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Abstract

The ability to effectively reuse prior knowledge is a key requirement when building general
and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common
approaches, but current methods have considerable limitations. For example, fine-tuning
an existing policy frequently fails, as the policy can degrade rapidly early in training. In a
similar vein, distillation of expert behavior can lead to poor results when given sub-optimal
experts. We compare several common approaches for skill transfer on multiple domains
including changes in task and system dynamics. We identify how existing methods fail
and introduce an alternative approach to mitigate these problems. Our approach learns
to sequence temporally-extended skills for exploration but learns the final policy directly
from the raw experience. This conceptual split enables rapid adaptation and thus efficient
data collection but without constraining the final solution. It significantly outperforms many
classical methods across a suite of evaluation tasks and we use a broad set of ablations to
highlight the importance of different components of our method. 1

1 Introduction

The ability to effectively build on previous knowledge, and efficiently adapt to new tasks or conditions,
remains a crucial problem in Reinforcement Learning (RL). It is particularly important in domains like
robotics where data collection is expensive and where we often expend considerable human effort designing
reward functions that allow for efficient learning.

Transferring previously learned behaviors as skills can decrease learning time through better exploration and
credit assignment, and enables the use of easier-to-design (e.g. sparse) rewards. As a result, skill transfer has
developed into an area of active research, but existing methods remain limited in several ways. For instance,
fine-tuning the parameters of a policy representing an existing skill is conceptually simple. However, allowing
the parameters to change freely can lead to a catastrophic degradation of the behavior early in learning,
especially in settings with sparse rewards (Igl et al., 2020). An alternative class of approaches focuses on
transfer via training objectives such as regularisation towards the previous skill. These approaches have been
successful in various settings (Ross et al., 2011; Galashov et al., 2019; Tirumala et al., 2020; Rana et al.,
2021), but their performance is strongly dependent on hyperparameters such as the strength of regularisation.
If the regularisation is too weak, the skills may not transfer. If it is too strong, learning may not be able to
deviate from the transferred skill. Finally, Hierarchical Reinforcement Learning (HRL) allows the composition
of existing skills via learned high-level controllers, sometimes at a coarser temporal abstraction (Sutton
et al., 1999). Constraining the space of behaviors of the policy to that achievable with existing skills can
dramatically improve exploration (Nachum et al., 2019) but it can also lead to sub-optimal learning results if
the skills or level of temporal abstraction are unsuitably chosen (Sutton et al., 1999; Wulfmeier et al., 2021).
As we will show later (see Section 5), these approaches demonstrably fail to learn in many transfer settings.

Across all of these mechanisms for skill reuse we find a shared set of desiderata. In particular, an efficient
method for skill transfer should 1) reuse skills and utilise them for exploration at coarser temporal abstraction,
2) not be constrained to only these skills or the used temporal abstraction, 3) prevent early catastrophic
forgetting of knowledge that could be useful later in learning.

With Skill Scheduler (SkillS), we develop a method to satisfy these desiderata. We focus on the transfer
of skills via their generated experience inspired by the Collect & Infer perspective (Riedmiller et al., 2022;
2018). Our approach takes advantage of hierarchical architectures with pretrained skills to achieve effective
exploration via fast composition, but allows the final solution to deviate from the prior skills. Specifically our
approach learns two components: a high-level scheduler to quickly generate good exploration data and a
new policy that is slowly distilled from this data. The high-level scheduler learns to sequence existing skills,
choosing which skill to execute and for how long. It is trained to maximize task reward and can use the

1Additional videos can be found under https://sites.google.com/view/skill-scheduler
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pre-defined skills 2 to rapidly collect task-relevant data. In parallel, we distill a new policy with the same
objective from the experience gathered by the scheduler. While the pretrained skills in the scheduler are
fixed to avoid degradation of prior behaviors, the new skills is unconstrained and fully adapt to the task at
hand. This crucial addition improves over the common use of skills in hierarchical approaches like the options
framework (Sutton et al., 1999) and prevents the high-level controller from being constrained by the reloaded
skills.

This can also be interpreted via the lens two learning mechanisms - a fast and a slow one3: the scheduler can
quickly learn to compose existing temporally-abstract skills and reach a coarse solution, while the new policy
can more slowly infer an optimal solution from the gathered data.

The key contributions of this work are the following:

• We propose a method to fulfil the desiderata for using skills for knowledge transfer, and evaluate it
on a range of embodied sparse-reward manipulation and locomotion tasks.

• We compare our approach to transfer via vanilla fine-tuning, hierarchical methods, and imitation-
based methods like DAGGER and KL-regularisation. Our method consistently performs best across
all tasks.

• In additional ablations, we disentangle the importance of various components: temporal abstraction
for exploration; distilling the final solution into the new skill; and robustness to the number and
quality of skills used.

2 Related Work

The study of skills in RL is an active research topic that has been studied for some time (Thrun & Schwartz,
1994; Bowling & Veloso, 1998; Bernstein, 1999; Pickett & Barto, 2002). A ‘skill’ in this context refers to any
mapping from states to actions that could aid in the learning of new tasks. These could be pre-defined motor
primitives (Schaal et al., 2005; Mülling et al., 2013; Ijspeert et al., 2013; Paraschos et al., 2013; Lioutikov
et al., 2015; Paraschos et al., 2018), temporally-correlated behaviors inferred from data (Niekum & Barto,
2011; Ranchod et al., 2015; Krüger et al., 2016; Lioutikov et al., 2017; Shiarlis et al., 2018; Kipf et al., 2019;
Merel et al., 2019; Shankar et al., 2019; Tanneberg et al., 2021) or policies learnt in a multi-task setting
(Heess et al., 2016; Hausman et al., 2018; Riedmiller et al., 2018). It is important to note that our focus in
this work is not on learning skills but instead on how to to best leverage a given set of skills for transfer.

Broadly speaking, we can categorise the landscape of transferring knowledge in RL via skills into a set of
classes (as illustrated in Fig. 1): direct reuse of parameters such as via fine-tuning existing policies (Rusu
et al., 2015; Parisotto et al., 2015; Schmitt et al., 2018), direct use in Hierarchical RL (HRL) where a high-level
controller is tasked to combine primitive skills or options (Sutton et al., 1999; Heess et al., 2016; Bacon et al.,
2017; Wulfmeier et al., 2020; Daniel et al., 2012; Peng et al., 2019), transfer via the training objective such as
regularisation towards expert behavior (Ross et al., 2011; Galashov et al., 2019; Tirumala et al., 2020) and
transfer via the data generated by executing skills (Riedmiller et al., 2018; Campos et al., 2021; Torrey et al.,
2007).

Fine-tuning often underperforms because neural network policies often do not easily move away from
previously learned solutions (Ash & Adams, 2020; Igl et al., 2020; Nikishin et al., 2022) and hence may not
easily adapt to new settings. As a result some work has focused on using previous solutions to ‘kickstart’
learning and improve on sub-optimal experts (Schmitt et al., 2018; Jeong et al., 2020; Abdolmaleki et al.,
2021). When given multiple skills, fine-tuning can be achieved by reloading of parameters via a mixture
(Daniel et al., 2012; Wulfmeier et al., 2020) or product (Peng et al., 2019) policy potentially with extra
components to be learnt.

An alternative family of approaches uses the skill as a ‘behavior prior’ to generate auxiliary objectives to
regularize learning (Liu et al., 2021). This family of approaches have widely and successfully been applied in

2In practice, the scheduler is also given access to the new skill in it’s repertoire.
3In relation to fast and slow decision making (Kahneman, 2017), but focused on the optimization behind the learning process.
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Figure 1: Transfer mechanisms for skills: Direct use via 1. fine-tuning or 2. hierarchical policies, 3. auxiliary
training objectives, 4. exploration and data generation. Grey and green respectively denote new policy
components and transferred skills.

the offline or batch-RL setting to constrain learning (Jaques et al., 2019; Wu et al., 2019; Siegel et al., 2020;
Wang et al., 2020; Peng et al., 2020). When used for transfer learning though, the prior can often be too
constraining and lead to sub-optimal solutions (Rana et al., 2021).

Arguably the most widely considered use case for the reuse of skills falls under the umbrella of hierarchical
RL. These approaches consider a policy that consists of two or more hierarchical ‘levels’ where a higher level
controllers modulates a number of lower level skills via a latent variable or goal. This latent space can be
continuous (Heess et al., 2016; Merel et al., 2019; Hausman et al., 2018; Haarnoja et al., 2018; Lynch et al.,
2019; Tirumala et al., 2019; Pertsch et al., 2020; Ajay et al., 2021; Singh et al., 2021; Bohez et al., 2022),
discrete (Florensa et al., 2017; Wulfmeier et al., 2020; Seyde et al., 2022) or a combination of the two (Rao
et al., 2022).

A major motivation of such hierarchical approaches is the ability for different levels to operate at different
timescales which, it is argued, could improve exploration and ease credit assignment. The most general
application of this, is the Options framework (Sutton et al., 1999; Bacon et al., 2017; Wulfmeier et al., 2021;
Frans et al., 2017) that operates using temporally-extended options. This allows skills to operate at longer
timescales that may be fixed (Li et al., 2019a; Zhang et al., 2020; Ajay et al., 2021) or with different durations
(Bacon et al., 2017; Li et al., 2019b; Wulfmeier et al., 2021; Salter et al., 2022; Yang et al., 2020). Our
approach to critic learning in this context is similar to that of Whitney et al. (2019), although we study
a different problem setting. The advantage of modeling such temporal correlations has been attributed to
benefits of more effective exploration (Nachum et al., 2019). However, constraining the policy in such a way
can often be detrimental to final performance (Bowling & Veloso, 1998; Jong et al., 2008)4. Another problem
in the options framework is in the potential misalignment of termination and initial states when composing
option policies (Lee et al., 2021). Some work has addressed this issue using transition policies (Lee et al.,
2019; Byun & Perrault, 2021) that stitch together skills; a role that can be fulfilled by the new skill in our
approach.

Compared to other hierarchical methods such as the options framework, our method uses a final unconstrained,
non-hierarchical solution and learns temporal abstraction as a task-specific instead of skill-specific property.
In this way, we benefit from temporally correlated exploration without compromising on final asymptotic
performance by distilling the final solution. Our work is closely related to transfer via data for off-policy
RL as explored by (Fernández & Veloso, 2006) for value functions in the case of discrete action and in the
more general formulation for multi-task learning (Riedmiller et al., 2018; Hafner et al., 2020; Kurenkov et al.,
2019) and initial work in transfer (Campos et al., 2021; Torrey et al., 2007). We extend these ideas to the
compositional transfer of skills.

3 Background

We frame our discussion in terms of the reinforcement learning problem in which an agent observes the
environment, takes an action, and receives a reward in response. This can be formalized as a Markov Decision
Process (MDP) consisting of the state space S, the action space A, and the transition probability p(st+1|st, at)

4For example, for a walking task with a target speed of 1.2m/s, a fixed option that can only walk at 1 m/s is overly
constraining.
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(a) (b)

Figure 2: a) The Skill Scheduler framework. Data is collected by the scheduler by sequencing selected
skills among a set of pre-trained (frozen) skills and the new skill. This data is used to improve the scheduler
using HCMPO (see Section 4.3) and the new skill via CRR. b) Scheduler action and counter sampling.
At time t = 0 the scheduler samples an action z0 = [i0; k0] i.e. the skill with index i0 is applied to the
environment for k0 time steps. When (t = k0), the scheduler samples a new action, the counter is set to the
new length ct = kt and decreased every time step.

of reaching state st+1 from state st when executing action at. The agent’s behavior is given in terms of the
policy π(at|st). In the following, the agent’s policy π can either be parametrised by a single neural network
or further be composed of N skills πi(a|s) such that π(a|s) = f(a|{πi}i=0..N−1, s).

The agent aims to maximize the sum of discounted future rewards, denoted by:

J(π) = Eρ0(s0),p(st+1|st,at),π(at|st)

[ ∞∑
t=0

γtrt

]
, (1)

where γ is the discount factor, rt = r (st, at) is the reward and ρ0 (s0) is the initial state distribution. Given a
policy we can define the state-action value function Q(st, at) as the expected discounted return when taking
an action at in state st and then following the policy π as:

Q(st, at) = r(st, at) + γEp(st+1|st,at),π(a|st)[Q(st+1, a)]. (2)

4 Method

The method we propose in this paper, named Skill Scheduler (SkillS) (Fig. 2a) explicitly separates the data
collection and task solution inference processes in order to better accommodate the requirements of each.
The data collection is performed by the scheduler, a high-level policy that chooses the best skills to maximize
the task reward obtained from the environment. In parallel, the task solution is learned via an off-policy
learning algorithm that optimises a new skill πN (a|s, ϕ) for the given task.

By avoiding assumptions about the representation and source of the underlying skills, we can use these
existing behaviors agnostic to how they were generated. The agent has no access to any prior information on
the quality of the skills and their relevance for the new task. While most of our experiments in Section 5
focus on reusing skills that are useful for the task, we conduct a detailed ablation study that investigates the
robustness with respect to the number and quality of skills used.

5
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4.1 Scheduler

The scheduler is represented by a multivariate categorical policy πS(z = [i; k]|s, θ) that outputs an action z
consisting of:

• the index i ∈ [0, .., N ] of the skill to execute among the available skills S̄ = S ∪ {πN (a|s, ϕ)}, where
S = {πi(a|s)}N−1

i=0 are the N previously trained and frozen skills and πN (a|s, ϕ) is the new skill, and

• the number of steps the skill is executed for k ∈ K (the skill length), where K is a set of available
skill lengths (positive integers) with cardinality |K| = M .

Whenever a new action z = [i; k] is chosen by the scheduler, the skill πi(a|s) is executed in the environment
for k timesteps. Note that the scheduler has access to both the fixed skills and the new skill - an important
deviation from the standard application of the Options framework.

The scheduler does not sample any new action until the current skill length k is expired (see Fig. 2b).
Choosing k > 1 means that the scheduler selects a new skill at a coarser timescale than the environment
timestep. This induces temporal correlations in the actions, which are important for successful skill-based
exploration in sparse-reward tasks (see Section 5). The scheduler behaves similarly to a policy over options
(Sutton et al., 1999) but can additionally choose the new skill which is trained in parallel.

Choosing one skill for multiple timesteps affects the agent’s future action distributions and therefore future
states and rewards. We add an auxiliary counter variable c to the observations to retain the Markov property.
Whenever the scheduler chooses a new action z = [i; k] the counter is set equal to the chosen skill duration
c = k. It is then decreased at every time step (ct+1 = ct − 1) until the chosen skill duration has been reached
(c = 0) and the scheduler chooses a new action (see Fig. 2b). The counter is crucial for learning of the critic,
as detailed in Section 4.3.

Data is collected in the form (st, at, zt, ct, rt, st+1) and is used both to train the scheduler and the new skill.
The scheduler is trained only using the high-level actions (zt, ct, rt, st+1) with the accumulated task return
over the episode as objective (Eq. 1).

We introduce an off-policy algorithm, Hierarchical Categorical MPO (HCMPO) to train the scheduler. While
any RL algorithm could be used as a starting point, HCMPO builds upon a variant of Maximum A-Posteriori
Policy Optimisation (MPO) (Abdolmaleki et al., 2018) with a discrete action space (Neunert et al., 2020).
More details are provided in Section 4.3.

4.2 New Skill

The new skill πN (a|s, ϕ) interacts with the environment only when chosen by the scheduler. It is trained
with the data only including the low-level action (st, at, rt, st+1) collected by the underlying skill selected by
the scheduler. Given the strongly off-policy nature of this data5, offline RL algorithms are most suited for
learning the new skill. For this work, we use Critic Regularized Regression (Wang et al., 2020).6

Note that, although the scheduler and the new skill are trained with the same objective of maximizing the
task reward (Eq. 1), we consider the new skill to provide the final solution for the task at hand, as it can
reach higher performance. Whereas the scheduler acts in the environment predominantly via prelearned
skills fixed to avoid degradation of learnt behaviors, the new skill is unconstrained and can thus fully adapt
to the task at hand. In Section 5.2.3 we show how the scheduler and the new skill can work in tandem to
successfully tackle the two different problems of rapidly collecting task-relevant data (the scheduler) and
slowly distilling the optimal task solution from the gathered experience (the new skill).

5The new skill is initially rarely executed as it commonly provides lower rewards than reloaded skills.
6We present an analysis of the advantages of using offline methods like CRR against off-policy methods like MPO in Appendix

D.1.
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4.3 Training the Scheduler

In this section we derive the policy evaluation and improvement update rules of our proposed algorithm,
Hierarchical Categorical MPO (HCMPO), used for training the scheduler.

Policy Evaluation In order to derive the updates, we take into account the fact that if kt time steps have
passed, i.e. the counter ct has expired, the scheduler chooses a new action zt = [it; kt] at time t. It keeps the
previous action zt = zt−1 = [it−1; kt−1] otherwise.

Q(st, ct, it, kt)←− rt+

γ

{
EπS(i;k|st+1)[Q(st+1, ct+1, i, k, θ)] if ct+1 = 1
Q(st+1, ct+1 = ct − 1, it+1 = it, kt+1 = kt) otherwise.

(3)

If the scheduler has chosen a new action in the state st+1, the critic in state st is updated with the standard
MPO policy evaluation, i.e. with the critic evaluated using actions z = [i; k] sampled from the current
scheduler policy in the next state st+1 (i.e. i, k ∼ πS,θ(i; k|st+1)). In all the other states instead, the
critic is updated with the critic computed using the action zt+1 actually taken by the scheduler, which is
zt+1 = zt = [it; kt]. More details on the derivations of Eq. 3 are available in Appendix A.1.

Policy Improvement The scheduler policy is improved via the following mechanism but only on transitions
where a new action is sampled by the scheduler:

πn+1
S = arg max

πS

∫ ∫
q(z|s) log(πS(z|s, θ)dzds (4)

with q(z|s) ∝ πn
S(z|s) exp

(
Qπn

S (s, c = 1, z)
)

,

where n is the index for the learning updates and q(z|s) is a non-parametric distribution computed for a
batch of trajectories. Eq. 4 is a modification of the policy improvement step of the MPO algorithm (details
described in Appendix B, see also Abdolmaleki et al. (2018)).

The pseudo code in Algorithm 1 provides an overview of the overall data collection and training procedure of
SkillS.

4.4 Data Augmentation

Eq. 3 and 4 show that only a subset of the available data is actively used for learning the scheduler, as both
the Q-function and policy of the scheduler are updated only on those states where the scheduler chooses a new
action z = [i; k]. If the skills are executed for a large number of steps (i.e. the skill lengths k ∈ K are >> 1),
the scheduler samples a new action z less frequently and therefore the Q-function and policy are updated on
a smaller number of states. Executing skills for long periods of time induces temporal correlations that are
important for skill-based exploration, but it has the side effect of decreasing the data actively used for learning
the scheduler. In order to maximize sample efficiency without sacrificing exploration, for every trajectory τ
with skill length kt that can be written as multiple of the minimum skill length kmin (mod(kt, kmin) = 0), we
generate a new duplicated skill trajectory τ̄ pretending it was generated by a scheduler choosing the same
skill it multiple times with the smallest available skill length kmin. More details regarding the augmentation
are described in Appendix A.2 and we include ablations in Appendix D.2.

5 Experiments

Environments We empirically evaluate our method in robotic manipulation and locomotion domains. The
goal of our evaluation is to study how different skill transfer mechanisms fare in new tasks which require skill
reuse. In the manipulation setting (Fig. 3 (left)), we utilise a simulated Sawyer robot arm equipped with
Robotiq gripper and a set of three objects (green, yellow and blue) (Wulfmeier et al., 2020). We consider four
tasks of increasing complexity: Lift the green object, Stack green on yellow, building a Pyramid of green
on yellow and blue, and Triple stack with green on yellow and yellow on blue. Every harder task leverages

7
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Algorithm 1 SkillS Training

1: Available skills: S̄ = S ∪ {πN (a|s, ϕ)}, where S = {πi(a|s)}N−1
i=0 are the N previously trained and frozen

skills and πN (a|s, ϕ) is the new skill.
2: Scheduler policy: πS(z|s, θ).
3: Initialize scheduler policy πS(z|s, θ) and new policy πN (a|s, ϕ) with parameters θ0, ϕ0.
4: Initialize replay buffer B.
5: for n = 0, . . . do
6: for t = 0, kn, . . . , T − 1 do
7: Sample scheduler action zn

t = [in
t ; kn

t ] ∼ πS(a|s, θn).
8: Set ct = kn

t .
9: for t′ = t, . . . , t + kn − 1 do

10: Sample skill action from selected skill an
t′ ∼ πin

t′
∈ S̄.

11: Execute an
t′ in environment, generating transitions {sn

t′ , an
t′ , sn

t′+1, rn
t′}.

12: Store {sn
t′ , an

t′ , zn
t′ , ct′ , sn

t′+1, rn
t′} in replay buffer B.

13: Decrease counter: ct′ = ct′ − 1.
14: end for
15: end for
16: Update new policy parameters ϕn+1 with any offline RL algorithm by sampling {sn

t , an
t , rn

t , sn
t+1} from

the replay buffer B.
17: Update scheduler parameters θn+1 via equation 3 and equation 4 by sampling {sn

t , zn
t , ct, rn

t , sn
t+1}

from the replay buffer B.
18: end for

Figure 3: Domains: The experimental domains used: (from left to right) manipulation - Lift, Stack, Pyramid,
Triple Stack and locomotion - GoalScoring and GetUpAndWalk.

previous task solutions as skills: this is a natural transfer setting to test an agent’s ability to build on previous
knowledge and solve increasingly complex tasks. For locomotion (Fig. 3 (right)), we consider two tasks with
a simulated version of the OP3 humanoid robot (Robotis OP3): GetUpAndWalk and GoalScoring. The
GetUpAndWalk task requires the robot to compose two skills: one to get up off of the floor and one to walk.
In the GoalScoring task, the robot gets a sparse reward for scoring a goal, with a wall as an obstacle. The
GoalScoring task uses a single skill but is transferred to a setting with different environment dynamics. This
allows us to extend the study beyond skill composition to skill adaptability; both of which are important
requirements when operating in the real world. All the considered transfer tasks use sparse rewards7 except
the GetUpAndWalk task where a dense walking reward is given but only if the robot is standing. We consider
an off-policy distributed learning setup with a single actor and experience replay. For each setting we plot
the mean performance averaged across 5 seeds with the shaded region representing one standard deviation.
More details on the skills and tasks can be found in Appendix C.

Analysis details Our method SkillS consists of two learning processes, one designed to quickly collect
useful data (the scheduler) and one to distill the best solution for the task from the same data (the new skill).
As our primary interest is in the task solution, unless otherwise specified, we focus on the performance of

7When the reward provides a reliable learning signal (e.g. in case of dense rewards) there is less need to generate good
exploration data using previous skills. The advantage of skill-based methods is thus primarily in domains where defining a dense,
easier-to-optimise reward is challenging. For more details see Appendix D.3.

8
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(a) Lift (b) Stack (c) Pyramid (d) Triple Stacking

Figure 4: Performance of various skill transfer mechanisms on sparse-reward manipulation tasks. For each
task, all approaches are given the previously trained useful skills (see Appendix for details) to learn the new
task. SkillS is the only method to consistently learn across all tasks.

the new skill when executed in the environment in isolation for the entire episode. 8 We compare SkillS
against the following skill reuse methods: Fine-tuning, RHPO, KL-regularisation (KL-reg. to Mixture) and
DAGGER. Hierarchical RL via RHPO (Wulfmeier et al., 2020) trains Gaussian mixture policies, and we
adapt this method to reload skills as the components of the mixture. We can then either freeze the skills and
include a new learned component (RHPO) or continue training the reloaded skills (fine-tuning). KL-reg. to
Mixture adapts the MPO algorithm (Abdolmaleki et al., 2018) to include a regularisation objective to distill
the reloaded skills; and DAGGER adapts Ross et al. (2011) for imitation learning with previous skills. A full
description of our baseline methods can be found in Appendix B. We answer the following questions with our
analysis:

• How does SkillS compare to the baseline methods across the locomotion and manipulation tasks?

• How robust is SkillS to the quality and quantity of skills used?

• What is the benefit of using a separate new skill to learn the final solution?

• How important is the flexible temporal abstraction of met?

5.1 Analysis: Sparse Reward Tasks in Locomotion and Manipulation

Fig. 4 shows the performance of skill-based approaches on manipulation domains9. We observe that among
all the considered methods, only SkillS can learn effectively in these domains, even though other methods
have access to the same set of skills. When given access to a Lift task, all baselines still struggle to learn how
to Stack. In contrast, SkillS can even learn challenging tasks like TripleStack with enough data. Importantly
this illustrates that skill reuse on its own is insufficient to guarantee effective transfer, and highlights the
strong benefit of temporal abstraction. While other methods such as RHPO switch between skills at high
frequency, the scheduler’s action space encourages the execution of skills over longer horizons, considerably
reducing the search space.

Fig. 5a-b compares performance in the locomotion setting. In the GetUpAndWalk task, we find SkillS
outperforms the other methods, confirming that temporal abstraction is fundamental when solving tasks that
require a sequence of skills to be learned (getting up and then walking in this task). Executing the skills
for longer horizons also generates higher reward early during training. Particularly poor is the performance
of regularising towards a mixture of these skills as it performs worse than learning from scratch. For the
GoalScoring task which requires transferring a single skill to new dynamics, SkillS is competitive and shares
the strongest results. As we will demonstrate in Section 5.2.4, the advantage of temporally correlated
exploration conferred by SkillS is less important in settings with only one skill.

5.2 Ablations

In this section we analyse the robustness of SkillS and evaluate the importance of various components and
design decisions. In particular, we analyse (1) the scheduler skill selection during training; (2) the robustness

8See Appendix C.2 for details about how the new skill and the scheduler can be separately evaluated.
9Given the sparse nature of the reward, most methods fail to learn at all and appear as flat lines in the plot.
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(a) GetUpAndWalk (b) GoalScoring (c) Skill execution.

Figure 5: (a) - (b) Performance on skill transfer methods on locomotion tasks. SkillS outperforms other
methods in GetUpAndWalk (a) and is no worse than other methods in the single skill GoalScoring task (b).
(c) Skill average execution (as number of timesteps) during training.

(a) Stacking (b) Pyramid (c) Triple Stacking

Figure 6: SkillS can learn even when the number and type of skills change although performance deteriorates
on harder tasks.

to the number and quality of skills used; (3) the benefit and flexibility of having a separate infer mechanism
and (4) the utility of flexible temporal abstraction. More ablations including a study of dense and sparse
rewards, the benefit of offline methods like CRR and the importance of data augmentation can be found in
Appendix D.

5.2.1 Scheduler Skill Selection

In this section we show how the scheduler typically chooses the skills to interact with the environment. Fig.
5c displays the skill selection during the training by means of the average consecutive execution for each
skill. We assume 7 skills are available, some of them needed for solving the task at hand (‘reach green’,
‘close fingers’), while the others act as a distractor (e.g. ‘reach yellow’ or ‘open fingers’). At the beginning
the scheduler quickly selects the most useful skills (‘reach green’, ‘close fingers’) while discarding those less
relevant to the task (observe the drop in executing ‘reach yellow’ or ‘reach blue’). While the scheduler does
not choose the poorly performing new skill early in training, eventually (after roughly 2000 episodes) it is
selected more often until finally it is the most executed skill. An extended analysis on skill execution across
all manipulation domains is presented in Appendix D.5.

5.2.2 Robustness to Skill Number and Quality

Fig. 6 evaluates SkillS on the stacking, pyramid and triple-stacking domains while changing the skill set S.
For this analysis we vary the number10 and the types of skills by including a variety of distractor skills not
directly relevant for the task (e.g. ‘reach blue’ when ‘red’ needs to be stacked; more details in Appendix
C.1.3). With only distractor skills, SkillS understandably fails to learn anything. For the easier tasks of

10In order to augment the number of skills, we use 3 skills trained to solve the same task (e.g. ‘reach blue’) from different
seeds and we refer to these sets in Fig. 6 as many distractors and many useful skills.
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(a) Benefit of collect and infer. (b) Single optimal skill. (c) Multiple sub-optimal skills.

Figure 7: (a) SkillS performs best when given access to a separately inferred new skill, which is quite effective
at learning offline. Results shown on the Lift task. (b)-(c) The main advantage of SkillS is likely due to
temporally correlated exploration. When given access to a single optimal skill (b) all methods can learn
effectively but with multiple sub-optimal skills (c), SkillS is the only method to learn (all other methods are
flat lines). Results for (b) and (c) are on the Stacking task.

(a) Stacking (b) Pyramid Stacking (c) Triple stacking

Figure 8: The variable temporal abstraction of SkillS is especially crucial for learning harder tasks.

Stacking and Pyramid, SkillS is quite robust as long as there are some useful skills in the set S. On the
challenging triple-stacking task, increasing the number of skills has a detrimental effect on performance. We
hypothesize that the larger skill set increases the size of the search space to a point where the exploration in
skill space does not easily find the task solution.

5.2.3 Benefit of Separate Collect and Infer Mechanisms

We conduct an experiment to study the importance of a separate inference (learning) mechanism in extension
of the hierarchical agent. Fig. 7a compares SkillS ‘Scheduler (incl. new skill)’ which has access to the frozen
skills and the new skill against ‘Scheduler (without new skill)’ which only has access to frozen skills. We
also consider the performance of just the ‘New skill’ that is trained off-policy in former case and offline in
the latter. As the figure shows, the separate off-policy learning process ‘New skill’ (blue) outperforms the
scheduler (green) in performance even though the latter has access to this skill. The gap in performance is
even greater when the scheduler does not have access to this skill at all (yellow). Interestingly, the new skill
can learn a surprisingly effective policy from entirely offline data as shown by the ‘New skill (trained entirely
offline)’ curve in red. An extension of this analysis on all manipulation domains is presented in Appendix D.5.

5.2.4 Utility of Flexible Temporal Abstraction

Temporally-correlated exploration Figs. 7b and 7c illustrate the importance of temporally-correlated
exploration that arises from our formulation in Section 4. For this analysis we additionally run a version
of our algorithm called ‘SkillS (without temporal abstraction)’ where a new skill must be chosen at each
timestep (K = {1}). When given a single (near-)optimal skill11, all methods including regularisation and

11The near-optimal skill for the Stacking task places the green object on the yellow one without moving the gripper away.
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fine-tuning perform similarly (Fig. 7b). However, when we use more than one sub-optimal skill, temporally
correlated exploration is crucial for learning (Fig. 7c).

Variable temporal abstraction Fig. 8 analyses the importance of the flexible temporal abstraction of
SkillS by comparing our method against a version dubbed ‘SkillS (fixed temporal abstraction - X)’ where
each skill, once chosen, is held fixed for a given duration of X timesteps ([10, 50, 100, 150, 200] timesteps in a
600 step episode). We observe that the optimal fixed skill length varies from task to task (see Fig. 8a vs 8b)
and, most importantly, the performance on harder tasks (especially triple-stacking) degrades when using this
constraint. Thus, flexibly choosing the duration for each skill is quite important.

6 Discussion

Transferring the knowledge of reinforcement learning agents via skills or policies has been a long-standing
challenge. Here, we investigate different types of task and dynamics variations and introduce a new method,
SkillS, that learns using data generated by sequencing skills. This approach demonstrates strong performance
in challenging simulated robot manipulation and locomotion tasks. It further overcomes limitations of
fine-tuning, imitation and purely hierarchical approaches. It achieves this by explicitly using two learning
processes. The high-level scheduler can learn to sequence temporally-extended skills and bias exploration
towards useful regions of trajectory space, and the new skill can then learn an optimal task solution off-policy.

There are a number of interesting directions for future work. For instance, unlike in the options framework
(Sutton et al., 1999) which associates a termination condition with each option, in our work the duration
of execution of a skill is independent of the pretrained skill. While this provides more flexibility during
transfer, it also ignores prior knowledge of the domain, which may be preferable in some settings. Similarly,
the high-level controller is currently trained to maximize task reward. However, it may be desirable to
optimize the scheduler with respect to an objective that incentivizes exploration, e.g. to reduce uncertainty
with regards to the value or system dynamics, improving its ability to collect data in harder exploration
problems. Another avenue of exploration is to increase the robustness of our method to the number and
quality of skills used. As Figure 6 shows, the robustness of SkillS to distractors reduces in more complex
tasks. While any skill transfer method requires useful skills to be present in the pool, the initial exploration
of the scheduler can be improved by leveraging expert trajectories or offline data. More general formulations
of SkillS including vision or language-conditioned architectures could allow for sub-goal based exploration of
the skill space. Finally, our approach can naturally be combined with transfer of forms of prior knowledge
apart from skills, such as prior experience data, the value function (Galashov et al., 2020), or a dynamics
model (Byravan et al., 2021) and we expect this to provide fertile area of future research.
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A Appendix

Appendix

A SkillS Details

A.1 HCMPO - Policy evaluation

In order to derive the PE updates we write down the probability that the scheduler chooses an action zt and
the counter ct.

This takes into account the fact that, if kt time steps have passed, i.e. the counter ct has expired, the scheduler
chooses a new action zt = [it; kt] at time t. It keeps the previous action zt = zt−1 = [it−1; kt−1] otherwise.

π(zt, ct|st, zt−1, ct−1) =

π(it, kt, ct|st, it−1, kt−1, ct−1) =
{

πS(zt = [it; kt]|st, θ)δ(kt, ct) if ct−1 = 1
δ(it − it−1)δ(kt − kt−1)δ(ct − (ct−1 − 1)) otherwise.

(5)

We can now use Eq. 5 to derive the PE update rules reported in Eq. 3.
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Figure 9: Example of data augmentation. Let’s assume we have a trajectory τ where the skill with index
i∗ is executed for k∗ = 60 time steps. The duplicated trajectory τ̄ is generated by pretending the scheduler
chose the same skill with index i∗ every kmin time steps, equal to 10 in our example. This generates a new
trajectory τ̄ compatible with the low-level actions at and state st actually collected during the interaction
with the environment.

A.2 Data Augmentation

We define a skill trajectory τ as the sequence of k∗ time steps where the same skill with index i∗ is executed

τ = {(st, zt = [i∗, k∗], ct, rt)}t=t0+k∗−1
t=t0

(6)

and kmin the smallest skill length available to the scheduler (kmin ≤ k for k ∈ K and kmin ∈ K ).

For every trajectory τ with skill length k∗ that can be written as multiple of the minimum skill length
kmin (mod(kt, kmin) = 0), we generate a new duplicated skill trajectory τ̄ pretending it was generated by a
scheduler choosing the same skill i∗ multiple times with the smallest available skill length kmin (see Fig. 9).
The duplicated skill trajectory τ̄

τ̄ = {(st, z̄t = [i∗, k̄∗], c̄t, rt)}t=t0+k∗−1
t=t0

(7)

is such that:
(st, z̄t = [i∗, k̄∗], c̄t, rt) =

(st, z̄t = [i∗, kmin], ct − ⌊( ct

kmin
− 1) ∗ kmin, rt) if mod(kt, kmin) = 0, ct > kmin

(st, z̄t = [i∗, kmin], ct, rt) if mod(kt, kmin) = 0, ct ≤ kmin

(st, zt = [i∗, k∗], ct, rt) otherwise.

(8)

This generates a new trajectory that is compatible with the data actually collected, but with more samples
that are actively used for improving the scheduler and the policy, as it pretends the scheduler made a decision
in more states. Both τ and τ̄ are added to the replay and used for training the scheduler. This perspective is
highly related to efficiently learning high-level controllers over sets of options in the context of intra-option
learning (using data throughout option execution to train the inter option policy) (Sutton et al., 1999;
Wulfmeier et al., 2021).

A.3 Bias on initial skill length

Our SkillS formulation enables the possibility of specifying initial bias in the scheduler choices. It is possible
to encourage the scheduler to initially choose one or more skills and/or skill lengths. In all our experiments
we bias the scheduler to initially choose the largest skill length. This way all the skills are executed for a
considerably large number of timesteps at the beginning of training, helping the scheduler understand their
utility for the task at hand.
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B Baseline details

In this section we describe the methods used as baselines in the main text. For all of the baselines described
below, we use a weighted loss that trades off the baseline with CRR using a parameter α. In other words
when α = 1, we use pure CRR whereas α = 0 runs the pure algorithm.

B.1 MPO

When learning from scratch and for our baselines we largely adapt the state-of-the-art off-policy learning
algorithm Maximum a-posteriori Policy Optimisation (MPO) (Abdolmaleki et al., 2018). MPO optimises the
RL objective in Eq. 1 using an Expectation Maximisation (EM) style approach. The algorithm operates in
three steps: a policy evaluation step to learn the state-action value function Qπ(s, a); an E-step to create an
improved non-parametric policy using data sampled from a replay buffer; and an M-step that fits a parametric
policy π(a|s) to the non-parametric estimate.

For the policy evaluation step we use a Mixture of Gaussian (MoG) critic as described by Shahriari et al.
(2022). MPO then optimizes the following objective in the E-step:

max
q

∫
s

µ(s)
∫

a

q(a|s)Q(s, a) da ds

s. t.

∫
s

µ(s)DKL(q(a|s)||π(a|s)) ds < ϵ, (9)

where q(a|s) an improved non-parametric policy that is optimized for states µ(s) drawn from the replay
buffer. The solution for q is shown to be:

q(a|s) ∝ π(a|s, θ) exp(Qθ(s, a)
η∗ ). (10)

Finally in the M-step, an improved parametric policy πn+1(a|s) is obtained via supervised learning:

πn+1 = arg max
πθ

M∑
j

N∑
i

qij log πθ(ai|sj).

s. t.DKL(πn(a|sj)||πθ(a|sj))

Importantly, the M-Step also incorporates a KL-constraint to the previous policy πn(a|s) to create a trust-
region like update that prevents overfitting to the sampled batch of data. In our experiments, we use an
extension of MPO, dubbed Regularized Hierarchical Policy Optimisation (RHPO), that learns a Mixture of
Gaussian policy (Wulfmeier et al., 2020) instead of a single isotropic Gaussian.

B.2 Fine-tuning and RHPO

For our comparison of skill reuse, we reload the mixture components of an RHPO agent using the parameters
of the previously trained skills. In addition we consider two scenarios: a) continuing to fine-tune the mixture
components that were reloaded or b) introducing a new mixture component (similar to the new policy of
SkillS) and freezing the other mixture components that were reloaded using skills. Freezing the skills is often
advantageous to prevent premature over-writing of the learnt behavior - an important feature which can add
robustness early in training when the value function is to be learnt. We illustrate this effect in Figure 10 in
the ‘Stacking’ setting where we transfer only a single skill. As shown, when the previous skill is fixed the
retained knowledge can be used to bootstrap learning whereas direct fine-tuning can cause a catastrophic
forgetting effect where learning performance is significantly worse.

B.3 KL-Regularisation

KL-regularisation typically involves the addition of an extra term to the RL objective function that minimises
the Kullback-Leibler (KL) divergence between the policy and some prior distribution (Tirumala et al., 2020).
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Figure 10: Impact of freezing skills: Single skill transfer to stacking.

Here, we define the prior distribution to be a uniform mixture over the previously trained skills, given by:

π0 =
N∑

i=1
wi × πi(a|s) (11)

wi = 1
N
∀i

where πi(a|s) are N previously trained skills.

As such, the KL objective can be incorporated into any RL algorithm. In this work we adapt MPO to include
regularisation to a prior. As presented above, MPO includes KL-constraints in both the E and M steps, either
of which can be used to further regularise to the prior. In this work, we adapt the E-step to regularise against
a mixture distribution. In this setting, the non-parametric distribution q for the E-step can be obtained as:

q(a|s) ∝ π0(a|s, θ) exp(Qθ(s, a)
η∗ ). (12)

One interpretation of this objective is that the prior π0 serves as a proposal distribution from which actions
are sampled and then re-weighted according to the exponentiated value function. The optimal temperature
η∗ here is obtained by minimising:

g(η) = ηϵ

+ η

∫
µ(s) log

∫
π0(a|s, θ) exp(Qθ(s, a)

η
), (13)

where ϵ is a hyper-parameter that controls the tightness of the KL-bound. A smaller ϵ more tightly constrains
the policy to be close to the prior distribution whereas a looser bound allows more deviation from the prior
and reliance on the exponentiated Q function for learning.

B.4 DAGGER

The final baseline we consider is an adaptation of the method DAGGER (Dataset Aggregation) introduced by
Ross et al. (2011). DAGGER is an imitation learning approach wherein a student policy is trained to imitate
a teacher. DAGGER learns to imitate the teacher on the data distribution collected under the student. In our
formulation, the teacher policy is set to be a uniform mixture over skills, π0 as defined in Eq. 11. We train
the student to minimize the cross-entropy loss to this teacher distribution for a state distribution generated
under the student. The loss for DAGGER is thus given by:

LDAGGER = arg min
π

−π0(a|s) log π(a|s) (14)

20



Published in Transactions on Machine Learning Research (11/2023)

Entry Dimension Unit
End-effector Cartesian linear velocity 3 m/s

Gripper rotational velocity 1 rad/s
Gripper finger velocity 1 rad/s

Table 1: Robot action space in manipulation tasks.

In addition, we consider an imitation + RL setting where the DAGGER loss is augmented with the standard
RL objective using a weighting term αDAGGER:

L = αDAGGER × LDAGGER + (1− αDAGGER)× LMP O. (15)

In our experiments we conduct a hyper-parameter sweep over the parameter αDAGGER and report the best
results.

C Experiment Details

C.1 Tasks and rewards

C.1.1 Manipulation

In all manipulation tasks, we use a simulated version of the Sawyer robot arm developed by Rethink Robotics,
equipped with a Robotiq 2F85 gripper. In front of the robot, there is a basket with a base size of 20x20 cm
and lateral slopes. The robot can interact with three cubes with side of 4 cm, coloured respectively in yellow,
green and blue. The robot is controlled in Cartesian velocity space with a maximum speed of 0.05 m/s. The
arm control mode has four control inputs: three Cartesian linear velocities as well as a rotational velocity of
the wrist around the vertical axis. Together with the gripper opening angle, the total size of the action space
is five (Table 1). Observations used for our experiments are shown in Table 2. For simulating the real robot
setup we use the physics simulator MuJoCo (Todorov et al., 2012). The simulation is run with a physics
integration time step of 0.5 milliseconds, with control interval of 50 milliseconds (20 Hz) for the agent.

C.1.2 Locomotion

We use a Robotis OP3 (Robotis OP3) humanoid robot for all our locomotion experiments. This hobby
grade platform is 510 mm tall and weighs 3.5 kg. The actuators operate in position control mode. The
agent chooses the desired joint angles every 25 milliseconds (40 Hz) based on on-board sensors only. These
observations include the joint angles, and the angular velocity and gravity direction of the torso. Gravity
is estimated from IMU readings with a Madgwick (Madgwick et al., 2010) filter that runs at a higher rate.
The robot has also a web camera attached to the torso, but we ignore it in our experiments. To account for
the latency in the control loop, we stack the last five observations and actions together before feeding them
to the agent. Further, to encourage smoother exploration, we apply an exponential filter with a strength
of 0.8 to the actions before passing them to the actuator. We also assume we have access to the robot’s
global position and velocity via an external motion capture system. This privileged information is, however,
only used to evaluate the reward function, and is not visible to the agent. Although we train our policies in
simulation, the model has been carefully tuned to match the physical robot, allowing us to zero-shot transfer
the policies directly from simulation to a robot (Byravan et al., 2023).

C.1.3 Skills

The skills used for the manipulation tasks are shown in Table 3. All the plots in the paper are shown using
only the skills under the column ‘Useful skills’. The other sets of skills are used for the ablation in Fig. 6. In
particular, when in Fig. 6 we mention ‘Many Useful skills’ or ‘Many Distractor skills’ it means that we use
3 skills trained for the same task, e.g. "reach green", but from different seeds (e.g. ‘Many useful skills and
distractor skills’ for Pyramid is a total of 31 skills.).
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Entry Dimension Unit
Joint Angle 7 rad

Joint Velocity 7 rad/s
Pinch Pose 7 m, au

Finger angle 1 rad
Finger velocity 1 rad/s

Grasp 1 n/a
Yellow cube Pose 7 m, au

Yellow cube pose wrt Pinch 7 m, au
Green cube Pose 7 m, au

Green cube pose wrt Pinch 7 m, au
Blue cube Pose 7 m, au

Blue cube pose wrt Pinch 7 m, au

Table 2: Observations used in simulation. In the table au stands for arbitrary units used for the
quaternion representation.

Task Useful skills No. Distractor skills No.
Lift Reach green, 2 Reach yellow, Reach blue, 4

(green) Lift arm with closed fingers Open fingers,
Lift arm with open fingers

Stack Useful skills for Lift green, 4 Distractor skills for Lift green, 6
(green on yellow) Lift green, Lift yellow, Lift blue

Hover green on yellow
Pyramid Useful skills for Stack, 9 Lift arm with open fingers, 3

(green on top) Stack green on yellow, Open fingers,
Lift yellow, Lift blue Stack yellow on blue

Reach yellow, Reach blue
Triple stacking Useful skills for Stack, 9 Lift arm with open fingers, 4

(green on yellow Stack green on yellow, Open fingers,
on blue) Stack yellow on blue, Reach blue,

Lift yellow, Reach yellow, Lift blue
Hover yellow on blue,

Table 3: Skills used for each manipulation task. Every column with title ‘No.’ counts the number of
skills in the left-hand side column, e.g. ’Lift green’ has 2 Useful skills.

For the locomotion setting, we consider two tasks: ‘GoalScoring’ and ‘GetUpAndWalk’ that are defined
using the rewards described in Appendix C.1.5. In ‘GoalScoring’, we consider a transfer domain where the
walker is randomly perturbed by applying an impulse sampled uniformly within the range (-0.05, 0.05). The
‘GetUpAndWalk’ task involves two skills : ‘GetUp’ and ‘Walk’. The ‘GetUp’ skill is trained by initializing
the walker on the floor with a reward for standing upright and the ‘Walk‘ task uses the reward definition in
Appendix C.1.5 with no upright reward and episode termination when the walker hits the ground.

C.1.4 Rewards - Manipulation

The skills of Table 3 are obtained either by training them from scratch with staged rewards (in particular,
the basic skills such as ‘Open fingers’) or they are the result of a SkillS experiment, i.e. they are represented
by the New Skill and have been trained with sparse rewards. The reward functions used for this aim are the
following.
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• Reach object - dense

Rreach =
{

1 iff ||pgripper−pobject

tolpos
|| ≤ 1

1− tanh2(||pgripper−pobject

tolpos
|| · ϵ) otherwise,

(16)

where pgripper ∈ R3 is the position of the gripper, pobject ∈ R3 the position of the object, tolpos =
[0.055, 0.055, 0.02]m the tolerance in position and ϵ a scaling factor.

• Open fingers - dense

Ropen =
{

1 iff ||pfinger−pdesired

tolpos
|| ≤ 1

1− tanh2(||pfinger−pdesired

tolpos
|| · ϵ) otherwise,

(17)

where pfinger ∈ R is the angle of aperture of the gripper, pdesired ∈ R is the angle corresponding to
the open position, tolpos = 1e−9 the tolerance in position and ϵ a scaling factor.

• Lift arm with open fingers - dense

Rlift =
{

1 iff zarm ≥ zdesired

zarm−zmin

zdesired−zmin
otherwise,

(18)

where zarm ∈ R is the z-coordinate of the position of the gripper, zmin = 0.08 ∈ R is the minimum
height the arm should lift to receive non-zero reward and zdesired = 0.18 ∈ R is the desired z-
coordinate the position of the gripper should reach to get maximum reward. The reward to have
both the arm moving up and the fingers open is given by:

Rlift,open = Rlift ·Ropen. (19)

• Lift arm with closed fingers - dense

Rgrasp = 0.5(Rclosed + Rgrasp,aux), (20)

where Rclosed is computed with the formula of Eq. equation 17, but using as pdesired ∈ R the angle
corresponding to closed fingers this time;

Rgrasp,aux =
{

1 if grasp detected by the grasp sensor
0 otherwise.

(21)

Then the final reward is:
Rlift,closed = Rlift ·Rgrasp. (22)

• Lift object - sparse

Rlift =
{

1 iff zobject ≥ zdesired

0 otherwise,
(23)

where zobject ∈ R is the z-coordinate of the position of the object to lift and zdesired = 0.18 the
desired z-coordinate the object should reach to get maximum reward.

• Hover object on another one - dense

Rhover =
{

1 iff ||ptop−pbottom−offset
tolpos

|| ≤ 1
1− tanh2(||ptop−pbottom−offset

tolpos
|| · ϵ) otherwise

, (24)

where ptop ∈ R3 is the position of the top object, pbottom ∈ R3 the position of the bottom object,
offset = [0, 0, objectheight = 0.04], tolpos = [0.055, 0.055, 0.02]m the tolerance in position and ϵ a
scaling factor.
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• Stack top object on bottom object - sparse

Rstack =


1 iff dx,y(ptop, pbottom) ≤ tolx,y &
|dz(ptop, pbottom)− ddesired| ≤ tolz &
Rgrasp,aux = 0

0 otherwise,

(25)

where dx,y(·, ·) ∈ R is the norm of the distance of 2D vectors (on x and y), dz(·, ·) ∈ R is the (signed)
distance along the z-coordinate, ptop ∈ R3 and pbottom ∈ R3 are respectively the position of the top
and bottom object, tolx,y = 0.03 and tolz = 0.01 are the tolerance used to check if the stacking is
achieved, ddesired = 0.04 is obtained as the average of the side length of the top and bottom cubes.
The final reward we use for stacking is:

Rstack,leave = Rstack · (1−Rreach,sparse(top)) (26)

where Rreach,sparse(top) is the sparse version of Rreach in Eq. 16 for the top object.

• Pyramid - sparse

Rpyramid =



1 iff dx,y(pbottom,a, pbottom,b) ≤ tolx,y,bottom &
dx,y(ptop, pbottom) ≤ tolx,y &
|dz(ptop, pbottom)− ddesired| ≤ tolz &
Rgrasp,aux = 0

0 otherwise,

(27)

where dx,y(·, ·) ∈ R is the norm of the distance of 2D vectors (on x and y), dz(·, ·) ∈ R is the (signed)
distance along the z-coordinate, ptop, pbottom,a, pbottom,b ∈ R3 are respectively the position of the top
object and the 2 bottom objects, while pbottom = pbottom,a+pbottom,b

2 ∈ R3 is the average position of
the two bottom objects, tolx,y,bottom = 0.08, tolx,y = 0.03 and tolz = 0.01 are the tolerance used to
check if the pyramid configuration is achieved, ddesired = 0.04 is obtained as the average of the side
length of the top and bottom cubes. The final reward we use for our tasks is:

Rpyramid,leave = Rpyramid · (1−Rreach,sparse(top)). (28)

• Triple stacking - sparse The triple stacking reward is given by:

Rtriple,stack,leave = Rstack(top, middle) ·Rstack(middle, bottom) · (1−Rreach,sparse(top)). (29)

C.1.5 Rewards - Locomotion

In the GetUpAndWalk task, we condition the robot’s behavior on a goal observation: a 2-d unit target
orientation vector, and a target speed in m/s. In these experiments, the speed was either 0.7m/s or 0m/s.
The targets are randomly sampled during training. Each target is kept constant for an exponential amount
of time, with an average of 5 seconds between resampling.

The reward per time step is a weighted sum Rwalk with terms as described below.

While this reward is dense in the observation space, 2/3 of episodes are initialized with the robot lying
prone on the ground (either front or back). The effective sparsity results from the need to first complete the
challenging get-up task, before the agent can start to earn positive reward from walking.

• GetUpAndWalk

Rwalk = Rorient + Rvelocity + Rupright + Raction + Rpose + Rground + 1, (30)

where Rorient is the dot product between the target orientation vector and the robot’s current
heading; Rvelocity is the norm of the difference between the target velocity, and the observed planar

24



Published in Transactions on Machine Learning Research (11/2023)

(a) (b)

Figure 12: During evaluation, the new skill is executed in the environment for the entire episode (a). This
differs from the way the data is collected at training time, where the new skill can interact with the environment
only when selected by the scheduler (b).

velocity of the feet; Rupright is 1.0 when the robot’s orientation is close to vertical, decaying to zero
outside a margin of 12.5◦; Raction penalizes the squared angular velocity of the output action controls
averaged over all 20 joints,

∑
joint

(
ωjoint

t − ωjoint
t−1

)2
; Rpose regularizes the observed joint angles

toward a reference "standing" pose
∑

joint

(
θjoint − θjoint

ref

)2
; and Rground = −2 whenever the robot

brings body parts other than the feet within 4cm of the ground.

In GoalScoring, the robot is placed in a 4m× 4m walled arena with a soccer ball. It must remain in its own
half of the arena. It scores goals when the ball enters a goal area, 0.5m× 1m, positioned against the centre
of the back wall in the other half. An obstacle (a short stretch of wall) is placed randomly between the robot
and the goal.

• GoalScoring
Rgoalscoring = Rscore + Rupright + Rmaxvelocity (31)

where: Rscore is 1000 on the single timestep where the ball enters the goal region (and then becomes
unavailable until the ball has bounced back to the robot’s own half); Rmaxvelocity is the norm of
the planar velocity of the robot’s feet in the robot’s forward direction; Rupright is the same as for
GetUpAndWalk. Additionally, episodes are terminated with zero reward if the robot leaves its own
half, or body parts other than the feet come within 4cm of the ground.

C.2 Details on how we evaluate performance

Fig. 12 show how the performance of the scheduler and the new skill can be evaluated separately.

C.3 Training and networks

For all our experiments we use Multilayer Perceptron (MLP) network torsos with a network head output
that is twice the size of the action dimension for the task. The network output is split into the mean and
log standard deviation that is used to parameterize the output of an isotropic Gaussian distribution. We
use a single actor and learner, a replay buffer for off policy learning and a controller that ensures a fixed
ratio between actor steps and learner updates across experiments. For each method and hyper-parameter
setting results are averaged across 5 random seeds. In what follows we provide a detailed description of
hyper-parameters used for the various experiments.
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C.3.1 Manipulation

The following parameters are fixed across all methods compared in the Manipulation setting (SkillS and
baselines):

Learner parameters

• Batch size: 256

• Trajectory length: 10

• Learning rate: 3e-4

• Min replay size to sample: 200

• Samples per insert: 50

• Replay size: 1e6

• Target Actor update period: 25

• Target Critic update period: 100

• E-step KL constraint ϵ: 0.1

• M-step KL constraints: 5e-3 (mean) and 1e-5 (covariance)

Network parameters

• Torso for Gaussian policies: (128, 256, 128)

• Component network size for Mixture policies: (256, 128)

• Categorical network size for MoG policies: (128,)

Scheduler specific parameters

• Scheduler batch size: 128

• Scheduler learning rate: 1e-4

• Min replay size to sample for scheduler: 400

• Samples per insert: 100

• Scheduler target actor update period: 100

• Scheduler target critic update period: 25

• Available skill lengths: K = {n · 10}10
n=1

• Initial skill lengths biases: 0.95 for k = 100, 0.005 for the other skill lengths

Hyper-parameter sweeps

• α (MPO v/s CRR loss) - (0, 0.5, 1.0)

• KL-reg: ϵ - (0.1, 1.0, 100.)

• DAGGER: αDAGGER - (0, 0.5, 1.0)

• RHPO: Fine-tune or freeze parameters
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C.3.2 Locomotion

Learner parameters

• Batch size: 256

• Trajectory length: 48

• Learning rate: 1e-4

• Min replay size to sample: 128

• Steps per update: 8

• Replay size: 1e6

• Target Actor update period: 25

• Target Critic update period: 100

• E-step KL constraint ϵ: 0.1

• M-step KL constraints: 5e-3 (mean) and 1e-5 (covariance)

Network parameters

• Torso for Gaussian policies: (128, 256, 128)

• Component network size for Mixture policies: (256, 128)

• Categorical network size for MoG policies: (128,)

Scheduler specific parameters

• Scheduler batch size: 128

• Scheduler learning rate: 1e-4

• Min replay size to sample for scheduler: 64

• Steps per update: 4

• Available skill lengths: K = {n · 10}10
n=1

• Initial skill lengths biases: 0.95 for k = 100, 0.005 for the other skill lengths

Hyper-parameter sweeps

• α (MPO v/s CRR loss) - (0, 0.5, 1.0)

• KL-reg: ϵ - (0.1, 1.0, 100.)

• DAGGER: αDAGGER - (0, 0.5, 1.0)

• RHPO: Fine-tune or freeze parameters
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Figure 13: Comparison between regularized fine-
tuning (CRR) and vanilla fine-tuning (MPO) on
the GoalScoring task. Offline learning methods like
CRR typically regularize towards the skill (via data
in the replay) which can improve learning stability
when fine-tuning.

Figure 14: Comparison when using CRR v/s MPO
to infer the new skill on the Stacking task.

D Additional Experiments

D.1 Impact of trade-off between MPO and CRR loss

Fine-tuning with offline learning. As discussed in Section 5 of the main text, fine-tuning often leads
to sub-optimal performance since useful information can be lost early in training. In Fig. 13 we observe
that fine-tuning with an offline-RL loss like CRR improves stability and learning performance. Many offline
methods, including CRR, typically regularise towards the previous skill either explicitly through the loss or
implicitly via the data generated by the skill (see Tirumala et al. (2020) for a more detailed discussion on
this). We hypothesize that such regularisation could help mitigate forgetting and hence improve learning.
While this insight requires a more detailed analysis that is outside the scope of this work, we however have
some evidence that when fine-tuning with a single skill a potentially simple algorithmic modification (from
off-policy to offline RL) might already make learning more robust.

CRR for new skills. In Fig. 14 we compare what happens when the new skill is inferred with an offline
learning algorithm (CRR) against an off-policy algorithm (MPO) on the stacking domain from Section 5.
We observe that learning is improved when using an offline algorithm like CRR. For this reason, all of the
experiments presented in the main text use CRR as the underlying skill inference mechanism - although
the method itself is somewhat robust and agnostic to this choice. For a fair comparison, we also include a
sweep using CRR as the underlying agent across when selecting the best performing baseline. However, since
CRR implicitly regularises towards the skill, there is typically no effect when compared to using MPO when
regularising towards a mixture.

D.2 Impact of Data Augmentation

Fig. 15 shows how data augmentation improves the performance, especially for more challenging tasks.

D.3 Performance with Dense Rewards

Fig. 16 shows the performance with all skill transfer methods on the lift and stacking tasks when the agent
has access to dense rewards. We observe that, in contrast to the sparse reward results of Fig. 4, all methods
learn effectively when provided with dense rewards.
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(a) Stacking (b) Pyramid (c) Triple stacking

Figure 15: Data Augmentation: Data augmentation becomes crucial when addressing harder tasks.

(a) Lifting (b) Stacking

Figure 16: Performance on dense-reward manipulation tasks. With carefully-tuned shaped rewards on simpler
tasks, skill reuse is not as beneficial and all methods can learn effectively.

Since the reward provides a useful and reliable signal to guide learning there is less need to generate good
exploration data using previous skills. The advantage of skill-based methods is thus primarily in domains
where defining a dense reward is challenging but the required sub-behaviors are easier to specify.

D.4 Combinations with Additional Transfer Mechanisms

The separation of collect and infer processes means that SkillS can be flexibly combined with other skill
techniques, included the previously analysed baselines. In Figure 17 we compare the performance of SkillS
from the paper against versions of SkillS where the new skill is trained using auxiliary regularisation objectives
in the manipulation Lift and Stack tasks. We found no benefit of changing the underlying algorithm to infer
the new skill. The main takeaway of this result is that SkillS can flexibly combined with different algorithms
to run inference which could be beneficial in some settings not considered here.

D.5 Extended results

Figures 18 and 19 extend the results of Figures 5c and 7a respectively to all of the manipulation domains.
Overall, the results across the domains is consistent with the analysis presented in the main text.

For Figure 18 we show the average execution of the top-5 most chosen skills at any point during training for
ease of plotting. We see a consistent pattern across domains: the scheduler chooses from all skills uniformly
before settling on a subset that are relevant for the task. However eventually and by the end of training, the
scheduler consistently chooses the new skill most often.

29



Published in Transactions on Machine Learning Research (11/2023)

(a) Lifting (b) Stacking

Figure 17: Performance of SkillS when combined with other approaches to transfer, showing its flexibility.

(a) Lift (b) Stack

(c) Pyramid (d) Triple Stacking

Figure 18: Skill average execution (as number of timesteps) during training on sparse-reward manipulation
tasks.

Figure 19 shows that there is a large benefit of having a separate inference mechanism as part of SkillS. In
general, the performance of the new skill exceeds that of the scheduler even when the new skill is trained
entirely offline i.e. if the scheduler is constrained to only choose from the pre-trained skills.
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(a) Lift (b) Stack

(c) Pyramid (d) Triple Stacking

Figure 19: Benefit of having a separately inferred new skill across all manipulation domains.
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