update rules for Signum. We evaluate three variants of the Signum update: Nesterov (our default), dampening—which resembles an EMA of m_t when the dampening parameter τ equals the momentum β —and the "plain" Signum without Nesterov momentum or dampening. Validation perplexity is reported for two training horizons in (256×512) batch size setting. The Nesterov variant corresponds to the runs included in our main benchmarking results (Figures 3 and 12). While Nesterov style momentum consistently achieves the best performance, the relative perplexity gap compared to the other variants decreases as the training horizon increases.

That is, the dampening update rule with $\tau=\beta$ resembles the basic EMA we used to see in methods such as AdamW—line 5 of Algorithm 1. And the "plain" Signum follows the conventional momentum style of SGD used in its Py-Torch implementation 7 .

The results of the comparison are shown in Figure 33. We ran three variations of the method for 2.1B and 16.8B in the "large" batch setup, and reported the final perplexity (PPL). For the Nesterov momentum version (our default), we use $\beta = 0.95$ found through careful tuning. For the damping version, we found that $\tau = 0.9$ is the best, i.e. the explicit momentum update at each iteration results in $m_t \leftarrow 0.95 \cdot m_{t-1} + 0.1 \cdot g_t$; we found this configuration to be slightly better than $\tau = \beta = 0.95$. The same $\beta = 0.95$ is used in the "plain" Signum configuration. In all cases, the method with Nesterov momentum leads with a significant margin (for LLM pretraining) of ~ 0.45 PPL for $2.1\mathbf{B}$ tokens run and ~ 0.11 PPL for long 16.8B tokens training over dampening and plain Signum variations. Interestingly, these margins vanish with the increased training horizon. We highlight the importance of Nesterov momentum for Signum runs in Takeaway 18. We also notice that Nesterov momentum slowdowns training, but not significantly, as

our wall-clock time ablation reveals that Signum, with Nesterov momentum, is still the fastest method in various scenarios.

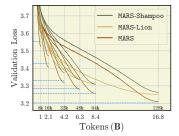
Takeaway 18. Signum with Nesterov momentum (our PyTorch implementation) consistently outperforms both the dampening variant (EMA-like) and the basic version without Nesterov.

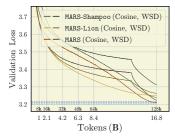
MARS types. In addition to the MARS optimizer that leverages Algorithm 14 to optimize 2D parameters, and AdamW to optimize 1D parameters and 1m_head, we also study MARS-Lion and MARS-Shampoo methods—Algorithms 15 and 16 respectively. Before delving into the experimental details, we note that it is possible to use MARS-like methods for all parameters of LLM, however, this would be inefficient and in the original codebase⁸, the default choice is to optimize all 1D parameters with AdamW. Therefore, we do the same in our experiments. For this ablation, we utilize 124M model and train for $T \in \{8, 16, 32, 48, 64, 128\}$ k with batch size of 256×512 (we report plots only for this batch setting), varying γ -schedulers and T_{warmup} . We observe similar patterns regarding the impact of weight decay on these methods—for the majority of the training

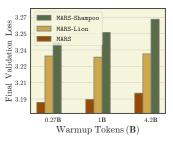
⁷torch.optim.SGD

⁸https://github.com/AGI-Arena/MARS

the loss curves with $\lambda = 0$ look "convex" and lie below the curves corresponding to $\lambda = 0.1$, but then runs with the non-zero weight decay take the lead. Regarding tuning MARS-Lion and MARS-Shampoo, we found interesting observations related to our previous experience in hyperparameter tuning. MARS-Lion, despite optimizing only 1D parameters with Lion, is also sensitive to warmup, as the latter method, and benefits from longer warmup durations—see Figure 34 (c). Similarly to Lion, MARS-Lion also prefers the WSD scheduler (Figure 34 (b)) that outperforms the corresponding runs with the cosine baseline. Notably, the best (β_1, β_2) parameters of MARS-Lion coincide with those found for Lion in Table 10 and in (Chen et al., 2023). Of all the MARS versions, MARS-Shampoo performs the worst. We also note that this variant of MARS is not included in the original paper's (Yuan et al., 2024) experiments on LLMs. In our setup with batch size of 256×512 both MARS (MARS-AdamW) and MARS-Lion do not outperform the AdamW baseline. However, this may be due to the smaller batch size: in the original work, the authors use $480 \times 1024 \ (\equiv 492 M$ tokens) batch size, and our experiments with the larger batch size of $1984 \times 512 \ (\equiv 1B \text{ tokens})$ see Figure 1—reveal that both MARS-AdamW and Lion greatly benefit from the increased batch size. Therefore, we highlight that it may be the case that MARS-Lion can outperform AdamW in some cases.







- (a) MARS family of methods.
- (b) Sensitivity to γ -schedulers.

(c) Warmup ablation.

Figure 34: MARS family of optimizers. We study three MARS-based algorithms: MARS-AdamW (just MARS in our work), MARS-Lion, and MARS-Shampoo. In this ablation, our goal is to complement our MARS runs with experiments for other similar methods, and support findings for these optimizer with our previous experience in tuning Lion. We replicate the setup from § 3 and train with the batch size of 256×512 for the same training durations as in Section 4.1. In (a), we show that, indeed, MARS-AdamW outperforms other alike methods, as reported in (Yuan et al., 2024) regarding the MARS-Lion optimizer. Interestingly, in (b), we show that the choice of γ -scheduler for MARS-based methods also depends on optimizer, as such, WSD runs of MARS-Lion outperform itself with cosine. Dashed blue and dark blue lines correspond to the AdamW baseline with cosine and WSD schedulers, respectively. Furthermore, in the same way as Lion benefits from larger warmup (Figure 7), MARS-Lion also improves with 8k steps (\equiv 1B tokens) warmup, however, this improvement is not as dramatic (c).

Takeaway 19. Among current MARS variants, MARS-AdamW is the best. Notably, other modifications—MARS-Shampoo and MARS-Lion are differently affected by γ -schedulers and warmup. MARS-Lion prefers the WSD scheduler over cosine, and shows the greatest stability to warmup sweep among all MARS-based methods.

On learning rates of Prodigy. Throughout our benchmarking results (Figures 1, 12 and 37), Prodigy consistently ranks among the top 6 optimizers, performing close to AdamW at smaller scales and maintaining strong performance even when applied to MoE architectures. Interestingly, when training 124M models with an increased batch size of 512×512 tokens, Prodigy outperforms the AdamW baseline, suggesting that its critical batch size (Erdil, 2024; Zhang et al., 2024a; Hoffmann et al., 2022) may be larger than that of AdamW. While highly efficient, Prodigy is generally easy to tune, except for its sensitivity to β_2 (Figure 30) in the small-batch setup. This robustness is attributed to its adaptive learning rate mechanism, which relies on two exponential moving average sequences

$$\begin{cases} r_t \leftarrow \sqrt{\beta_2} r_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 \langle \boldsymbol{g}_t, \boldsymbol{x}_0 - \boldsymbol{x}_t \rangle, \\ \boldsymbol{s}_t \leftarrow \sqrt{\beta_2} \boldsymbol{s}_{t-1} + (1 - \sqrt{\beta_2}) \gamma_t d_t^2 \boldsymbol{g}_t, \end{cases}$$

that control the learning rate magnitude with a multiplier of

$$d_{t+1} \leftarrow \max \left\{ d_t, \frac{r_t}{\|\boldsymbol{s}_t\|_1} \right\}.$$

At first, we define the effective learning rate of Prodigy as:

$$\gamma_{t+1}^{\text{eff}} := \gamma_t d_t, \tag{2}$$

thus, when bias correction is applied—which we found necessary to ensure stability for small batches—Equation (2) becomes:

$$\gamma_{t+1}^{\text{eff}} = \gamma d_t \frac{\sqrt{1 - \beta_2^t}}{1 - \beta_1^t},$$

where γ —the learning rate—is usually set to 1 for Prodigy, which we confirmed to work the best through the sweeps in Figures 6 and 18.

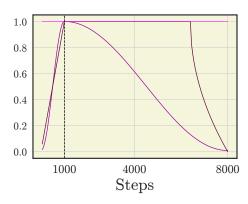
When introducing the concept of the effective learning rate γ^{eff} , we note that it depends on the momentum parameters (β_1, β_2) , the base learning rate γ , and the EMA sequences s_t , r_t . Moreover, applying a γ -scheduler further influences how γ evolves over iterations. To study these interactions, we examine the dynamics of the effective learning rate (Equation (2)) under different schedulers (Equation (2)). For this purpose, we train a small 124M model with the batch size of 256×512 tokens. The training horizon is short—8k steps—with a warmup of 1000 steps, and $\beta_2 = 0.999$ —the best for Prodigy in this setup according to our tuning. We also set the learning rate of Prodigy to 1 as in our best benchmarking runs. As in previous experiments, we apply WSD and cosine γ -schedulers, and additionally show a run without any scheduler. For the WSD scheduler in this ablation, we do not rescale γ to half the optimal value for cosine, as we are interested in the dynamics of γ_t^{eff} rather than the final performance; observing it without rescaling provides a clearer picture. Figure 35 (a) shows the dynamics of the effective learning rate γ_t^{eff} , while (b) illustrates the effect of applying scheduling to $\gamma = 1$. The starting points of the curves differ slightly due to variations in the final learning rate—cosine decays γ_t down to 0.01, whereas WSD decays it to zero using the $(1-\sqrt{x})$ decay pattern—however, those differences do not affect the qualitative shape of the figures obtained.

Interestingly, across all schedulers, we observe a common pattern—the effective learning rate warmup is longer than $T_{\rm warmup}=1000$ steps—meaning that Prodigy experiences an "implicit warmup" beyond the explicitly set value. Another notable observation is that when using the cosine scheduler with $\gamma=1$, the maximal effective learning rate reaches $\gamma_{\rm max}^{\rm eff}\sim 1.08\times$ larger than the learning rate of AdamW we use in a similar setting (0.001). Consequently, setting Prodigy's learning rate to the default value of 1 produces dynamics closely matching those of AdamW. This insight could be useful for practitioners as a proxy for tuning Adam-like optimizers: one can launch Prodigy with $\gamma=1$, track the effective learning rate (Equation (2)), and then set the AdamW peak learning rate to $\gamma_{\rm max}^{\rm eff}$. We highlight this one more time in Takeaway 21.

Takeaway 20. We explain the effectiveness of Prodigy in "learning rate-free" training through the concept of the effective learning rate (Equation (2)). Determined by two EMA sequences, the effective learning rate mimics the behavior and magnitude of the learning rate in AdamW-like methods. Importantly: (I) the magnitudes of the effective learning rate are close to those of AdamW; (II) effective learning rate ensures an implicit warmup that is longer than initially set.

Takeaway 21. We point out that it might be interesting for researchers to try Prodigy as a proxy for learning rate tuning of Adam-like methods, e.g., (I) tune betas of Prodigy, (II) set $\gamma=1$, (III) track $\gamma_t^{\rm eff}$, and (IV) look at the $\gamma_{\rm max}^{\rm eff}$ and set the learning rate of the Adam-like method to this value.



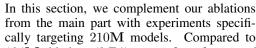


- (a) Effective learning rate of Prodigy.
- (b) Learning rate of Prodigy.

Figure 35: EMA sequences of Prodigy result in the effective learning rate that emulates the dynamics of learning rate that we used to observe for AdamW. Fixing the peak learning rate at $\gamma=1$ (following Mishchenko & Defazio (2024)), the EMA sequences r_t and s_t (lines 8, 9 of Algorithm 13) result in the effective learning rate shown in (a). The dashed line indicates the warmup duration. Across all schedulers and the run without a γ -scheduler, the warmup of $\gamma_t^{\rm eff}$ (a) is consistently longer than that of γ_t (b), providing an implicit warmup. With cosine and WSD schedulers, the peak $\gamma_t^{\rm eff}$ exceeds that of the run without a scheduler. Notably, the peak effective learning rates, especially for the cosine scheduler, are very close to the default value 0.001 used for AdamW at this model scale. This demonstrates that Prodigy may guide practitioners in tuning learning rates for Adam-like optimizers.

F.2 Ablations for 210M model

Results with a batch size of 256×512 . In this section, we verify if our selected hyperparameters from smaller 124M allow accurate transfer to a slightly larger model. We point out that the most important hyperparameters to be sweeped are learning rate and gradient clipping. Regarding the learning rate, we observe that it only becomes a sensitive choice for signbased methods, while the optimal hyperparameters for AdamW remain the same. After retuning the learning rate for sign-based optimizers (see Appendix G.2), we replicate the setup from § 3: we stay in the "large" batch regime and train for the same number of steps (tokens) as in Figure 3 (b). We report our benchmarking for 210M models in Figure 36 and the training dynamics of optimizers in Figure 37.



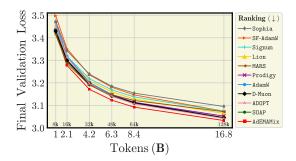


Figure 36: Ranking of optimizers for 210M models with the batch size of 256×512 tokens. Increasing a model size from 124M to 210M results in almost identical ranking of optimizers compared to Figure 3 (b). At this scale, we observe a smooth transition in our benchmarking.

124M ablations (§ F.1), we perform fewer studies here. We focus on two aspects: the sensitivity of ADOPT to its ε hyperparameter, and the impact of weight initialization in LLMs and its interaction with the warmup.

Complementing benchmarking results of 210M models. In addition to results from the main part, we show the dynamics of the validation loss in Figure 37. The presented runs correspond to those in Figure 36.

2972

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2989

2990

2991

2992

2993

2995

2996

2997

2998

2999

3000

3001

3003

3004

3005

3006

3007 3008

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

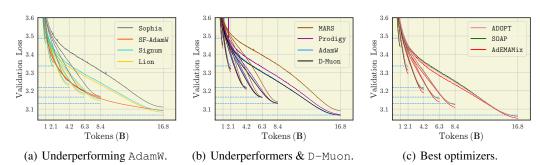


Figure 37: Comparing optimizers for training a 210M parameter LLM. We plot the training dynamics of: (a,b) optimizers that underperform AdamW for pretraining a 210M model; (c) optimizers that outperform AdamW in this setup. A complete ranking of methods in this setting is in Figure 36.

ADOPT is sensitive to the epsilon hyperapameter, but the suggested $\varepsilon = 10^{-6}$ is the best. Among the many important hyperparameters, some receive less attention despite their influence. For Adam-like methods, one such parameter is ε in the denominator of the update rule. While the default and widely accepted value for AdamW is 10^{-8} , there is ongoing discussion in the community regarding other values that can significantly degrade training (Team OLMo, 2024a; He et al., 2024). The ADOPT optimizer also includes this hyperparameter—see line 6 of Algorithm 2. Interestingly, the authors recommend using a larger value of $\varepsilon = 10^{-6}$, which is higher than the conventional choice for Adamw. We perform a sweep over ε , keeping all other hyperparameters at their best values, and report the results in Figure 38. As suggested by Taniguchi et al. (2024), $\varepsilon = 10^{-6}$ outperforms all other tested values, with a noticeable margin for $\varepsilon \leq 10^{-5}$.

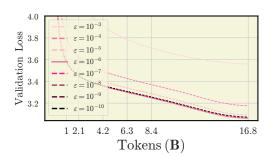


Figure 38: **ADOPT's sensitivity to** ε . Interestingly, the suggested by the authors $\varepsilon=10^{-6}$ is the best hyperparameter for this method. There is not a noticeable difference in convergence for $\varepsilon=\{10^{-6},10^{-7},10^{-8},10^{-9},10^{-10}\}$, but the values of 10^{-5} and above give a much morse results.

Changing weight initialization and the effect on warmup. A common approach to weight initialization in LLMs is the truncated Gaussian distribution with a predefined standard deviation (std). In popular codebases for scalable training (Shoeybi et al., 2020; Rasley et al., 2020; Team OLMo, 2024a), the default std is 0.02. Notably, in DeepSeek-V3 (DeepSeek-AI, 2024b), the default std is reduced to 0.006. Previously established connections between weight initialization and warmup report twofold results: ones (Huang et al., 2020; Zhu et al., 2021) state that with a smaller std, one can reduce or even eliminate the need for warmup, while others (Kalra & Barkeshli, 2024; Kosson et al., 2024a) highlight the importance of warmup for small weight initializations. In our experiments, we investigate how both initialization styles interact with the warmup duration and the batch size scaling. Specifically, we compare the DeepSeek style initialization (std = 0.006) with the conventional initialization (std = 0.02). We use two batch size settings: 512×512 tokens and 256×512 tokens, training Llama-based models for two horizons $T \in \{32, 128\}$ k steps and sweep $ing T_{warmup} \in \{50, 500, 1000, 2000\}$ iterations. For this ablation, we use only AdamW with all other hyperparameters set to the best values identified from tuning of 210M models. We report the results in Figure 39. Overall, we observe that smaller weight initialization favors longer warmup durations and performs significantly worse with short warmup. Increasing the batch size reduces this gap for shorter warmups, suggesting an interplay between initialization scale, warmup duration, and batch size.

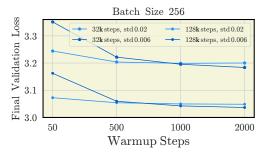


Figure 39: Weight initialization with smaller std prefers longer warmup. We compare final loss of models trained with AdamW using two weight initializations: the conventional std = 0.02 and a smaller std = 0.006 as in DeepSeek. We vary the training horizon, warmup duration, and batch size (without changing the number of iterations). Our results indicate that smaller initialization benefits from longer warmup, leading to better performance compared to std = 0.02. However, with very short warmup, the conventional initialization outperforms the smaller one. Interestingly, increasing the batch size reduces the performance gap between the two initializations for longer training runs.

Takeaway 22. Weight initialization with smaller standard deviation, as in DeepSeek, benefits from longer warmup but underperforms with very short warmup. Increasing the batch size reduces the performance gap between small and conventional initializations.

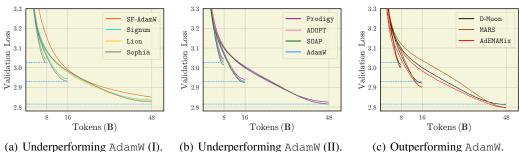
F.3 Ablations for 720M model

Complementing benchmarking results of 720M models. In addition to results from the main part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond to those in Figure 1.

We observe that sign-based methods and Sophia require careful re-tuning of the learning rate to converge on larger models. Notably, despite increasing the training horizon in terms of tokens, with larger batch size, the number of steps is reduced compared to our runs in § 4.1 and § 4.2; in this part of the benchmarking, we consider runs of $\{8, 16, 48\}$ k iterations (the Chinchilla optimal duration at ~ 14.4 k). This reduction in steps necessitates re-tuning optimizer-related hyperparameters such as β_2 . We describe hyperparameter changes in Appendix G.4.

Studying the training dynamics (Figure 40), we find that SF-AdamW, and sign-based Lion and Signum scale poorly. Sophia can outperform our AdamW for short runs of 8k iterations, but then degrades significantly. Interestingly, MARS greatly benefits from this setup, emerging the second best-performing optimizer, closely following AdEMAMix: as it benefits from large batch size (see Figure 4 (*left*)), and does not degrade with increased model size unlike Signum, and Lion. On another hand, Prodigy was proven to be more beneficial at larger batch size, however, this setup it occured to be less performant. D-Muon is consistent across all settings we have tried, while Muon degrades when scaling model size (Figure 16 (c)).

As in (Vyas et al., 2024), we find that SOAP outperforms AdamW at the Chinchilla optimal duration and below. However, in longer training, AdamW narrows the gap and eventually surpasses SOAP. Another claim regarding the SOAP optimizer—that it is more beneficial, when the batch size is sufficiently large—remains quite questionable: (I) as Figure 10 (runs with 2M batch size) suggests that the matter of SOAP being better than AdamW is conditioned by the setup choice, which when properly tuned turns that AdamW becomes better even at Chinchilla optimal duration; (II) when considering 1M batch size setup in Figures 1 and 40, the performance gain of SOAP over AdamW is less pronounced than in our settings with smaller batches for 124M and 210M models (see Figures 12 (b) and 37 (c)).



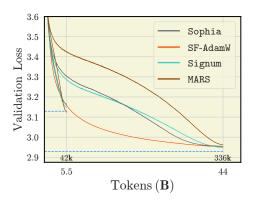
(a) Underperforming AdamW (I).

(c) Outperforming AdamW.

Figure 40: Comparing optimizers for training a 720M parameter LLM. We conduct runs with the batch size of 1M tokens. While previous ablations (see Figure 4) reveal that sign-based methods can outperform AdamW at sufficiently large batches, this advantage does not persist when scaling model size. On another hand, MARS, that also benefits from the increased batch size, along with AdEMAMix dominates over other optimizers with a huge gap.

F.4 ABLATIONS FOR 520M MOE MODEL

Complementing ablations regarding transfer to MoE models. In addition to results from the main part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond to those in Figure 11.



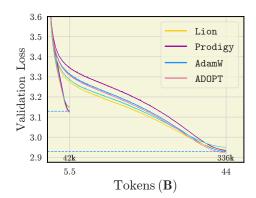


Figure 41: Comparing optimizers for training a 520M parameter MoE. Training dynamics of leading optimizers is in Figure 2. Results closely remind those in Figure 12 (a,b). The AdamW baseline by far outperforms Sophia, SF-AdamW, MARS, and sign-based methods for 44B training horizon. Remarkably, in the same way as Prodigy followed AdamW in Figure 12 (b), we observe a similar situation for the MoE model.

F.5 WALL-CLOCK PERFORMANCE OF OPTIMIZERS ACROSS MODELS OF DIFFERENT SCALE

After conducting experiments for models of different sizes, we are ready to present the wall-time comparison for each method. For this purposes, we use a single GPU, and run each optimizer for 100 iterations on a small batch size of 16 without gradient accumulation and torch.compile. In this ablation, we consider a wider range of model sizes (30M-1B). We run each method 5 times with different seeds, compute the standard deviation, and report the mean wall-clock time per 100 iterations for each model configuration. We observe that all methods take the roughly the same or very

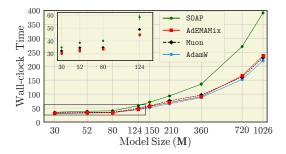


Figure 42: **Wall-clock time comparison.** SOAP slows down the most as model size increases.

close time to complete 100 iterations, with the exception of SOAP. We point out that wall-clock time for all optimizers exhibits a linear dependence on the model size ("model size" axis is rescaled in plots). However, SOAP slows down faster and we may expect a slowdown further, due to its preconditioner matrices operations which are fast only for certain matrices that are smaller than a predefined size. See details of this ablation in Appendix F.5, and Figures 43 and 44.

Takeaway 23. Most optimizers exhibit similar wall-time performance, with sign-based methods being slightly faster (Figure 43). SOAP is the main exception, showing a notable slowdown as model size increases.

We complement the wall-clock performance analysis from (Figure 42) by presenting complete results for all optimizers. The experimental setup is simple and consistent: we use a batch size of $16~(16\times512~\text{tokens})$, run for 100~iterations on a single GPU, without gradient accumulation, and we do not apply torch.compile. Precise model configurations for all scales (30M-1B) are reported in Table 2.

Table 2: Configurations for our Llama-like models for the wall-clock experiments.

# Parameters	30M	52M	80M	124M	150M	210M	$360 \mathrm{M}$	720M	1026M
Hidden size	384	512	768	768	768	768	1024	2048	1792
# Attention heads	6	8	6	12	12	12	16	16	14
# Layers	8	8	6	12	16	24	24	12	24
Init. std	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Use bias	no	no	no						
RMSNorm epsilon	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
Positional encoding	RoPE	RoPE	RoPE						

Figure 43 shows a bar plot summarizing wall-clock time comparisons for all optimizers. Additionally, Figure 44 visualizes the per-optimizer behavior when scaling model size, omitting SOAP, AdEMAMix, Muon, and AdamW, as their results are already presented in the main part—see Figure 42.

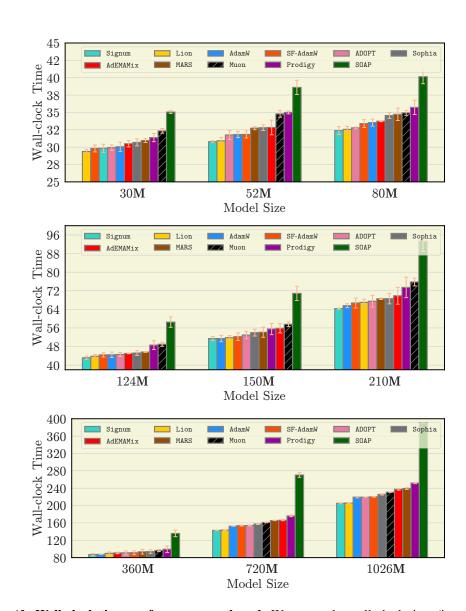


Figure 43: Wall-clock time performance: gathered. We report the wall-clock time (in seconds) for training each model for 100 iterations using a small batch size of 16×512 tokens on a single GPU, without gradient accumulation or torch.compile. Bars show the ranking of optimizers from fastest (Signum) to slowest (SOAP) gathered across all model scales. While the differences between most optimizers are small, SOAP is consistently slower. The absolute times may vary depending on the hardware, but the relative patterns remain consistent.

G HYPERPARAMETER TUNING

How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algorithms, starting with smaller models (124M, 210M) and extrapolating to larger, 583M and 720M models. Our tuning process for 124M model focused on two primary settings: "small" batch setting (32 batch size) and "large" batch setting (256 batch size). For both settings, we use a sequence length of 512 tokens, resulting in 16k and 130k tokens per batch, respectively. If the batch cannot fit into memory, we use gradient accumulation steps, while maintaining the effective batch size.

We also include ablations on even larger batch size for 124M models, where we train on 512 batch size (260k tokens correspondingly). We train 583M models on the batch size of 3936, preserving the basic sequence length of 512, that is, $\sim 2M$ tokens. And the larger models for benchmarking purposes—of 720M—were trained on the batch size of 1984, resulting in $\sim 1M$ tokens.



Figure 44: **Wall-clock time performance: individual.** Complementing Figures 42 and 43, this figure shows the evolution of wall-clock time per 100 iterations for each optimizer as model size increases. Optimizers already shown in the main part are omitted. To improve visualization, the abscissa is re-scaled to highlight the increase in wall-clock time with model size.

We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal training length using *cosine learning rate scheduler* (except for SF-AdamW):

- for 124M models we tune at 2.1B tokens for both "small" (32) and "large" (256) batch size setting (see Appendix G.1),
- for 210M models we replicate training runs with the best hyperparameters found at 124M scale, except for the learning rate (see Appendix G.2),
- at 583M scale, we only ablate the effect of the z-loss regularizer while training with AdamW and SOAP on a near-Chinchilla optimal number of tokens (see Appendix G.3),
- for 720M models we tune at 16B tokens (see Appendix G.4),
- our MoE setting we discuss in-depth in Appendix G.5.

We present the configurations for different training horizons in Tables 3, 4, 6, 5.

Table 3: Lengths of training for "Small" batch settings (32×512).

# Parameters			Tokens	(Iterations)			Chinchilla Tokens
$124\mathbf{M}$	1 B (64 k)	$2.1\mathbf{B} (128\mathbf{k})$	$4.2\mathbf{B} (256\mathbf{k})$	6.3 B (384 k)	8.4 B (512 k)	$16.8\mathbf{B} (1024\mathbf{k})$	2.5 B
$210\mathbf{M}$	1B (64k)	$2.1\mathbf{B} (128\mathbf{k})$	$4.2\mathbf{B} (256\mathbf{k})$	$6.3\mathbf{B} \ (384\mathbf{k})$	$8.4\mathbf{B} (512\mathbf{k})$	$16.8\mathbf{B} (1024\mathbf{k})$	$4.2\mathbf{B}$

Table 4: Lengths of training for "Large" batch settings (256×512).

# Parameters	Tokens (Iterations)					Chinchilla Tokens	
$124\mathbf{M}$	1B(8k)	$2.1\mathbf{B}\ (16\mathbf{k})$	$4.2\mathbf{B}\ (32\mathbf{k})$	$6.3\mathbf{B}\ (48\mathbf{k})$	$8.4\mathbf{B} \ (64\mathbf{k})$	$16.8\mathbf{B} (128\mathbf{k})$	$2.5\mathbf{B}$
$210\mathbf{M}$	1 B (8 k)	$2.1\mathbf{B} (16\mathbf{k})$	$4.2\mathbf{B}\ (32\mathbf{k})$	$6.3\mathbf{B}\ (48\mathbf{k})$	8.4 B (64 k)	$16.8\mathbf{B} (128\mathbf{k})$	$4.2\mathbf{B}$

Table 5: Lengths of training for 2M (3936 \times 512) batch size setting.

# Parameters	Tokens (Iterations)	Chinchilla Tokens
$583\mathbf{M}$	13B(6.5k)	$11.7\mathbf{B}$

Table 6: Lengths of training for 1M (1984 \times 512) batch size setting.

# Parameters	To	okens (Iterati	ons)	Chinchilla Tokens
$720\mathbf{M}$	8B (8k)	16B (16k)	48 B (48 k)	$14.4\mathbf{B}$

Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M model and re-tuned the learning rate, beta parameters, and gradient clipping. For dense LLMs, summarize this process in Appendices G.1, G.2, G.3, G.4, and cover the MoE setup in Appendix G.5.

Additionally, when we report the effect of a particular hyperparameter, we assume that the remaining hyperparameters of the algorithm have already been tuned. Thus, the results isolate and highlight only the impact of the chosen hyperparameter on overall performance.

Hyperparameters used in our experiments with learning rate schedulers. Once we found the best setting for each method using cosine learning rate scheduler, we are ready to obtain the optimal performance of our method with WSD (Hu et al., 2024) and linear schedulers. For the latter one, we use the same hyperparameters as for the cosine scheduler. However, for WSD, we follow the rule of thumb from (Hägele et al., 2024):

• use half the optimal learning rate for the cosine scheduler,

• use 20% of iterations for cooldown phase,

• use $(1 - \sqrt{x})$ decay shape for the cooldown phase,

 the only difference is that we do not employ stochastic weight averaging (Izmailov et al., 2019).

 Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate. For Muon and MARS, we reduce both AdamW's learning rate and the learning rate for non-1D parameters. This approach ensures a fair comparison while accounting for the unique properties of each optimizer.

Importantly, the rule of thumb (Hägele et al., 2024) for using the decay shape $(1 - \sqrt{x})$ works better in our setting. We use exactly this shape during the cooldown phase of the WSD scheduler for all optimizers.

We report a series of comparisons between different schedulers in Figures 8, 19 and 20.

It has been shown (Hägele et al., 2024; Bergsma et al., 2025) that annealing the learning rate to smaller values than 10% of the maximum learning rate improves performance. We consider three mentioned schedulers, and report the ablation on the learning rate decay for the 210M models in Figure 9, and for the 124M models in Figure 25. In the tables that show the greed-search across hyperparameters we mention the learning rate decay factor (Final learning rate $X\times \max LR)$ only for those optimizers, where we performed the corresponding ablation for. If this field is omitted from the table, we use $0.01\times\gamma_{\max}$ for this method regardless of the learning rate scheduler applied.

G.1 124M PARAMETERS MODEL

Below, we provide tables with complete information regarding hyperparameter tuning for 124M models including the important sweeps (weight decay, warmup, etc.) conducted for our ablations.

Table 7: AdamW hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.0001, 0.0005 , 0.0008, 0.001, 0.002	0.0001, 0.0003, 0.0005, 0.001 , 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 5000, 8000	500, 1000, 2000 , 3000, 8000, 32000
Weight decay	0.1	no, 0.1 , 0.5, 0.7
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	no, 0.5 , 1, 1.5	no, 0.5, 1
Adam \emptyset eta_1	0.5, 0.8 , 0.9	0.8, 0.9
Adam $\!$	0.95, 0.999	0.95, 0.99, 0.999 , 0.9999
Final learning rate $X \times max$ cosine LR	_	10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6}
Final learning rate X × max WSD LR	_	$10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, \mathbf{10^{-6}}$
Final learning rate $X \times max$ linear LR	_	$10^{-1}, 10^{-2}, 10^{-3}, \mathbf{10^{-4}}, 10^{-5}, 10^{-6}$

Table 8: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.001	0.0001, 0.0003, 0.0005, 0.001 , 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000 , 8000, 32000
Weight decay	0.1	no, 0.1 , 0.5
Learning rate decay scheduler	WSD, cosine	WSD, cosine , linear
Gradient clipping	0.5	no, 0.5 , 1
ADOPT eta_1	0.9	0.8, 0.9
ADOPT eta_2	0.999 , 0.9999	0.5, 0.999 , 0.9999
ADOPT $arepsilon$	10^{-6}	10^{-6}

Table 9: AdEMAMix hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.0001, 0.0005 , 0.0008, 0.001, 0.002	0.0001, 0.0003, 0.0005, 0.001 , 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000 , 8000, 32000
Weight decay	0.1	no, 0.1 , 0.5, 0.7
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	no, 0.5 , 1, 1.5	no, 0.5 , 1
Ademamix eta_1	0.5, 0.8 , 0.9	0.8, 0.9
AdEMAMix eta_2	0.999	0.999 , 0.9999
Ademamix eta_3	0.999, 0.9999 , 0.99995	0.999 , 0.9999
Ademamix α	5, 8, 12	8

Table 10: Lion hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.00005, 0.0001 , 0.0005, 0.001	0.0001, 0.0005, 0.001 , 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000	2000, 8000, 32000
Weight decay	no, 0.1, 0.2, 0.5	no, 0.1 , 0.5, 0.7
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	0.5	no, 0.5 , 1
Lion eta_1	0.7, 0.9 , 0.99	0.5, 0.9
Lion eta_2	0.9, 0.99 , 0.999	0.99 , 0.999

Table 11: Signum hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.0003, 0.0005, 0.001	0.0001, 0.00030.0005, 0.0003, 0.001 , 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	2000, 3000	2000, 8000 , 32000
Weight decay	no, $0, 0.1, 0.5$	no, 0, 0.1 , 0.5, 0.7
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	no, 0.5 , 1	no, 0.5 , 1
Momentum	no, 0.9, 0.95	no, 0.9, 0.95 , 0.99
Nesterov momentum	no, yes	no, yes

Table 12: **Muon hyperparameter tuning for our 124M parameter large language models.** Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate AdamW	0.0001, 0.0003, 0.0005, 0.001 , 0.002	0.0001, 0.0003, 0.0005, 0.001 , 0.002
Learning rate Muon	0.001, 0.01 , 0.02	0.001, 0.01 , 0.02
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000 , 8000, 32000
Weight decay	no, 0.1 , 0.5	no, 0.1 , 0.5
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	no, 0 .5	no, 0.5 , 1.0
Momentum Muon	0.9, 0.95, 0.99	0.95 , 0.99
Optimizer for 1D layers	AdamW	AdamW
Optimizer for 1D layers, β_1	0.8, 0.9	0.8, 0.9
Optimizer for 1D layers, β_2	0.99, 0.999 , 0.9999	0.99, 0.999 , 0.9999
Newton-Schulz a	3.4445	3.4445
Newton-Schultz b	-4.7750	-4.7750
Newton-Schultz c	2.0315	2.0315
Newton-Schultz iterations	5	1, 5, 10, 20
Nesterov momentum	no, yes	no, yes

Table 13: **D-Muon hyperparameter tuning for our 124M parameter large language models.** Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.001	0.0001, 0.0003, 0.0005, 0.001, 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000	2000 , 8000, 32000
Weight decay	0.1	no, 0.1 , 0.5
Learning rate decay scheduler	WSD, cosine	WSD, cosine , linear
Gradient clipping	no, 0.5	no, 0.5 , 1.0
Momentum D-Muon	0.95	0.95
Optimizer for 1D layers	AdamW	AdamW
Optimizer for 1D layers, β_1	0.8, 0.9	0.8, 0.9
Optimizer for 1D layers, β_2	0.99, 0.999 , 0.9999	0.99, 0.999 , 0.9999
Newton-Schulz a	3.4445	3.4445
Newton-Schultz b	-4.7750	-4.7750
Newton-Schultz c	2.0315	2.0315
Newton-Schultz iterations	5	5
Nesterov momentum	yes	yes

Table 14: SOAP hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.005, 0.001	0.0001, 0.0003, 0.0005, 0.001, 0.002
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000 , 4000, 8000, 12000, 16000, 32000
Weight decay	0.1	no, 0.1 , 0.5
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	0.5	no, 0.5 , 1
Preconditioner dimension	10000	10000
Preconditioning frequency	1, 5, 10	1, 5, 10
SOAP eta_1	0.8, 0.9	0.8, 0.9 , 0.95
SOAP eta_2	0.95, 0.99, 0.999 , 0.9999	0.95, 0.99, 0.999 , 0.9999

Table 15: Sophia hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.0001, 0.0003 , 0.0005, 0.001, 0.002	0.0001, 0.0003, 0.0005, 0.001 , 0.002, 0.01
Batch size	32	256
Sequence length	512	512
Number of warmup steps	2000 , 3000	2000, 8000, 32000
Weight decay	0.1	no, 0.1 , 0.5
Learning rate decay scheduler	WSD, cosine	WSD, cosine, linear
Gradient clipping	0.5	no, 0.5 , 1
Estimator	Gauss-Newton-Bartlett	Gauss-Newton-Bartlett
Estimator frequency	10	10
Sophia eta_1	0.9	0.8, 0.9
Sophia eta_2	0.95, 0.999 , 0.9999, 0.99999	0.95, 0.999 , 0.9999, 0.99999
Sophia $ ho$	0, 0.03, 0.04	0, 0.03, 0.04

Table 16: Schedule-Free AdamW hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.0001, 0.0003, 0.0005, 0.001 , 0.005	0.0001, 0.0003, 0.0005, 0.001, 0.002 , 0.005
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000, 4000, 8000 , 12000, 16000, 32000
Weight decay	no, 0.05, 0.1 , 0.5	no, 0.05, 0.1 , 0.5
Learning rate decay scheduler	no	no
Gradient clipping	no, 0.5	no, 0.5 , 1
Schedule-Free AdamW eta_1	0.9 , 0.95, 0.98	0.9, 0.95, 0.98
Schedule-Free AdamW eta_2	0.95, 0.99, 0.999, 0.9999 , 0.99999	0.95, 0.99, 0.999, 0.99999 , 0.99999

Table 17: Prodigy hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate	0.5, 1	0.5, 1 , 2, 10, 100
Batch size	32	256
Sequence length	512	512
Number of warmup steps	3000 , 8000	2000 , 4000, 8000, 12000, 16000, 32000
Weight decay	no, 0.1 , 0.5	no, 0.1 , 0.5
Learning rate decay scheduler	no, WSD, cosine	no, WSD, cosine , linear
Gradient clipping	no, 0.5 , 1	no, 0.5 , 1
Prodigy eta_1	0.9	0.8, 0.9
Prodigy eta_2	0.99, 0.999 , 0.9999	0.999 , 0.9999
Prodigy bias correction	no, yes	no, yes

Table 18: MARS (MARS-AdamW) hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate AdamW	0.0001, 0.0005, 0.001 , 0.003	0.0001, 0.0005, 0.001 , 0.003
Learning rate MARS	0.001, 0.003	0.001, 0.003
Batch size	32	256
Sequence length	512	512
Number of warmup steps	2000, 3000	2000 , 8000, 32000
Weight decay MARS	no, 0 .1	no, 0.1 , 0.5
Weight decay for 1D layers	0.1	0.1
Learning rate decay scheduler	WSD, cosine	WSD, cosine , linear
Gradient clipping	0.5	0.5
Optimizer for 1D layers	AdamW	AdamW
Optimizer for 1D layers β_1	0.8 , 0.9	0.8, 0.9, 0.95
Optimizer for 1D layers β_2	0.95, 0.99, 0.999	0.95, 0.99, 0.999
MARS eta_1	0.9, 0.95	0.9, 0.95
MARS eta_2	0.95, 0.99	0.95, 0.99
VR scaling factor η	0.023, 0.024, 0.025	0.023, 0.024, 0.025

Table 19: MARS-Lion hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate Lion	0.0001 , 0.0005, 0.001, 0.003	0.0001 , 0.0005, 0.001, 0.003
Learning rate MARS	0.0001 , 0.001, 0.003	0.0001 , 0.001, 0.003
Batch size	32	256
Sequence length	512	512
Number of warmup steps	2000, 3000	2000 , 8000, 32000
Weight decay MARS	no, 0 .1	no, 0.1 , 0.5
Weight decay for 1D layers	0.1	0.1
Learning rate decay scheduler	WSD, cosine	WSD, cosine
Gradient clipping	0.5	0.5
Optimizer for 1D layers	Lion	Lion
Optimizer for 1D layers β_1	0.8, 0.9	0.8, 0.9 , 0.95
Optimizer for 1D layers β_2	0.95, 0.99 , 0.999	0.95, 0.99 , 0.999
MARS eta_1	0.9, 0.95	0.9, 0.95
MARS eta_2	0.95, 0.99	0.95, 0.99
VR scaling factor η	0.024, 0.025	0.024, 0.025

Table 20: MARS-Shampoo hyperparameter tuning for our 124M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Small" batch setting	"Large" batch setting
Learning rate Shampoo	0.0001, 0.0005, 0.001 , 0.003	0.0001, 0.0005, 0.001 , 0.003
Learning rate MARS	0.001, 0.003	0.001, 0.003
Batch size	32	256
Sequence length	512	512
Number of warmup steps	2000, 3000	2000 , 8000, 32000
Weight decay MARS	no, 0 .1	no, 0.1 , 0.5
Weight decay for 1D layers	0.1	0.1
Learning rate decay scheduler	WSD, cosine	WSD, cosine
Gradient clipping	0.5	0.5
Optimizer for 1D layers	Shampoo	Shampoo
Optimizer for 1D layers β_1	0.8, 0.9	0.8, 0.9 , 0.95
Optimizer for 1D layers β_2	0.95, 0.99, 0.999	0.95, 0.99, 0.999
MARS eta_1	0.9, 0.95	0.9, 0.95
MARS eta_2	0.95, 0.99	0.95, 0.99
VR scaling factor η	0.024, 0.025	0.024, 0.025

G.2 210M PARAMETERS MODEL

For 210M models we perform training runs only with the batch size of 256×512 tokens, utilizing the same training durations as for 124M model with this batch size, i.e., $\{8\mathbf{k}, 16\mathbf{k}, 32\mathbf{k}, 48\mathbf{k}, 64\mathbf{k}, 128\mathbf{k}\}$, which corresponds to the following counts in tokens: $\{1\mathbf{B}, 2.1\mathbf{B}, 4.2\mathbf{B}, 6.3\mathbf{B}, 8.4\mathbf{B}, 16.8\mathbf{B}\}$.

We also replicate almost identical hyperparameters to those of the training of the 124M model to verify whether the smooth transition Takeaway 3 in the final ranking of optimizers and their sensitivity to hyperparameters will be observed.

Table 21: AdamW hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	50, 500, 1000, 2000
Weight decay	no, 0 .1
Learning rate decay scheduler	WSD, cosine , linear
Gradient clipping	0.5
AdamW eta_1	0.8, 0.9
Adam $\!$	0.95, 0.99, 0.999 , 0.9999
Final learning rate $X \times max$ cosine LR	10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6}
Final learning rate X × max WSD LR	10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6}
Final learning rate X × max linear LR	$10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$

Table 22: ADOPT hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	no, 0.5 , 1
ADOPT eta_1	0.9
ADOPT eta_2	0.5, 0.999 , 0.9999
ADOPT $arepsilon$	$10^{-3}, 10^{-4}, 10^{-5}, \mathbf{10^{-6}}, 10^{-7}, 10^{-8}, 10^{-9}, 10^{-10},$

Table 23: AdEMAMix hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
AdEMAMix eta_1	0.9
AdEMAMix eta_2	0.999
AdEMAMix eta_3	0.999
Ademamix $lpha$	8

Table 24: Lion hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.0001, 0.0005 , 0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Lion eta_1	0.9
Lion eta_2	0.99

Table 25: Signum hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.0001, 0.0005 , 0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Momentum	0.9, 0.95 , 0.99
Nesterov momentum	yes

Table 26: **Muon hyperparameter tuning for our 210M parameter large language models.** Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate AdamW	0.001
Learning rate Muon	0.01
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Momentum Muon	0.95
Optimizer for 1D layers	AdamW
Optimizer for 1D layers, β_1	0.8
Optimizer for 1D layers, β_2	0.999
Newton-Schulz a	3.4445
Newton-Schultz b	-4.7750
Newton-Schultz c	2.0315
Nesterov momentum	yes

Table 27: **D-Muon hyperparameter tuning for our 210M parameter large language models.** Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Momentum D-Muon	0.95
Optimizer for 1D layers	AdamW
Optimizer for 1D layers, β_1	0.8, 0.9
Optimizer for 1D layers, β_2	0.99, 0.999
Newton-Schulz a	3.4445
Newton-Schultz b	-4.7750
Newton-Schultz c	2.0315
Newton-Schultz iterations	5
Nesterov momentum	yes

Table 28: **SOAP hyperparameter tuning for our 210M parameter large language models.** Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Preconditioner dimension	10000
Preconditioning frequency	10
SOAP eta_1	0.9
SOAP eta_2	0.999

Table 29: Sophia hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Estimator	Gauss-Newton-Bartlett
Estimator frequency	10
Sophia eta_1	0.9
Sophia eta_2	0.999
Sophia $ ho$	0.04

Table 30: Schedule-Free AdamW hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	0.001
Batch size	256
Sequence length	512
Number of warmup steps	2000, 8000
Weight decay	0.1
Learning rate decay scheduler	no
Gradient clipping	0.5
Schedule-Free AdamW eta_1	0.9
Schedule-Free AdamW eta_2	0.9999

Table 31: Prodigy hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate	1
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Prodigy eta_1	0.9
Prodigy eta_2	0.999
Prodigy bias correction	yes

Table 32: MARS (MARS-AdamW) hyperparameter tuning for our 210M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	"Large" batch setting
Learning rate AdamW	0.001
Learning rate MARS	0.003
Batch size	256
Sequence length	512
Number of warmup steps	2000
Weight decay MARS	0.1
Weight decay for 1D layers	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Optimizer for 1D layers	AdamW
Optimizer for 1D layers β_1	0.8 , 0.9
Optimizer for 1D layers β_2	0.999
MARS eta_1	0.95
MARS eta_2	0.99
VR scaling factor η	0.024, 0.025

G.3 583M PARAMETERS MODEL

For models of 583M scale, we ablate the difference between our setup and the one from Vyas et al. (2024). The main changes compared to our setup include: learning rate decay down to 10% of the maximum, usage of z-loss regularizer in addition to the cross-entropy loss, smaller decoupled weight decay of 0.0001. We also point out that SOAP performance in (Vyas et al., 2024) was measured on the Chinchilla optimal number of tokens and with 2M tokens batch size. Thus, in Section 4.3 we ablate the differences between our settings on the same training horizons. A complete list of hyperparameters used for our AdamW and SOAP models in this ablations are presented in Table 33.

Table 33: AdamW hyperparameter tuning for our 583M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	2M batch setting
Learning rate	0.001, 0.005
Batch size	3936
Sequence length	512
Number of warmup steps	1200
Weight decay	0.0001, 0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
AdamW eta_1	0.9, 0.95
AdamW eta_2	0.95 , 0.99
Final learning rate $X \times max$ cosine LR	$10^{-1}, \mathbf{10^{-2}}$
z-loss regularization	no , 0.0001

Table 34: **SOAP** hyperparameter tuning for our **583M** parameter large language models. Bold hyperparameters are the best.

Hyperparameter	2M batch setting
Learning rate	0.001, 0.005
Batch size	3936
Sequence length	512
Number of warmup steps	1200
Weight decay	0.0001, 0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.5
Preconditioner dimension	10000
Preconditioning frequency	10
SOAP eta_1	0.9, 0.95
SOAP eta_2	0.95 , 0.99, 0.999
Final learning rate $X \times max$ cosine LR	$10^{-1}, \mathbf{10^{-2}}$
z-loss regularization	no , 0.0001

G.4 720M PARAMETERS MODEL

In this section, we provide a complete information about the hyperparameter search for the largest models used in our benchmarking experiments. Deriving insights from our ablations (Figures 13, 30 and 31) on the smaller scale, we suggest to re-tune beta parameters of optimizers as changing the training iterations—see Takeaways 9 and 17 for this conclusions.

Tables below cover our tuning outcomes for all methods. We highlight that, when training with large batches of $1\mathbf{M}$ tokens, we use the smaller number of iterations for our runs: $T \in \{8, 16, 48\} \mathbf{k}(\mathbf{B})$ steps (tokens)—see Table 6. Thus, according to Takeaway 9, we find that smaller β_2 parameter gives better results for SOAP, D-Muon (for 1D parameters), and Prodigy.

Table 35: AdamW hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.0001, 0.0003, 0.0005, 0.001
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1 , 0.5
Adam $\!$	0.8, 0.9 , 0.95
Adam $orall eta_2$	0.95, 0.99, 0.999

Table 36: **ADOPT** hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.001
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1
ADOPT eta_1	0.9, 0.95
ADOPT eta_2	0.95, 0.99, 0.999
ADOPT $arepsilon$	10^{-6}

Table 37: AdEMAMix hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.001 , 0.002
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1
AdEMAMix eta_1	0.9
AdEMAMix eta_2	0.95, 0.999
AdEMAMix eta_3	0.999 , 0.9999
Ademamix $lpha$	8

G.5 520M PARAMETERS MOE MODEL

We extend our comparison of optimizers beyond dense models to include Mixture of Experts (MoE) architectures. Starting from our Llama-like transformer with tied embeddings, we construct an MoE variant following the Switch-Transformer implementation (Fedus et al., 2022). The model employs classical linear gating with softmax and top-k routing (k=2) over 8 experts. We retain the SwiGLU activation functions (Shazeer, 2020), RMSNorm layers (Zhang & Sennrich, 2019), and RoPE embeddings (Su et al., 2023) exactly as in our dense LLMs. Keeping the same hidden size, number of layers, and attention heads as the 124M dense model, this results in a ~ 520 M parameter MoE architecture. A detailed specification of this model is provided in Table 47.

Table 38: Lion hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.00005, 0.0001, 0.0002 , 0.0003, 0.0005, 0.001
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1, 1
Lion eta_1	0.9
Lion eta_2	0.99

Table 39: Signum hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.0001, 0.0002 , 0.0003, 0.0005, 0.001
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1, 1
Momentum	0.9, 0.95 , 0.99
Nesterov momentum	yes

Table 40: Muon hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate AdamW	0.0005, 0.001 , 0.002
Learning rate Muon	0.01
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1
Momentum Muon	0.95
Optimizer for 1D layers	AdamW
Optimizer for 1D layers, β_1	0.8, 0.9, 0.95
Optimizer for 1D layers, β_2	0.95, 0.99, 0.999
Newton-Schulz a	3.4445
Newton-Schultz b	-4.7750
Newton-Schultz c	2.0315
Nesterov momentum	yes

For training, we use a batch size of 256×512 . Optimizer hyperparameters are taken directly from Appendix G.2, with one adjustment: the learning rate for Sophia is set to 0.0005 instead of 0.001. The purpose of this ablation is to evaluate how optimizers, tuned on dense models, perform when directly transferred to MoE models. In practical scenarios, practitioners often reuse well-established hyperparameters tuned on dense LLMs; hence, we argue that our comparison on the 520M MoE model reflects realistic small-scale deployment settings.

We report our configurations for training runs in Table 48.

Table 41: D-Muon hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting	
Learning rate	0.0005, 0.001 , 0.002, 0.003, 0.005	
Batch size	1984	
Sequence length	512	
Number of warmup steps	2000	
Weight decay	0.1	
Learning rate decay scheduler	cosine	
Gradient clipping	0.1	
Momentum D-Muon	0.95	
Optimizer for 1D layers	AdamW	
Optimizer for 1D layers, β_1	0.8, 0.9 , 0.95	
Optimizer for 1D layers, β_2	0.95, 0.99 , 0.999	
Newton-Schulz a	3.4445	
Newton-Schultz b	-4.7750	
Newton-Schultz c	2.0315	
Newton-Schultz iterations	5	
Nesterov momentum	yes	

Table 42: SOAP hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter 1M batch setting Learning rate 0.001 Batch size Sequence length Number of warmup steps Weight decay 0.1cosine Learning rate decay scheduler Gradient clipping 0.1 Preconditioner dimension Preconditioning frequency SOAP β_1 0.9, 0.95**0.95**, 0.99, 0.999 SOAP β_2

Table 43: Sophia hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting	
Learning rate	0.0001, 0.0005 , 0.001	
Batch size	1984	
Sequence length	512	
Number of warmup steps	2000	
Weight decay	0.1	
Learning rate decay scheduler	cosine	
Gradient clipping	0.1	
Estimator	Gauss-Newton-Bartlett	
Estimator frequency	10	
Sophia eta_1	0.9, 0.95	
Sophia eta_2	0.95, 0.99, 0.999	
Sophia $ ho$	0.04	

Table 44: Schedule-Free AdamW hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting	
Learning rate	0.001	
Batch size	1984	
Sequence length	512	
Number of warmup steps	2000, 8000	
Weight decay	0.1	
Learning rate decay scheduler	no	
Gradient clipping	no, 0 .1	
Schedule-Free AdamW eta_1	0.9 , 0.95	
Schedule-Free AdamW eta_2	0.95, 0.99, 0.999, 0.9999	

Table 45: Prodigy hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate	0.5, 1 , 2
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1
Prodigy eta_1	0.9, 0.95
Prodigy eta_2	0.95, 0.99 , 0.999
Prodigy bias correction	yes

Table 46: MARS (MARS-AdamW) hyperparameter tuning for our 720M parameter large language models. Bold hyperparameters are the best.

Hyperparameter	1M batch setting
Learning rate AdamW	0.001
Learning rate MARS	0.003
Batch size	1984
Sequence length	512
Number of warmup steps	2000
Weight decay MARS	0.1
Weight decay for 1D layers	0.1
Learning rate decay scheduler	cosine
Gradient clipping	0.1
Optimizer for 1D layers	AdamW
Optimizer for 1D layers β_1	0.8 , 0.9, 0.95
Optimizer for 1D layers β_2	0.95, 0.99, 0.999
MARS eta_1	0.95
MARS eta_2	0.99
VR scaling factor η	0.024, 0.025

Table 47: Configurations for our Llama-based MoE model.

# Parameters	$520\mathrm{M}$
Hidden size	768
# Attention heads	12
# Layers	12
Init. std	0.02
Use bias	no
RMSNorm epsilon	0.00001
Positional encoding	RoPE
MoE router loss	load balancing loss (Fedus et al., 2022) (Eq. 4) & router z-loss (Zoph et al., 2022) (Eq. 5)
# Experts per layer	8
# Shared experts	0
Top- k routing (k)	2
MoE softmax order	$top-k \rightarrow softmax$

Table 48: Lengths of training for the MoE model in "Large" batch size setting (256 \times 512).

# Parameters	Tokens (Iterations)		Chinchilla Tokens
$520\mathbf{M}$	$5.5\mathbf{B}\ (42\mathbf{k})$	44 B (336 k)	$10.4\mathbf{B}$