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ABSTRACT

The recent development of Large Language Models (LLMs) has been accompa-
nied by an effervescence of novel ideas and methods to better optimize the loss of
deep learning models. Claims from those methods are myriad: from faster con-
vergence to removing reliance on certain hyperparameters. However, the diverse
experimental protocols used to validate these claims make direct comparisons be-
tween methods challenging. This study presents a comprehensive evaluation of
recent optimization techniques across standardized LLM pretraining scenarios,
systematically varying model size, batch size, and training duration. Through
careful tuning of each method, we provide guidance to practitioners on which
optimizer is best suited for each scenario. For researchers, our work highlights
promising directions for future optimization research. Finally, by releasing our
code and making all experiments fully reproducible, we hope our efforts can help
the development and rigorous benchmarking of future methods.

1 INTRODUCTION

Over the past five years, Large Language Models (LLMs) (DeepSeek-AI, 2024b; OpenAI, 2024;
Gemini Team, 2024; Llama Team, 2024) have shown growth in performance and size, demonstrating
proficiency in various downstream tasks (Snell et al., 2024; Brown et al., 2020; Wei et al., 2023).
The success of LLM pretraining hinges on three key pillars: high-quality data (Penedo et al., 2024b;
Li et al., 2024), architectural innovations (Jiang et al., 2024; DeepSeek-AI, 2024b), and scalable
optimization techniques (Jaghouar et al., 2024; Shah et al., 2024; Charles et al., 2025).

Among these, the choice of optimizer has remained notably consistent in recent years, with
Adam(W) (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) dominating deep learning for nearly
a decade. However, recent advances (Jordan et al., 2024b; Liu et al., 2025; Vyas et al., 2024;
Pagliardini et al., 2024; Pethick et al., 2025; Frans et al., 2025; Defazio et al., 2024b) challenge this
status quo, offering alternatives that surpass AdamW in speed, communication efficiency (Ahn &
Xu, 2025) or final downstream performance on various benchmarks (Dahl et al., 2023; Karpathy,
2022), particularly for autoregressive language modeling (Radford & Narasimhan, 2018). Despite
these innovations, current benchmarks and ablation studies (Zhao et al., 2025; Morwani et al., 2025;
Kaddour et al., 2023) remain narrow in scope, often examining only isolated aspects of optimizer
design (Kasimbeg et al., 2025). This lack of systematic comparison makes it difficult to obtain
trustworthy insights for practitioners or identify the next promising research directions.

In this work, our goal is to revisit the problem of benchmarking optimizers for LLM pretraining.
We do so through standardized experiments which vary important parameters such as batch size,
model size, and the number of training iterations. This allows us to formulate an up-to-date list of
best-performing methods for the community of researchers and practitioners. We demonstrate the
efficiency of each considered method through careful tuning, and present insightful ablations along
the way. Furthermore, we provide a set of best practices for LLM pretraining that are applicable
regardless of the optimizer chosen.

We summarize our contributions as follows:

(Contribution 1) We conduct the first large-scale, controlled benchmark of 11 different optimization
methods across diverse LLM training scenarios. A fair comparison is ensured by precise accounting
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Figure 1: Ranking of optimizers for 720M Llama-based models. We plot the final validation loss
obtained by the best-tuned optimizers on the FineWeb dataset. We use a batch size of 1M tokens
and train multiple methods beyond and below the Chinchilla optimal duration, which is 14.4B for
model of this size. AdEMAMix and MARS are the best optimizers in this setup, with a noticable
gap in performance compared to other methods. We also plot the AdamW baseline in both figures
to distinguish the group of methods that consistently perform worse than AdamW from the group of
optimizers that outperform it for some training durations. See § 3 and Appendix G for a detailed
description of our experimental setup, including hyperparameters.

for compute costs, and extensive hyperparameter tuning. We identify optimal optimizer choices in
several relevant training regimes, for both dense and Mixture of Experts (MoE) architectures.

(Contribution 2) We perform comprehensive ablations of critical training hyperparameters—
including warmup duration, initialization schemes, gradient clipping, final learning rates, and learn-
ing rate scheduler choices—providing actionable insights for optimizing LLM training in practice.

(Contribution 3) We open-source our full benchmarking toolkit, including training scripts,
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Figure 2: Training dynamics of leading op-
timizers on 520M MoE model pretrain-
ing. We use a batch size of 131k tokens,
and train models for both short runs, i.e., less
than Chinchilla optimal duration, and for ex-
tended runs beyond this regime. The dashed
blue lines correspond to the final validation
loss of AdamW baselines trained for both 42k
and 336k steps.

evaluation pipelines, and hyperparameter configu-
rations, to enable reproducible research and facili-
tate future optimizer development.

For practitioners, our work provides an evidence-
based answer to the burning question: “Is Adam
still the most effective optimizer in the age of LLMs,
or can we achieve better performance at scale with
novel optimizers?”.

For researchers, our work delivers a unified
benchmarking framework for LLM pretraining,
along with extensive ablation studies which system-
atically evaluate both popular and overlooked op-
timizer designs—revealing previously unexplored
tradeoffs between efficiency, stability, and final
model performance. Overall, our findings not only
challenge long-held assumptions about optimizer
selection but also establish a foundation for fu-
ture advances in large-scale model training. By
bridging the gap between theoretical innovation and
practical deployment, this work aims to accelerate
progress in both research and industry applications
of LLM training.

2 BACKGROUND & RELATED WORK
Optimizers. While computer vision models often show comparable performance be-
tween SGD (Robbins & Monro, 1951) and AdamW (Zhang et al., 2020b), the landscape differs
dramatically in LLM training (Srećković et al., 2025). Recent work (Zhang et al., 2024b) demon-
strates that adaptive methods like AdamW provide substantially better optimization characteristics for
transformer-based language models. The question of why AdamW works so well has been a long-
standing topic of research (Balles & Hennig, 2020; Orabona, 2020; Zhang et al., 2020a; Kunstner
et al., 2024; Kunstner, 2024). Modern methods often inherit AdamW’s core ideas in their structure,
such as ADOPT (Taniguchi et al., 2024) and AdEMAMix (Pagliardini et al., 2024). ADOPT has been
motivated by solving long-standing convergence issues in AdamW. By normalizing the second-order
moment prior to the momentum update, they eliminate the non-convergence issues of AdamW on
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smooth non-convex functions. Meanwhile AdEMAMix extends AdamW with an additional slower
momentum buffer, i.e., a slower exponential moving average (EMA), which allows the use of much
larger momentum values, accelerating convergence. One interpretation of AdamW’s effectiveness
lies in its sign-based update (Kunstner et al., 2023): without the exponential moving average (EMA),
AdamW resembles signSGD (Bernstein et al., 2018). Recent works (Zhao et al., 2025; Karimireddy
et al., 2019) has shown that Signum (signSGD with momentum), can perform comparably to
AdamW. The community also discussed Lion (Chen et al., 2023), a method with a similar sign-
based structure. Signum and Lion offer memory benefits due to the use of only a single instead of
Adam’s two buffers for optimizer states. Another family of methods stems from AdamW’s approxi-
mate second-order structure. This idea has given rise to Sophia (Liu et al., 2024), where the diag-
onal of the Fisher information matrix is used as the second moment estimate. Exploiting the matrix
structure of model weights and optimizer states has led to methods such as SOAP (Vyas et al., 2024),
Muon (Jordan et al., 2024b) and Scion (Pethick et al., 2025), including their extentions (Liu et al.,
2025; Riabinin et al., 2025; Ahn & Xu, 2025). The parameter-free concept (Orabona & Pál, 2016)
has led to the development of Schedule-Free AdamW (SF-AdamW) (Defazio et al., 2024b) and
Prodigy (Mishchenko & Defazio, 2024). These optimizers do not require a decreasing learning
rate schedule, making them relevant for continual training. Last but not least, MARS (Yuan et al.,
2024), builds upon this line of research and incorporates a variance reduction mechanism in its
update rule.

Benchmarks. To a large extent, the benchmarking setup determines the final conclusions. Some
benchmarks are designed for short speedruns in terms of training or validation loss (Jordan et al.,
2024a), while others focus on a downstream target metric after training (Zhao et al., 2025; Dahl et al.,
2023; Schmidt et al., 2021). Methods that perform well in short speedruns might not be optimal for
longer training horizons as in real LLM training runs (see Figure 3 (a), or Figures 37 and 40 (b)).
”But what constitutes a sufficiently long horizon?” ”What should be the compute budget for LLM
training?” These are questions explored by scaling laws (Kaplan et al., 2020). Early benchmarks for
optimizers and other ablation studies often rely on Chinchilla scaling laws (Hoffmann et al., 2022)
with a ratio of roughly 20 tokens per parameter needed for pretraining. However, recent research
(Li et al., 2025a; Porian et al., 2024; Sardana et al., 2024) argues that this is far from sufficient for
production-ready models. Another important issue is the choice of loss function. Recent setups have
used an auxiliary z-loss (Yang et al., 2023; Chowdhery et al., 2022) in addition to cross-entropy,
which requires further investigation. We believe that this choice is influenced by the use of the
OLMo (Team OLMo, 2024b) codebase, which we also address in our work. Additionally, we found
that previous setups for comparing optimizers do not align with recent best practices regarding
weight decay, learning rate decay, and overall hyperparameter tuning. All of these questions are
revisited in our work. We also encourage the reader to refer to the concurrent work of Wen et al.
(2025). Overall, our findings are well aligned, we both find Muon and SOAP outperforming AdamW
in many settings. A few differences: we find MARS beating D-Muon at 1M tokens batch size, and
also AdEMAMix is the best in the majority of our runs. We attribute differences regarding MARS to
discrepancies in the batch size, Wen et al. (2025) uses a large sequence length of 4096. In addition,
the authors do not try AdEMAMix, therefore such a comparison in their setup remains questionable.

3 EXPERIMENTAL SETUP
Notations. We use the following notations. Let γ be the learning rate, λ the weight decay coefficient,
and T the total number of iterations. Momentum-related parameters are represented by β.

Optimizers. Here is a list of the optimizers we considered in our work. For each algorithm, we
write in parentheses the optimizer-specific hyperparameters we tuned: AdamW(β1, β2), ADOPT(β1,
β2), AdEMAMix(β1, β2, β3, α), Lion(β1, β2), Signum(β), Muon(γM, β, β1, β2), D-Muon(β,
β1, β2) (Liu et al., 2025), SOAP(β1, β2) and preconditioning frequency, Sophia(ρ, β1, β2),
SF-AdamW(β1, β2), Prodigy(β1, β2), MARS(η, β1, β2). When an optimizer has several momen-
tum variants e.g. Nesterov (Nesterov, 1983) or Polyak (Polyak, 1964), we try both. When optimizers
use the Newton-Schulz orthogonalization (Bernstein & Newhouse, 2024; Higham, 2008), we vary
the number of steps for this procedure. In addition, we tune the learning rate γ extensively for all
methods. We also try different gradient clipping levels, warmup steps, weight decay values, weights
initialization, and learning rate schedulers. A summary of the hyperparameters tested and selected
for each model size is in Appendix G. All optimizers are described in depth in Appendix C.

Models & Data. For most experiments, we use a Llama-like transformer (Llama Team, 2024)
architecture with weight tying (Press & Wolf, 2017), including SwiGLU activations (Shazeer, 2020),
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RMSNorm (Zhang & Sennrich, 2019), and RoPE embeddings (Su et al., 2023). We experiment
with four sizes of models: 124M, 210M, 583M, 720M. In addition to our dense models, we also
benchmark optimizers on a Llama-based 520M MoE model, the corresponding setup is described
in § 4.4 and Appendix G. We train on a 100B tokens1 subset of FineWeb (Penedo et al., 2024a).
It consists of a cleaned and deduplicated corpus for LLM pretraining, which we tokenize using the
GPT-2 tokenizer prior to splitting into train and validation sequences.

Iterations & Batch size. Throughout our experiments, we use a sequence length of 512 tokens.
For clarity, we often report the batch size in tokens by writing batch size× sequence length. For the
124M model, we use batch sizes of 32 × 512 = 16k, 256 × 512 = 131k, and 512 × 512 = 262k
tokens; for the 210M model and 520M MoE model, we use a batch size of 256 × 512 = 131k;
for the 583M model, we leverage the batch size of 3936 × 512 = 2M tokens, finally, we use a
batch size of 1984 × 512 = 1M tokens for the 720M model. Depending on the model size, we
vary the number of iterations—also measured in tokens for compatibility with scaling laws and to
accommodate different batch size settings. We train 124M and 210M models for equal durations
of {1, 2.1, 4.2, 6.3, 8.4, 16.8}B tokens. This corresponds to T ∈ {64, 128, 256, 384, 512, 1024}k
iterations for a batch size of 32, and T ∈ {8, 16, 32, 48, 64, 128}k iterations for a batch size of 256.
For 583M models, we train on 13B tokens, corresponding to 6.5k iterations. In the setup with
720M model, we have T ∈ {8, 16, 48}k iterations for a batch size of 1M tokens. Thus, for all
model scales, we include both Chinchilla optimal lengths of training and beyond. More details are
available in Appendix E.

Loss. We train using the classical cross-entropy next token prediction loss. Some prior works
introducing optimizers (Vyas et al., 2024), benchmarkings (Zhao et al., 2025), or pretraining recipes
for LLMs (Jaghouar et al., 2024; Chowdhery et al., 2022; Yang et al., 2023; Brandfonbrener et al.,
2024), use a z-loss regularizer in addition to cross-entropy. We found that this has little impact and,
therefore, do not use z-loss. An ablation showing results with and without z-loss is in § 4.

Hyperparameter Tuning. Training LLMs is a computationally intensive task (Erdil, 2024). As a
guidance, practitioners often rely on insights gathered at lower scales, scaling laws (OpenAI, 2024;
DeepSeek-AI, 2024a; Sardana et al., 2024; Li et al., 2025b), and other rules (Yang et al., 2022; Dey
et al., 2024; Blake et al., 2025; Kumar et al., 2024). It is also commonplace to run experiments for
only a shorter duration of training, as a way to test certain hyperparameters prior to extending the
training horizon to more iterations. Because a full grid search over every hyperparameter, for each
setting and optimizer, would be too costly, we resort to a similar approach. More precisely, for each
model size, batch size, and optimizer, we extensively tune optimization hyperparameters for a num-
ber of training tokens which are near-Chinchilla optimal, e.g., we pick {2.1, 16}B tokens for tuning
{124, 720}M models (see Appendix G). We then keep those hyperparameters when we increase the
number of iterations. While we found that the sensitivity to several hyperparameters can change as
we increase the training horizon—see Figure 13—we found this approach simple and yet effective.
The hyperparameters being considered depend on the optimizer. We proceeded from small to large
model scale, and used insights gathered at smaller scales to guide the hyperparameter search at larger
scales. Our hyperparameter sweeps are summarized in Appendix G. We present the clarifications
regarding the connection between the number of iterations and tokens for different batch size set-
tings, as well as the Chinchilla optimal training durations for our models in Tables 3, 4, 5, 6, and 48.
As learning rate schedulers, we compare cosine (Loshchilov & Hutter, 2017), linear and warmup-
stable-decay (WSD) (Hu et al., 2024; Zhai et al., 2022; Hägele et al., 2024). Unless specified, we use
a cosine scheduler. Results with WSD and linear schedulers are discussed in § 4. Recent works also
emphasize the importance of sufficiently decaying the learning rate (Bergsma et al., 2025; Schaipp
et al., 2025; Hägele et al., 2024; Li et al., 2025b; DeepSeek-AI, 2024b). As such, we take care to
decay to 0.01 × γmax instead of the often used 0.1 × γmax (Hoffmann et al., 2022; Touvron et al.,
2023; Biderman et al., 2023; Workshop, 2023; Team OLMo, 2024b;a; Zhao et al., 2025). To give
an idea of how much effort was put into tuning each method, across all model sizes, batches and
iterations, we trained a total of 2900 models, and have spent roughly 30000 GPU hours. See more
details in Appendices D and G.
4 RESULTS
We structure our story starting with smaller models and batch sizes, and gradually scaling up to
larger configurations. In some instances, we complement the core benchmarking results with addi-
tional ablations and possible best-practices.

1https://huggingface.co/datasets/HuggingFaceFW/fineweb
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4.1 BENCHMARKING & ABLATIONS AT SMALL SCALE: TRAINING 124M MODELS
Results with “small” batches. We first report results when using batches of 32 × 512 tokens in
Figures 3 (a) and 12 (a). We tune the hyperparameters by training for 2.1B tokens (128k iterations)
and then keep those hyperparameters for all other training durations. The best hyperparameters are
reported in Appendix G.1. We observe how, for the smallest number of iterations we considered
(1B tokens ≡ 64k), SOAP, ADOPT, AdEMAMix, D-Muon, Prodigy, and SF-AdamW all outper-
form AdamW, with D-Muon being the best. As we increase the number of iterations, AdEMAMix
takes the lead while AdamW becomes a second, and closes the gap with D-Muon and SOAP. A sign-
based methods such as Lion and Signum are expected to perform poorly when the batch size is
small. Intuitively, this is due to the sign(·) operator being sensitive to gradient noise (Tomihari &
Sato, 2025; Kornilov et al., 2025). As described in its original paper, MARS also performs poorly
when the batch size is small. We found Prodigy, the basic Muon (see Figures 16 and 17 (a)) and
SF-AdamW to underperform in this setting compared to AdamW. On this scale, Prodigy suffers
from the lack of bias correction of the learning rate, as well as being sensitive to (β1, β2) (see Fig-
ure 30). Importantly, when the batch size is sufficiently small, we observe that Sophia diverges
when increasing the number of iterations, even if decreasing the learning rate (see Figure 27). Thus,
we decided not to include Sophia at this stage of our benchmarking.
Results with “large” batches. We now report results when using batches of 256×512 tokens—8×
larger than for our “small” batch setting. Results in Figures 3 (b) and 12 (b) show how Signum,
MARS, Lion, Prodigy greatly benefit from the increased batch size. Remarkably, we observe that
the Prodigy method scales similarly to AdamW. We emphasize the possible community interest
in this algorithm, as its effective learning rate—determined by two EMA sequences—emulates the
learning rate behavior of AdamW. When the scheduler is applied and γmax of Prodigy is set to 1
(its default value), these EMAs result in the maximal effective learning rate, which closely matches
that of AdamW—see Figure 35. For a small number of iterations (e.g. T ∈ {8k, 16k} corresponding
to 1B and 2B tokens), all methods outperform AdamW except for SF-AdamW and Sophia. As we
increase the number of iterations ADOPT, D-Muon, SOAP, and AdEMAMix take the lead. In par-
ticular, AdEMAMix has a consistent lead over other methods. While we anticipated—in accordance
with Vyas et al. (2024)—that SOAP would greatly benefit from the larger batch size, its behavior
remains relatively consistent compared to our previous small batch setting.
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(a) Batch size 32× 512 tokens.

1 2.1 4.2 6.3 8.4 16.8

Tokens (B)

3.2

3.3

3.4

3.5

F
in

al
V

al
id

at
io

n
L
os

s

8k 16k 32k 48k 64k 128k

Ranking ( ↓ )

Sophia

Signum

SF-AdamW

Lion

MARS

Prodigy

ADOPT

AdamW

D-Muon

SOAP

AdEMAMix

(b) Batch size 256× 512 tokens.

Figure 3: Ranking of optimizers for 124M models with “small” and “large” batch sizes. In
both (a) and (b), we show the final validation loss for different training durations, corresponding to
different numbers of tokens. Above each token number, we write the number of training iterations
corresponding. In (a), we use a “small” batch size of 32× 512 tokens. In (b), we use a larger batch
size of 256× 512 tokens.

Takeaway 1. After experimenting with both “small” and “large” batch settings, we conclude
that: (I) AdEMAMix consistently achieves state-of-the-art performance and robust scaling with
training duration; (II) sign-based methods (Signum, Lion), and MARS greatly benefit from
the increased batch size; (III) Sophia diverges in the small-batch setting, when trained beyond
the Chinchilla optimal horizon, even with sufficiently small learning rate; (IV) SOAP show a
surprisingly consistent performance in both settings.

Stability across training horizons. As mentioned in § 3, we tune hyperparameters training on
2.1B tokens and keep those hyperparameters when extending the training horizon. However, when
increasing the length of training or scaling batch size, critical hyperparameters of optimizers such
as learning rate, betas might change (Busbridge et al., 2023). Thus, we additionally re-tune the
methods for 16.8B length of training to show the best results. We found that previously widely
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adopted (DeepSeek-AI, 2024b; Wortsman et al., 2023; Zhao et al., 2025; Jaghouar et al., 2024;
Hägele et al., 2024; Li et al., 2025b) for AdamW (β1 = 0.9, β2 = 0.95) parameters give worse re-
sults than (β1 = 0.9, β2 = 0.999). We point that it would be beneficial to further increase the β2 for
AdamW-like optimizers when increasing the length of training. The same applies to β3 parameter of
AdEMAMix, which we increase from 0.999 to 0.9999 when training on 16.8B tokens and beyond
(see Appendix F.1 for a detailed ablation on that matter and references therein). Importantly, from
Figure 12 (b), we see that SOAP and D-Muon narrow the gap with AdEMAMix. It is interesting
to see how the situation changes when the training horizon is extended to 33.6B tokens (≡ 256k
iterations). For this experiment, we use the batch size of (256×512), and keep the re-tuned hyperpa-
rameters we found for 16.8B tokens run, simply reusing them for longer training. We report insights
gathered from this ablation in Figure 4 (right). As in the “small” batch ablation, we emphasize that
Sophia exhibits convergence issues when extending the training run, and diverges shortly after
130k steps (Figure 26). Regarding other optimizers, we observe a consistent behavior compared
to the one from Figure 3 (b)—all methods remain at the same position in our tier-list. The results
suggest that the best hyperparameters found at 16.8B scale are also consistent w.r.t. doubling the
number of steps. “But what can one say about scaling batch size while keeping the same amount of
tokens seen?”
Increasing the batch size further. We also run an experiment with batches of 512 × 512 = 262k
tokens, training for 64k iterations, thus, we keep the total amount of tokens to train on. We show
the results of this ablation in Figure 4 (left). Noticeably MARS becomes the second best-performing
method behind AdEMAMix, followed closely by Prodigy, Lion, ADOPT, and SOAP. Interest-
ingly, Signum performs comparably to AdamW. Our results with batches of {131, 262}k tokens
show an evidence that sign-based methods greatly benefit from increased batch size, as noticed in
many prior works (Chen et al., 2023). Furthermore, the hyperparameter sweeps from (Zhao et al.,
2025; Zhang et al., 2024a) suggest that Lion, Signum, AdamW stay consistent w.r.t tuning all hy-
perparameters except for batch size, where they notice a worsens in performance at large batch sizes
above ours 256× 512, while we observe a quite opposite results in our setup.
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Figure 4: Scaling batch size vs. scaling the number of iterations. Our results demonstrate that:
(left) scaling the batch size significantly improves MARS, Signum, Lion and Prodigy making
them as good as AdamW even for a long training for 16.8B tokens. Which was not the case in
Figure 3 (b), where we still observed a significant gap in performance; and (right): indeed, with
scaling of the number of iterations, the gap between SOAP and AdEMAMix narrow and, finally,
increases. However, with increase of the AdEMAMix β3, the performance gap with SOAP reappears.

Takeaway 2. (I) Suprisingly, many methods, especially MARS, Prodigy, and sign-based ones,
can outperform AdamW while trained on a sufficiently large batches. (II) We also found that in
our setup, once optimizers are properly re-tuned for the maximal length of training considered,
doubling of number of iterations does not affect the ranking of methods.

Ablations at small scale: 124M models. In this section, we present ablations with relatively short
descriptions and the most meaningful figures to highlight them. We complement our results from
this section in Appendix F.1. We start sequentially with smaller models ablating: weight decay,
learning rate sensitivity, warmup, learning rate schedulers. For each ablation, we provide the
corresponding takeaway—see Takeaway 10, 11, 12, 13. Details on hyperparameter searches are
provided in Appendix G.
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(b) Use λ = 0.1 for long training.
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(c) Norm grows with smaller λ.
Figure 5: Larger weight decay achieves significantly better results when training on fewer
tokens. In (a) we observe that runs of AdamW, Signum, and Lion with the large weight decay of
0.5 consistently outperform the baseline AdamW with weight decay of 0.1 for all training durations
except for the last one. Notably, Signum and Lion with large weight decay perform even better
than AdamW with the same learning rate. In (b), we also consider a setting without weight decay.
We observe that this is suboptimal not only for AdamW, but also for the majority of other optimizers
(see Appendix F.1), while the typical weight decay of 0.1 remains the best for longer training. In (c),
we ablate the impact od weight decay on the model’s ℓ2 norm. See Figure 15 for detailed ablation.
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(a) Sign-based, and Sophia diverge with large γ.
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(b) Parabolic shape for most optimizers.
Figure 6: Optimal learning rate stability across optimizers. The optimal learning rate determined
during tuning on 2.1B tokens remains consistent after a learning rate sweep on 16.8B tokens for
most optimizers. In (a), we observe that sign-based methods and similar to them Sophia diverge
with increasing learning rate. Interestingly, in (b), SF-AdamW, SOAP, and D-Muon demonstrate
their best performance with a large learning rate of 0.002, while MARS maintains remarkably consis-
tent performance across the learning rate sweep. See Figure 18 and Appendix F.1 for more details.
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Figure 7: Warmup ablation. For 124M model trained on the batches of 256 × 512 tokens, we
perform a sweep over the linear warmup durations of {1.56%, 6.25%, 25%} of the length of training,
which corresponds to {2, 8, 32}k steps, respectively. Clearly, sign-based optimizers, Sophia, and
SF-AdamW benefit from the increased warmup.

4.2 BENCHMARKING & ABLATIONS AT MEDIUM SCALE: TRAINING 210M MODELS
We report the complete ablation and benchmarking of 210M models in Section 4.2. Figure 36
demonstrated the ranking of optimizers in this setup, and Figure 37 depicts the training dynamics.
We use the same 256× 512 batch size for these models.

Takeaway 3. We do not observe a much of a change in ranking of optimizers for 210M model,
compared to benchmarking on 124M. At the same time, we replicated almost identical hyper-
parameters for all optimizers, except for the learning rate for sign-base methods. We also point
out that sign-based methods are more sensitive to the learning rate while scaling the model size.
As that, we changed the peak learning rate from 10−3 to 5 · 10−4 for Lion and Signum.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
a
ti
o
n
L
os
s Muon

Muon;Linear

Muon;WSD

(a) Muon “prefers” WSD.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:4

3:6

3:8

V
a
li
d
a
ti
o
n
L
os
s Sophia

Sophia;Linear

Sophia;WSD

(b) No preference for Sophia.

1 2:1 4:2 6:3 8:4 16:8

Tokens (B)

3:2

3:3

3:4

3:5

3:6

3:7

V
a
li
d
a
ti
o
n
L
o
ss

AdamW

AdamW;Linear

AdamW;WSD

(c) Cosine & AdamW.
Figure 8: Comparisons between cosine, WSD, and the linear schedulers. Notably, schedulers be-
have differently with respect to optimizer. In (a), the Muon optimizer shows a preference for WSD
across most training durations. Sophia exhibits an almost perfect match between all three sched-
ulers. However, for AdamW, along with the majority of other optimizers studied (see Figure 20),
we get a better performance with cosine. We also report a detailed comparison for all optimizers in
Appendix F.1, and cover additional ablations on another dataset (see Figure 19). We also study their
gradient norm patterns and report results in Figure 21, and in Figure 22.
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(c) WSD, γend = 0.01× γmax.

Figure 9: Decaying the learning rate down to 0.01 × γmax and beyond, instead of only to
10%. We run a 210M Llama model, and observe a common pattern for different schedulers that
decreasing the learning rate to moderate 0.01 × γmax value is a better choice than decreasing it
down to zero. Interestingly, the linear learning rate scheduler for models at a given scale, requires
0.001× γmax. See Figure 25 for corresponding ablation for 124M model.

Takeaway 4. Decaying the learning rate further than 10% of the maximal significantly improves
the results. However, for different schedulers, the best final learning rate is different.

4.3 SCALING UP: BENCHMARKING MODELS OF 583M AND 720M PARAMETERS

AdamW SOAP
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Ours (no z-loss; wd 0:1; 0:01£max LR)
z-loss; wd 1e¡4; 0:1£max LR

Figure 10: Ablation of z-loss regulariza-
tion. Incorporating the z-loss regularizer
does not improve the final loss or reduce the
spikiness of the loss curves. Moreover, com-
bining z-loss with small weight decay and
decaying γ down to 10%, further degrades
overall performance. Notably, these changes
can reverse the relative ranking of optimiz-
ers compared to the results reported by Vyas
et al. (2024).

Comparison between our setting and Vyas et al.
(2024). We pick two methods: AdamW, SOAP, and
run experiments with a larger model of 583M pa-
rameters, and a large batch size of 2M tokens. The
goal is to get closer to one of the settings described
in (Vyas et al., 2024), i.e., train for the Chinchilla
optimal amount of tokens and use the same batch
size. Therefore, we train for 6500 iterations, corre-
sponding to 13B tokens. We found several key dif-
ferences between our codebase and (Team OLMo,
2024a), used by Vyas et al. (2024): (I) we decay the
learning rate to 0.01 × γmax instead of 0.1 × γmax,
with γmax being the maximum learning rate, (II) we
use typical weight decay values of e.g. 0.1 instead of
smaller values such as 0.01 or 0.0001, (III) we do not
use a z-loss in addition to ours. Our ablations in Fig-
ures 9 and 25 already confirm that properly decaying
the learning rate has an important effect on optimiza-
tion. Regarding z-loss and weight decay, we run an
ablation to compare both settings and conclude that
removing the z-loss and increasing the weight decay
to 0.1 improves the results. We remind that hyper-
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parameter choice in (Vyas et al., 2024) has been suggested by popular codebases for LLM pretrain-
ing (Team OLMo, 2024a;b; Biderman et al., 2023). In that view, we pose the following observation
to practitioners.

Takeaway 5. Hyperparameter choices commonly imposed by popular codebases—such as final
learning rate, z-loss regularization, and weight decay—substantially affect both absolute perfor-
mance and the relative ranking of optimizers at Chinchilla scale.

Results on 720M parameter model & 1M batch size. To expand our ablations towards more
practical scales, we train a 720M parameter model with a batch size of 1M tokens. As previously,
we include both the Chinchilla optimal horizon and beyond, following the setup in § 3. Our goal
is to characterize how optimizer performance evolves with increased model size, batch size, and
total tokens seen. The best optimizers are reported in Figure 1. In Appendix F.3 we report training
dynamics for all optimizers—see Figure 40.

Takeaway 6. (I) At larger scale of model and batch size, AdEMAMix and MARS dominate, by
far outperforming others—see Figure 1. (II) Despite training with large batches, Signum and
Lion scale poorly. (III) D-Muon is consistent across all our benchmarking setups.

4.4 EXTENSION TO MOES

The goal of ablating optimizer performance on MoE models is to assess whether our previous bench-
marking results transfer smoothly to a new type of architecture. To show this smooth transition, we
utilize an old batch size setup and keep untuned all optimizer-related hyperparameters found for the
corresponding dense model—simulating a situation as one would do in practice without much time
for running dozens of experiments on new architectures.

Setup & Comparison. Besides training dense Llama-like transformers, we also cover a comparison
for MoE architectures (Shazeer et al., 2017). Our variant of MoE is based on the Switch-Transformer
implementation (Fedus et al., 2022). We use a classical linear gating with softmax and top-k routing
(k = 2) and 8 experts. The activation functions remains the same as for the dense base model from
§ 3. Given configuration of 124M dense Llama model, we result in approximately 520M parameter
MoE model. In this setting, we train with a batch size of 256 × 512 for T ∈ {42, 336}k iterations
({5.5, 44}B tokens). If we assume that Chinchilla scaling law is applicable to this model, then it
results in 10.4B tokens. See Appendix G.5 for more details.
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Figure 11: Ranking optimizers for 520M MoE models with 256× 512 batch size. We report
results for models trained for both 42k iterations (left), and 336k (right). MoE configuration cor-
respond to one of the 124M dense model. Optimizer rankings closely mirror those in Figure 3 (b),
indicating that our benchmarking results transfer smoothly from dense models to MoEs. We also see
that SOAP outperforms AdEMAMix in 336k steps run (see also Figure 2), however, with re-tuned
beta parameters we might expect the opposite results in longer training (see Figures 4 and 13 (b)).

Takeaway 7. Benchmarking results obtained for dense models transfer to corresponding MoEs.
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B DISCUSSION

A summary of results. In this work, we benchmarked many interesting to community optimizers
across architectural changes, model scales, training durations and batch sizes. After an extensive
hyperparameter tuning, we revealed ablations for each optimizers showing their sensitivity to certain
of them. We questioned flaws in popular code base for LLM pretraining—so important for careful
benchmarking and the overall model performance. Regarding the benchmarking setup, we built a
rankings of optimizers in each setup considered, if consider the global result and the question of
the effectiveness of AdamW for LLMs, we point that there are new reliable optimizers that would
be beneficial at scale—AdEMAMix, D-Muon, MARS. We point that methods such as ADOPT and
Prodigy scale similarly to AdamW, and also worth a try for production purposes.

Our advices on tuning each method. Overall, we validate both widely used hyperparameters such
as λ = 0.1 and Twarmup ≈ 2k, and explore the sensitivity of optimizers to γ-schedulers, γ-decay,
and optimizer-related hyperparameters. Notably, a large weight decay ensures faster convergence
when training for fewer iterations, and large warmup of 25% of the total training duration T is
beneficial for sign-based methods, Sophia, and SF-AdamW. For Lion—as mentioned in (Chen
et al., 2023)—we find that the best value for β1 is consistently 0.99. The mechanism for Lion
appears similar to AdEMAMix, suggesting that Lion could perform better with larger β1, which
would require schedulers. We also pose an interesting observation toward Prodigy: while it may
not be so efficient with very small batch sizes, with scaling of the model size and the batch size,
it becomes almost as competitive as AdamW. MARS also benefits from large batches and continues
to improve performance as the model size scales. For MARS, when optimizing 1D parameters with
AdamW, we found that it is better to keep (β1, β2) of AdamW; for our largest models, β1 = 0.8
performs slightly better than β1 = 0.9. Additionally, MARS betas determined for 2D parameters
in (Yuan et al., 2024) also seem to be the best in our settings. Basic Muon performs poorly at
relatively small batch sizes (32, 256) across different model sizes and training lengths; however,
applying weight decay to 2-dimensional parameters, as in D-Muon, resolves this and yields a robust
optimizer across all benchmarking scenarios we considered. AdEMAMix remains the best optimizer
overall, scaling efficiently with bath size, model size, and training horizons. Importantly, increasing
β2 for longer training substantially benefits AdEMAMix and other AdamW-like methods. Moreover,
AdEMAMix allows using a large weight decay term λ during prolonged training, e.g., runs of 128k
iterations with λ = 0.5 still slightly outperform those with λ = 0.1. Beyond optimizer-specific
hyperparameters, we show that the choice of γ-scheduler also depends on the optimizer selected.
Regarding the learning rate, decaying γ below 0.1× γmax is important, as it significantly improves
the optimization performance.

Limitations. We conduct our benchmarking experiments on models of up to 720M parameters, with
long training runs of almost 50B tokens. The insights we find vary across scales, and training be-
havior may change further at practical scales and with extremely long training durations (Wei et al.,
2022; Tay et al., 2022). Especially when certain optimizers are not widely supported by modern
sharding frameworks (Zhao et al., 2023; Rajbhandari et al., 2020; Rasley et al., 2020) at the mo-
ment. Throughout this work, we study the loss dynamics, leaving aside downstream performances.
Although these often scale reliably with loss (Du et al., 2025; Gadre et al., 2024), there are also
counterexamples (Xu et al., 2025; Liu et al., 2022). Bridging the gap between loss minimization and
downstream task performance is important, as downstream abilities are ultimately the main metric
of interest. We leave a deeper investigation of this connection to future research. We also do not
cover previously explored Adan (Xie et al., 2024), NAdam(W) (Dozat, 2016), Shampoo (Gupta
et al., 2018) optimizers, as well as recently introduced Scion (Pethick et al., 2025), novel variations
of Muon (Qiu et al., 2025; An et al., 2025; Ahn & Xu, 2025), and others (Peng et al., 2024; Defazio,
2025; Guan, 2023; Wang et al., 2025). In addition, it is important to come up with a unified bench-
mark of optimizers for memory-efficient pretraining (Glentis et al., 2025; Zhu et al., 2025; Ma et al.,
2025; Su et al., 2025), as they become more popular and argue that they might even outperform the
AdamW baseline. We emphasize that there is still a huge branch of research on optimizers left to
explore.
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C OPTIMIZERS WE STUDY

In this section, we describe all considered algorithms, presenting them in a unified formalism. We
start with notation and then discuss the algorithms according to their logical grouping:

1. Adam-like methods: AdamW (Algorithm 1), ADOPT (Algorithm 2), and AdEMAMix (Algo-
rithm 3).

2. Sign-based methods: Lion (Algorithm 4), Signum (Algorithms 5 and 6).

3. Approximate second-order optimizers: Muon (Algorithm 8), SOAP (Algorithm 10), and Sophia
(Algorithm 11).

4. Learning rate / scheduler-free learning algorithms: Schedule-Free AdamW (Algorithm 12),
Prodigy (Algorithm 13).

5. MARS methods: (Algorithms 14, 15, 16).

Notation. In our work, we denote vectors and matrices in bold, and scalars in regular type. Let
L : D → R be an empirical loss function parameterized by x and mapping a batch of inputs
ξ ⊂ D to R. As g = ∇xL (x, ξ), we denote a stochastic gradient of the loss w.r.t. parameters x.
For brevity, we omit x in ∇ and write ∇L (x, ξ). We use the following standardized notation for
specific symbols in our work: batch size—|ξ|, learning rate—γ, weight decay—λ, momentum—β,
iteration counter t with the total number of iterations—T . And basic notation for symbols in the
algorithms: m,v—are first and second moment estimates, respectively, with their bias corrected
versions m̂, v̂, and beta parameters—(β1, β2). We denote the dot product of two vectors z, y as
⟨z,y⟩, while z ⊙ y stands for their element-wise product. All division and addition operations in
the described algorithms are element-wise.

C.1 ADAMW, ADOPT, ADEMAMIX

AdamW. Our baseline—Adam(W), has become a de facto optimizer for deep learning, demonstrat-
ing impressive performance across diverse domains—from tabular data to diffusion and language
models.

The method originated from the ideas of Adagrad (Duchi et al., 2011) and RMSProp (Graves,
2014), which utilize a second moment estimate v in their update rule. However, Adam(W) enhanced
this prior scheme by incorporating momentum (Nemirovskii & Nesterov, 1985; Sutskever et al.,
2013), establishing itself as a state-of-the-art method for a wide range of tasks. All other algorithms
we consider also employ a similar, if not identical, momentum scheme.

A key difference between Adam and AdamW is the use of decoupled weight decay (Loshchilov &
Hutter, 2019) in the latter. We adopt the decoupled weight decay scheme for all methods to ensure
consistency, as correct weight decay is critical for optimizer comparison, hyperparameter tuning, and
final performance. The importance of the correct weight decay implementation is clearly observable,
e.g., for Signum.

Algorithm 1 AdamW
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

8: xt+1 ← xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
9: end for

10: Return: xT
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ADOPT. Recently, Taniguchi et al. (2024) proposed a modification of Adam, by removing the current
gradient gt from the second moment estimate vt and altering the order of the momentum update mt

and normalization. As shown in line 8 of Algorithm 2, the parameter update depends only on
the previous value of the second moment estimate vt−1. The authors analyze the convergence of
ADOPT with the following update rule:

mt ← β1mt−1 + (1− β1)
gt

max{√vt−1, ε}
,

xt+1 ← xt − γtmt.

However, the practical implementation differs in a few details. To tackle instabilities caused by
near-zero gradients during the early stages of training, the authors propose using a clipping on
gt/max{√vt−1, ε}, which we formalize as the clamp operation. Given a vector g and a positive
scalar c, it is defined as:

clamp (g, c)
(I)

= min
{
max

{
g(I),−c

}
, c
}
. (1)

Thus, the element-wise clamp operation preserves gt from the division by near-zero values.

The authors theoretically claim that ADOPT achieves the optimal convergence bound for smooth
non-convex objectives, regardless of the choice of the β2 parameter. We empirically investigate this
claim and observe that, contrary to the theoretical results, there is a significant performance gap for
different choices of β2 in practice—see Figure 29. Also, the effect of ε in Algorithm 2 is intriguing:
in contrast to the typical ε = 10−8 value for AdamW, the authors pose that for ADOPT mechanism
the smaller value of 10−6 is more suitable. We notice that this also holds in practice for the method,
and we provide the corresponding ablation in Figure 38.

Algorithm 2 ADOPT
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

ε.
2: Initialize: m0 ← 0, v0 ← ∇L(x0, ξ0)⊙∇L(x0, ξ0)
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: ct ← t1/4 ▷ Update clipping value schedule
6: mt ← β1mt−1 + (1− β1)clamp

(
gt

max{√vt−1,ε} , ct

)
7: vt ← β2vt−1 + (1− β2)gt ⊙ gt
8: xt+1 ← xt − γt (mt + λxt) ▷ Update without vt

9: end for
10: Return: xT

AdEMAMix. Another Adam-like optimizer we study is AdEMAMix (Pagliardini et al., 2024). This
work argues that using a single EMA to accumulate past gradients in the first moment estimate m
can be suboptimal, as it cannot simultaneously prioritize both immediate past and older gradients. In
Algorithm 3, the authors incorporate two EMAs: one—Adam-like EMA for m (fast), and another—
a slow EMA mslow (see line 7) with an additional β3 parameter. In the update rule, fast and slow
EMAs are balanced with the constant factor α (see line 10 of Algorithm 3). This algorithmic
design enables AdEMAMix to benefit from older gradients, resulting in smoother loss curves during
training.

To mitigate the effect of early instabilities, the authors use two additional schedulers for α and β3 –
alpha scheduler and beta scheduler, formalized in our work as follows:

alpha scheduler(t, α, Tα) = min

{
tα

Tα
, α

}
,

beta scheduler(t, β3, βstart, Tβ3
) = min

exp

 log(βstart) log(β3)(
1− t

Tβ3

)
log(β3) +

t
Tβ3

log(βstart)

 , β3

 .

In all experiments, we set βstart = β1, and the warmup parameters equal to the length of training:
Tα = Tβ3 = T .
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Although these schedulers may seem at odds with the WSD scheduler (Hu et al., 2024), set-
ting Tα, Tβ3

longer than the first WSD checkpoint does not noticeably harm performance. Thus,
AdEMAMix can still be combined with recent findings regarding the WSD scheduler.

Algorithm 3 AdEMAMix
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

β3, βstart, α, beta scheduler, alpha scheduler, warmup parameters Tβ3
and Tα, ε.

2: Initialize: m0 ← 0, mslow
0 ← 0, v0 ← 0

3: for t ∈ [T ] do
4: β3(t)← beta scheduler(t, β3, βstart, Tβ3

), α(t)← alpha scheduler(t, α, Tα) ▷
Update β3 and α schedulers

5: gt ← ∇L(xt, ξt)
6: mt ← β1mt−1 + (1− β1)gt
7: mslow

t ← β3(t)m
slow
t−1 + (1− β3(t))gt ▷ Update slow EMA

8: vt ← β2vt−1 + (1− β2)gt ⊙ gt
9: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

10: xt+1 ← xt − γt

(
m̂t+α(t)mslow

t√
v̂t+ε

+ λxt

)
11: end for
12: Return: xT

C.2 SIGN-BASED METHODS: LION AND SIGNUM

Another branch of methods includes sign-based methods, represented by Lion and Signum. To
some extent, one can classify Adam as a sign-based optimizer also, but we mention only Lion and
Signum as they explicitly incorporate the sign operation in the update rule.

These methods, particularly Signum, have been unfairly overlooked in the context of LLM pre-
training. However, our results demonstrate that, with sufficiently large batch sizes and at moderate
model scales, these optimizers perform on par with Adam, and in some cases even outperform it.

Lion. The first sign-based method we study is Lion (Chen et al., 2023). This optimizer is sym-
bolically discovered in the program space of first-order optimization primitives. Lion updates its
EMA of m after updating the parameters and has additional term (1 − β1)g which adds to the
momentum. This interpolation β1mt−1 + (1 − β1)gt (see line 6 of Algorithm 4) makes the
symbolic-discovered idea behind Lion similar to the idea of the AdEMAMix optimizer.

Algorithm 4 Lion
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2.
2: Initialize: m0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← β2mt−1 + (1− β2)gt ▷ Update EMA of gt
6: xt+1 ← xt − γt (sign (β1mt−1 + (1− β1)gt) + λxt)
7: end for
8: Return: xT

Signum. Another sign-based method, which is the adoptation of signSGD—Signum (Bernstein
et al., 2018) (or, alternatively, signSGD with momentum). This method differs from Lion in
the interpolation term between the EMA of momentum and the current gradient, as well as in the
Signum’s update rule, where a current EMA is used.

Importantly, while Signum is not yet as widespread for LLM pretraining and has largely remained
a theoretical artifact, recent studies have begun to adopt Signum for scalable training (Zhao et al.,
2025), primarily due to its memory efficiency compared to AdamW.

In this regard, we would like to highlight that many recent PyTorch (Paszke et al., 2019) imple-
mentations of the Signum optimizer are unlikely to be suitable for this method, which impairs its
potential performance.
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The main issue with open-source implementations is the use of decoupled weight decay in the Py-
Torch implementation of SGDM (SGD with momentum) (Sutskever et al., 2013). Indeed, with de-
coupled weight decay, the update in Algorithm 5 transforms into:

xt+1 ← xt − γtsign (βmt−1 + (1− β)gt − λ(1− β)gt) ,

which affects the sign of the update, potentially leading to the wrong optimization direction if the
weight decay is sufficiently large. See Figures 5 (a) and 15 for the impact of the correct weight
decay implementation for sign-based methods like Signum and Lion.

Another popular failure while using Signum is the incorrectly tractable PyTorch implementation of
SGD with momentum. It does not include such EMA as line 5 in Algorithm 5, on the other hand,
in PyTorch, the momentum update depends on the dampening parameter τ :

mt ← βmt−1 + (1− τ)gt,

where τ is zero by default. Therefore, the typical update rule, reflecting the actual Signum behavior
in practice, corresponds to the following update:

xt+1 ← xt − γt (sign (βmt−1 + (1− τ)gt) + λxt) ,

where the weight decay is decoupled and, consequently, does not affect sign.

However, we found out that the PyTorch implementation of Nesterov momentum (Nesterov, 1983)

gt ← gt + βmt,

improves Signum. Since enabling Nesterov momentum requires zero dampening τ , we revisited
the description of Algorithm 5 and propose more practical, PyTorch-compatible version of Signum
in Algorithm 6. We study the role of dampening and Nesterov momentum in our variant of Signum
in Figure 33.

Algorithm 5 Signum (basic)

1: Input: Initial parameters x0, number of
iterations T , learning rate γt, weight decay
λ, momentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + (1− β)gt
6: xt+1 ← xt − γt (sign (mt) + λxt)
7: end for
8: Return: xT

Algorithm 6 Signum (our PyTorch variant)

1: Input: Initial parameters x0, number of itera-
tions T , learning rate γt, weight decay λ, mo-
mentum β.

2: Initialize: m0 ← 0
3: for t ∈ [T ] do
4: gt ← L(xt, ξt)
5: mt ← βmt−1 + gt
6: xt+1 ← xt−γt (sign (βmt + gt) + λxt)
7: end for
8: Return: xT

Moreover, to prevent other researchers and practitioners from the possible wrong use of Signum,
and to ensure reproducibility, we provide our Python code.

Listing 1: Signum code skeleton using PyTorch.
1 from typing import Dict
2
3 import torch
4
5
6 class Signum(torch.optim.Optimizer):
7 def __init__(
8 self,
9 params,

10 lr=1e-3,
11 momentum=0,
12 dampening=0,
13 weight_decay=0,
14 nesterov=False,
15 sign_update=True,
16 ):
17 if lr < 0.0:
18 raise ValueError(f"Invalid learning rate: {lr}")
19 if momentum < 0.0:
20 raise ValueError(f"Invalid momentum value: {momentum}")
21 if weight_decay < 0.0:
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22 raise ValueError(f"Invalid weight_decay value: {weight_decay}")
23
24 defaults = dict(
25 lr=lr,
26 momentum=momentum,
27 dampening=dampening,
28 weight_decay=weight_decay,
29 nesterov=nesterov,
30 sign_update=sign_update,
31 )
32 if nesterov and (momentum <= 0 or dampening != 0):
33 raise ValueError("Nesterov momentum requires a momentum and zero dampening")
34 super().__init__(params, defaults)
35
36 def __setstate__(self, state):
37 super().__setstate__(state)
38 for group in self.param_groups:
39 group.setdefault("nesterov", False)
40
41 @torch.no_grad()
42 def _init_state(self, example, state=None):
43 assert isinstance(example, torch.Tensor)
44 assert isinstance(state, Dict) or state is None
45 if state is None:
46 state = {}
47 state["step"] = 0
48 state["momentum_buffer"] = torch.clone(example).detach()
49 return state
50
51 @torch.no_grad()
52 def _compute_update(
53 self, grad, state, lr, momentum, nesterov, dampening, sign_update, **kwargs
54 ):
55 if momentum != 0: # Signum check
56 buf = state["momentum_buffer"]
57 buf.mul_(momentum).add_(grad, alpha=1 - dampening)
58
59 if nesterov:
60 grad = grad.add(buf, alpha=momentum)
61 else:
62 grad = buf
63
64 if sign_update:
65 grad = grad.sign()
66
67 return grad * (-lr)
68
69 @torch.no_grad()
70 def step(self, closure=None):
71 """Performs a single optimization step.
72
73 Args:
74 closure (Callable, optional): A closure that reevaluates the model
75 and returns the loss.
76 """
77 loss = None
78 if closure is not None:
79 with torch.enable_grad():
80 loss = closure()
81
82 for group in self.param_groups:
83 for p in group["params"]:
84 if p.grad is None:
85 continue
86
87 grad = p.grad
88 state = self.state[p]
89
90 if group["weight_decay"] != 0:
91 p.mul_(1 - group["lr"] * group["weight_decay"])
92
93 if len(state) == 0:
94 self._init_state(example=p, state=state)
95 if not group["momentum"]:
96 state.pop("momentum_buffer", None)
97
98 state["step"] += 1
99

100 update = self._compute_update(
101 grad,
102 state,
103 group["lr"],
104 group["momentum"],
105 group["nesterov"],
106 group["dampening"],
107 group["sign_update"],
108 )
109
110 p.add_(update)
111
112 return loss
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C.3 MUON & D-MUON , SOAP, SOPHIA

The next page of the methods covers algorithms that rather aim to use more information about the
problem’s curvature (SOAP (Vyas et al., 2024), Sophia (Liu et al., 2024)) or perform fast updates
of matrix parameters involving higher order computations (Muon (Jordan et al., 2024b)).

Contrary to chronological order, we discuss them starting from the recent one—Muon and end up
with Sophia.

Muon & D-Muon. Specifically designed for speedrun comparisons, Muon surpasses the AdamW
baseline on the nanoGPT pretraining benchmark (Jordan et al., 2024a). Claims from the Muon
project extend to faster learning, lower memory usage and better sample-efficiency, with a small
overhead in wall-clock time.

The reason why Muon is a good option for speedrun pretraining lies in its structure—Muon treats
different parameters based on their tensor dimensionality. One-dimensional (1D) parameters, large
embedding layers, Layer Norm (or RMSNorm) parameters, and the output layer of LLM (lm head)
are optimized by AdamW. And all parameters with two or more dimensions (e.g., Multi-Head Atten-
tion layers) are optimized by Algorithm 7, which we call MuonNon1D.

Inspired by Shampoo’s preconditioners (Gupta et al., 2018), the authors of MuonNon1D incor-
porated an orthogonalization step to compute SVD transformation of the gradient matrix. Before
the orthogonalization step, MuonNon1D resembles SGD with Nesterov momentum. To ensure a
fast orthogonalization procedure, the authors, inspired by (Bernstein & Newhouse, 2024), use the
Newton-Schulz procedure (Higham, 2008). As the number of Newton-Schulz iterations increases,
the resulting matrix becomes closer to UV ⊤ from SVD transformation. The authors also mention
that Muon can be considered an alternative method of smoothing spectral steepest descent (Carlson
et al., 2015), offering a distinct set of memory and runtime trade-offs compared to Shampoo.

Algorithm 7 MuonNon1D (for non-1D parameters)

1: Input: Initial non-1D parameters x0, number of iterations T , learning rate γt, momentum β,
number of Newton-Schulz iterations TNS, a, b, c coefficients.

2: Initialize: m0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← βmt−1 + gt
6: gt ← βmt + gt ▷ Practical implementation of Nesterov momentum
7: Set: w0 ← gt/∥gt∥F
8: for n ∈ [TNS] do
9: wn+1 ← awn + bwnw

⊤
n + c

(
wnw

⊤
n

)2
wn ▷ Newton-Schulz iteration

10: end for
11: xt+1 ← xt − γtwTNS

12: end for
13: Return: xT

Importantly, we noticed that the original algorithmic description of Muon optimizer, provided in the
official repository2, differs from the actual one, presented in Algorithm 7. In the original code, as
well as in our benchmarking, weight decay does not apply to the matrix parameters in the optimizer
state of MuonNon1D, meaning that the only weight decay used during training is AdamW’s weight
decay. From this perspective, we observe that the gap between the final loss values for runs with
weight decay of 0.1 and 0 almost disappears, while the run with a weight decay of 0.5 becomes the
worst, which is not the case for other optimizers. See Figures 5 and 15 regarding these ablations.

Noticeably, the weight decay issue was addressed in the recent paper (Liu et al., 2025), in which
the authors also present a scheme for sharing the learning rate and weight decay between the matrix
and non-matrix parameters of the model. They do this via the RMS heuristic: since AdamW has the
property of keeping its RMS updates close to 1 (Hinton et al., 2012), particularly around 0.2-0.4
in the practice of LLM training (Liu et al., 2025; AI et al., 2025), they scale the RMS update of

2https://github.com/KellerJordan/modded-nanogpt
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Algorithm 8 Muon (general scheme)

1: Input: Initial parameters x0, number of iterations T . Muon’s parameters: learning rate γMt , mo-
mentum β, number of Newton-Schulz iterations TNS, a, b, c coefficients. AdamW’s parameters:
learning rate γAt , weight decay λ, β1, β2, ε.

2: for t ∈ [T ] do
3: if xt ∈ {embeds, scalar params, lm head} then
4: xA

t ← xt

5: xA
t+1 ← AdamW (xA

t , γ
A
t , λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW

6: else
7: xM

t ← xt

8: xM
t+1 ← MuonNon1D (xM

t , γ
M
t , TNS, β, a, b, c, T = 1) ▷ One iteration of MuonNon1D

9: end if
10: end for
11: Return: xA

T ,x
M
T

Muon to this range. With these adjustments, practitioners do not need to tune the learning rate and
weight decay for 1D and non-1D parameters separately, which is a significant bonus of the newer
Muon-like algorithm. We include this variation of Muon under the D-Muon naming.

Our ablations demonstrate that D-Muon scales better than the basic Muon in all settings we have
considered so far (see Figures 1, 3, 12, 36, 37 and 40). We also report a detailed comparison of these
two similar methods in Figures 16 and 17, and discuss their close connection with the weight decay
applied to non-1D parameters in the D-Muon algorithm. Refer to this ablation in § 4.

Another interesting aspect of Muon is the effect of the Newton-Schulz orthogonalization proce-
dure (Bernstein & Newhouse, 2024; Higham, 2008) on optimization. We show how the number
of Newton-Schulz steps impacts the performance of Muon in Figure 32. Furthermore, we pose
that improving the orthogonalization procedure in methods like Muon, Scion, MARS-Shampoo
(see Algorithm 16) could substantially improve their overall performance. Recent work has already
begun to explore this avenue (Amsel et al., 2025; Grishina et al., 2025), but a deeper investigation
remains an open research challenge.

SOAP. (Vyas et al., 2024) proposed a new, improved modification of Shampoo (Gupta et al.,
2018). SOAP reduces the computational overhead by optimizing only two-dimensional lay-
ers (2D) via Algorithm 9, while running AdamW for 1D layers. At initialization, the pre-
conditioners are computed via the eigenvector decomposition of the initial gradient matrices
eigenbasis

(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤): ∇L(x0, ξ0)∇L(x0, ξ0)
⊤ = qΛq−1, where Λ stands

for the diagonal matrix whose diagonal elements are the corresponding eigenvalues. For subsequent
iterations, SOAPNon1D rotates gradients into this slowly changing basis, maintains second-moment
statistics in that basis, and periodically updates the basis via QR decomposition (see lines 15,
16 of Algorithm 9) for all 2D layers (except for embeds and lm head). This is the main computa-
tional part of the method.

A key idea behind the SOAP optimizer is:

1. Given the slowly changing coordinate basis provided by eigenvectors l and r, SOAP updates its
second moment estimates in this basis; that is to say, it runs AdamW in another, a rotated space.

2. To update the eigenvectors of l and r, SOAP runs QR decomposition with the preconditioning
frequency ϕ.

In Algorithm 9, setting both ql and qr to the identity matrix would result in AdamW.

The overall SOAP algorithm can be formalized as Algorithm 10.

Sophia. Despite being named a second-order optimizer, Sophia (Liu et al., 2024) performs an
update that is quite similar to Adam’s. It also leverages the diagonal preconditioner h, but not the
curvature information of the optimization problem, which depends on the non-diagonal terms of
the Hessian. One should notice that Sophia was introduced with two types of preconditioner—
Hutchinson (Bekas et al., 2007) and Gauss-Newton-Bartlett (Martens, 2020). Since the latter shows
more promising performance, we only consider this type of preconditioner for Sophia.
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Algorithm 9 SOAPNon1D (for non-1D parameters)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: Initialize preconditioners: ql, qr ← eigenbasis

(
∇L(x0, ξ0)∇L(x0, ξ0)

⊤)
4: for t ∈ [T ] do
5: gt ← ∇L(xt, ξt)
6: g′

t ← q⊤
l gtqr ▷ Rotate gt

7: mt ← β1mt−1 + (1− β1)gt
8: m′

t ← q⊤
l mtqr ▷ Compute Adam’s statistics in rotational space

9: vt ← β2vt−1 + (1− β2)g
′
t ⊙ g′

t

10: γt ← γt

√
1−βt

2

1−βt
1

▷ Optional: use bias correction

11: xt+1 ← xt − γt

(
ql

m′
t√

vt+εq
⊤
r + λxt

)
▷ Perform update in original space

12: lt ← β2lt−1 + (1− β2)gtg
⊤
t ▷ Update preconditioners

13: rt ← β2rt−1 + (1− β2)g
⊤
t gt

14: if t ≡ 1 (mod ϕ) then
15: ql ← QR (ltql)
16: qr ← QR (rtqr)
17: end if
18: end for
19: Return: xT

Algorithm 10 SOAP (general scheme)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
preconditioning frequency ϕ, ε.

2: for t ∈ [T ] do
3: if xt ∈ {embeds, scalar params, lm head} then
4: xA

t ← xt

5: xA
t+1 ← AdamW (xA

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of AdamW
6: else
7: xS

t ← xt

8: xS
t+1 ← SOAPNon1D (xS

t , γt, λ, β1, β2, ε, T = 1) ▷ One iteration of SOAPNon1D
9: end if

10: end for
11: Return: xA

T ,x
S
T

Every ϕ iterations, Sophia updates its second moment estimate by computing the gradient ĝ of
the empirical loss L given softmax of the logits instead of the true logits. Multiplying by the batch
size, we obtain ĥ, after that, Sophia updates the EMA of ĥ.

Importantly, we found that the algorithmic description of Sophia in the original paper differs in
minor details from the code implementation3. Indeed, the update rule in their work is formulated as
follows:

xt+1 ← xt − γtclamp

(
mt

max{ρht, ε}
, 1

)
,

where clamp is defined as in Equation (1).

On the other hand, the code from the official repository suggests:

Listing 2: Sophia update skeleton using PyTorch.
1 # update step
2 step_t += 1
3

3https://github.com/Liuhong99/Sophia
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4 # Perform stepweight decay
5 param.mul_(1 - lr * weight_decay)
6
7 # Decay the first and second moment running average coefficient
8 exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
9

10 else:
11 step_size_neg = -lr
12
13 ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None, 1)
14 param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)

Therefore, the update rule of Sophia is misstated in the original paper and should be corrected to
match line 16 of Algorithm 11.

Takeaway 8. The actual update rule of Sophia does not match its description in the original
paper.

Algorithm 11 Sophia
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,

estimator frequency ϕ, scaling factor ρ, ε.
2: Initialize: m0 ← 0, h0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)gt
6: if t ≡ 1 (mod ϕ) then
7: pt ← ξt ▷ Obtain logits from batch
8: pt ← softmax (pt) ▷ Sample from logits
9: L̂(xt, ξt)← pt ▷ Loss, where pt are labels

10: ĝt ← ∇L̂(xt, ξt)

11: ĥt ← |ξt|ĝt ⊙ ĝt
12: ht ← β2ht−ϕ + (1− β2)ĥt

13: else
14: ht ← ht−1

15: end if
16: xt+1 ← xt − γt

(
sign(mt)min

{
|mt|
ρht+ε , 1

}
+ λxt

)
17: end for
18: Return: xT

C.4 SCHEDULE-FREE ADAMW, PRODIGY

In this section, we outline two more players—Schedule-Free AdamW (Defazio et al., 2024b)
and Prodigy (Mishchenko & Defazio, 2024). Both of them have a promising advantages and
require less hyperparameter tuning which paves the road to parameter-free optimizers.

Schedule-Free AdamW. Defazio et al. (2024b) introduced the notion of schedule-free opti-
mizers. The underlying idea behind Schedule-Free SGD and Schedule-Free AdamW
(SF-AdamW) is to eliminate learning rate schedulers by replacing them with iterate averag-
ing. Specifically, the schedule-free method uses interpolation between Polyak-Ruppert averag-
ing (Polyak, 1990; Ruppert, 1988) and Primal averaging (Nesterov & Shikhman, 2015) for the mo-
mentum update, rather than the usual EMA (see line 4 of Algorithm 12). To stabilize scalable
training, the authors also propose an internal warmup mechanism (see line 7 of Algorithm 12),
which gradually increases the learning rate while ensuring Adam-style bias correction.

An interesting result we observe, is that SF-AdamW shows the best performance with a larger num-
ber of warmup iterations compared to other methods—see Figure 7.

Another key point—training with SF-AdamW is sensitive to the choice of beta parameters. Unlike in
AdamW, these parameters play distinct roles in SF-AdamW: β1 determines the interpolation between
the zt and xt sequences, which acts as a form of schedule-free momentum. Specifically, the term
(1 − β1)gt is immediately incorporated into the iterate sequence yt, while the remainder of gt is
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gradually incorporated through averaging—a mechanism analogous to the momentum EMA, but
with a longer delay for the residual contribution. By contrast, β2 controls the EMA of the second
moment estimate with respect to yt (rather than directly with xt; see line 6 of Algorithm 12).

For Adam it is common to analyze in theory the case, when β2 = 1 − 1/T (Reddi et al., 2019;
Zaheer et al., 2018; Chezhegov et al., 2024), i.e., the choice of the “optimal” β2 parameter depends
on the length of training. Which, presumably, is also the case for SF-AdamW, making it not fully
schedule-free. Hägele et al. (2024) observed this sensitivity to beta parameters, and we go beyond
this ablation also (Figure 31).

Importantly, the authors mention that disabling gradient norm clipping is crucial for schedule-free
runs; however, we do not observe this in practice and instead find the opposite effect—see Figure 28.

Algorithm 12 SF-AdamW
1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2,

warmup iterations Twarmup, ε.
2: Initialize: z0 ← x0, v0 ← 0
3: for t ∈ [T ] do
4: yt ← (1− β1)zt + β1xt

5: gt ← ∇L(yt, ξt)
6: vt ← β2vt−1 + (1− β2)gt ⊙ gt
7: γt ← γ

√
1− βt

2 min{1, t/Twarmup}
8: zt+1 ← zt − γt

(
gt/(
√
vt + ε) + λyt

)
9: ct+1 ← γ2

t∑t
i=0

γ2
i

10: xt+1 ← (1− ct+1)xt + ct+1zt+1

11: end for
12: Return: xT

Prodigy. Mishchenko & Defazio (2024) extended the D-Adaptation framework. Drawing
inspiration from the AgaGrad (Duchi et al., 2011) theory, the authors derived an alike step-size
rule, giving rise to a new family of methods. While studying the convergence (in the determinis-
tic case) of several proposed algorithms that are based on the gradient descent and dual averaging,
the authors also introduced an Adam-like version of their methods—the Prodigy optimizer (Al-
gorithm 13)—that effectively removes the need for hand-tuned learning rates through an intrinsic,
adaptive step-size scheme. The EMA of Prodigy specifically includes dtgt sequence rather than
the raw gradients gt (see lines 5, 6, 8, 9 of Algorithm 13). The new term dt is determined
by two additional EMA sequences, which are also responsible for the adaptive rescaling of the
learning rate according to line 10. Mishchenko & Defazio (2024) evaluate Prodigy in practice
on language models by running a shallow nanoGPT transformer on the Shakespeare (over-training
regime) and BookWiki datasets. We extend the experiments with Prodigy to a larger scale and a
greater variety of LLM pretraining settings.

Crucially, Prodigy does not require extensive learning rate tuning. Typically, we initialize γ = 1,
as suggested by the authors, and it remains remarkably stable, as demonstrated in our γ-sweeps (Fig-
ures 6 and 18). However, Prodigy is still be compatible with learning rate schedules, which we
verify experimentally (Figures 8 and 20). We further show that, without any schedulers, dt sequence
behaves similarly to the constant learning rate with warmup (see Figure 35 and related ablations).
Moreover, Prodigy scales reliably similar to AdamW, making it a promising choice for future
development of parameter-free methods.

C.5 MARS

Very recently, Yuan et al. (2024) introduced MARS—a family of optimizers incorporating mod-
ern adaptive (Loshchilov & Hutter, 2019; Chen et al., 2023) and approximate second-order meth-
ods (Gupta et al., 2018) methods with a variance reduction update style.

This optimization framework gave a rise to: MARS-AdamW, our main baseline, which we call simply
MARS; MARS-Lion; and MARS-Shampoo. We mainly include MARS-AdamW in our ablation
studies, but also report results for the other two optimizers (see Figure 34).
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Algorithm 13 Prodigy
1: Input: Initial parameters x0, number of iterations T , learning rate γ, weight decay λ, β1, β2, ε.
2: Initialize: d0 ← 10−6, γ ← 1, m0 ← 0, v0 ← 0, r0 ← 0, s0 ← 0 ▷ Optional: use scheduler

on γ
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)
5: mt ← β1mt−1 + (1− β1)dtgt
6: vt ← β2vt−1 + (1− β2)d

2
tgt ⊙ gt

7: γt ← γ
√
1− βt

2/(1− βt
1) ▷ Optional: use bias correction

8: rt ←
√
β2rt−1 + (1−

√
β2)γtd

2
t ⟨gt,x0 − xt⟩

9: st ←
√
β2st−1 + (1−

√
β2)γtd

2
tgt

10: dt+1 ← max
{
dt,

rt
∥st∥1

}
11: xt+1 ← xt − γtdt

(
mt/

(√
vt + dtε

)
+ λxt

)
12: end for
13: Return: xT

The authors modified the variance reduction update by introducing a scaling parameter η, which we
call variance reduction scaling in the outlined algorithms and experiments. This parameter controls
the scale of gradient correction—see line 5 of Algorithms 14, 15, and 16.

Importantly, we follow only the approximate scheme of MARS-like optimizers, i.e., we evaluate the
gradient gt in different stochasticity, meaning that

gt = ∇L (xt, ξt) ,

gt−1 = ∇L (xt−1, ξt−1) .

In the same spirit as for SOAP and Muon, the authors use MARS-like algorithms for layers with two
or more dimensions. For 1D layers, embeds, scalar parameters and the final layer of neural net-
work, this method utilizes AdamW. This design choice enables efficient and fast training with MARS.
Following the practices from the original work, we also use MARS only for 2D layers. Importantly,
for MARS-based methods, one need to tune both the AdamW’s learning rate γAt , and the learning rate
for 2D parameters, which we denote as γMt for compatibility with the Muon pseudocode 8.

MARS (MARS-AdamW). For the AdamW-like algorithm, the difference occurs in the computation of
mt and vt, where the variance reduction update ct is used instead of the gradient.

Algorithm 14 MARS (MARS-AdamW)

1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1, β2,
variance reduction scaling η, ε.

2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: if ∥ct∥2 > 1 then
7: ct ← ct/∥ct∥2
8: end if
9: mt ← β1mt−1 + (1− β1)ct

10: vt ← β2vt−1 + (1− β2)ct ⊙ ct
11: m̂t ←mt/(1− βt

1), v̂t ← vt/(1− βt
2)

12: xt+1 = xt − γt

(
m̂t√
v̂t+ε

+ λxt

)
13: end for
14: Return: xT
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We point out once again that, for LLM training, we only run Algorithm 14 for 2D parameters,
resulting in the following two updates at each iteration:

xM
t+1 ← MARS

(
xM
t , γ

M
t , λ

M, βM
1, β

M
2, ε, T = 1

)
for 2D parameters,

xA
t+1 ← AdamW

(
xA
t , γ

A
t , λ

A, βA
1, β

A
2, ε, T = 1

)
for 1D parameters,

i.e., in the same way as in Algorithms 8 and 10. The same holds for two more versions—
MARS-Lion and MARS-Shampoo, which we discuss below.

MARS-Lion. Similarly to the Lion algorithm, the authors use scaled gradient correction ct with
the current gradient. Importantly, Algorithm 15 does not leverage second moment estimates to
update 2D parameters. Instead, the updates rely on the sign-based characteristic of Lion integrated
with the variance reduction framework.

Algorithm 15 MARS-Lion
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,

variance reduction scaling η, ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: if ∥ct∥2 > 1 then
7: ct ← ct/∥ct∥2
8: end if
9: mt ← β1mt−1 + (1− β1)ct

10: xt+1 = xt − γt (sign (mt) + λxt)
11: end for
12: Return: xT

MARS-Shampoo. The same holds for MARS-Shampoo. A key point to note is that, to compute
SVD of the first moment estimate, the authors also perform the Newton-Schulz steps (Bernstein &
Newhouse, 2024; Higham, 2008). In our experiments, we use 5 iterations of this orthogonalization
scheme for MARS-Shampoo.

Algorithm 16 MARS-Shampoo
1: Input: Initial parameters x0, number of iterations T , learning rate γt, weight decay λ, β1,

variance reduction scaling η, ε.
2: Initialize: m0 ← 0, v0 ← 0
3: for t ∈ [T ] do
4: gt ← ∇L(xt, ξt)

5: ct ← gt + η β1

1−β1
(gt − gt−1)

6: mt ← β1mt−1 + (1− β1)ct
7: Ut,Σt,Vt ← SVD(mt) ▷ Use Newton-Schulz orthogonalization
8: xt+1 = xt − γt

(
UtV

⊤
t + λxt

)
9: end for

10: Return: xT

D IMPLEMENTATION

Our code is based on an extension of nanoGPT4 and uses PyTorch (Paszke et al., 2019) as well
as FlashAttention (Dao et al., 2022). We incorporate mixed-precision training (Micikevicius et al.,
2018), i.e., we train in bfloat16 precision, except for normalization modules and softmax which
we train in float32. The optimizer states are also stored in float32. The majority of experi-
ments were performed using a cluster of A100-SXM4-80GB, H100-HBM3-80GB GPUs as well as

4https://github.com/karpathy/nanoGPT
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GH200-120GB. We trained both in a single GPU regime and in DDP (Li et al., 2020) (from 2 to 8
GPUs per one run). We estimate that the full cost of all experiments for our project to roughly 30000
GPU hours. To give an idea of how much effort was put into tuning each method, across all model
sizes, batches and iterations, we trained a total of 2900 models. This includes includes nearly: 750
AdamW, 145 ADOPT, 238 AdEMAMix, 158 Lion, 165 Signum, 231 Muon, 135 D-Muon, 354
SOAP, 199 Sophia, 133 SF-AdamW, 195 Prodigy, 217 MARS-AdamW, 26 MARS-Lion, and
20 MARS-Shampoo models. See Appendix G for details about hyperparameter tuning.

E MODEL & DATA

Architecture details. In our project, we use the Llama-like family of models (Llama Team, 2024).
We implement the popular in the community decoder-only transformer with SwiGLU activation
functions (Shazeer, 2020), RoPE embeddings (Su et al., 2023), RMSNorm (Zhang & Sennrich,
2019). The vocabulary is based on the GPT2 (Radford et al., 2019) tokenizer 5 and contains 50304
tokens. Importantly, our variant of the Llama-based architecture employs weight tying (Press &
Wolf, 2017).

The number of parameters in our models is fully configurable, and we present the exact configura-
tions used in our experiment in Table 1.

Table 1: Configurations for our Llama-like models.

# Parameters 124M 210M 583M 720M
Hidden size 768 768 1920 2048

# Attention heads 12 12 15 16
# Layers 12 24 11 12
Init. std 0.02 0.02 0.02 0.02
Use bias no no no no

RMSNorm epsilon 0.00001 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE RoPE

Dataset. Our main findings are obtained on the subset of FineWeb (Penedo et al., 2024a) with
100B tokens 6, cleaned and deduplicated corpus for LLM pretraining, which we split into train and
validation sequences. During training, we evaluate the models with a fixed set of 32 batches of
our chosen sequence length (512 for almost all experiments, the same context length as training) to
establish the validation loss curves. At the end of the training, we compute the full validation loss
and perplexity (this loss is reported as Final Validation Loss in the figures). We also performed our
initial results on the subset of the OpenWebText2 dataset (Gao et al., 2020b).

F ADDITIONAL RESULTS

In this section, we complement our results from the main part with extended experiments. We
start sequentially with smaller models of 124M and 210M parameters, ablating: warmup, weight
decay, learning rate schedulers, gradient norm patterns, learning rate decaying, and other
optimizer-related phenomena. We finalize this section with the wall-clock performance of opti-
mizers. Details on hyperparameter searches are provided in Appendix G.

F.1 ABLATIONS FOR 124M MODEL

At first, we systematically gather all ablations with 124M parameter models. As in § 4.1, we
study: the effect of scaling the number of iterations and hyperparameter dependence on T ; warmup;
the importance of weight decay for optimizers; γ-sensitivity; a comparison of γ-schedulers; gra-
dient norm patters during training; learning rate decaying; and optimizer-specific phenomena for
Sophia, SF-AdamW, Prodigy, Muon, Signum, and MARS-based methods.

5https://github.com/openai/tiktoken
6https://huggingface.co/datasets/HuggingFaceFW/fineweb
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Complementing benchmarking results of 124M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 12. The presented runs correspond to
those in Figure 3.
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Figure 12: Comparing optimizers for training a 124M parameter LLM. We plot the validation
loss dynamics obtained by considered optimizers. In (a), we train methods with a “small” batch size
of 16k tokens for {64, 128, 256, 384, 512, 1024}k iterations. In (b), we train methods with nearly
8× larger batch size of 131k tokens for {8, 16, 32, 48, 64, 128}k iterations. Thus, in both settings,
we result in the same number of tokens models see during the training: {1, 2.1, 4.2, 6.3, 8.4, 16.8}B.
We observe that: (I) many methods outperform AdamW in the short runs for 1B or 2.1B tokens; (II)
as training on more tokens, AdamW narrows the gap with SOAP and D-Muon, while AdEMAMix
emerges as the best-performing method; (III) Signum, MARS, Lion, Prodigy benefit from the
increased batch size.

Scaling the number of iterations. We stay in the setup from § 3, training 124M model with
batches of 256 × 512 tokens. Our training runs in Figure 12 (b) demonstrate the the gap between
SOAP and AdEMAMix narrows as the training horizon extends. As for 124M model, we tuned all
optimizers on 2.1B tokens length of training, some hyperparameters, particularly those sensitive
to the training duration, may become suboptimal for longer runs of 16.8B tokens. For example,
the beta parameter (β2) of the second moment estimate in AdamW-like methods should arguably be
re-tuned when the number of iterations is increased (Orvieto & Gower, 2025; Marek et al., 2025;
Busbridge et al., 2023), which also makes theoretical claims (Reddi et al., 2019; Défossez et al.,
2022; Wang et al., 2023; Zaheer et al., 2018; Taniguchi et al., 2024; Chezhegov et al., 2024). Our
extensive tuning on 2.1B yielded the result that for AdamW, SOAP, and AdEMAMix optimizers, β2

should be set to 0.999. Importantly, Pagliardini et al. (2024) suggest increasing β3 of AdEMAMix,
which controls the slow EMA (see line 7 of Algorithm 3), for longer training.

As such, we conducted two experiments.

First, we keep the best hyperparameters found for 2.1B tokens horizon, and extend them to 2×
loner duration than the maximum one (16.8B tokens), resulting in a total of 33.6B tokens—it is
interesting to observe whether the gap between SOAP and AdEMAMix finally closes in a longer
run. Secondly, we re-tune beta parameters of SOAP and AdEMAMix for 16.8B and 33.6B runs, and
compare results. Our re-tuned values are β2 = 0.9999 for SOAP, and β3 = 0.9999 for AdEMAMix.

This ablation is described in Figure 13 (a,b). We see that, indeed, without re-tuning, SOAP ends up
outperforming AdEMAMix when extending the training horizon further to 33.6B tokens (≡ 256k
iterations). However, with re-tuning of β2 for SOAP and β3 for AdEMAMix, the latter optimizer
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still takes the lead. Notably, in our experiments, β3 = 0.999 is only better than β3 = 0.9999 when
the number of training iterations is less than 32k. Surprisingly, given the many theoretical claims
from works analyzing Adam, that β2 depends on the number of iterations: β2 = β2(T ) = 1− 1/T ,
we do not observe this to be a common rule in practice, as many influential settings regarding
LLM pretraining (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al., 2023; Team OLMo,
2024b) utilize a typical (β2 = 0.95) even for very long training for trillions of tokens. Therefore,
we highlight this oversight in Takeaway 9, proposing to re-tune β2 hyperparameter of Adam-like
methods when changing of the training horizon.
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(b) Increase β3 for AdEMAMix for longer training.

Figure 13: Re-tuning beta parameters is significant for longer training. This experimental setup
coincides with the one from Figure 4—where we consider an impact of increasing batch size or
number of iterations. We elaborate more on the impact of beta parameters for AdEMAMix: in
(a), we show a training dynamics of AdEMAMix and SOAP for T ∈ {128, 256}k steps, and (b)
demonstrates the final loss. Throughout this experiment we use a batch size of 256 × 512 tokens
and train a 124M model. Our results reveal that increasing β3 for AdEMAMix is crucial for long
runs. Without these changes, SOAP with β2 = 0.999 found via tuning on 16k steps runs ends up
outperforming AdEMAMix with β3 = 0.999. Re-tuning β2 of SOAP does not change the results
much, and give almost identical loss curves, however, the training dynamics if AdEMAMix changes
dramatically with β3 as noticed in (Pagliardini et al., 2024), and gives best results with larger β3 =
0.9999.

Takeaway 9. We highlight the overlooked claim that β2 parameters of Adam-like methods
should be re-tuned with training durations. One needs to increase β2 for longer training. This
re-tuning significantly improves the optimizer performance.

Warmup ablation. In this section, we supplement the experiments on warmup from § 4.1. We
study the impact of warmup on the final validation loss. Replicating our setup (§ 3), we use the
batch size of 256 × 512 tokens and reuse the best hyperparameters found through tuning, except
for Twarmup. For all methods, we sweep over Twarmup ∈ {1.56%, 6.25%, 25%} of the total training
duration T to examine each method’s sensitivity to warmup. Additionally, for AdamW, we extend
this sweep to Twarmup ∈ {1.56%, 5%, 6.25%, 10%, 25%} of T . We specifically consider 1.56%
and 6.25% percentages because the former represents a typical number of warmup steps (2000) for
models of our scale, while the latter (6.25% of 128000 steps) aligns with the warmup strategy used
in Llama (Llama Team, 2024).

Contrary to the insights from (Zhang et al., 2024a), we observe that 25% of the Cinchilla optimal
duration (620M tokens for 124M model) is far from being the best warmup for pretraining. We
emphasize that their results were obtained for 85M models and then extrapolated to larger scales.
However, in our setting, we found that the basic 2000 steps were a more suitable warmup option
for most optimizers; exceptions include sign-based methods (Signum, Lion), and Sophia with
SF-AdamW.

We provide the warmup sweep for AdamW in Figure 14.
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Figure 14: Warmup sweep for AdamW. We observe that the smaller yet reasonable warmup value
is the best. However, this is not the case for other methods like Signum, Lion, Sophia, and
SF-AdamW—see Figure 7.

Takeaway 10. As usual, a warmup duration in LLM pretraining is around 2k steps. However,
we reveal that the warmup duration is optimizer-dependent and should be tuned: for SF-AdamW,
Sophia, and Signum, longer warmup results in improved final performance, while Lion with
increased warmup also surpasses strong baselines such as AdamW.

Weight decay ablation. Prior work analyzing the importance of weight decay λ in model training
suggests tuning both λ and the learning rate γ so that their product λγ remains constant. D’Angelo
et al. (2024) argue that, across different pairs of γ and λ, the lowest error of the model is observed
along the contour in the hyperparameter space where λγ = const. The authors also establish a
connection between the quantity of λγ product and an effect of regularization and noise scale in the
over-training regime, such as for small computer vision models trained over multiple epochs. Kosson
et al. (2024b) highlight that if γ and λ are chosen to result in constant product, the model achieves
the same equilibrium rotation value, reflecting a similar effective update size for the weights. While
previous studies have analyzed the rule of keeping λγ = const primarily on image classification
tasks with ResNet-based models (He et al., 2015), Pagliardini et al. (2024) also used this heuristic
when tuning hyperparameters for LLM pretraining.

In our study, which focuses solely on language modelling, we demonstrate that using a relatively
large weight decay term with a fixed learning rate can significantly accelerate short training runs.
Throughout our weight decay ablation experiments, we fix the best value of γ found via tuning on
near-Chinchilla optimal T , and sweep the weight decay across λ ∈ {0, 0.1, 0.5}, where λ = 0.1
is the standard value of the decoupled weight decay term in our work. Our results are consistent
across optimizers and training horizons: runs with large λ dominate for a small number of iterations,
but as the training length increases to {8.4, 16.8}B tokens, runs with a moderate λ = 0.1 begin
to outperform (Figures 5 and 15). An important example is Muon. As this optimizer does not
use weight decay for 2D parameters, we observe that runs with λ = 0.5 underperform those with
λ ∈ {0, 0.1} even in short training on {1, 2.1, 4.2, 6.3}B tokens. However, when we consider
an implementation of the D-Muon optimizer with learning rate and weight decay shared across all
parameters, we again observe a similar pattern to that seen with other methods—larger weight decay
dominates when training on fewer tokens.

We highlight these observations for practitioners and suggest that this approach may be useful for
short training runs. Our main claim from this section is summarized in Takeaway 11.

Impact of weight decay on Muon. We complement our claims regarding the old implementation
of Muon where weight decay has not been applied to matrix parameters. Through comparison with
modified D-Muon Liu et al. (2025), we clearly demonstrate the impact of the enabled weight decay
for longer training in Figures 16 and 17.

Takeaway 11. The use of weight decay, particularly a large decoupled weight decay term (0.5
and above), can significantly impact the final loss value and optimizer behavior. However, for
extended training horizons, a moderate, non-zero weight decay of 0.1 proves to be a robust
option.
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Figure 15: Larger weight decay achieves significantly better results when training on fewer
tokens. We observe that the majority of runs with the large weight decay of 0.5 consistently outper-
form those with weight decay of 0.1 for all training durations except for the long training on 16.8B
tokens. Notably, Signum and Lion with large weight decay perform even better than AdamW
with the same learning rate—see Figure 5. We also consider a setting without weight decay. We
observe that this is suboptimal for most of other optimizers, while the typical weight decay of 0.1
remains the best for long training durations. An interesting pattern emerges for optimizers that treat
one-dimensional and two-dimensional parameters differently, such as Muon and MARS. For these,
runs with large weight decay (0.5) consistently underperform those with 0.1 and, in some cases,
even those without weight decay. For Muon, we attribute this effect to its algorithmic design, in
which weight decay is not employed to optimize matrix parameters (see Algorithm 7), in contrast
to D-Muon, where the observed patterns are reliably similar to those seen with AdamW. For MARS,
we only vary the weight decay corresponding to matrix parameters while keeping 0.1 for all scalar,
one-dimensional and final layer parameters. In this case, we conclude that the gap between large
and small weight decay values narrows significantly faster.

Learning rate sensitivity. In this part of the work, we meticulously replicate the learning rate
sweep process and present comprehensive results. In line with our experimental setup (§ 3), our aim
is to determine the true impact of the learning rate and its transferability to longer training horizons.
For each optimizer, we only vary the learning rate while maintaining the best hyperparameters ob-
tained during our initial tuning (see Appendices G and G.1) on 2.1B tokens for 124M parameter
model. That is, the learning rate has been re-tuned for all optimizers on the training length of 16.8B
tokens. We do not present γ-sensitivity for Prodigy in the main part (§ 4) because of the difference
in axis scale: we sweep across γmax ∈ {0.5, 1, 2, 10, 100} for this optimizer. We show the results of
the learning rate sweep in Figure 18.
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Figure 16: Importance of weight decay for Muon. We complement our weight decay ablation with
comparison of two version of Muon: one that uses a weight decay for all parameters (D-Muon), and
another, with weight decay being applied only to embeddings, scalar parameters, and the final layer.
For three scales of models (a,b,c), we show that D-Muon greatly outperforms the basic Muon. We
emphasize that the main reason—weight decay, which supports our ablations in Figures 5 and 15.
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Figure 17: Weight decay in Muon & D-Muon. We compare two methods—basic Muon (Jordan
et al., 2024b), and D-Muon (Liu et al., 2025) with a weight decay applied to all parameter groups.
Across model sizes used in our benchmarking of dense LLMs, we observe a major improvement of
D-Muon over Muon. We relate this observation to our ablation on the importance of weight decay
across different optimizers, and training horizons. See Figure 16 and Appendix F.1 for more details.

Takeaway 12. For most optimizers, the learning rate γmax selected near the Chinchilla optimal
horizon transfers smoothly to our 8×longer run. Notably, we found that: (I) sign-based methods
and Sophia diverge with larger γmax = 2e−3; (II) while SF-AdamW, SOAP, and D-Muon
achieve better performance with such a large learning rate; (III) MARS demonstrates a very
consistent performance across γ sweep, which is not typical for other optimizers.

Comparison of learning rate schedulers. In this part of our ablations, we systematically inves-
tigate the impact of γ-schedulers on optimizers. As we mention in § 3, we conduct the majority of
experiments on the FineWeb dataset (Penedo et al., 2024a). However, here we also present a small
ablation on another corpus for LLM pretraining—OpenWebText2 (OWT2) (Gao et al., 2020a)—as
the main results of Defazio et al. (2024b) are obtained on the subset of this corpus. We show our
results for two batch size settings: 32×512 for OWT2 (Figure 19), and 256×512 for FineWeb (Fig-
ure 20).

In Figure 19, we present our initial results in the small-batch setting on the OWT2 dataset (Gao et al.,
2020a). We run the WSD scheduler experiments without following the rule of thumb from (Hägele
et al., 2024); instead, use a linear decay shape during the learning rate cooldown and set γ to the
value that is near-optimal for cosine. Hence, we use γmax = 0.001 with the learning rate decay to
γend = 0.01 × γmax for both cosine and WSD schedulers. This is the only experiment where we
do not follow the best-practices of using WSD. Regarding hyperparameter tuning, we observe little
shift compared to that found in Appendix G for FineWeb. We only pose that it may be beneficial
to additionally re-tune the gradient clipping threshold, as this depends on the “cleanliness” of the
dataset. Our ablations (Figure 19) reveal that SF-AdamW can potentially outperform the AdamW
baseline with the WSD scheduler. However, the cosine γ-scheduler still takes the lead in this setup.

We also report the final validation loss on the FineWeb dataset (Penedo et al., 2024a) for 124M
model trained with the batch size of 256 × 512 tokens. For WSD, we follow the rule of thumb
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Figure 18: Learning rate sensitivity. In the current setting, only SOAP, SF-AdamW, and D-Muon
reach the better performance with the large learning rate of 0.002. Conversely, Sophia and all sign-
based methods (Signum and Lion) diverge with this learning rate value. MARS and Prodigy
show a remarkably consistent performance across the learning rate sweep. And, Prodigy diverges
for sufficiently large value of γmax—see Figure 35 for more insights regarding the learning rate of
Prodigy.
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(a) Cosine scheduler outperforms WSD and
SF-AdamW.
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(b) Performance gap narrows with longer training.

Figure 19: WSD scheduler underperforms both AdamW with cosine scheduler and SF-AdamW.
This is the only experiment we conduct on the OpenWebText2 (OWT2) dataset. We follow the
small-batch setup, and replicate the best hyperparameters of each optimizer found through our tuning
process. Once the learning rate and beta parameters of SF-AdamW and AdamW are properly tuned,
we observe a surprisingly large performance gap between the WSD scheduler and its competitors.
Figure (b) suggests that this gap may potentially diminish with extended training.

from Hägele et al. (2024): 20% of the steps for the cooldown, (1−
√
x) decay shape, and the learn-

ing rate is half the optimal for cosine, i.e., 0.0005 if we have the best learning rate 0.001 for the
method. Additionally, we point out that we do not include stochastic weight averaging (Izmailov
et al., 2019) in the comparison, which might potentially enhance the overall performance. We ran
the linear γ-scheduler with the same learning rates that we found through our tuning for cosine (Fig-
ures 6 and 18). We report our findings in Figure 20. All missing optimizers—AdamW, Muon, and
Sophia—are in the main part; see Figure 8.
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Figure 20: Comparisons between cosine, WSD, and the linear schedulers. We complement
results in Figure 8 by extending them to all the optimizers considered in our benchmarking. In
most cases, the tuned cosine baseline performs similarly to runs using the linear scheduler, with
both slightly outperforming WSD. However, certain optimizers still tend to “prefer” different γ-
schedulers. For example, Muon shows a preference in WSD (see Figure 8 (a)), AdamW performs
better with the cosine scheduler, Signum and Lion appear to favor the linear scheduler. While
the performance differences are not particularly large, they are still meaningful in the context of
benchmarking. Therefore, we adopt the cosine scheduler as our default, as even small gaps can
substantially impact our setup.

Takeaway 13. A choice of the learning rate scheduler is also optimizer-related. For most meth-
ods, the cosine scheduler dominates. However, linear scheduler outperforms or matches cosine
and WSD for sign-based methods, SOAP, and MARS. WSD appears to be the best option for
Muon. We also study the gradient norm patterns for all optimizers and highlight it for sign-
based method, who attain the completely different ”bump” shape.
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Gradient norm patterns. We systematically track the evolution of gradient norms across weight
decay (λ), maximum learning rate (γmax), and learning rate scheduler sweeps in Figures 22 to 24.
This analysis spans all optimizers in our benchmark, providing insight into how these hyperparame-
ters influence gradient magnitude and stability. Our goal is to determine whether the gradient norm
dynamics correlate with improved convergence and whether these trends are optimizer-specific or
general. We also investigate whether deviations from expected patterns (e.g., premature flattening or
explosive growth) can serve as indicators of suboptimal configuration, potentially informing better
tuning heuristics.

Firstly, we study the dynamics of gradient norms while sweeping the learning rate schedulers—
see Figure 22. This result complements the one in Figure 21. In general, Defazio et al. (2024a)
argue that there exists an interdependence between the learning rate schedule and observed gradient
norm patterns, proposing a schedule refinement for optimization algorithms. The observation that
γ-scheduler can tract the gradient norm pattern and vice versa encourages us to expand experimental
observations to optimizers studied in our benchmark.
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(b) Gradient norm increases.

1 4:2 7:3 10:5 13:7 16:8

Tokens (B)

0:0

0:2

0:4

0:6

0:8

G
ra
d
ie
n
t
N
or
m

Signum

Cosine Linear WSD

(c) “Bump” for Signum.

Figure 21: Gradient norm patterns for different schedulers. In our experiments with learning
rate schedulers (Figure 8), we also track a gradient norm changes for all optimizers, showing how
it is affected by the choice of the scheduler. We use our cosine baseline, linear scheduler with the
same optimal learning rate as for cosine, and the WSD scheduler with a rule of thumb described
in Appendix G. We found that gradient norm evolution for majority of optimizers resembles the
SF-AdamW pattern in (b). Exceptions are sign-based methods—Signum (c), and Lion (a).

Prior works (Kosson et al., 2024b; Defazio, 2025) study the connection between gradient norm
patterns, weight decay, and learning rate. Kosson et al. (2024b) explore how weight decay influences
the update behavior of individual neurons in deep neural networks. The authors show that weight
decay causes the weight norm to reach a stable equilibrium magnitude. At this equilibrium point,
the opposing effects of gradient updates (which increase the norm) and weight decay (which reduce
it) cancel each other out. Importantly, this study highlights the effectiveness of the decoupled weight
decay for optimization over ℓ2 regularization, noting that the gradient norm varies between neurons
or layers for ℓ2 regularization which is not the case for decoupled weight decay. In our experiments,
we study how (decoupled) weight decay influences gradient norms—see Figure 23. We use the
cosine learning scheduler and the best other hyperparameters found for optimizers, sweeping the
weight decay across three critic values: 0, the standard one of 0.1, and the “large” weight decay
of 0.5. Basically, these gradient norms were tracked during weight decay ablation and correspond
to Figures 5 and 15. We observe that runs without weight decay typically result in gradient norm
curves that are more flattened and with a smaller magnitude compared to runs with λ ∈ {0.1, 0.5}.
Exceptions are sign-based methods, Muon, AdEMAMix, and Sophia. Using the large weight decay
term of 0.5 results in a dramatic increase in the gradient norms towards the end of the training.
Nevertheless, we present figures for long training runs of 7× Chinchilla optimal duration for 124M
models (resp. 16.8B tokens and 128k steps)—where runs with λ = 0.1 outperform ones with
λ ∈ {0, 0.5}—we emphasize that the same patterns of the gradient norms are also observed in
shorter runs where λ = 0.5 still demonstrates the best performance.

Another key factor influencing the gradient norms is the learning rate. As with previous ablations on
gradient norms (Figures 22 and 23), we follow our benchmarking setup (§ 3). During the learning
rate sweep (Figures 6 and 18), we track the gradient norms presented in Figure 24. Notably, smaller
learning rates result in larger gradient norm magnitudes, with exceptions for sign-based Signum
and Lion. We also observe a dramatic increase in gradient norms for Muon with γmax = 0.0001,
which we attribute to the large difference between learning rates for 1D and 2D parameters, the
latter typically set around 0.01 (see the “Learning rate Muon” row in Table 12). For Prodigy with
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Figure 22: Gradient norm patterns for cosine, linear, and WSD γ-schedulers. We run all op-
timizers on 124M models and track the gradient norms (before clipping) for runs using different
γ-schedulers. For most optimizers, we see that gradient norms tend to increase over the course of
training with cosine and linear schedules. In contrast, WSD tends to produce flatter gradient norm
trajectories, with consistently lower magnitudes toward the end of training compared to the other
schedulers. Since the WSD scheduler maintains a constant learning rate until the cooldown phase
(the final 20% of the training length), we observe a more stable gradient norm behavior in later
stages. In this regard, our findings align with prior works (Kosson et al., 2024b; Defazio, 2025),
which explore a connection between the learning rate schedule and gradient norm dynamics. Inter-
estingly, Signum and Lion—see Figure 21—exhibit a pronounced drop in gradient norm during
the cooldown phase, setting them apart from the other optimizers.

γmax = 10 the explosion in gradient norms might be caused by the critical value of the learning rate,
which leads to divergence if increased.

Takeaway 14. (I) The WSD scheduler produces stable, flat gradient norm trajectories, contrast-
ing with the increasing norms from cosine and linear schedules. (II) The impact of weight decay
is optimizer-specific, with no single value (e.g., 0 or 0.1) universally yielding optimal stability;
larger decay often increases norms late in training. (III) Smaller learning rates typically lead to
larger gradient norms, a trend from which sign-based methods notably deviate.
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Figure 23: Gradient norm patterns for weight decay sweep. We complement our weight decay
ablation (Figures 5 and 15) by tracking the gradient norms for all the optimizers studied in our bench-
mark. To highlight the effect of changing the weight decay, we use the same cosine γ-scheduler
for all optimizers and keep the other best hyperparameters found, sweeping only the weight decay
values as described in § 3—i.e., we fix the maximum learning rate and only change the weight de-
cay. For Muon, we only sweep the weight decay for {embeds, scalar params, lm head} (as in
the initial implementation, the weight decay has not been applied to matrix parameters), while for
MARS, we only sweep the weight decay of 2D parameters. Our observations reveal that, regard-
less of optimizer used, runs with a larger weight decay result in higher gradient norms. For Muon,
AdEMAMix, Sophia, and sign-based methods, runs with moderate λ = 0.1 result in the most flat-
tened and smallest gradient norms in magnitude. While for AdamW-like methods, D-Muon, SOAP,
Prodigy, and SF-AdamW, this holds for λ = 0. We attribute the discrepancies between D-Muon
and Muon to the latter’s absence of weight decay for matrix parameters. As shown in Figures 5
and 15, AdEMAMix can benefit from large weight decay for longer training durations. Runs of
AdEMAMix with λ = 0.5 are still outperform those with λ = 0.1. Interestingly, this is reflected in
the gradient norms, as the absolute values corresponding to λ = 0.5 are much smaller than those of
the respective runs of other AdamW-like optimizers.

Learning rate decaying for 124M model. Prior ablation studies on 210M models (Figure 9)
demonstrated that decaying the learning rate down to 10% of its maximum value underperforms
compared to 0.01, 0.001 × γmax. To generalize this finding, we conduct the same ablation on a
smaller 124M model. As before, we use three γ-schedulers—cosine, linear, and WSD, utilizing
the best hyperparameters for AdamW at this scale, training for 16.8B tokens with the batch size
of 256 × 512 tokens. We γmax = 0.001—a robust and well-adopted value—and sweep the final
learning rate γend across {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} × γmax. We present the results of
this ablation in Figure 25. Recently, the question of the learning rate decaying has been an interesting
topic of discussion (Bergsma et al., 2025; Schaipp et al., 2025; Hägele et al., 2024), with works
focusing on the explanations of the WSD scheduler pointing to the possible impact of decaying γ
to zero (or very small magnitudes). Importantly, our ablations for models of two scales—124M
and 210M—suggest that the optimal choice of γend may depend on the model scale. For example,
γend = 0.01 × γmax delivers the best performance for 210M model trained with WSD, while for
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Figure 24: Gradient norm patterns for learning rate sweep. In this experiment, we complement
the result on the learning rate sweep for optimizers (Figures 6 and 18) by tracking the gradient
norms. We follow the same setup as for the γ-sensitivity ablation, varying the learning rates while
training 124M language models for 16.8B tokens using a cosine γ-scheduler with γend = 0.01 ×
γmax. Except for Lion and Signum, we see that smaller γmax leads to larger magnitude of the
gradient norms—unless the learning rate is high enough to nearly lead to divergence, e.g., γmax = 10
for Prodigy. Interestingly, we connect the “bump” shape of the gradient norms for sign-based
methods with the fact that γmax = 0.001, used for them, is close to the “critical” value, an increase
of which also leads to divergence—and our experiments with these optimizers on larger models
support this, as we were able to decrease γ in order to train properly.
124M model γend = 10−6 × γmax takes the lead, which is closer to decaying to zero, as in prior
works (Hägele et al., 2024; Schaipp et al., 2025). We also highlight that increasing the model size
decreases the optimal learning rate for the model, thus the very small values of γend might not affect
the final performance much, while slowing the training at the latest stage, which is undesirable for
modern large-scale pretraining tasks. Furthermore, we do not conduct the learning rate decaying
ablations for different optimizers, utilizing only AdamW. Thus, we point out that it is possible for
γend to depend on the optimizer choice as well—this is an interesting branch of the research on
optimizers to explore in future work.
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Figure 25: Do not decay the learning rate down to 10%: ablation on 124M models. We extend
our ablation on learning rate decay from Figure 9 to studying the impact of the change of model
parameters—reducing it from 210M to 124M. Consistent with our previous results, decaying the
learning rate only down to 10% of the maximum results in significantly worse final performance,
indicating the need for further decay. Notably, for the linear (b) and WSD (c) schedulers, the best
choice of γend differs from that observed at 210M. For linear, the optimal setting shifts to γend =
10−4×γmax (vs. 10−3×γmax at 210M), and for WSD to γend = 10−6×γmax (vs. 10−2×γmax at
210M); see Figure 9 (b,c). Overall, while the differences in final performance beyond 0.1 × γmax

are relatively small, these results highlight that the optimal γend depends on model size, which in
turn influences the appropriate learning rate schedule.
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Figure 26: Sophia diverges in the large-
batch setup, when training for many iter-
ations. In the small-batch setup, we ob-
served that Sophia exhibited convergence is-
sues. With batch size 256 × 512, Sophia ini-
tially converges reliably across all training du-
rations for 124M models used in our bench-
marking. However, when extending training be-
yond 16.8B tokens, divergence reappears. To
clearly visualize so, we present the best stable
run (T = 128k steps, 16.8B tokens) with the
unstable one (T = 256k steps, 33.6B tokens),
using identical hyperparameters. The dashed
line marks the iteration t = 129720 where di-
vergence begins. This instability raises serious
concerns about the practicality of Sophia for
long training runs at scale.

Fail of Sophia. Another striking effect we
observed throughout our benchmarking experi-
ments is the convergence issues of the Sophia
optimizer. In the main text (see Takeaway 1),
we reported that “Sophia diverges in the small-
batch setting when trained beyond the Chinchilla
optimal horizon, even with sufficiently small
learning rates.” Later, we also noted that in
the large-batch regime “Sophia exhibits conver-
gence issues when extending the training run, di-
verging shortly after 130k steps.” These phenom-
ena are particularly puzzling, since Sophia does
converge in long runs of 336k steps on MoE mod-
els. Figure 27 demonstrates loss curves of 124M
Llama model trained with a small batch size of
32×512 tokens and using the cosine γ-scheduler.
Initially, we used γmax = 0.001, which proved
too large for this setup, so we switched to γmax ∈
{1e−4, 3e−4, 5e−4}. For runs up to T = 64k
steps, training converged properly. However, in-
creasing the number of steps beyond this point led
to divergence (see Figure 27 (a)). Interestingly,
the divergence onset occurred at almost the same
iteration for both 3e−4 and 5e−4 learning rate
values. For reference, training with T = 128k
steps in the small-batch setup results in ∼ 2.1B
tokens, while the Chinchilla optimal horizon for
this model is about 2.5B. Thus, Sophia fails to
converge with such a small batch size even before
reaching the optimal horizon. When switching to
a larger batch size of 256× 512, we initially observed stable convergence across training durations
from 1B to 16.8B tokens (see Figure 3 (b)). The same held true for an even larger batch size of
512 × 512 tokens, where Sophia converged for 64k iterations, i.e., 16.8B tokens (see Figure 4,
left). However, doubling the training steps with the 256 × 512 batch size again led to divergence
(see Figure 26 and Figure 4, right). Using the same hyperparameters that worked well for 16.8B
tokens, we extended training to 33.6B tokens (≡ 256k iterations). Strangely, shortly after reaching
16.8B tokens, Sophia diverged, with the failure occurring precisely at t = 129720 (marked by the
dashed line). We do not attribute these issues to implementation bugs, since Sophia converges in
much longer runs (336k steps) with larger 520M models (see Figure 41). Instead, we caution prac-
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titioners against relying on Sophia in its current form and emphasize that there remains substantial
room for improvement. We also note that previous benchmarking work (Kaddour et al., 2023) eval-
uated Sophia only on BERT (Devlin et al., 2019) and T5 (Raffel et al., 2023) pretraining tasks
(encoder-only and encoder-decoder architectures, respectively).
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(a) Divergence after ∼ 2.1B to-
kens.
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(b) Next-token prediction accuracy.
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(c) Exploded gradient norms.

Figure 27: Sophia diverges in the small-batch setting even with sufficiently small learn-
ing rate. We train 124M Llama models with batch size 32 × 512 tokens for T ∈
{64, 128, 256, 384, 512, 1024}k iterations. Sophia diverges with the typical learning rate γmax =
0.001, and even at smaller values (e.g., 3e−4, 5e−4) it still fails shortly after 2.1B tokens (≡ 128k
steps). Figures (a–c) show loss, next-token prediction accuracy, and gradient norms, respectively.
For both reported γmax values, divergence occurs at nearly the same iteration (within 10k steps,
∼ 164M tokens). We do not attribute this instability to implementation bugs, since Sophia con-
verges on larger MoE models for longer horizons (Figure 41). Whether this instability is related
to the Chinchilla optimal horizon remains unclear; however, with a larger batch size (256 × 512),
Sophia again fails once training exceeds 16.8B tokens (see Figure 26).

Takeaway 15. (I) Sophia diverges in the small-batch setting, even with sufficiently small
learning rate. (II) When training with an increased batch size, Sophia starts to diverge after
exceeding some limit in iterations—nearly 7× Chinchilla optimal horizon in our experiments.
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Clipping & SF-AdamW. Defazio et al. (2024b), when introducing the schedule-free concept, em-
phasized that gradient clipping should be disabled for SF-AdamW. Motivated by this claim, we paid
particular attention to clipping during tuning. Following our setup (§ 3), we trained 124M models
with a batch size of 256 × 512 tokens for up to 128k steps (≡ 16.8B tokens). While sweeping the
main hyperparameters of SF-AdamW—(β1, β2), γ, λ, Twarmup—we also varied the gradient clipping
threshold across {0.5, 1} and tested runs without clipping, as suggested in the original paper. Our
results, summarized in Figure 28, show a clear discrepancy with prior claims. Disabling clipping
consistently produced unstable training, with highly spiky loss curves (Figure 28a). To mitigate this,
we reduced the learning rate from 0.001 to 0.0005, which largely stabilized the runs (Figure 28b).
However, even under this adjustment, the best clipped run—with the clipping threshold of 0.5—still
outperformed the no-clipping alternative. Thus, contrary to Defazio et al. (2024b), we find gradient
clipping to be a critical hyperparameter for the stability of SF-AdamW.
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(a) Disabling clipping causes instability to
SF-AdamW.
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(b) Reducing γ helps, but the clipped baseline is better.

Figure 28: Clipping is significant for Schedule-Free. Contrary to the claims of Defazio et al.
(2024b), we find that gradient clipping remains a critical hyperparameter for SF-AdamW. As shown
in (a), disabling clipping causes severe training instabilities. To mitigate these undesired loss dy-
namics, we reduced the learning rate from 0.001 to 0.0005, which stabilized training (b). However,
even under this adjustment, the clipped runs still outperform those without clipping.

Takeaway 16. Gradient clipping is crucial for stability of Schedule-Free AdamW.
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Betas sensitivity. The impact of the beta parameters on optimizers—especially in Adam-like
methods—has been studied both theoretically (Reddi et al., 2019; Défossez et al., 2022; Zaheer et al.,
2018) and empirically (Pagliardini et al., 2024; Marek et al., 2025; Busbridge et al., 2023). How-
ever, many large-scale works in industry (DeepSeek-AI, 2024b; Brown et al., 2020; Touvron et al.,
2023; Team OLMo, 2024b; Jaghouar et al., 2024) either do not tune the betas at all or simply adopt
conventional defaults (β1 = 0.9, β2 = 0.95). Earlier in this manuscript (Takeaway 9), we argued
that betas should be tuned in tandem with training duration—a conclusion supported by extensive
ablations and hyperparameter sweeps. Here, we demonstrate the most striking effects of tuning beta
parameters, with a particular focus on β2. Our ablation focuses on “parameter-free” methods such as
Prodigy (Figure 30), SF-AdamW (Figure 31), and the Adam-like optimizer ADOPT (Figure 29).
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Figure 29: ADOPT still needs β2. One of
the main theoretical claims of Taniguchi et al.
(2024)—that ADOPT converges with any β2.
The authors verify those on a toy problem moti-
vated by Reddi et al. (2019). However, in LLM
training, the choice of β2 still matters signifi-
cantly. Our results demonstrate that, despite the-
oretical guarantees, performance strongly de-
pends on tuning β2 in practice.

We highlight that: (I) despite the theoretical con-
vergence guarantees of ADOPT for any β2, in
practice the performance gap between the best
and a poorly chosen β2 remains substantial; (II)
when the batch size is small (32 × 512 tokens),
Prodigy is very sensitive to β2, even diverg-
ing when changing it from 0.999 to 0.9999, how-
ever, applying the bias correction—see line
7 of Algorithm 13—fixes this issue; (III) prior
works (Hägele et al., 2024; Song et al., 2025)
question a sensitivity of SF-AdamW to β2, which
also studied by Defazio et al. (2024b) on image
classification tasks, we confirm that changes in
betas, especially β2, highly affects the overall
performance, in Figure 31 (b) we compare our
best found (β1 = 0.9, β2 = 0.9999) hyperpa-
rameters with default (β1 = 0.9, β2 = 0.95)
used by Defazio et al. (2024b), and (β1 = 0.95,
β2 = 0.99) noticed by Hägele et al. (2024).
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(a) Minor change in β2 leads to divergence.
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(b) Bias correction resolves issues with divergence.

Figure 30: Prodigy is sensitive to beta parameters in the small-batch setting. In this experi-
ment, we follow our setup (§ 3) with a small batch size of 32× 512 tokens, training 124M models
with the best hyperparameters while sweeping β2. Although β2 = 0.999 yields the best results in
this setting (see Table 17), even a slight change to β2 = 0.9999 causes divergence. This occurs be-
cause (β1, β2) directly affect the internal statistics rt, st, which determine the optimizer’s effective
learning rate. As shown in (b), enabling bias correction (see line 7 of Algorithm 13) effectively
resolves this instability.

Takeaway 17. (I) Prodigy diverges with a minor change in β2, when the batch size is small.
Using bias correction should resolve this issue. (II) SF-AdamW is sensitive to (β1, β2); we find
that typically large β2 values (e.g., 0.9999) are beneficial for schedule-free runs. (III) Despite
the established convergence theory for any β2, ADOPT still requires careful tuning of this hyper-
parameter.

Muon’s Newton-Schulz iterations. We briefly study the impact of Newton-Schulz iterations on the
Muon optimizer, focusing on the first version of Muon with weight decay applied only to 1D param-
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(a) β2 sweep with fixed β1 = 0.9.
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(b) Comparison with Defazio (Defazio et al.,
2024b) and Hägele (Hägele et al., 2024).

Figure 31: Impact of beta parameters on Schedule-Free. We elaborate further on the question
of the sensitivity of SF-AdamW to β2. For language modeling, Defazio et al. (2024b) initially
suggested using default (β1 = 0.9, β2 = 0.95). Then, Hägele et al. (2024) revisited hyperparameter
tuning of the schedule-free optimizer, proposing to apply (β1 = 0.95, β2 = 0.99), which improved
the performance a lot. Based on our tuning, we claim that (β1 = 0.9, β2 = 0.9999) achieves the best
performance at this scale—see (b). In addition, we fix β1 = 0.9 and report the result with sweep
of β2 ∈ {0.999, 0.9999, 0.99999}, showing that the large and unconventional value of β2 = 0.9999
is indeed the best in schedule-free runs. We also notice that SF-AdamW requires a slightly larger
optimal β2, compared to all other optimizers.
eters. Recent research (Ahn & Xu, 2025; Amsel et al., 2025; Grishina et al., 2025) has extensively
explored the Newton-Schulz orthogonalization procedure, examining its impact on the wall-clock
speed, communication efficiency on many GPUs, and numerical precision formats. Additionally,
the theoretical implications of orthogonalization procedures on optimizer convergence have been
investigated in (Kovalev, 2025; Riabinin et al., 2025). In this ablation, we focus solely on the final
loss performance of Muon, setting aside other considerations such as computational efficiency or
wall-clock time. Following the tuning setup (§ 3) for smaller 124M parameter models with batch
size of 256× 512 tokens, we train for 2.1B tokens (≡ 16k steps), slightly below the Chinchilla op-
timal training horizon. Once the main hyperparameters of Muon are properly tuned, we sweep the
number of Newton-Schulz iterations TNS ∈ {1, 5, 10, 20}. The default setting for both Muon (Al-
gorithm 8) and D-Muon (Liu et al., 2025) is TNS = 5. Our results indicate that TNS ∈ {5, 10},
and 20 yield comparable performance, with TNS = 5 slightly outperforming the others. However,
setting TNS = 1 significantly degrades performance. These findings are summarized in Figure 32.
Importantly, we always use Nesterov momentum, when running Muon-like methods.
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Figure 32: Muon’s dependence on the number of Newton-Schulz iterations. We perform a
short ablation targeting the final loss of Muon (Algorithm 8) by varying the number of Newton-
Schulz iterations. Training is done for 16k steps with a batch size of 256 × 512 tokens, sweeping
TNS ∈ {1, 5, 10, 20}. We find that increasing TNS beyond 5 does not improve performance, while
unnecessarily increasing wall-clock time.
Signum configurations. We consider the Signum optimizer (Algorithm 6), which, perhaps unex-
pectedly, demonstrates strong performance at a small scale and competes effectively with AdamW
when batch sizes are large (Figure 4 (left)). A key factor contributing to this performance is the
decoupled weight decay. However, a fixed weight decay alone does not fully account for Signum’s
efficiency. Another important ingredient is the momentum mechanism. In this ablation, we study
two momentum configurations: Nesterov momentum (Nesterov, 1983) (our default, in Algorithm 6)
and dampening, which is commonly used in PyTorch’s implementation of SGD. We also compare
both with the “plain” Signum, which uses conventional momentum without Nesterov. To give a
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better understanding of these concepts, we provide a brief algorithmic description in Appendix C.2
and below:

1. Dampening update: {
mt ← βmt−1 + (1− τ)gt,

xt+1 ← xt − γt (sign (mt) + λxt) .

2. The “plain” update of Signum without Nesterov momentum:{
mt ← βmt−1 + gt,

xt+1 ← xt − γt (sign (mt) + λxt) .
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Figure 33: Comparison of different update
rules for Signum. We evaluate three variants
of the Signum update: Nesterov (our default),
dampening—which resembles an EMA of mt

when the dampening parameter τ equals the
momentum β—and the “plain” Signum with-
out Nesterov momentum or dampening. Valida-
tion perplexity is reported for two training hori-
zons in (256×512) batch size setting. The Nes-
terov variant corresponds to the runs included
in our main benchmarking results (Figures 3
and 12). While Nesterov style momentum con-
sistently achieves the best performance, the rel-
ative perplexity gap compared to the other vari-
ants decreases as the training horizon increases.

That is, the dampening update rule with τ = β
resembles the basic EMA we used to see in meth-
ods such as AdamW—line 5 of Algorithm 1.
And the “plain” Signum follows the conven-
tional momentum style of SGD used in its Py-
Torch implementation 7.

The results of the comparison are shown in Fig-
ure 33. We ran three variations of the method for
2.1B and 16.8B in the “large” batch setup, and
reported the final perplexity (PPL). For the Nes-
terov momentum version (our default), we use
β = 0.95 found through careful tuning. For the
damping version, we found that τ = 0.9 is the
best, i.e. the explicit momentum update at each
iteration results in mt ← 0.95 ·mt−1 + 0.1 · gt;
we found this configuration to be slightly better
than τ = β = 0.95. The same β = 0.95 is
used in the “plain” Signum configuration. In
all cases, the method with Nesterov momentum
leads with a significant margin (for LLM pre-
training) of ∼ 0.45 PPL for 2.1B tokens run and
∼ 0.11 PPL for long 16.8B tokens training over
dampening and plain Signum variations. Inter-
estingly, these margins vanish with the increased
training horizon. We highlight the importance of
Nesterov momentum for Signum runs in Take-
away 18. We also notice that Nesterov momen-
tum slowdowns training, but not significantly, as

our wall-clock time ablation reveals that Signum, with Nesterov momentum, is still the fastest
method in various scenarios.

Takeaway 18. Signum with Nesterov momentum (our PyTorch implementation) consistently
outperforms both the dampening variant (EMA-like) and the basic version without Nesterov.

MARS types. In addition to the MARS optimizer that leverages Algorithm 14 to optimize 2D pa-
rameters, and AdamW to optimize 1D parameters and lm head, we also study MARS-Lion and
MARS-Shampoo methods—Algorithms 15 and 16 respectively. Before delving into the experi-
mental details, we note that it is possible to use MARS-like methods for all parameters of LLM,
however, this would be inefficient and in the original codebase8, the default choice is to optimize
all 1D parameters with AdamW. Therefore, we do the same in our experiments. For this ablation,
we utilize 124M model and train for T ∈ {8, 16, 32, 48, 64, 128}k with batch size of 256 × 512
(we report plots only for this batch setting), varying γ-schedulers and Twarmup. We observe similar
patterns regarding the impact of weight decay on these methods—for the majority of the training

7torch.optim.SGD
8https://github.com/AGI-Arena/MARS
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the loss curves with λ = 0 look “convex” and lie below the curves corresponding to λ = 0.1,
but then runs with the non-zero weight decay take the lead. Regarding tuning MARS-Lion and
MARS-Shampoo, we found interesting observations related to our previous experience in hyperpa-
rameter tuning. MARS-Lion, despite optimizing only 1D parameters with Lion, is also sensitive to
warmup, as the latter method, and benefits from longer warmup durations—see Figure 34 (c). Sim-
ilarly to Lion, MARS-Lion also prefers the WSD scheduler (Figure 34 (b)) that outperforms the
corresponding runs with the cosine baseline. Notably, the best (β1, β2) parameters of MARS-Lion
coincide with those found for Lion in Table 10 and in (Chen et al., 2023). Of all the MARS versions,
MARS-Shampoo performs the worst. We also note that this variant of MARS is not included in the
original paper’s (Yuan et al., 2024) experiments on LLMs. In our setup with batch size of 256× 512
both MARS (MARS-AdamW) and MARS-Lion do not outperform the AdamW baseline. However,
this may be due to the smaller batch size: in the original work, the authors use 480×1024 (≡ 492M
tokens) batch size, and our experiments with the larger batch size of 1984 × 512 (≡ 1B tokens)—
see Figure 1—reveal that both MARS-AdamW and Lion greatly benefit from the increased batch
size. Therefore, we highlight that it may be the case that MARS-Lion can outperform AdamW in
some cases.
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Figure 34: MARS family of optimizers. We study three MARS-based algorithms: MARS-AdamW
(just MARS in our work), MARS-Lion, and MARS-Shampoo. In this ablation, our goal is to
complement our MARS runs with experiments for other similar methods, and support findings for
these optimizer with our previous experience in tuning Lion. We replicate the setup from § 3 and
train with the batch size of 256 × 512 for the same training durations as in Section 4.1. In (a),
we show that, indeed, MARS-AdamW outperforms other alike methods, as reported in (Yuan et al.,
2024) regarding the MARS-Lion optimizer. Interestingly, in (b), we show that the choice of γ-
scheduler for MARS-based methods also depends on optimizer, as such, WSD runs of MARS-Lion
outperform itself with cosine. Dashed blue and dark blue lines correspond to the AdamW baseline
with cosine and WSD schedulers, respectively. Furthermore, in the same way as Lion benefits
from larger warmup (Figure 7), MARS-Lion also improves with 8k steps (≡ 1B tokens) warmup,
however, this improvement is not as dramatic (c).

Takeaway 19. Among current MARS variants, MARS-AdamW is the best. Notably, other
modifications—MARS-Shampoo and MARS-Lion are differently affected by γ-schedulers and
warmup. MARS-Lion prefers the WSD scheduler over cosine, and shows the greatest stability
to warmup sweep among all MARS-based methods.

On learning rates of Prodigy. Throughout our benchmarking results (Figures 1, 12 and 37),
Prodigy consistently ranks among the top 6 optimizers, performing close to AdamW at smaller
scales and maintaining strong performance even when applied to MoE architectures. Interestingly,
when training 124M models with an increased batch size of 512 × 512 tokens, Prodigy outper-
forms the AdamW baseline, suggesting that its critical batch size (Erdil, 2024; Zhang et al., 2024a;
Hoffmann et al., 2022) may be larger than that of AdamW. While highly efficient, Prodigy is
generally easy to tune, except for its sensitivity to β2 (Figure 30) in the small-batch setup. This
robustness is attributed to its adaptive learning rate mechanism, which relies on two exponential
moving average sequences{

rt ←
√
β2rt−1 + (1−

√
β2)γtd

2
t ⟨gt,x0 − xt⟩,

st ←
√
β2st−1 + (1−

√
β2)γtd

2
tgt,
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that control the learning rate magnitude with a multiplier of

dt+1 ← max

{
dt,

rt
∥st∥1

}
.

At first, we define the effective learning rate of Prodigy as:

γeff
t+1 := γtdt, (2)

thus, when bias correction is applied—which we found necessary to ensure stability for small
batches—Equation (2) becomes:

γeff
t+1 = γdt

√
1− βt

2

1− βt
1

,

where γ—the learning rate—is usually set to 1 for Prodigy, which we confirmed to work the best
through the sweeps in Figures 6 and 18.

When introducing the concept of the effective learning rate γeff, we note that it depends on the mo-
mentum parameters (β1, β2), the base learning rate γ, and the EMA sequences st, rt. Moreover,
applying a γ-scheduler further influences how γ evolves over iterations. To study these interactions,
we examine the dynamics of the effective learning rate (Equation (2)) under different schedulers
(Equation (2)). For this purpose, we train a small 124M model with the batch size of 256× 512 to-
kens. The training horizon is short—8k steps—with a warmup of 1000 steps, and β2 = 0.999—the
best for Prodigy in this setup according to our tuning. We also set the learning rate of Prodigy
to 1 as in our best benchmarking runs. As in previous experiments, we apply WSD and cosine
γ-schedulers, and additionally show a run without any scheduler. For the WSD scheduler in this ab-
lation, we do not rescale γ to half the optimal value for cosine, as we are interested in the dynamics
of γeff

t rather than the final performance; observing it without rescaling provides a clearer picture.
Figure 35 (a) shows the dynamics of the effective learning rate γeff

t , while (b) illustrates the effect
of applying scheduling to γ = 1. The starting points of the curves differ slightly due to variations
in the final learning rate—cosine decays γt down to 0.01, whereas WSD decays it to zero using
the (1−

√
x) decay pattern—however, those differences do not affect the qualitative shape of the

figures obtained.

Interestingly, across all schedulers, we observe a common pattern—the effective learning rate
warmup is longer than Twarmup = 1000 steps—meaning that Prodigy experiences an “implicit
warmup” beyond the explicitly set value. Another notable observation is that when using the co-
sine scheduler with γ = 1, the maximal effective learning rate reaches γeff

max ∼ 1.08× larger than
the learning rate of AdamW we use in a similar setting (0.001). Consequently, setting Prodigy’s
learning rate to the default value of 1 produces dynamics closely matching those of AdamW. This
insight could be useful for practitioners as a proxy for tuning Adam-like optimizers: one can launch
Prodigy with γ = 1, track the effective learning rate (Equation (2)), and then set the AdamW peak
learning rate to γeff

max. We highlight this one more time in Takeaway 21.

Takeaway 20. We explain the effectiveness of Prodigy in “learning rate-free” training through
the concept of the effective learning rate (Equation (2)). Determined by two EMA sequences,
the effective learning rate mimics the behavior and magnitude of the learning rate in AdamW-
like methods. Importantly: (I) the magnitudes of the effective learning rate are close to those of
AdamW; (II) effective learning rate ensures an implicit warmup that is longer than initially set.

Takeaway 21. We point out that it might be interesting for researchers to try Prodigy as a
proxy for learning rate tuning of Adam-like methods, e.g., (I) tune betas of Prodigy, (II) set
γ = 1, (III) track γeff

t , and (IV) look at the γeff
max and set the learning rate of the Adam-like

method to this value.
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(a) Effective learning rate of Prodigy.
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Figure 35: EMA sequences of Prodigy result in the effective learning rate that emulates the
dynamics of learning rate that we used to observe for AdamW. Fixing the peak learning rate at
γ = 1 (following Mishchenko & Defazio (2024)), the EMA sequences rt and st (lines 8, 9
of Algorithm 13) result in the effective learning rate shown in (a). The dashed line indicates the
warmup duration. Across all schedulers and the run without a γ-scheduler, the warmup of γeff

t (a)
is consistently longer than that of γt (b), providing an implicit warmup. With cosine and WSD
schedulers, the peak γeff

t exceeds that of the run without a scheduler. Notably, the peak effective
learning rates, especially for the cosine scheduler, are very close to the default value 0.001 used
for AdamW at this model scale. This demonstrates that Prodigy may guide practitioners in tuning
learning rates for Adam-like optimizers.

F.2 ABLATIONS FOR 210M MODEL
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Figure 36: Ranking of optimizers for 210M
models with the batch size of 256× 512 to-
kens. Increasing a model size from 124M to
210M results in almost identical ranking of opti-
mizers compared to Figure 3 (b). At this scale, we
observe a smooth transition in our benchmarking.

Results with a batch size of 256× 512. In
this section, we verify if our selected hyper-
parameters from smaller 124M allow accurate
transfer to a slightly larger model. We point
out that the most important hyperparameters to
be sweeped are learning rate and gradient clip-
ping. Regarding the learning rate, we observe
that it only becomes a sensitive choice for sign-
based methods, while the optimal hyperparam-
eters for AdamW remain the same. After re-
tuning the learning rate for sign-based optimiz-
ers (see Appendix G.2), we replicate the setup
from § 3: we stay in the “large” batch regime
and train for the same number of steps (tokens)
as in Figure 3 (b). We report our benchmarking
for 210M models in Figure 36 and the training
dynamics of optimizers in Figure 37.

In this section, we complement our ablations
from the main part with experiments specifi-
cally targeting 210M models. Compared to
124M ablations (§ F.1), we perform fewer studies here. We focus on two aspects: the sensitivity of
ADOPT to its ε hyperparameter, and the impact of weight initialization in LLMs and its interaction
with the warmup.

Complementing benchmarking results of 210M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 37. The presented runs correspond to
those in Figure 36.
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Figure 37: Comparing optimizers for training a 210M parameter LLM. We plot the training
dynamics of: (a,b) optimizers that underperform AdamW for pretraining a 210M model; (c) opti-
mizers that outperform AdamW in this setup. A complete ranking of methods in this setting is in
Figure 36.
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Figure 38: ADOPT’s sensitivity to ε. Interest-
ingly, the suggested by the authors ε = 10−6 is
the best hyperparameter for this method. There
is not a noticeable difference in convergence for
ε = {10−6, 10−7, 10−8, 10−9, 10−10}, but the
values of 10−5 and above give a much morse
results.

ADOPT is sensitive to the epsilon hyperapame-
ter, but the suggested ε = 10−6 is the best.
Among the many important hyperparameters,
some receive less attention despite their influ-
ence. For Adam-like methods, one such param-
eter is ε in the denominator of the update rule.
While the default and widely accepted value for
AdamW is 10−8, there is ongoing discussion in the
community regarding other values that can sig-
nificantly degrade training (Team OLMo, 2024a;
He et al., 2024). The ADOPT optimizer also in-
cludes this hyperparameter—see line 6 of Al-
gorithm 2. Interestingly, the authors recommend
using a larger value of ε = 10−6, which is higher
than the conventional choice for AdamW. We per-
form a sweep over ε, keeping all other hyperpa-
rameters at their best values, and report the results
in Figure 38. As suggested by Taniguchi et al.
(2024), ε = 10−6 outperforms all other tested
values, with a noticeable margin for ε ≤ 10−5.

Changing weight initialization and the effect on warmup. A common approach to weight ini-
tialization in LLMs is the truncated Gaussian distribution with a predefined standard deviation (std).
In popular codebases for scalable training (Shoeybi et al., 2020; Rasley et al., 2020; Team OLMo,
2024a), the default std is 0.02. Notably, in DeepSeek-V3 (DeepSeek-AI, 2024b), the default std
is reduced to 0.006. Previously established connections between weight initialization and warmup
report twofold results: ones (Huang et al., 2020; Zhu et al., 2021) state that with a smaller std, one
can reduce or even eliminate the need for warmup, while others (Kalra & Barkeshli, 2024; Kosson
et al., 2024a) highlight the importance of warmup for small weight initializations. In our experi-
ments, we investigate how both initialization styles interact with the warmup duration and the batch
size scaling. Specifically, we compare the DeepSeek style initialization (std = 0.006) with the
conventional initialization (std = 0.02). We use two batch size settings: 512 × 512 tokens and
256× 512 tokens, training Llama-based models for two horizons T ∈ {32, 128}k steps and sweep-
ing Twarmup ∈ {50, 500, 1000, 2000} iterations. For this ablation, we use only AdamW with all other
hyperparameters set to the best values identified from tuning of 210M models. We report the results
in Figure 39. Overall, we observe that smaller weight initialization favors longer warmup durations
and performs significantly worse with short warmup. Increasing the batch size reduces this gap for
shorter warmups, suggesting an interplay between initialization scale, warmup duration, and batch
size.
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Figure 39: Weight initialization with smaller std prefers longer warmup. We compare final loss
of models trained with AdamW using two weight initializations: the conventional std = 0.02 and a
smaller std = 0.006 as in DeepSeek. We vary the training horizon, warmup duration, and batch size
(without changing the number of iterations). Our results indicate that smaller initialization benefits
from longer warmup, leading to better performance compared to std = 0.02. However, with very
short warmup, the conventional initialization outperforms the smaller one. Interestingly, increasing
the batch size reduces the performance gap between the two initializations for longer training runs.

Takeaway 22. Weight initialization with smaller standard deviation, as in DeepSeek, benefits
from longer warmup but underperforms with very short warmup. Increasing the batch size
reduces the performance gap between small and conventional initializations.

F.3 ABLATIONS FOR 720M MODEL

Complementing benchmarking results of 720M models. In addition to results from the main
part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond to
those in Figure 1.

We observe that sign-based methods and Sophia require careful re-tuning of the learning rate to
converge on larger models. Notably, despite increasing the training horizon in terms of tokens, with
larger batch size, the number of steps is reduced compared to our runs in § 4.1 and § 4.2; in this part
of the benchmarking, we consider runs of {8, 16, 48}k iterations (the Chinchilla optimal duration at
∼ 14.4k). This reduction in steps necessitates re-tuning optimizer-related hyperparameters such as
β2. We describe hyperparameter changes in Appendix G.4.

Studying the training dynamics (Figure 40), we find that SF-AdamW, and sign-based Lion and
Signum scale poorly. Sophia can outperform our AdamW for short runs of 8k iterations, but
then degrades significantly. Interestingly, MARS greatly benefits from this setup, emerging the
second best-performing optimizer, closely following AdEMAMix: as it benefits from large batch
size (see Figure 4 (left)), and does not degrade with increased model size unlike Signum, and
Lion. On another hand, Prodigy was proven to be more beneficial at larger batch size, however,
this setup it occured to be less performant. D-Muon is consistent across all settings we have tried,
while Muon degrades when scaling model size (Figure 16 (c)).

As in (Vyas et al., 2024), we find that SOAP outperforms AdamW at the Chinchilla optimal duration
and below. However, in longer training, AdamW narrows the gap and eventually surpasses SOAP.
Another claim regarding the SOAP optimizer—that it is more beneficial, when the batch size is
sufficiently large—remains quite questionable: (I) as Figure 10 (runs with 2M batch size) suggests
that the matter of SOAP being better than AdamW is conditioned by the setup choice, which when
properly tuned turns that AdamW becomes better even at Chinchilla optimal duration; (II) when
considering 1M batch size setup in Figures 1 and 40, the performance gain of SOAP over AdamW
is less pronounced than in our settings with smaller batches for 124M and 210M models (see
Figures 12 (b) and 37 (c)).
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Figure 40: Comparing optimizers for training a 720M parameter LLM. We conduct runs with
the batch size of 1M tokens. While previous ablations (see Figure 4) reveal that sign-based methods
can outperform AdamW at sufficiently large batches, this advantage does not persist when scaling
model size. On another hand, MARS, that also benefits from the increased batch size, along with
AdEMAMix dominates over other optimizers with a huge gap.

F.4 ABLATIONS FOR 520M MOE MODEL

Complementing ablations regarding transfer to MoE models. In addition to results from the
main part, we show the dynamics of the validation loss in Figure 40. The presented runs correspond
to those in Figure 11.
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Figure 41: Comparing optimizers for training a 520M parameter MoE. Training dynamics of
leading optimizers is in Figure 2. Results closely remind those in Figure 12 (a,b). The AdamW
baseline by far outperforms Sophia, SF-AdamW, MARS, and sign-based methods for 44B training
horizon. Remarkably, in the same way as Prodigy followed AdamW in Figure 12 (b), we observe
a similar situation for the MoE model.
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F.5 WALL-CLOCK PERFORMANCE OF OPTIMIZERS ACROSS MODELS OF DIFFERENT SCALE
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Figure 42: Wall-clock time comparison. SOAP
slows down the most as model size increases.

After conducting experiments for models of
different sizes, we are ready to present the wall-
time comparison for each method. For this
purposes, we use a single GPU, and run each
optimizer for 100 iterations on a small batch
size of 16 without gradient accumulation and
torch.compile. In this ablation, we con-
sider a wider range of model sizes (30M–1B).
We run each method 5 times with different
seeds, compute the standard deviation, and re-
port the mean wall-clock time per 100 iterations
for each model configuration. We observe that
all methods take the roughly the same or very
close time to complete 100 iterations, with the exception of SOAP. We point out that wall-clock
time for all optimizers exhibits a linear dependence on the model size (“model size” axis is rescaled
in plots). However, SOAP slows down faster and we may expect a slowdown further, due to its
preconditioner matrices operations which are fast only for certain matrices that are smaller than a
predefined size. See details of this ablation in Appendix F.5, and Figures 43 and 44.

Takeaway 23. Most optimizers exhibit similar wall-time performance, with sign-based methods
being slightly faster (Figure 43). SOAP is the main exception, showing a notable slowdown as
model size increases.

We complement the wall-clock performance analysis from (Figure 42) by presenting complete re-
sults for all optimizers. The experimental setup is simple and consistent: we use a batch size of
16 (16 × 512 tokens), run for 100 iterations on a single GPU, without gradient accumulation, and
we do not apply torch.compile. Precise model configurations for all scales (30M–1B) are
reported in Table 2.

Table 2: Configurations for our Llama-like models for the wall-clock experiments.

# Parameters 30M 52M 80M 124M 150M 210M 360M 720M 1026M
Hidden size 384 512 768 768 768 768 1024 2048 1792

# Attention heads 6 8 6 12 12 12 16 16 14
# Layers 8 8 6 12 16 24 24 12 24
Init. std 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Use bias no no no no no no no no no

RMSNorm epsilon 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
Positional encoding RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE RoPE

Figure 43 shows a bar plot summarizing wall-clock time comparisons for all optimizers. Addi-
tionally, Figure 44 visualizes the per-optimizer behavior when scaling model size, omitting SOAP,
AdEMAMix, Muon, and AdamW, as their results are already presented in the main part—see Fig-
ure 42.
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Figure 43: Wall-clock time performance: gathered. We report the wall-clock time (in seconds)
for training each model for 100 iterations using a small batch size of 16 × 512 tokens on a single
GPU, without gradient accumulation or torch.compile. Bars show the ranking of optimizers
from fastest (Signum) to slowest (SOAP) gathered across all model scales. While the differences
between most optimizers are small, SOAP is consistently slower. The absolute times may vary
depending on the hardware, but the relative patterns remain consistent.

G HYPERPARAMETER TUNING

How do we tune hyperparameters? We perform systematic hyperparameter tuning for all algo-
rithms, starting with smaller models (124M, 210M) and extrapolating to larger, 583M and 720M
models. Our tuning process for 124M model focused on two primary settings: “small” batch set-
ting (32 batch size) and “large” batch setting (256 batch size). For both settings, we use a sequence
length of 512 tokens, resulting in 16k and 130k tokens per batch, respectively. If the batch cannot
fit into memory, we use gradient accumulation steps, while maintaining the effective batch size.

We also include ablations on even larger batch size for 124M models, where we train on 512 batch
size (260k tokens correspondingly). We train 583M models on the batch size of 3936, preserving
the basic sequence length of 512, that is, ∼ 2M tokens. And the larger models for benchmarking
purposes—of 720M—were trained on the batch size of 1984, resulting in ∼ 1M tokens.
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Figure 44: Wall-clock time performance: individual. Complementing Figures 42 and 43, this
figure shows the evolution of wall-clock time per 100 iterations for each optimizer as model size
increases. Optimizers already shown in the main part are omitted. To improve visualization, the
abscissa is re-scaled to highlight the increase in wall-clock time with model size.

We first run multiple experiments, greed searching hyperparameters, on near Chinchilla optimal
training length using cosine learning rate scheduler (except for SF-AdamW):

• for 124M models we tune at 2.1B tokens for both “small” (32) and “large” (256) batch size setting
(see Appendix G.1),

• for 210M models we replicate training runs with the best hyperparameters found at 124M scale,
except for the learning rate (see Appendix G.2),

• at 583M scale, we only ablate the effect of the z-loss regularizer while training with AdamW and
SOAP on a near-Chinchilla optimal number of tokens (see Appendix G.3),

• for 720M models we tune at 16B tokens (see Appendix G.4),

• our MoE setting we discuss in-depth in Appendix G.5.

We present the configurations for different training horizons in Tables 3, 4, 6, 5.
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Table 3: Lengths of training for “Small” batch settings (32× 512).

# Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 2.5B
210M 1B (64k) 2.1B (128k) 4.2B (256k) 6.3B (384k) 8.4B (512k) 16.8B (1024k) 4.2B

Table 4: Lengths of training for “Large” batch settings (256× 512).

# Parameters Tokens (Iterations) Chinchilla Tokens
124M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 2.5B
210M 1B (8k) 2.1B (16k) 4.2B (32k) 6.3B (48k) 8.4B (64k) 16.8B (128k) 4.2B

Table 5: Lengths of training for 2M (3936× 512) batch size setting.

# Parameters Tokens (Iterations) Chinchilla Tokens
583M 13B (6.5k) 11.7B

Table 6: Lengths of training for 1M (1984× 512) batch size setting.

# Parameters Tokens (Iterations) Chinchilla Tokens
720M 8B (8k) 16B (16k) 48B (48k) 14.4B

Important to note, for larger models, we mostly kept the best hyperparameters found for the 124M
model and re-tuned the learning rate, beta parameters, and gradient clipping. For dense LLMs,
summarize this process in Appendices G.1, G.2, G.3, G.4, and cover the MoE setup in Appendix G.5.

Additionally, when we report the effect of a particular hyperparameter, we assume that the remaining
hyperparameters of the algorithm have already been tuned. Thus, the results isolate and highlight
only the impact of the chosen hyperparameter on overall performance.

Hyperparameters used in our experiments with learning rate schedulers. Once we found the
best setting for each method using cosine learning rate scheduler, we are ready to obtain the optimal
performance of our method with WSD (Hu et al., 2024) and linear schedulers. For the latter one, we
use the same hyperparameters as for the cosine scheduler. However, for WSD, we follow the rule of
thumb from (Hägele et al., 2024):

• use half the optimal learning rate for the cosine scheduler,

• use 20% of iterations for cooldown phase,

• use (1−
√
x) decay shape for the cooldown phase,

the only difference is that we do not employ stochastic weight averaging (Izmailov et al., 2019).

Therefore, we maintain most hyperparameters across optimizers, only re-tuning the learning rate.
For Muon and MARS, we reduce both AdamW’s learning rate and the learning rate for non-1D pa-
rameters. This approach ensures a fair comparison while accounting for the unique properties of
each optimizer.

Importantly, the rule of thumb (Hägele et al., 2024) for using the decay shape (1−
√
x) works better

in our setting. We use exactly this shape during the cooldown phase of the WSD scheduler for all
optimizers.

We report a series of comparisons between different schedulers in Figures 8, 19 and 20.

It has been shown (Hägele et al., 2024; Bergsma et al., 2025) that annealing the learning rate to
smaller values than 10% of the maximum learning rate improves performance. We consider three
mentioned schedulers, and report the ablation on the learning rate decay for the 210M models in
Figure 9, and for the 124M models in Figure 25. In the tables that show the greed-search across
hyperparameters we mention the learning rate decay factor (Final learning rate X × max LR) only
for those optimizers, where we performed the corresponding ablation for. If this field is omitted
from the table, we use 0.01×γmax for this method regardless of the learning rate scheduler applied.
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G.1 124M PARAMETERS MODEL

Below, we provide tables with complete information regarding hyperparameter tuning for 124M
models including the important sweeps (weight decay, warmup, etc.) conducted for our ablations.

Table 7: AdamW hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 5000, 8000 500, 1000,2000, 3000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1

AdamW β1 0.5,0.8, 0.9 0.8, 0.9
AdamW β2 0.95,0.999 0.95, 0.99,0.999, 0.9999

Final learning rate X×max cosine LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max WSD LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max linear LR — 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Table 8: ADOPT hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

ADOPT β1 0.9 0.8,0.9
ADOPT β2 0.999, 0.9999 0.5,0.999, 0.9999
ADOPT ε 10−6 10−6

Table 9: AdEMAMix hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0005, 0.0008, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1, 1.5 no, 0.5, 1
AdEMAMix β1 0.5,0.8, 0.9 0.8,0.9
AdEMAMix β2 0.999 0.999, 0.9999
AdEMAMix β3 0.999,0.9999, 0.99995 0.999, 0.9999
AdEMAMix α 5,8, 12 8
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Table 10: Lion hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.00005,0.0001, 0.0005, 0.001 0.0001, 0.0005,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000 2000, 8000,32000
Weight decay no, 0.1, 0.2,0.5 no, 0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Lion β1 0.7,0.9, 0.99 0.5,0.9
Lion β2 0.9,0.99, 0.999 0.99, 0.999

Table 11: Signum hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0003, 0.0005,0.001 0.0001, 0.00030.0005, 0.0003,0.001, 0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000,8000, 32000
Weight decay no, 0,0.1, 0.5 no, 0,0.1, 0.5, 0.7

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5, 1 no, 0.5, 1

Momentum no, 0.9,0.95 no, 0.9,0.95, 0.99
Nesterov momentum no, yes no, yes

Table 12: Muon hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate AdamW 0.0001, 0.0003, 0.0005,0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002
Learning rate Muon 0.001,0.01, 0.02 0.001,0.01, 0.02

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 8000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5 no, 0.5, 1.0
Momentum Muon 0.9, 0.95,0.99 0.95, 0.99

Optimizer for 1D layers AdamW AdamW
Optimizer for 1D layers, β1 0.8, 0.9 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999, 0.9999 0.99,0.999, 0.9999

Newton-Schulz a 3.4445 3.4445
Newton-Schultz b −4.7750 −4.7750
Newton-Schultz c 2.0315 2.0315

Newton-Schultz iterations 5 1,5, 10, 20
Nesterov momentum no, yes no, yes
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Table 13: D-Muon hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.001 0.0001, 0.0003, 0.0005, 0.001,0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000 2000, 8000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping no, 0.5 no, 0.5, 1.0

Momentum D-Muon 0.95 0.95
Optimizer for 1D layers AdamW AdamW

Optimizer for 1D layers, β1 0.8, 0.9 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999, 0.9999 0.99,0.999, 0.9999

Newton-Schulz a 3.4445 3.4445
Newton-Schultz b −4.7750 −4.7750
Newton-Schultz c 2.0315 2.0315

Newton-Schultz iterations 5 5
Nesterov momentum yes yes

Table 14: SOAP hyperparameter tuning for our 124M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.005,0.001 0.0001, 0.0003, 0.0005, 0.001,0.002

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Preconditioner dimension 10000 10000
Preconditioning frequency 1, 5,10 1, 5,10

SOAP β1 0.8,0.9 0.8,0.9, 0.95
SOAP β2 0.95, 0.99,0.999, 0.9999 0.95, 0.99,0.999, 0.9999

Table 15: Sophia hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001,0.0003, 0.0005, 0.001, 0.002 0.0001, 0.0003, 0.0005,0.001, 0.002, 0.01

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000, 3000 2000, 8000,32000
Weight decay 0.1 no, 0.1, 0.5

Learning rate decay scheduler WSD, cosine WSD, cosine, linear
Gradient clipping 0.5 no, 0.5, 1

Estimator Gauss-Newton-Bartlett Gauss-Newton-Bartlett
Estimator frequency 10 10

Sophia β1 0.9 0.8,0.9
Sophia β2 0.95,0.999, 0.9999, 0.99999 0.95,0.999, 0.9999, 0.99999
Sophia ρ 0, 0.03,0.04 0, 0.03,0.04
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Table 16: Schedule-Free AdamW hyperparameter tuning for our 124M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001, 0.005 0.0001, 0.0003, 0.0005, 0.001,0.002, 0.005

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000,8000, 12000, 16000, 32000
Weight decay no, 0.05,0.1, 0.5 no, 0.05,0.1, 0.5

Learning rate decay scheduler no no
Gradient clipping no, 0.5 no, 0.5, 1

Schedule-Free AdamW β1 0.9, 0.95, 0.98 0.9, 0.95, 0.98
Schedule-Free AdamW β2 0.95, 0.99, 0.999,0.9999, 0.99999 0.95, 0.99, 0.999,0.9999, 0.99999

Table 17: Prodigy hyperparameter tuning for our 124M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate 0.5,1 0.5,1, 2, 10, 100

Batch size 32 256
Sequence length 512 512

Number of warmup steps 3000, 8000 2000, 4000, 8000, 12000, 16000, 32000
Weight decay no, 0.1, 0.5 no, 0.1, 0.5

Learning rate decay scheduler no, WSD, cosine no, WSD, cosine, linear
Gradient clipping no, 0.5, 1 no, 0.5, 1
Prodigy β1 0.9 0.8,0.9
Prodigy β2 0.99,0.999, 0.9999 0.999, 0.9999

Prodigy bias correction no, yes no, yes

Table 18: MARS (MARS-AdamW) hyperparameter tuning for our 124M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate AdamW 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003
Learning rate MARS 0.001,0.003 0.001,0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine, linear

Gradient clipping 0.5 0.5
Optimizer for 1D layers AdamW AdamW

Optimizer for 1D layers β1 0.8, 0.9 0.8, 0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.023, 0.024,0.025 0.023, 0.024,0.025
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Table 19: MARS-Lion hyperparameter tuning for our 124M parameter large language mod-
els. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate Lion 0.0001, 0.0005, 0.001, 0.003 0.0001, 0.0005, 0.001, 0.003
Learning rate MARS 0.0001, 0.001, 0.003 0.0001, 0.001, 0.003

Batch size 32 256
Sequence length 512 512

Number of warmup steps 2000,3000 2000, 8000, 32000
Weight decay MARS no, 0.1 no, 0.1, 0.5

Weight decay for 1D layers 0.1 0.1
Learning rate decay scheduler WSD, cosine WSD, cosine

Gradient clipping 0.5 0.5
Optimizer for 1D layers Lion Lion

Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95,0.99, 0.999 0.95,0.99, 0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025

Table 20: MARS-Shampoo hyperparameter tuning for our 124M parameter large language
models. Bold hyperparameters are the best.

Hyperparameter “Small” batch setting “Large” batch setting
Learning rate Shampoo 0.0001, 0.0005,0.001, 0.003 0.0001, 0.0005,0.001, 0.003

Learning rate MARS 0.001,0.003 0.001,0.003
Batch size 32 256

Sequence length 512 512
Number of warmup steps 2000,3000 2000, 8000, 32000

Weight decay MARS no, 0.1 no, 0.1, 0.5
Weight decay for 1D layers 0.1 0.1

Learning rate decay scheduler WSD, cosine WSD, cosine
Gradient clipping 0.5 0.5

Optimizer for 1D layers Shampoo Shampoo
Optimizer for 1D layers β1 0.8,0.9 0.8,0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999 0.95, 0.99,0.999

MARS β1 0.9,0.95 0.9,0.95
MARS β2 0.95,0.99 0.95,0.99

VR scaling factor η 0.024,0.025 0.024,0.025
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G.2 210M PARAMETERS MODEL

For 210M models we perform training runs only with the batch size of 256 × 512 to-
kens, utilizing the same training durations as for 124M model with this batch size,
i.e., {8k, 16k, 32k, 48k, 64k, 128k}, which corresponds to the following counts in tokens:
{1B, 2.1B, 4.2B, 6.3B, 8.4B, 16.8B}.
We also replicate almost identical hyperparameters to those of the training of the 124M model
to verify whether the smooth transition Takeaway 3 in the final ranking of optimizers and their
sensitivity to hyperparameters will be observed.

Table 21: AdamW hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 50, 500, 1000,2000
Weight decay no, 0.1

Learning rate decay scheduler WSD, cosine, linear
Gradient clipping 0.5

AdamW β1 0.8,0.9
AdamW β2 0.95, 0.99,0.999, 0.9999

Final learning rate X×max cosine LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max WSD LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Final learning rate X×max linear LR 10−1, 10−2, 10−3, 10−4, 10−5, 10−6

Table 22: ADOPT hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping no, 0.5, 1

ADOPT β1 0.9
ADOPT β2 0.5,0.999, 0.9999
ADOPT ε 10−3, 10−4, 10−5,10−6, 10−7, 10−8, 10−9, 10−10,
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Table 23: AdEMAMix hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
AdEMAMix β1 0.9
AdEMAMix β2 0.999
AdEMAMix β3 0.999
AdEMAMix α 8

Table 24: Lion hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Lion β1 0.9
Lion β2 0.99

Table 25: Signum hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Momentum 0.9,0.95, 0.99
Nesterov momentum yes
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Table 26: Muon hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate AdamW 0.001
Learning rate Muon 0.01

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
Momentum Muon 0.95

Optimizer for 1D layers AdamW
Optimizer for 1D layers, β1 0.8
Optimizer for 1D layers, β2 0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Nesterov momentum yes

Table 27: D-Muon hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Momentum D-Muon 0.95
Optimizer for 1D layers AdamW

Optimizer for 1D layers, β1 0.8, 0.9
Optimizer for 1D layers, β2 0.99,0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Newton-Schultz iterations 5
Nesterov momentum yes
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Table 28: SOAP hyperparameter tuning for our 210M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9
SOAP β2 0.999

Table 29: Sophia hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Estimator Gauss-Newton-Bartlett
Estimator frequency 10

Sophia β1 0.9
Sophia β2 0.999
Sophia ρ 0.04

Table 30: Schedule-Free AdamW hyperparameter tuning for our 210M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 0.001

Batch size 256
Sequence length 512

Number of warmup steps 2000,8000
Weight decay 0.1

Learning rate decay scheduler no
Gradient clipping 0.5

Schedule-Free AdamW β1 0.9
Schedule-Free AdamW β2 0.9999
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Table 31: Prodigy hyperparameter tuning for our 210M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate 1

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5
Prodigy β1 0.9
Prodigy β2 0.999

Prodigy bias correction yes

Table 32: MARS (MARS-AdamW) hyperparameter tuning for our 210M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter “Large” batch setting
Learning rate AdamW 0.001
Learning rate MARS 0.003

Batch size 256
Sequence length 512

Number of warmup steps 2000
Weight decay MARS 0.1

Weight decay for 1D layers 0.1
Learning rate decay scheduler cosine

Gradient clipping 0.5
Optimizer for 1D layers AdamW

Optimizer for 1D layers β1 0.8, 0.9
Optimizer for 1D layers β2 0.999

MARS β1 0.95
MARS β2 0.99

VR scaling factor η 0.024,0.025

G.3 583M PARAMETERS MODEL

For models of 583M scale, we ablate the difference between our setup and the one from Vyas et al.
(2024). The main changes compared to our setup include: learning rate decay down to 10% of the
maximum, usage of z-loss regularizer in addition to the cross-entropy loss, smaller decoupled weight
decay of 0.0001. We also point out that SOAP performance in (Vyas et al., 2024) was measured on
the Chinchilla optimal number of tokens and with 2M tokens batch size. Thus, in Section 4.3
we ablate the differences between our settings on the same training horizons. A complete list of
hyperparameters used for our AdamW and SOAP models in this ablations are presented in Table 33.
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Table 33: AdamW hyperparameter tuning for our 583M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 2M batch setting
Learning rate 0.001,0.005

Batch size 3936
Sequence length 512

Number of warmup steps 1200
Weight decay 0.0001,0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

AdamW β1 0.9,0.95
AdamW β2 0.95, 0.99

Final learning rate X×max cosine LR 10−1,10−2

z-loss regularization no, 0.0001

Table 34: SOAP hyperparameter tuning for our 583M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 2M batch setting
Learning rate 0.001,0.005

Batch size 3936
Sequence length 512

Number of warmup steps 1200
Weight decay 0.0001,0.1

Learning rate decay scheduler cosine
Gradient clipping 0.5

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9,0.95
SOAP β2 0.95, 0.99, 0.999

Final learning rate X×max cosine LR 10−1,10−2

z-loss regularization no, 0.0001

G.4 720M PARAMETERS MODEL

In this section, we provide a complete information about the hyperparameter search for the largest
models used in our benchmarking experiments. Deriving insights from our ablations (Figures 13,
30 and 31) on the smaller scale, we suggest to re-tune beta parameters of optimizers as changing the
training iterations—see Takeaways 9 and 17 for this conclusions.

Tables below cover our tuning outcomes for all methods. We highlight that, when training with large
batches of 1M tokens, we use the smaller number of iterations for our runs: T ∈ {8, 16, 48}k(B)
steps (tokens)—see Table 6. Thus, according to Takeaway 9, we find that smaller β2 parameter gives
better results for SOAP, D-Muon (for 1D parameters), and Prodigy.
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Table 35: AdamW hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001, 0.0003, 0.0005,0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1, 0.5

AdamW β1 0.8,0.9, 0.95
AdamW β2 0.95, 0.99,0.999

Table 36: ADOPT hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

ADOPT β1 0.9,0.95
ADOPT β2 0.95, 0.99,0.999
ADOPT ε 10−6

Table 37: AdEMAMix hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001, 0.002

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
AdEMAMix β1 0.9
AdEMAMix β2 0.95,0.999
AdEMAMix β3 0.999, 0.9999
AdEMAMix α 8

G.5 520M PARAMETERS MOE MODEL

We extend our comparison of optimizers beyond dense models to include Mixture of Experts (MoE)
architectures. Starting from our Llama-like transformer with tied embeddings, we construct an
MoE variant following the Switch-Transformer implementation (Fedus et al., 2022). The model
employs classical linear gating with softmax and top-k routing (k = 2) over 8 experts. We retain
the SwiGLU activation functions (Shazeer, 2020), RMSNorm layers (Zhang & Sennrich, 2019), and
RoPE embeddings (Su et al., 2023) exactly as in our dense LLMs. Keeping the same hidden size,
number of layers, and attention heads as the 124M dense model, this results in a∼ 520M parameter
MoE architecture. A detailed specification of this model is provided in Table 47.
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Table 38: Lion hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.00005, 0.0001,0.0002, 0.0003, 0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1,1

Lion β1 0.9
Lion β2 0.99

Table 39: Signum hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001,0.0002, 0.0003, 0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1, 1

Momentum 0.9,0.95, 0.99
Nesterov momentum yes

Table 40: Muon hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate AdamW 0.0005,0.001, 0.002
Learning rate Muon 0.01

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
Momentum Muon 0.95

Optimizer for 1D layers AdamW
Optimizer for 1D layers, β1 0.8, 0.9, 0.95
Optimizer for 1D layers, β2 0.95, 0.99,0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Nesterov momentum yes

For training, we use a batch size of 256 × 512. Optimizer hyperparameters are taken directly from
Appendix G.2, with one adjustment: the learning rate for Sophia is set to 0.0005 instead of 0.001.
The purpose of this ablation is to evaluate how optimizers, tuned on dense models, perform when
directly transferred to MoE models. In practical scenarios, practitioners often reuse well-established
hyperparameters tuned on dense LLMs; hence, we argue that our comparison on the 520M MoE
model reflects realistic small-scale deployment settings.

We report our configurations for training runs in Table 48.
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Table 41: D-Muon hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0005,0.001, 0.002, 0.003, 0.005

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Momentum D-Muon 0.95
Optimizer for 1D layers AdamW

Optimizer for 1D layers, β1 0.8,0.9, 0.95
Optimizer for 1D layers, β2 0.95, 0.99, 0.999

Newton-Schulz a 3.4445
Newton-Schultz b −4.7750
Newton-Schultz c 2.0315

Newton-Schultz iterations 5
Nesterov momentum yes

Table 42: SOAP hyperparameter tuning for our 720M parameter large language models. Bold
hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Preconditioner dimension 10000
Preconditioning frequency 10

SOAP β1 0.9,0.95
SOAP β2 0.95, 0.99, 0.999

Table 43: Sophia hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.0001,0.0005, 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1

Estimator Gauss-Newton-Bartlett
Estimator frequency 10

Sophia β1 0.9,0.95
Sophia β2 0.95, 0.99,0.999
Sophia ρ 0.04
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Table 44: Schedule-Free AdamW hyperparameter tuning for our 720M parameter large
language models. Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.001

Batch size 1984
Sequence length 512

Number of warmup steps 2000,8000
Weight decay 0.1

Learning rate decay scheduler no
Gradient clipping no, 0.1

Schedule-Free AdamW β1 0.9, 0.95
Schedule-Free AdamW β2 0.95, 0.99, 0.999,0.9999

Table 45: Prodigy hyperparameter tuning for our 720M parameter large language models.
Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate 0.5,1, 2

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay 0.1

Learning rate decay scheduler cosine
Gradient clipping 0.1
Prodigy β1 0.9,0.95
Prodigy β2 0.95,0.99, 0.999

Prodigy bias correction yes

Table 46: MARS (MARS-AdamW) hyperparameter tuning for our 720M parameter large lan-
guage models. Bold hyperparameters are the best.

Hyperparameter 1M batch setting
Learning rate AdamW 0.001
Learning rate MARS 0.003

Batch size 1984
Sequence length 512

Number of warmup steps 2000
Weight decay MARS 0.1

Weight decay for 1D layers 0.1
Learning rate decay scheduler cosine

Gradient clipping 0.1
Optimizer for 1D layers AdamW

Optimizer for 1D layers β1 0.8, 0.9, 0.95
Optimizer for 1D layers β2 0.95, 0.99,0.999

MARS β1 0.95
MARS β2 0.99

VR scaling factor η 0.024,0.025

77



4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Table 47: Configurations for our Llama-based MoE model.

# Parameters 520M
Hidden size 768

# Attention heads 12
# Layers 12
Init. std 0.02
Use bias no

RMSNorm epsilon 0.00001
Positional encoding RoPE

MoE router loss load balancing loss (Fedus et al., 2022) (Eq. 4) & router z-loss (Zoph et al., 2022) (Eq. 5)
# Experts per layer 8
# Shared experts 0
Top-k routing (k) 2

MoE softmax order top-k→ softmax

Table 48: Lengths of training for the MoE model in “Large” batch size setting (256× 512).

# Parameters Tokens (Iterations) Chinchilla Tokens
520M 5.5B (42k) 44B (336k) 10.4B
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