
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEARCHING STRENGTHENS LARGE LANGUAGE MOD-
ELS IN FINDING BUGS OF DEEP LEARNING LIBRARIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensuring the quality of deep learning libraries is crucial, as bugs can have significant
consequences for downstream software. Fuzzing, a powerful testing method,
generates random programs to test software. Generally, effective fuzzing requires
generated programs to meet three key criteria: rarity, validity, and variety, among
which rarity is most critical for bug detection, as it determines the algorithm’s
ability to detect bugs. However, current large language model (LLM) based fuzzing
approaches struggle to effectively explore the program generation space which
results in insufficient rarity and the lack of post-processing leads to a large number
of invalid programs and inadequate validity. This paper proposes EvAFuzz, a novel
approach that combines Evolutionary Algorithms with LLMs to Fuzz DL libraries.
For rarity, EvAFuzz uses a search algorithm to guide LLMs in efficiently exploring
the program generation space, iteratively generating increasingly rare programs.
For validity, EvAFuzz incorporates a feedback scheme, enabling LLMs to correct
invalid programs and achieve high validity. For variety, EvAFuzz constructs a
large parent selection space, enriching the diversity of selected parents, and thereby
enhancing the variety of generated programs. Our experiments show that EvAFuzz
outperforms the previous state-of-the-art (SOTA) in several key metrics. First, in
the same version of PyTorch, EvAFuzz detects nine unique crashes, surpassing
the SOTA’s seven. Next, our method achieves a valid rate of 38.80%, significantly
higher than the SOTA’s 27.69%. Last, EvAFuzz achieves API coverage rates of
99.49% on PyTorch and 85.76% on TensorFlow, outperforming the SOTA’s rates
of 86.44% on PyTorch and 69.63% on TensorFlow. These results indicate that our
method generates programs with higher rarity, validity, and variety, respectively.

1 INTRODUCTION

With the advancement of deep learning (DL) technology, DL libraries such as PyTorch(PyTorch)
and TensorFlow(TensorFlow) have been widely applied in various fields including scientific re-
search(Jumper et al., 2021; Fawzi et al., 2022), entertainment(Wang et al., 2023a; Silver et al., 2016),
and transportation(Yurtsever et al., 2020). However, similarly to other software systems, DL libraries
may also harbor security vulnerabilities, which impacts the downstream applications relying on them.
To uncover potential errors within DL libraries, an effective approach is to generate a large number of
programs to trigger bugs in the libraries. This is known as fuzzing(Odena et al., 2019; Xia et al., 2024;
Mansur et al., 2020; Manès et al., 2021). Typically, the effectiveness of fuzzing is influenced by the
quality of the generated programs, e.g., rarity, validity, and variety. Compared to regular programs, a
rare and valid (namely correct) program is more likely to cover a certain edge case, which leads to a
higher probability of triggering bugs. A diverse set of programs can comprehensively cover the code
of the library being tested. Therefore, generating programs with these three characteristics is crucial
for enhancing the efficiency of fuzzing.

Recently, due to the promising code generation capabilities demonstrated by Large Language Models
(LLMs), researchers have begun to explore how to harness these models to generate high-quality
programs for fuzzing. Although some methods (Deng et al., 2023; 2024) have already enhanced the
efficiency of fuzzing by using code generated by LLMs, relying entirely on LLMs to autonomously
generate rare and valid programs remains challenging. There are two main reasons. On one hand,
the training data for LLMs primarily consists of common programs that do not easily trigger errors
in DL libraries, leading to difficulties for LLMs in generating rare programs that differ from the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

training data. On the other hand, because rare programs share similarities with invalid error programs,
LLMs need to carefully avoid generating invalid programs while attempting to produce rare ones.
Consequently, the LLM-based fuzzing still grapples with the insufficient rarity and validity issue.

To tackle the aforementioned challenges, this paper presents a novel framework that synergistically
combines LLMs with searching algorithms. At the heart of this framework lies the Evolutionary
Algorithm and large language model based search for Fuzzing (EvAFuzz) algorithm, which employs
the search algorithm to guide LLMs to efficiently explore the program generation space, thereby
enhancing the rarity of the generated programs. By selecting high-scoring programs as parents and
using them as references to produce offspring, EvAFuzz dives deeper into the program generation
space, generating increasingly rare programs that cover special edge cases. To mitigate the low validity
issue, we propose a feedback scheme, where the execution result of each generated program is fed
back to the LLM, enabling it to correct invalid programs and cover more edge cases. Additionally,
we construct a large parent selection space, enriching the diversity of selected parents, and thereby
enhancing the variety of generated programs. Figure 1 is an overview of our proposed framework.

Large Language Model

x = torch.tensor([1.0, 0.0, -1.0])

x = torch.acos(x)

New Programs

…

Traceback (most recent call last):
…

Feedback

mat1 = torch.tensor([[0, 1] , [1, 2]])

SelectPrograms

torch.acos(input, *, out=None)

SelectApi

mat1 = torch.LongTensor([[0, 1] , [1, 2]]).to_sparse()

…

torch.set_num_interop_threads(2)

torch.set_num_threads(2)

torch.set_num_threads(2)

torch.set_num_interop_threads(2)

ProgramList
torch.sin(input, *, out=None)

torch.sinc(input, *, out=None)

torch.sinh(input, *, out=None)

torch.sqrt(input, *, out=None)

torch.square(input, *, out=None)

torch.sub(input, other, *, alpha=1, out=None)

torch.subtract(input, other, *, alpha=1, out=None)

torch.tan(input, *, out=None)
…

ApiList

Generate New Programs

Update ProgramList Update ApiList

EvAFuzz

CPU GPU

Potential Bugs

Compare

x = torch.randn(1, 3, 3)

y = torch.randn(3, 3)

result = torch.add(x, y)

…

Fuzzing Outputs

Oracle

Code from issues and PRs DL Libraries APIs

Figure 1: Overview of EvAFuzz.

The contributions of this paper are summarized as follows:

• We propose EvAFuzz, a novel approach that harnesses the power of the Evolutionary
Algorithm with LLMs to Fuzz DL libraries. EvAFuzz utilizes a search algorithm to guide
LLMs to explore the program generation space for rare programs. The design of EvAFuzz
ensures a balance between search depth and breadth for both rarity and variety.

• To enhance validity, we introduce a feedback scheme that feeds the execution results of
generated programs back to the LLM, allowing it to correct invalid programs.

• Our comprehensive experiments show the superiority of EvAFuzz, outperforming the state-
of-the-art methods in terms of rarity and validity, and comparable in variety. Moreover, our
experiments confirm that EvAFuzz successfully searches for increasingly rare programs.

Notably, our approach has discovered several bugs in the current nightly version of PyTorch and
TensorFlow. We show some examples in Appendix G.

2 BACKGROUND AND RELATED WORK

2.1 FUZZING TECHNIQUES

Fuzzing (Liang et al., 2018; Li et al., 2018; Manès et al., 2021) is a software testing technique
that involves generating random programs to detect potential security vulnerabilities, bugs, and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

crashes. Traditional fuzzers can be categorized into two main types: generation-based (Livinskii et al.,
2020; Yang et al., 2011) and mutation-based (Lemieux & Sen, 2018; Zhu et al., 2019). Generation-
based fuzzers, also known as grammar-based (Liang et al., 2018) fuzzers, leverage grammar and
knowledge of the target language and software semantics to generate complete programs. In contrast,
mutation-based fuzzers generate programs by randomly mutating seed programs. Beyond traditional
fuzzing approaches, researchers have explored the application of deep learning techniques to develop
innovative fuzzing tools.

After generating programs, fuzzers employ an oracle (Wang et al., 2022; 2023b) to execute the
generated programs and detect potential bugs in libraries. Oracles are custom-designed for each
fuzzing scenario, and currently, there are three primary types of oracles for fuzzing deep learning
(DL) libraries: the crash oracle, the consistency oracle (Deng et al., 2023; Wei et al., 2022) and the
automatic differentiation (AD) oracle (Yang et al., 2023). The crash oracle detects crashes during
program execution. If one occurs, this would be a serious bug. The consistency oracle (Deng et al.,
2023; Wei et al., 2022) executes generated programs on diverse backends, such as CPU and GPU,
and verifies whether their outputs are consistent. Any inconsistencies detected indicate potential bugs
in DL libraries. In contrast, the AD oracle (Yang et al., 2023) leverages first-order and high-order
gradients of tensors to determine whether a bug in the DL libraries is triggered.

2.2 LLMS FOR FUZZING

LLMs have demonstrated impressive capabilities in generating high-quality code, completing partial
code, and even writing entire programs from scratch. This has been achieved by training these models
on massive corpora of text data sourced from the Internet, including books, articles, and websites. In
contrast to fine-tuning methods, which involve updating the model weights by training on a specific
downstream task dataset to create specialized models, in-context learning uses the pre-trained LLM
without modifying its weights. Instead, it constructs a prompt that includes multiple examples of
input-output demonstrations along with the final task to be solved. TitanFuzz(Deng et al., 2023) first
employs Codex(Chen et al., 2021) to generate high-quality seed programs and use InCoder(Fried
et al., 2023) to mutate these seed programs. Along these lines, FuzzGPT (Deng et al., 2024) prompt
historical buggy programs to LLMs. These works have demonstrated the feasibility of directly
utilizing modern LLMs for end-to-end fuzzing of real-world systems without fine-tuning.

3 PROPOSED APPROACH

3.1 PRELIMINARIES

We first clarify some concepts that will frequently appear in this paper.

Validity and Invalidity. Valid programs can run without any errors at least on one backend but
may produce inconsistent results on different backends, such as CPU and GPU, due to bugs in
libraries. Invalid programs refer to programs that have bugs themselves, such as syntax errors or
using undefined variables, and trigger errors during execution. The valid rate refers to the proportion
of valid programs relative to all the programs generated.

Rarity. A rare program is a program that covers a specific edge case, which typically differs
significantly from usual programs and may resemble invalid programs closely. In our algorithm, a
program is considered rarer if it is located at a deeper search depth.

Validity-Rarity Trade-off. The validity-rarity trade-off refers to the phenomenon where the rarity of
generated programs improves at the expense of their validity, making it impossible for both to be
high simultaneously. This observation was proposed by (Deng et al., 2024). This principle can aid
in analyzing various aspects, such as determining changes in the rarity of generated programs by
observing variations in their validity.

3.2 EVOLUTIONARY ALGORITHM FRAMEWORK FOR FUZZING (EVAFUZZ) - RARITY

We first describe EvAFuzz in Algorithm 1. The motivation here is based on our observation, i.e.,
directly prompting a LLM to generate programs is equivalent to a search of depth 1. It means that by
simply prompting something like "Please write an unusual program using PyTorch" into a LLM, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

generated results will not meet this requirement. In other words, these generated results will still be
very similar to the LLM’s training data which mostly consists of correct programs that do not trigger
bugs in DL libraries. Therefore, to enhance the ability of LLMs to generate rare programs, we use
evolutionary algorithms (EA) for searching and generating increasingly rare programs iteratively.
The proposed framework is given in Algorithm 1.

Algorithm 1: Evolutionary Algorithm For Fuzzing (EvAFuzz)
Input: Programs of issues and PRs from GitHub, list of tested APIs ApiList, target number of

generated programs TargetNum, the number of seed programs selected at one time
NumPrograms, retry threshold MaxRetry

Output: The generated programs

1 Initialize (ProgramList, programs of issues and PRs from GitHub)

2 while NumGenerated < TargetNum do
3 ApiToGenerate = SelectApi(ApiList)
4 SeedPrograms = SelectPrograms(ProgramList,NumPrograms)
5 NewPrograms = LLM(ApiToGenerate, SeedPrograms)
6 for EachProgram in NewPrograms do
7 RepeatCnt = 0
8 ExecRes = Exec(NewProgram)
9 while ExecRes is Failed and RepeatCnt < MaxRetry do

10 FeedbackPrompt = ConstructPrompt(ExecRes)
11 EachProgram = LLM(FeedbackPrompt)
12 ExecRes = Exec(EachProgram)
13 RepeatCnt += 1
14 end
15 end
16 Scores = FitnessFunc(NewPrograms)
17 Update (ApiList, ApiToGenerate, NewPrograms)
18 Update (ProgramList,NewPrograms, Scores)
19 Update (NumGenerated, NewPrograms)
20 end
21 return ProgramList

The ApiList and ProgramList contain all the APIs provided by the test library and all the generated
programs, respectively. The initial ProgramList is constructed with programs from issues and pull
requests on GitHub, with each program labeled with the API that triggers the tested library’s bugs
and the title of the issue or pull request as a bug description. The algorithm begins by selecting an
API from the ApiList that is used by the newly generated programs. The goal is to attempt to trigger
bugs in the tested library using this API. Next, it selects multiple programs from the ProgramList
to serve as the parent programs, i.e., seed programs, for this iteration. The selected API and seed
programs are then passed to the Large Language Model (LLM), which generates new offspring
programs. The algorithm then enters the feedback stage, where the LLM attempts to correct any
invalid programs that were generated. After the feedback stage, the newly generated programs are
scored using the FitnessFunc. Finally, the ApiList, ProgramList, and NumGenerated are
updated accordingly and the next iteration begins, continuing until the number of generated programs
reaches the desired value. We can see that the search algorithm, i.e., the evolutionary algorithm,
guides the LLM in exploring the program generation space, iteratively producing programs
with increasing depth and rarity.

EvAFuzz is based on a few-shot learning approach, leveraging seed programs as exemplars in
Algorithm 1 line 5. We input these seeds into the LLM to facilitate learning the intrinsic characteristics
of rare programs, enabling the generation of similarly rare, bug-triggering programs. Each seed
contains an API declaration, a bug description, and the corresponding program. The LLM learns how
the program leverages the API declaration to trigger the described bug, allowing it to generate new
programs likely to uncover bugs in the API. Importantly, we use the full API declaration, not just the
name, to guide the LLM in learning proper API usage, such as input parameter characteristics. This
helps the LLM generate programs that effectively test the target library and trigger vulnerabilities.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The fitness function used in Algorithm 1 line 16 is defined as (Deng et al., 2023), which is used to
describe the amount of information contained in a program, i.e., its rarity.

FitnessFunc(C) = D + U −R (1)

where C, D, U , and R are defined as:

• C: A program using tested library’s APIs.

• D: Depth of dataflow graph1 which is constructed from C. Its edges represent the variable
dependencies between two operations in C.

• U : The number of unique library API calls in C.

• R: The number of repeated library API calls with the same inputs in C.

3.3 FEEDBACK SCHEME - VALIDITY

A clear challenge of using LLMs for fuzzing is the validity of generated programs, due to constraints
of syntax, semantics, tensor operations, and dimensionality. Previous study FuzzGPT(Deng et al.,
2024) shows that the state-of-the-art LLM-generated programs have not exceeded a 30% valid rate.
To address this issue, we propose a feedback scheme as shown in Algorithm 1 line 6-15, which feeds
the execution results of generated programs back to the LLM, allowing it to correct the programs.

We categorize the issues with invalid programs into two types: exceptions occurring during runtime
and the failure to call given APIs. "ExecRes is Failed" in Algorithm 1 line 9 represents that at least
one of these two situations occurs. For these two scenarios, we design two corresponding Feedback
Prompts: Exception Prompt and Not Call Prompt. The content of Exception Prompt and Not
Call Prompt is explained in detail with an example in Appendix A.

The feedback scheme starts with executing the newly generated program. If it fails, we construct
an Exception Prompt based on the execution result for the LLM, supplying multi-faceted error
information to enable effective program correction. If the program runs successfully but fails to call
the specified API, we then construct a Not Call Prompt to guide the LLM in modifying the program
to call the given API. This iterative process continues until the program runs successfully or the
retry limit is met. Through the feedback scheme, we significantly improve the validity of the
generated programs.

3.4 SELECTION STRATEGIES - VARIETY

Algorithm 2: API Selection
Input: List of tested APIs ApiList
Output: The selected API

1 NumGeneratedList = []
2 for API in ApiList do
3 NumGeneratedList.append(API.NumGenerated)
4 end
5 p = Softmax(−(NumGeneratedList− Avg(NumGeneratedList))
6 ApiToGenerate = RandomChoice(ApiList, p)
7 return ApiToGenerate

Below, we will highlight the details of selection strategies for the APIs (Algorithm 2) and the seed
programs (Algorithm 3). The core design is to balance rarity and variety, ensuring that the generated
programs have high rarity while maximizing variety.

In Algorithm 2, we first retrieve the number of programs generated for each API and construct a list.
Due to the large number of generated programs for each API, direct exponentiation would result
in precision overflow. To mitigate this, we perform a centralization operation. Since our goal is to
assign a higher probability to APIs with fewer generated programs, we take the negative value of

1We explain the meaning of dataflow graph in the Appendix E

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3: Programs Selection
Input: List of generated programs ProgramList, the number of seed programs selected at one

time NumPrograms
Output: The selected seeds

1 ScoreList = []
2 for Seed in ProgramList do
3 ScoreList.append(Seed.Score)
4 end
5 p = Softmax(ScoreList)
6 SeedPrograms = RandomChoice(ProgramList, p,NumPrograms)
7 return SeedPrograms

the centralized result as the input for the Softmax function. The Softmax function subsequently
yields the probability distribution for API selection, and we randomly select an API based on this
probability distribution. The process of Algorithm 3 is similar, except that the input of Softmax is
replaced with the score of each program. From the process of Algorithms 2 and 3, we can observe
that during each iteration, the scope of selected APIs and seed programs encompasses the entirety of
APIs and previously generated programs.

There are several advantages to these selection strategies. Firstly, the extensive selection space
for seed programs, i.e., parent programs, enhances the diversity of chosen parents, thereby
increasing the diversity of generated programs. Secondly, this approach is in contrast to prior
LLM-based fuzzers, which limit seed program selection to those that have the same API as the current
selected API. Our approach allows the LLM to learn the intrinsic characteristics of bug-triggering
programs, rather than being confined to specific APIs. Lastly, we assign a higher probability of
selection to programs with higher scores, which improves the rarity of the generated programs.

4 EXPERIMENTS

In the subsequent experiments, we aim to investigate the following problems:

• Can our proposed EvAFuzz outperform the previous state-of-the-art (SOTA) results in terms
of the number of detected bugs and coverage on DL libraries?

• Can the evolutionary algorithm successfully guide LLMs to explore the program generation
space efficiently, generating programs that are increasingly rare and more likely to trigger
bugs in the libraries?

• Whether each component of our proposed EvAFuzz is effective?

• What characteristics do the additional bugs we discover exhibit?

• Does the validity-rarity trade-off hold?

Before delving into the specifics of our experiments, we would like to emphasize that our approach is
versatile and not limited to deep learning libraries. The primary reason for choosing deep learning
libraries is their significance within the AI ecosystem. In Appendix C, we demonstrate the versatility
of our method by conducting experiments on a broader range of libraries.

4.1 METRIC

We utilize the following metrics to measure the experimental results:

Line coverage and API coverage. The number of lines and APIs, respectively, of internal DL library
code that are executed after running the generated programs. The corresponding rates are obtained by
dividing by the total number of lines and APIs of the DL library code separately.

Valid Rate. It refers to the proportion of valid programs among all the generated programs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Crash. This includes aborts, segmentation fault, and INTERNAL_ASSERT_FAILED. Crash
bugs can potentially lead to critical security issues, and library users are unable to resolve crash bugs
through their exception-handling code.

4.2 EXPERIMENTS SETUP

Hyperparameters of LLM inference and EvAFuzz. We utilize the state-of-the-art code generation
model, CodeQWen1.5-7B-Chat. We further explain our rationale for choosing the LLM and conduct
experiments on more diverse models in Appendix D. We set temperature = 0.8 and max_tokens =
1024. We choose NumPrograms = 2, which enables the model to learn the characteristics of rare
programs and avoid excessive restriction and leads to generating various programs. We generate five
new programs per iteration, and our default setting for MaxRetry is 1.

Tested libraries. We focus on fuzzing PyTorch and TensorFlow, the two most widely used deep
learning (DL) libraries, consistent with previous testing efforts. For metric calculation, we utilize
PyTorch 1.12.1 and TensorFlow 2.10.0, aligning with previous work. To uncover new bugs, we
leverage nightly versions of both libraries.

Environment. Our experiments are conducted on an Ubuntu 18.04 machine with 8 NVIDIA 3090
GPUs and an Intel(R) Xeon(R) Gold 6246R CPU. We utilize coverage.py(coveragepy) to accurately
measure coverage.

Oracles. After generating the program, we need oracles to execute the generated programs and
determine whether they trigger bugs in the libraries based on the execution results. Similar to (Deng
et al., 2023), we employ two types of oracles: the crash oracle and the consistency oracle. The crash
oracle detects whether a crash is triggered during program execution, which is the most severe type
of bug. The consistency oracle checks whether the program produces inconsistent results across
different backends, such as CPU and GPU.

Baselines. All the results of the baselines are obtained from their respective papers.

4.3 COMPARISON IN TERMS OF RARITY, VALIDITY, AND VARIETY

Firstly, We compare the number of unique detected crash bugs with previous works in Table 1.
Following (Deng et al., 2024), we excluded inconsistency bugs from this comparison, as crashes are
more straightforward to quantify and can be used as a proxy to evaluate bug detection capabilities.
These results illustrate the rarity of programs generated by the method. EvAFuzz detects nine
unique crashes and outperforms the state-of-the-art (SOTA) FuzzGPT(Deng et al., 2024) which
detects seven at most. This indicates the rarity of the generated program of our proposed algorithm
and proves that searching strengthens large language models in finding bugs. We list all crash bugs
detected by EvAFuzz in Appendix F.

Table 1: (Rarity) Comparing the number of unique crashes with previous works.

TitanFuzz(Deng et al., 2023) FuzzGPT(Deng et al., 2024) EvAFuzz(Ours)
Few Shot Zero Shot Fine Tune

Crashes 3 7 7 2 9

Secondly, We compare the valid rate of the generated programs with previous LLM-based ap-
proaches(Deng et al., 2023; 2024) in Table 2. These results demonstrate the validity of programs
generated by the method. Notably, EvAFuzz achieves a valid rate of up to 38.8% on PyTorch and
34.04% on TensorFlow, respectively, outperforming the SOTA TitanFuzz(Deng et al., 2023) results
of 38.2% on PyTorch and 30.67% on TensorFlow. According to the validity-rarity trade-off, the low
number of crash bugs detected by TitanFuzz(Deng et al., 2023) implies that the generated programs
lack sufficient rarity, leading to their high validity. However, even so, the validity of the programs
generated by TitanFuzz(Deng et al., 2023) is not as good as that of our EvAFuzz. This improvement
underscores the significant effectiveness of our feedback scheme in generating valid programs.

Finally, we compare the line coverage and API coverage with several SOTA DL library fuzzers in
Table 3. These results indicate the variety of programs generated by the method. Our proposed

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: (Validity) Comparison of valid rate with previous LLM-based fuzzers. The numbers in the
Valid and All columns in the table represent the number of generated programs.

Method Valid All Valid Rate(%)

PyTorch

TitanFuzz(Deng et al., 2023) 6969 18245 38.20%
FuzzGPT-FS(Deng et al., 2024) 42496 154904 27.43%
FuzzGPT-ZS(Deng et al., 2024) 7809 132111 5.91%
FuzzGPT-FT(Deng et al., 2024) 31225 112765 27.69%

EvAFuzz(Ours) 47574 122612 38.80%

TensorFlow

TitanFuzz(Deng et al., 2023) 5173 16865 30.67%
FuzzGPT-FS(Deng et al., 2024) 54058 310483 17.41%
FuzzGPT-ZS(Deng et al., 2024) 4650 233887 1.99%
FuzzGPT-FT(Deng et al., 2024) 31105 253216 12.28%

EvAFuzz(Ours) 20187 59308 34.04%

EvAFuzz achieves a line coverage rate of 29.66% on PyTorch and 47.48% on TensorFlow, along with
an API coverage rate of 99.49% on PyTorch and 85.76% on TensorFlow. These results outperform
the SOTA FuzzGPT-Few Shot(Deng et al., 2024), which attains API coverage rates of 86.44% on
PyTorch and 69.63% on TensorFlow. This indicates that the variety of programs generated by our
method is comparable to that of the SOTA method.

Table 3: (Variety) Comparison on coverage with previous works.

PyTorch TensorFlow

Line Coverage API Coverage Line Coverage API Coverage

Codebase Under Test 113538(100%) 1593(100%) 269448(100%) 3316(100%)

FreeFuzz(Wei et al., 2022) 15688(13.82%) 468(29.38%) 78548(29.15%) 581(17.52%)
DeepREL(Deng et al., 2022) 15794(13.91%) 1071(67.23%) 82592(30.65%) 1159(34.95%)
∇Fuzz(Yang et al., 2023) 15860(13.97%) 1071(67.23%) 89722(33.3%) 1159(34.95%)
Muffin(Gu et al., 2022) NA NA 79283(29.42%) 79(2.38%)
TitanFuzz(Deng et al., 2023) 23823(20.98%) 1329(83.43%) 107685(39.97%) 2215(66.80%)
FuzzGPT-Few Shot(Deng et al., 2024) 35426(31.2%) 1377(86.44%) 146487(54.37%) 2309(69.63%)
FuzzGPT-Zero Shot(Deng et al., 2024) 38284(33.72%) 1237(77.65%) 126193(46.83%) 1460(44.03%)
FuzzGPT-Fine Tune(Deng et al., 2024) 36463(32.12%) 1223(77.65%) 125832(46.70%) 1834(55.31%)

EvAFuzz(Ours) 33678(29.66%) 1585(99.49%) 127953(47.48%) 2844(85.77%)

4.4 ALGORITHMIC ANALYSIS

We want to explore whether there is a discernible trend in the relationship between the generated
programs and their corresponding scores as the search progresses. In other words, we aimed to
determine if the rarity of the generated programs, as measured by their scores, continues to improve
over the search progress. To investigate this, we plot the average scores of the generated programs at
intervals of 2000 against their IDs(the later the program is generated, the larger its ID), as shown in
Figure 2(red). The results indicate that, in general, the programs generated later in the search process
tend to have higher scores. This suggests that as the search progresses, the generated programs
have increasing rarity. This observation aligns with our expectation that the search mechanism is
effectively exploring the program generation space and generating programs with higher scores over
time.

Additionally, we analyze the valid rates of the generated programs at intervals of 2000 and plot the
trend in Figure 2(blue). The graph reveals a decline in valid rates as the search progresses. According
to the validity-rarity trade-off, this phenomenon also indicates that the generated programs become
increasingly rare, thereby validating the efficacy of our search algorithm.

We further analyze the line coverage trend against the generated program IDs in Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20000 40000 60000 80000 100000 120000

Program ID

5

10

15

20

25

Sc
or

e

0.1

0.2

0.3

0.4

0.5

0.6

Va
lid

 R
at

e

Score
Valid Rate

Figure 2: Relationship between score(red)/valid
rate(blue) and generated program IDs.

0 10 20 30 40
Score

0.0

0.2

0.4

0.6

0.8

Va
lid

 R
at

e

Figure 3: Relationship between valid rate and
score (validity-rarity trade-off).

4.5 ABLATION STUDY

In this section, we will evaluate the effectiveness of each component of our proposed EvAFuzz
algorithm.

Feedback Scheme. We set the NumGenerated parameter of Algorithm 1 to 5,000, generating
programs to test PyTorch both with and without the feedback scheme. The results are presented in
Table 4, which compares the valid rate, API coverage, and line coverage achieved with and without the
feedback scheme. As the table demonstrates, all three evaluation metrics - valid rate, API coverage,
and line coverage - are significantly improved when feedback is incorporated. This underscores the
effectiveness of the feedback mechanism in enhancing the overall validity and variety of the generated
programs. Notably, the "Corrected" column indicates the rate of initially invalid programs that were
successfully corrected to be valid through the feedback process. We can observe that the valid rate -
corrected rate of w/ feedback is greater than the valid rate of w/o feedback. We analyze that the
feedback scheme increases the proportion of valid programs selected as few-shot examples, thereby
reinforcing the generation of more valid programs. However, without the feedback scheme, invalid
programs dominate as seed programs, increasing the likelihood of generating more invalid programs.

Table 4: EvaFuzz w/ or w/o feedback scheme.

Valid Rate(%) Corrected Rate(%) API Coverage Line Coverage

w/ feedback 62.66% 16.01% 902(56.62%) 27660(24.36%)
w/o feedback 17.02% NA 312(19.59%) 24372(21.47%)

Selection Strategies. We further evaluate the strategies for selecting APIs and seeds in Table 5,
using uniform random selection as the baseline. The three columns in the table refer to the valid
rate, API coverage, and line coverage, respectively. First, let’s compare the results between Full
and UniformRandomSeeds. UniformRandomSeeds has a higher valid rate, which, according to the
validity-rarity trade-off, suggests that the generated programs lack rarity. Meanwhile, its high API
coverage indicates better variety. However, we prioritize having high rarity over validity and variety
for programs as our primary goal is generating bug-triggering programs. Next, we compare the results
between Full and UniformRandomAPI. The much lower API coverage of UniformRandomAPI
indicates that the distribution of selected APIs is not uniform under this API selection strategy. We
hope to comprehensively test each API, so variety is the top priority when selecting APIs. These
results demonstrate that our designed API and seed program selection strategies effectively balance
the rarity and variety, achieving maximum rarity while maintaining variety.

In summary, these results fully demonstrate the effectiveness of our designed feedback scheme and
selection strategies, enhancing the validity of our EvAFuzz generated programs while balancing both
rarity and variety.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: EvaFuzz with different selection strategy of APIs and seed programs.

Valid Rate(%) API Coverage Line Coverage

Full 62.66% 902(56.62%) 27660(24.36%)
UniformRandomSeeds 67.56% 1010(63.40%) 25939(22.85%)
UniformRandomAPI 50.81% 646(40.55%) 25316(22.30%)

4.6 DETECTED BUGS

❶ ❷

mat1 = torch.LongTensor([[0, 1] , [1, 2]]).to_sparse()

mat2 = torch.LongTensor([[1, 2] , [3, 4]]).to_sparse()

result = torch.sspaddmm(torch.zeros(2, 3), mat1, mat2, alpha =2, beta=3)

INTERNAL ASSERT FAILED occurs in torch.sspaddmm

x = tf.constant([-2, -1, 0, 1, 2])

 y = tf.constant([3, 2, 1, 0, -1])

 z = tf.bitwise.left_shift(x, y)

z = [-16 -4 0 1 0] on GPU

z = [-16 -4 0 1 2] on CPU

Figure 4: Example bugs found by EvAFuzz.

Figure 4 presents two examples of bugs that we discovered in the current nightly version of PyTorch
and TensorFlow - the one on the left is from PyTorch, while the one on the right is from TensorFlow.
The INTERNAL_ASSERT_FAILED (a crash bug) occurs in the torch.sspaddmmmodule, which
is a fundamental component in the computation of sparse tensors used in both transformers and
LLMs. The TensorFlow bug, on the other hand, is found in the tf.bitwise.left_shift
operation, another basic function employed in novel designs such as mask and sparse attentions.
z = [-16, -4, 0, 1, 2] on CPU but z = [-16, -4, 0, 1, 0] on GPU, which is
inconsistent. These two examples further demonstrate the effectiveness of our system in uncovering
additional bugs beyond what previous approaches had identified. We show more detected bugs in
Appendix G.

4.7 VALIDITY-RARITY TRADE-OFF

Finally, we want to verify whether the validity-rarity trade-off holds through experiments. This
phenomenon can be theoretically attributed to two key factors: rare programs diverge significantly
from the training data of LLMs leading to an out-of-distribution problem, and they often bear similar-
ities to invalid programs, making them more likely to generate invalid programs when attempting to
generate rare ones. To empirically validate this, we calculate the valid rates and average scores of
the generated programs at intervals of 2000, and then draw them in order of increasing scores, as
depicted in Figure 3. The results confirm two crucial findings: firstly, the validity-rarity trade-off
is a real and existing phenomenon, and secondly, our FitnessFunc effectively captures the rarity
of programs. Notably, our experiment reveals an intriguing anomaly: the valid rate exhibits a rapid
increase as the score increases when the score is below 3, contradicting the expected validity-rarity
trade-off. This suggests that certain short and seemingly common programs can also trigger bugs in
the library, implying that the score based on FitnessFunc and rarity are not perfectly correlated,
but rather exhibit a certain degree of divergence.

5 CONCLUSION

We propose EvAFuzz, a novel fuzzing approach that combines evolutionary algorithms and large
language models to search for rare programs in deep learning libraries. Our experiments demonstrate
that our proposed EvAFuzz outperforms state-of-the-art methods in terms of rarity and validity, and
achieves comparable variety. The extra bugs detected by EvAFuzz root in basic computations on
sparse matrices and bitwise left shift operations resulted in precision bugs in modern transformers
and LLMs. This highlights the effectiveness of the EvAFuzz approach in leveraging the power of
search algorithms to strengthen LLMs in finding bugs of deep learning libraries.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY

We provide all experiment setups of our method in Section 4.2. The programs used for initializing
the ProgramList in our paper come from the issues and PRs of PyTorch(PyTorch) and Tensor-
Flow(TensorFlow). We use the oracles from (Deng et al., 2023). The LLM CodeQWen1.5-7B-Chat
we use is an open-source model, which can be obtained from HuggingFace(HuggingFace). The
evolutionary algorithm we use is a well-established algorithm and is easy to reproduce. We need to
organize the experiment code and write documentation, which will be made publicly available as
soon as possible.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, 2021.

coveragepy. coveragepy: The code coverage tool for Python. URL https://github.com/
nedbat/coveragepy.

Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. Fuzzing deep-learning libraries
via automated relational API inference. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, pp. 44–56. Association for Computing Machinery, 2022. ISBN 978-1-4503-9413-0. doi:
10.1145/3540250.3549085.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language
Models. In ISSTA 2023: Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2023, pp. 423–435. Association for Computing Machinery,
2023. ISBN 9798400702211. doi: 10.1145/3597926.3598067.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large Language Models are Edge-Case Generators: Crafting Unusual Programs
for Fuzzing Deep Learning Libraries. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pp. 1–13. ACM, 2024. ISBN 9798400702174. doi: 10.1145/
3597503.3623343.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multipli-
cation algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. ISSN 1476-4687.
doi: 10.1038/s41586-022-05172-4.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2023.

Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. Muffin: Testing deep learning libraries
via neural architecture fuzzing. In Proceedings of the 44th International Conference on Software
Engineering, ICSE ’22, pp. 1418–1430. Association for Computing Machinery, 2022. ISBN
978-1-4503-9221-1. doi: 10.1145/3510003.3510092.

HuggingFace. HuggingFace. URL https://huggingface.co/.

11

https://github.com/nedbat/coveragepy
https://github.com/nedbat/coveragepy
https://huggingface.co/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583–589, 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03819-2.

Caroline Lemieux and Koushik Sen. FairFuzz: A targeted mutation strategy for increasing greybox
fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE ’18, pp. 475–485. Association for Computing Machinery, 2018.
ISBN 978-1-4503-5937-5. doi: 10.1145/3238147.3238176.

Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: A survey. Cybersecurity, 1(1):6, 2018. ISSN
2523-3246. doi: 10.1186/s42400-018-0002-y.

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing: State of
the Art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018. ISSN 1558-1721. doi:
10.1109/TR.2018.2834476.

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for C and C++ compilers
with YARPGen. Proceedings of the ACM on Programming Languages, 4:196:1–196:25, 2020. doi:
10.1145/3428264.

Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Detecting
critical bugs in SMT solvers using blackbox mutational fuzzing. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2020, pp. 701–712. Association for Computing Machinery,
2020. ISBN 978-1-4503-7043-1. doi: 10.1145/3368089.3409763.

Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J.
Schwartz, and Maverick Woo. The Art, Science, and Engineering of Fuzzing: A Survey. IEEE
Transactions on Software Engineering, 47(11):2312–2331, 2021. ISSN 1939-3520. doi: 10.1109/
TSE.2019.2946563.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing. In Proceedings of the 36th International Conference
on Machine Learning, pp. 4901–4911. PMLR, 2019.

PyTorch. PyTorch. URL https://pytorch.org/.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016. ISSN 1476-4687. doi:
10.1038/nature16961.

TensorFlow. TensorFlow. URL https://www.tensorflow.org.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models.
arXiv, 2023a. doi: 10.48550/arXiv.2305.16291.

Haijun Wang, Ye Liu, Yi Li, Shang-Wei Lin, Cyrille Artho, Lei Ma, and Yang Liu. Oracle-Supported
Dynamic Exploit Generation for Smart Contracts. IEEE Transactions on Dependable and Secure
Computing, 19(3):1795–1809, 2022. ISSN 1941-0018. doi: 10.1109/TDSC.2020.3037332.

Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. Fuzzjit: Oracle-enhanced
fuzzing for javascript engine jit compiler. pp. 1865–1882, 2023b. ISBN 978-1-939133-37-3.

12

https://pytorch.org/
https://www.tensorflow.org

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. Free lunch for testing: Fuzzing
deep-learning libraries from open source. In Proceedings of the 44th International Conference
on Software Engineering, ICSE ’22, pp. 995–1007. Association for Computing Machinery, 2022.
ISBN 978-1-4503-9221-1. doi: 10.1145/3510003.3510041.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Fuzz4All:
Universal Fuzzing with Large Language Models. In Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, ICSE ’24, pp. 1–13. Association for Computing
Machinery, 2024. ISBN 9798400702174. doi: 10.1145/3597503.3639121.

Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming Zhang. Fuzzing
Automatic Differentiation in Deep-Learning Libraries. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pp. 1174–1186. IEEE, 2023. ISBN 978-1-66545-
701-9. doi: 10.1109/ICSE48619.2023.00105.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in C compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, pp. 283–294. Association for Computing Machinery, 2011. ISBN
978-1-4503-0663-8. doi: 10.1145/1993498.1993532.

Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey ofautonomous
driving: Common practices and emerging technologies. IEEE Access, 8:58443–58469, 2020. ISSN
2169-3536. doi: 10.1109/ACCESS.2020.2983149.

Xiaogang Zhu, Xiaotao Feng, Tengyun Jiao, Sheng Wen, Yang Xiang, Seyit Camtepe, and Jingling
Xue. A Feature-Oriented Corpus for Understanding, Evaluating and Improving Fuzz Testing. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Asia
CCS ’19, pp. 658–663. Association for Computing Machinery, 2019. ISBN 978-1-4503-6752-3.
doi: 10.1145/3321705.3329845.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A FEEDBACK PROMPT

(Task Description) Please correct the following code.
You must use api `torch.tensor` in the code.
- Error Code:

…
- Exception Type: SyntaxError
- Exception Info

…

x = torch.tensor([0.5, -1.2, 0.3])
x =

SyntaxError: invalid syntax

execute

API: torch.tensor

(Task Description) Please modify the
code to use the API `torch.cos`.

- Code:
```python
a = torch.randn(1, 3, requires_grad=True)
b = torch.randn(1, 3, requires_grad=True)
```

a = torch.randn(1, 3, requires_grad=True)
b = torch.randn(1, 3, requires_grad=True)

API: torch.cos

Figure 5: Two examples of Feedback Prompt, namely Exception Prompt(left) and Not Call Prompt(right).

In this section, we will explain the details of the Feedback Prompt including Exception Prompt
and Not Call Prompt. Figure 5 shows two instances.

The Exception Prompt consists of four parts. Task Description: Inform the LLM that it is receiving a
program with errors and instruct it to correct the program. Error Code: The faulty program that needs
correction. Exception Type: The types of errors that occur during execution, including SyntaxError,
RuntimeError, etc. Exception Info: The detailed error information during execution, specifically
the runtime traceback that appears after an error occurs.

The Not Call Prompt includes two parts. Task Description: Inform the LLM that it will receive a
program and instruct it to rewrite the program to call the given API, with the description of the given
API. Code: The program that needs to be modified.

B LINE COVERAGE TREND

0 20000 40000 60000 80000 100000 120000

Program ID

20000

22000

24000

26000

28000

30000

32000

Py
To

rc
h

90000

100000

110000

120000
Te

ns
or

Fl
ow

PyTorch
TensorFlow

Figure 6: Line coverage trend of PyTorch(red) and TensorFlow(blue).

We show the line coverage trend of the EvAFuzz generated programs in this section. Figure 6 is the
change in line coverage with the increase in the number of generated programs. We can observe
that the trend remains consistently upward, and maintaining this trend even at the peak program
counts(PyTorch: 122,611, TensorFlow: 59,307). This suggests that generating additional programs
would likely further improve line coverage.

C FINDING BUGS IN MORE THAN DEEP LEARNING LIBRARIES

Table 6: Apply our proposed EvAFuzz on more than deep learning libraries including NumPy(1.22.3)
and SciPy(1.10.1).

NumPy SciPy

Line Coverage API Coverage Crash Bugs Line Coverage API Coverage Crash Bugs

Code Under Test 106381(100%) 1293(100%) NA 67139(100%) 1733(100%) NA

EvAFuzz(Ours) 18149(17.06%) 1289(99.69%) 1 28451(42.38%) 1726(99.60%) 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In this section, we conducte experiments on more libraries to demonstrate the generalization of our
approach, which is not limited to deep learning libraries. Specifically, we experiment on NumPy
1.22.3 and SciPy 1.10.1, generating 21,430 and 12,539 programs, respectively. The results are
presented in Table 6. For instance, our method detects 1 crash bug on SciPy, achieving 99.60%
API coverage and 42.38% line coverage. These results demonstrate that our proposed EvAFuzz is
generalizable and applicable to non-DL libraries.

D EXPERIMENTS WITH DIFFERENT LLMS

Table 7: Line coverage and API coverage using other LLMs, including deepseek coder-7b-instruct-
v1.5, Llama 3-8B-Instruct, and Nxcode-CQ-7B-orpo.

PyTorch TensorFlow

Line Coverage API Coverage Line Coverage API Coverage

Codebase Under Test 113538(100%) 1593(100%) 269448(100%) 3316(100%)

deepseek coder-7b-instruct-v1.5 29422(25.19%) 1568(98.43%) 98239(36.46%) 3113(93.88%)
Llama 3-8B-Instruct 27435(24.16%) 1541(96.74%) 92685(34.40%) 947(28.56%)
Nxcode-CQ-7B-orpo 28249(24.88%) 1562(98.05%) 101570(37.70%) 2918(88.00%)
CodeQwen1.5-7B-Chat 26949(23.74%) 1585(99,05%) 99756(37.02%) 2844(85.77%)

2000 4000 6000 8000 10000
Program ID

20000

22000

24000

26000

28000

Lin
e

Co
ve

ra
ge

PyTorch

deepseek coder-7b-instruct-v1.5
Llama 3-8B-Instruct
Nxcode-CQ-7B-orpo
CodeQwen1.5-7B-Chat

((a)) Line coverage trend on PyTorch.

2000 4000 6000 8000 10000
Program ID

80000

85000

90000

95000

100000

Lin
e

Co
ve

ra
ge

TensorFlow
deepseek coder-7b-instruct-v1.5
Llama 3-8B-Instruct
Nxcode-CQ-7B-orpo
CodeQwen1.5-7B-Chat

((b)) Line coverage trend on TensorFlow.

Figure 7: Trend of line coverage and API coverage using other LLMs.

In this section, we explain the basis for our selection of the LLM and conduct experiments on more
LLMs.

We selected CodeQWen1.5-7B-Chat for our experiments because it was the state-of-the-art code
generation Large Language Model (LLM) at the time of our experiments, as indicated by the BigCode
leaderboard on HuggingFace.

Additionally, we conducte more experiments on models of similar size. We generate 10,000 programs
each for PyTorch and TensorFlow using DeepSeek Coder-7b-instruct-v1.5, Llama 3-8B-Instruct, and
Nxcode-CQ-7B-orpo, and compared them with CodeQwen1.5-7B-Chat. Table 7 shows the results,
and Figure 7 illustrates the line coverage trend for different models on PyTorch and TensorFlow as
the number of generated programs increases. We can notice that except for Llama3, which performs
poorly on TensorFlow, the performance of the different models was generally similar. We want to
emphasize that our approach is not tied to a specific model. Naturally, the stronger the model’s
performance, the better the results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E DATAFLOW GRAPH

The dataflow graph (DFG) is a concept of compilation. It is a graph that represents data dependencies
between a number of operations, e.g., a dataflow graph a → + ← b is related to a + b. We show
an example in Figure 8. Each node of the graph is an input or a calculation result. Each edge of the
graph is the calculation dependency.

t1 = a * c;
t2 = t1 - 4;
t3 = b + b;
t4 = t2 / t3;

a c

*

-

/

+4

b b

t2

t1 t3

t4

Figure 8: An example of dataflow graph.

F CRASH BUGS

In this section, we list all crash bugs detected by EvAFuzz in PyTorch version 1.12.1+cu113.

Listing 1: Crash Bug 1
"""
error : segmentation fault
"""
import torch
import torch.distributed as dist
Initialize the distributed environment
dist.init_process_group("gloo", init_method="tcp://localhost:12345", rank

=0, world_size=1)
Create a tensor
tensor = torch.tensor([1, 2, 3, 4])
Send the tensor to rank 0
dist.send(tensor, dst=0)
Finalize the distributed environment
dist.destroy_process_group()

Listing 2: Crash Bug 2
"""
terminate called after throwing an instance of ’c10::Error’

what() : Error: cannot set number of interop threads after parallel work has started
or set_num_interop_threads called

Exception raised from set_num_interop_threads at ../ aten / src /ATen/
ParallelThreadPoolNative .cpp:54 (most recent call first) :

frame #0: c10::Error ::Error(c10::SourceLocation, std :: string) + 0x3e (0x7fe43af9520e in
.../ lib /python3 .8/ site −packages/torch / lib / libc10 .so)

frame #1: c10:: detail :: torchCheckFail (char const *, char const *, unsigned int , char const
*) + 0x60 (0x7fe43af706a9 in .../ lib /python3 .8/ site −packages/torch / lib / libc10 .so)

frame #2: <unknown function> + 0x178d38f (0x7fe464ea338f in .../ lib /python3 .8/ site −
packages/torch / lib / libtorch_cpu .so)

frame #3: <unknown function> + 0x5e9dfa (0x7fe48cd44dfa in .../ lib /python3 .8/ site −
packages/torch / lib / libtorch_python .so)

frame #4: python() [0x4e76fb]
<omitting python frames>
frame #9: python() [0x5a6541]
frame #10: python() [0x5a554f]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

frame #11: python() [0x45c485]
frame #13: python() [0x44fb81]
frame #15: __libc_start_main + 0xe7 (0x7fe4a8294bf7 in / lib /x86_64−linux−gnu/libc.so .6)
frame #16: python() [0x57a64d]
"""
import torch
torch.get_num_interop_threads()
torch.get_num_threads()
torch.set_num_threads(1)
torch.set_num_threads(4)
torch.set_num_interop_threads(1)
torch.set_num_interop_threads(4)

Listing 3: Crash Bug 3
"""
double free or corruption (out)
"""
import torch
LU_data = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)
LU_pivots = torch.tensor([0, 1], dtype=torch.int32)
b = torch.tensor([[5], [6]], dtype=torch.float32)
torch.lu_solve(b, LU_data, LU_pivots)

Listing 4: Crash Bug 4
"""
error : segmentation fault
"""
import torch
input = torch.randn(2, 1, 5, 5, 5)
kernel_size = (1, 2, 2)
stride = (1, 2, 2)
ceil_mode = False
output_size = (1, 3, 3, 3, 3)
indices = torch.empty(0)
output = torch.nn.functional.fractional_max_pool3d(input,

kernel_size, stride, ceil_mode, output_size, indices)
print(output)

Listing 5: Crash Bug 5
"""
error : segmentation fault
"""
import torch
from torch.overrides import has_torch_function,

has_torch_function_unary, has_torch_function_variadic
a = torch.tensor(1)
has_torch_function(a)
has_torch_function_unary(a)
has_torch_function_variadic(a)

Listing 6: Crash Bug 6
"""
error : segmentation fault
"""
import torch
import torch.overrides as overrides
def foo(self, x):

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

pass
Check if ‘ foo‘ overrides a Tensor property or method
is_overridden = overrides.is_tensor_method_or_property(foo)
print(is_overridden) # False
class MyTensor(torch.Tensor):

pass
@overrides.has_torch_function(MyTensor)
def foo(self, x):

pass
Check if ‘ foo‘ overrides a Tensor property or method
is_overridden = overrides.is_tensor_method_or_property(foo)
print(is_overridden) # True

Listing 7: Crash Bug 7
"""
error : segmentation fault
"""
import torch
def main():

torch.manual_seed(0)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")
@torch.overrides.wrap_torch_function(torch.sum)
def custom_sum(func, input):

return torch.sum(input) * 2
input = torch.randn(2, 3, device=device) # Move input tensor to the same

device as the model parameters
output = custom_sum(input)
print("All tests passed . ")

if __name__ == "__main__":
main()

Listing 8: Crash Bug 8
"""
Segmentation fault (core dumped)
"""
import torch
def main():

torch.manual_seed(0)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")
@torch.overrides.wrap_torch_function(torch.sum)
def custom_sum(func, input):

return torch.sum(input) * 2
input = torch.randn(2, 3, device=device) # Move input tensor to the same

device as the model parameters
output = custom_sum(input)
print("All tests passed . ")

if __name__ == "__main__":
main()

Listing 9: Crash Bug 9
"""

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

terminate called after throwing an instance of ’c10::Error’
what() : Error: cannot set number of interop threads after parallel work has started

or set_num_interop_threads called
Exception raised from set_num_interop_threads at ../ aten / src /ATen/

ParallelThreadPoolNative .cpp:54 (most recent call first) :
frame #0: c10::Error ::Error(c10::SourceLocation, std :: string) + 0x3e (0x7ff1bd3ad20e in

.../ lib /python3 .8/ site −packages/torch / lib / libc10 .so)
frame #1: c10:: detail :: torchCheckFail (char const *, char const *, unsigned int , char const

*) + 0x60 (0x7ff1bd3886a9 in .../ lib /python3 .8/ site −packages/torch / lib / libc10 .so)
frame #2: <unknown function> + 0x178d38f (0x7ff1e72bb38f in .../ lib /python3 .8/ site −

packages/torch / lib / libtorch_cpu .so)
frame #3: <unknown function> + 0x5e9dfa (0 x7ff20f15cdfa in .../ lib /python3 .8/ site −

packages/torch / lib / libtorch_python .so)
frame #4: python() [0x4e76fb]
<omitting python frames>
frame #6: python() [0x4e4bd2]
frame #7: python() [0x5978d2]
frame #8: python() [0x5b9cc2]
frame #10: python() [0x4e8b8b]
frame #18: python() [0x5a6541]
frame #19: python() [0x5a554f]
frame #20: python() [0x45c485]
frame #22: python() [0x44fb81]
frame #24: __libc_start_main + 0xe7 (0x7ff22a68bbf7 in / lib /x86_64−linux−gnu/libc.so .6)
frame #25: python() [0x57a64d]
"""
import torch
from torch.utils.data import Sampler
class RandomSampler(Sampler):

def __init__(self, data_source):
self.data_source = data_source
self.indices = list(range(len(data_source)))

def __iter__(self):
torch.manual_seed(0)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
torch.shuffle(self.indices)
return iter(self.indices)

def __len__(self):
return len(self.data_source)

def main():
torch.manual_seed(0)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")
class MyDataset(torch.utils.data.Dataset):

def __len__(self):
return 10

def __getitem__(self, index):
return torch.randn(1, device=device), torch.randn(1,

device=device)
dataset = MyDataset()
sampler = RandomSampler(dataset)
for _ in range(10):

sample = next(iter(sampler))
print(sample)

print("All tests passed . ")
if __name__ == "__main__":

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

main()

G DETECTED BUGS IN NIGHTLY VERSION OF PYTORCH AND TENSORFLOW

In these section, we show several detected bugs in nightly version of PyTorch and TensorFlow.

Listing 10: New Detected Bug 1
"""
API: torch .sspaddmm
Exception Type: CpuCrashCatch(420)
Error Message: RuntimeError self . is_sparse () INTERNAL ASSERT FAILED at "../aten/src/

ATen/native / SparseTensorUtils .h":28, please report a bug to PyTorch.
_internal_get_SparseTensorImpl : not a sparse tensor

"""
import torch
a = torch.randn(3, 3)
b = torch.randn(3, 3)
c = torch.randn(3, 3)
Convert tensors to sparse tensors
a_sparse = a.to_sparse()
b_sparse = b.to_sparse()
Perform sparse matrix multiplication
torch.sspaddmm(c, a_sparse, b_sparse, beta=2.5, alpha=0.1)
torch.sspaddmm(c, a_sparse, b_sparse, beta=1.5, alpha=0.3)
torch.sspaddmm(c, a_sparse, b_sparse, beta=0.75, alpha=0.6)

Listing 11: New Detected Bug 2
"""
API: torch .QUInt4x2Storage
Exception Type: GpuCrashCatch(420)
Error Message: RuntimeError cuda_dispatch_ptr INTERNAL ASSERT FAILED at "../aten/src/

ATen/native /DispatchStub .cpp":137, please report a bug to PyTorch. DispatchStub:
missing CUDA kernel

"""
import torch
def quantize(tensor, scale, zero_point):

return torch.quantize_per_tensor(tensor, scale, zero_point,
torch.quint4x2)

tensor = torch.tensor([[[[-0.1, -0.2], [-0.3, -0.4]], [[-0.5,
-0.6], [-0.7, -0.8]]], [[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6],
[0.7, 0.8]]]])

tensor = tensor.float() # Convert to float tensor
scale = 0.5 # Define the scale
zero_point = 0 # Define the zero point
quantized_tensor = quantize(tensor, scale, zero_point)
print(quantized_tensor)

Listing 12: New Detected Bug 3
"""
API: torch .onnx. is_in
Exception Type: CpuCrashCatch(420)
Error Message: RuntimeError: 0 INTERNAL ASSERT FAILED at "../torch/csrc/ jit / ir /

alias_analysis .cpp":608, please report a bug to PyTorch. We don’t have an op for
aten ::mul but it isn ’ t a special case . Argument types: Tensor , bool ,

Candidates:
aten ::mul.Tensor(Tensor self , Tensor other) −> (Tensor)
aten ::mul.Scalar(Tensor self , Scalar other) −> (Tensor)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

aten ::mul.out(Tensor self , Tensor other , *, Tensor(a!) out) −> (Tensor(a!))
aten ::mul.Scalar_out (Tensor self , Scalar other , *, Tensor(a!) out) −> (Tensor(a

!))
aten ::mul. left_t (t [] l , int n) −> (t [])
aten ::mul. right_ (int n, t [] l) −> (t [])
aten ::mul. int (int a, int b) −> (int)
aten ::mul.complex(complex a, complex b) −> (complex)
aten ::mul. float (float a, float b) −> (float)
aten ::mul.int_complex(int a, complex b) −> (complex)
aten ::mul.complex_int(complex a, int b) −> (complex)
aten ::mul. float_complex (float a, complex b) −> (complex)
aten ::mul. complex_float (complex a, float b) −> (complex)
aten ::mul. int_float (int a, float b) −> (float)
aten ::mul. float_int (float a, int b) −> (float)
aten ::mul(Scalar a, Scalar b) −> (Scalar)

"""
import torch
import torch.onnx
class MyModel(torch.nn.Module):

def forward(self, x):
return x * torch.onnx.is_in_onnx_export()

torch.manual_seed(0)
model = MyModel().cuda().eval()
x = torch.tensor([[0.1, 0.2]], device=’cuda’, dtype=torch.float32)
torch.onnx.export(model, (x,), "test_is_in_onnx_export.onnx")

Listing 13: New Detected Bug 4
"""
API: torch .QUInt4x2Storage
Exception Type: GpuCrashCatch(420)
Error Message: RuntimeError cuda_dispatch_ptr INTERNAL ASSERT FAILED at "../aten/src/

ATen/native /DispatchStub .cpp":137, please report a bug to PyTorch. DispatchStub:
missing CUDA kernel

"""
import torch
def quantize(tensor, scale, zero_point):

return torch.quantize_per_tensor(tensor, scale, zero_point,
torch.quint4x2)

tensor = torch.tensor([[[[-0.1, -0.2], [-0.3, -0.4]], [[-0.5,
-0.6], [-0.7, -0.8]]], [[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6],
[0.7, 0.8]]]])

tensor = tensor.float() # Convert to float tensor
scale = 0.5 # Define the scale
zero_point = 0 # Define the zero point
quantized_tensor = quantize(tensor, scale, zero_point)
print(quantized_tensor)

Listing 14: New Detected Bug 5
"""
API: tf . bitwise . left
Origin Path: SummaryResults_20240522_133114_Full/tf/valid/ tf . bitwise . left_shift_2844 .py
Exception Type: VarInconsistentCatch (420)
Error Message:
z on CPU: [−16 −4 0 1 2]
z on GPU: [−16 −4 0 1 0]
"""
import tensorflow as tf
x = tf.constant([-2, -1, 0, 1, 2])

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

y = tf.constant([3, 2, 1, 0, -1])
z = tf.bitwise.left_shift(x, y)

Listing 15: New Detected Bug 6
"""
API: torch .Tensor .msort
Exception Type: VarInconsistentCatch (420)
Error Message:
diff :[’ indices ’]
CPU: ’indices ’: tensor ([1, 3, 6, 0, 9, 2, 4, 8, 10, 7, 5]) ,
GPU: ’indices ’: tensor ([1, 3, 6, 9, 0, 2, 10, 8, 4, 7, 5], device=’cuda:0’)
"""
import torch
Create a tensor
x = torch.tensor([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
Sort the tensor
sorted_tensor, indices = torch.sort(x)
print(sorted_tensor)
print(indices)

Listing 16: New Detected Bug 7
"""
API: torch . cross
Exception Type: VarInconsistentCatch (420)
Error Message:
Result on CPU:
tensor ([[−0.8090, −1.8866, −0.1531, 0.9241],

[0.9158, 2.3039, 0.7830, −0.6937],
[1.2427, −3.2395, 0.9753, −1.3094]])

Result on GPU:
tensor ([[−0.8090, −1.8866, −0.1531, 0.9241],

[0.0454, −0.0165, 2.6868, −0.4181],
[−1.8018, 1.4298, 2.3755, −0.9607]], device=’cuda:0’)

"""
import torch
torch.manual_seed(0)
torch.cuda.manual_seed(0)
a = torch.randn(3, 4)
b = torch.randn(3, 4)
torch.cross(a, b, out=a)

Listing 17: New Detected Bug 8
"""
Testcase ID: 13286
API: torch .empty
Origin Path: SummaryResults_20240522_133114_Full/torch/valid/torch .empty_strided_22538.

py
Exception Type: VarInconsistentCatch (420)
Error Message:
diff :[’PassFlattenCallTempVar1’,

’PassLogTorchIntermediateTempVar1_PassFlattenCallTempVar1’]
CPU:
{ ’PassFlattenCallTempVar1’: tensor ([[1.1649e−15, 7.8107e−02, 1.5172e+00],

[0.0000e+00, −4.1399e−01, 4.7263e−02],
[7.8107e−02, 1.5172e+00, 8.4346e−01]]),

’PassLogTorchIntermediateTempVar1_PassFlattenCallTempVar1’: tensor ([[1.1649e−15,
7.8107e−02, 1.5172e+00],

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

[0.0000e+00, −4.1399e−01, 4.7263e−02],
[7.8107e−02, 1.5172e+00, 8.4346e−01]])}

GPU:
{ ’PassFlattenCallTempVar1’: tensor ([[6.7582e−15, 6.7582e−15, 1.8113e+00],

[4.5636e−41, 4.5636e−41, 7.9030e−01],
[6.7582e−15, 1.8113e+00, 1.0308e−01]], device=’cuda:0’) ,

’PassLogTorchIntermediateTempVar1_PassFlattenCallTempVar1’: tensor ([[6.7582e−15,
6.7582e−15, 1.8113e+00],
[4.5636e−41, 4.5636e−41, 7.9030e−01],
[6.7582e−15, 1.8113e+00, 1.0308e−01]], device=’cuda:0’)}

"""
import torch
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.empty_strided((3,3), (1,2))

import torch
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.empty_strided((3,3), (1,2)).cuda()

Listing 18: New Detected Bug 8
"""
API: torch . linalg .cond
Exception Type: VarInconsistentCatch (420)
Error Message:
cond_num on CPU: tensor(1.6336e+08)
cond_num on GPU: tensor(2.9279e+08, device=’cuda:0’)
"""
import torch
Create a square matrix
a = torch.tensor([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
Calculate the condition number
cond_num = torch.linalg.cond(a)
print("Condition number (ord=2):", cond_num)
cond_num_inf = torch.linalg.cond(a, p=float(’inf’))
print("Condition number (ord=inf):", cond_num_inf)

Listing 19: New Detected Bug 9
"""
API: torch . linalg . eigh
Exception Type: VarInconsistentCatch (420)
Error Message: Detail is too long
v on CPU: tensor([[−0.8944, 0.4472],

[0.4472, 0.8944]], dtype=torch. float64)
v on GPU: tensor([[0.8944, 0.4472],

[−0.4472, 0.8944]], device=’cuda:0’, dtype=torch. float64)
"""
import torch
A = torch.tensor([[1., 2.], [3., 4.]], dtype=torch.float64)
w, v = torch.linalg.eigh(A)
print(w.is_contiguous()) # True
A = torch.tensor([[1., 2.], [3., 4.]], dtype=torch.float64).T
w, v = torch.linalg.eigh(A)
print(w.is_contiguous()) # False

Listing 20: New Detected Bug 10

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

"""
API: torch . scatter
Exception Type: VarInconsistentCatch (420)
Error Message:
Result on CPU: tensor ([[3, 1, 2],

[5, 6, 2]])
Result on GPU: tensor([[1, 1, 2],

[4, 6, 2]], device=’cuda:0’)
"""
import torch
x = torch.LongTensor([[0, 1, 2], [0, 1, 2]])
src = torch.LongTensor([[1, 2, 3], [4, 5, 6]])
torch.scatter(x, 1, torch.LongTensor([[0, 0, 0], [0, 0, 1]]), src)

24

	Introduction
	Background and Related Work
	Fuzzing Techniques
	LLMs for Fuzzing

	Proposed Approach
	Preliminaries
	Evolutionary Algorithm Framework For Fuzzing (EvAFuzz) - Rarity
	Feedback Scheme - Validity
	Selection Strategies - Variety

	Experiments
	Metric
	Experiments Setup
	Comparison in Terms of Rarity, Validity, and Variety
	Algorithmic Analysis
	Ablation Study
	Detected Bugs
	Validity-Rarity Trade-off

	Conclusion
	Reproducibility
	Feedback Prompt
	Line Coverage Trend
	Finding bugs in More Than Deep Learning Libraries
	Experiments with different LLMs
	Dataflow Graph
	Crash Bugs
	Detected Bugs in Nightly Version of PyTorch and TensorFlow

