
Provably (More) Sample-Efficient Offline RL with
Options

Xiaoyan Hu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong SAR, China

xyhu21@cse.cuhk.edu.hk

Ho-fung Leung
Independent Researcher
Hong Kong SAR, China

ho-fung.leung@outlook.com

Abstract

The options framework yields empirical success in long-horizon planning prob-
lems of reinforcement learning (RL). Recent works show that options improves
the sample efficiency in online RL where the learner can actively explores the
environment. However, these results are no longer applicable to scenarios where
exploring the environment online is risky, e.g., automated driving and healthcare.
In this paper, we provide the first analysis of the sample complexity for offline
RL with options, where the agent learns from a dataset without further interaction
with the environment. We propose the PEssimistic Value Iteration for Learning
with Options (PEVIO) algorithm and establish near-optimal suboptimality bounds
(with respect to the novel information-theoretic lower bound for offline RL with
options) for two popular data-collection procedures, where the first one collects
state-option transitions and the second one collects state-action transitions. We
show that compared to offline RL with actions, using options not only enjoys a
faster finite-time convergence rate (to the optimal value) but also attains a better
performance (when either the options are carefully designed or the offline data is
limited). Based on these results, we analyze the pros and cons of the data-collection
procedures, which may facilitate the selection in practice.

1 Introduction

Planning in long-horizon tasks is challenging in reinforcement learning (RL) (Co-Reyes et al., 2018;
Eysenbach et al., 2019; Hoang et al., 2021). A line of study proposes to accelerate learning in
these tasks using temporally-extended actions (Fikes et al., 1972; Sacerdoti, 1973; Drescher, 1991;
Jiang et al., 2019; Nachum et al., 2019; Machado et al., 2021; Erraqabi et al., 2022). One powerful
approach is the options framework introduced by Sutton et al. (1999), where the agent interacts with
the environment with closed-loop policies called options. Empirical success (Tessler et al., 2017;
Vezhnevets et al., 2017) shows that options help achieve sample-efficient performance in long-horizon
planning problems.

To provide a theoretical guarantee to the options framework, recent works have focused on the sample
complexity of RL with options in the online setting, where the agent continuously explores the
environment and learns a hierarchical policy to select options. Brunskill and Li (2014) establish a
PAC-like sample complexity of RL with options in the semi-Markov decision processes (SMDPs),
where temporally-extended actions are treated as indivisible and unknown units. Later, Fruit and
Lazaric (2017) provide the first regret analysis of RL with options under the Markov decision
processes (MDPs) framework. While their proposed algorithm attains a sublinear regret, it requires
prior knowledge of the environment, which is not usually available in practice. To address this
problem, Fruit et al. (2017) propose an algorithm that does not require prior knowledge, yet achieves

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

a near-optimal regret bound. However, these results are inapplicable to many real-world scenarios
where online exploration is not allowed. For example, it has been argued that in healthcare (Gottesman
et al., 2019) and automated driving (Shalev-Shwartz et al., 2016), learning in an online manner is
risky and costly. In these scenarios, offline learning, where the agent learns a policy from a dataset, is
preferred. We note that there is a line of studies on the sample complexity of offline RL with primitive
actions only (i.e., without the use of options) (Levine et al., 2020; Fu et al., 2020; Rashidinejad et al.,
2021). Unfortunately, to the best of our knowledge, there have been no results reported on the offline
RL with options.

In this paper, we make the following contributions. First, we derive a novel information-theoretic
lower bound, which generalizes the one for offline learning with actions. Second, we propose the
PEssimistic Value Iteration for Learning with Options (PEVIO) algorithm and derive near-optimal
suboptimality bounds for two popular data-collection procedures, where the first one collects state-
option transitions and the second one collects state-action transitions. More importantly, we show
that options facilitate more sample-efficient learning in both the finite-time convergence rate and
actual performance. To shed light on offline RL with options in practice, we discuss the pros and
cons of both data-collection procedures based on our analysis.

2 Related Work

Learning with Options Building upon the theory of semi-Markov decision processes
(SMDPs) (Bradtke and Duff, 1994; Mahadevan et al., 1997), Sutton et al. (1999) propose to learn
with options. Following their seminal work, learning with options has been widely studied in the
function approximation setting (Sorg and Singh, 2010) and hierarchical RL (Igl et al., 2020; Klissarov
and Precup, 2021; Wulfmeier et al., 2021). Discovering useful options has also been the subject
of extensive research (Stolle and Precup, 2002; Riemer et al., 2018; Mankowitz et al., 2018; Harb
et al., 2018; Hiraoka et al., 2019; Bagaria et al., 2021). Despite its empirical success, there have
been fairly limited studies on the sample efficiency of learning with options. Brunskill and Li (2014)
analyze the sample complexity bound for an RMAX-like algorithm for SMDPs. Fruit and Lazaric
(2017) derive the first regret analysis of learning with options. They propose an algorithm that attains
sublinear regret in the infinite-horizon average-reward MDP while requiring prior knowledge of the
environment. Later, Fruit et al. (2017) remove this requirement.

Offline RL In the offline setting, a dataset that is collected by executing a behavior policy in the
environment is provided, and the agent is asked to learn a near-optimal policy using only this dataset.
A key challenge in offline RL is the insufficient coverage of the dataset (Wang et al., 2021), which is
also known as distributional shift (Chen and Jiang, 2019; Levine et al., 2020). To address this problem,
the previous study on sample-efficient learning assumes uniform coverage of the dataset (Liu et al.,
2018; Chen and Jiang, 2019; Jiang and Huang, 2020; Yang et al., 2020; Xie and Jiang, 2020; Uehara
et al., 2020; Qu and Wierman, 2020; Yin et al., 2021). This assumption is relaxed in recent works by
pessimism principle (Xie et al., 2021; Rashidinejad et al., 2021; Jin et al., 2021).

3 Preliminaries

3.1 Episodic MDP with Options

Let ∆(X) denote the probability simplex on space X and [N] := {1, · · · , N} for any positive
integer N . An episodic MDP with options is a sextupleM = (S,A,O, H,P, r), where S is the
state space, A the (primitive) action set, O the finite set of options, H the length of each episode,
P = {Ph : S × A 7→ ∆(S)}h∈[H] the transition kernel, r = {rh : S × A 7→ [0, 1]}h∈[H] the
deterministic reward function.1 We define S := |S|, A := |A|, and O := |O|. A (Markov)
option o ∈ O is a pair (πo, βo) where πo = {πo

h : S 7→ ∆(A)}h∈[H] is the option’s policy and
βo = {βo

h : S 7→ [0, 1]}h∈[H] is the probability of the option’s termination. For convenience,
we define βo

H+1(s) = 1 for all (s, o) ∈ S × O, i.e., any option is terminated after the end of an

1Our results can be directly generalized to stochastic rewards.

2

episode. We assume that the initial state s1 is fixed.2 Upon arriving at state sh at any timestep
h ∈ [H], if h = 1 (at the beginning of an episode), the agent selects option o1 ∼ µ1(·|s1), where
µ = {µh : S 7→ ∆(O)}h∈[H] is a hierarchical policy to select an option at each state. Otherwise
(h ≥ 2), the agent first terminates option oh−1 with probability β

oh−1

h (sh). If option oh−1 is
terminated, she then selects a new option oh ∼ µh(·|sh) according to the hierarchical policy µ. If
option oh−1 is not terminated, the agent continues to use option oh−1 at timestep h, i.e., oh = oh−1.
After that, the agent takes action ah ∼ πoh

h (·|sh), receives a reward rh := rh(sh, ah), and transits
to the next state sh+1 ∼ Ph(·|sh, ah). An episode terminates at timestep H + 1. A special case
is that an action a is an option o, such that πo

h(a|s) = 1 and βo
h(s) = 1 for any (h, s) ∈ [H] × S.

For convenience, we use the notation O = A to represent that each option corresponds to an action,
which is the case in RL with primitive actions.

To define the Q-function and the value function, we introduce some useful notations.3 Let T =
{Th : S × O 7→ ∆(S × [H − h + 1])}h∈[H] and U = {Uh : S × O 7→ [0, H]}h∈[H] denote
the option transition function and the option utility function, respectively. Particularly, for any
(h, s, o) ∈ [H]× S ×O, the option transition function Th(s

′|s, o, τ) is the probability that the agent
uses option o at state s at timestep h, reaches state s′ at timestep h+ τ without terminating option o
in these τ timesteps, and finally terminates option o at state s′ at timestep h+ τ . The option utility
function Uh(s, o) is the expected cumulative reward within timesteps that the option is used without
being terminated. Given any arbitrary series of functions {yh : S 7→ R}h∈[H], define the operator
[Thyh+τ](s, o) :=

∑
s′∈S Th(s

′|s, o, τ)yh+τ (s
′) for any (s, o, τ) ∈ S × O × [H − h + 1]. In the

following, we derive the Q-function and the value function for learning with options. (The detailed
proof can be found in Appendix B.)

Theorem 1 (Q-function and value function). For any hierarchical policy µ and (h, s, o) ∈ [H]×
S ×O, the Q-function is given by

Qµ
h(s, o) :=Eµ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, oh = o

]
= Uh(s, o) +

∑
τ∈[H−h+1]

[ThV
µ
h+τ](s, o)

(1)
and the value function is given by

V µ
h (s) :=Eµ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣sh = s, oh ∼ µh(·|sh)

]
=
∑
o∈O

µh(o|s)Qµ
h (s, o) (2)

where V µ
H+1(s) = Qµ

H+1(s, o) = 0 for any (s, o) ∈ S ×O.

Intuitively, the first term Uh(s, o) of the Q-function is the expected reward within timesteps that option
o is used without being terminated, and the second term

∑
τ∈[H−h+1][ThV

µ
h+τ](s, o) corresponds

to the expected reward within timesteps after option o is terminated and a new option is selected
according to µ. It can be shown that there exists an optimal (and deterministic) hierarchical policy
µ∗ = {µ∗

h : S 7→ O}h∈[H] that attains the optimal value function, i.e., V ∗
h (s) = supµ V

µ
h (s) for all

(h, s) ∈ [H]× S (Sutton et al., 1999).

3.2 Offline RL with Options

We consider learning with options in the offline setting. That is, given a dataset D that is collected by
an experimenter through interacting with the environment, the algorithm outputs a hierarchical policy
µ̂. The sample complexity is measured by the suboptimality, i.e., the shortfall in the value function of
the hierarchical policy µ̂ compared to that of the optimal hierarchical policy µ∗, which is given by

SubOptD(µ̂, s1) := V ∗
1 (s1)− V µ̂

1 (s1) (3)

To derive a novel information-theoretic lower bound of SubOptD, we first define some useful notations.
For any hierarchical policy µ, we denote by θµ = {θµh : S × O 7→ [0, 1]}h∈[H] its state-option

2Note that any H-length episodic MDP with a stochastic initial state is equivalent to an (H +1)-length MDP
with a fixed initial state s0.

3The formal definitions can be found in Appendix A.

3

occupancy measure. That is, θµh(s, o) is the probability that the agent selects a particular option o
at state s at timestep h (either when h = 1 or when the option oh−1 used at the timestep h − 1 is
terminated) when following the hierarchical policy µ. With a slight abuse of the notation, we denote
by θµh(s) :=

∑
o∈O θµh(s, o) the state occupancy measure for any (h, s) ∈ [H] × S. Further, we

define

Zµ
O :=

∑
h,s

θµh(s), Z
µ

O :=
∑
h,s,o

I[θµh(s, o) > 0] (4)

where I[·] is the indicator function. Intuitively, Zµ
O is the expected number of timesteps to alternate a

new option and Z
µ

O is the maximal number of state-option pairs that can be visited, when following
the hierarchical policy µ. The following proposition shows that options facilitate temporal abstraction
and reduction of the state space.

Proposition 1. For any hierarchical policy µ, we have that Zµ
O ≤ H . If µ is deterministic, i.e.,

µ = {µh : S 7→ O}h∈[H], we further have that Z
µ

O ≤ HS. All the above equalities hold when
O = A.

Next, we derive a novel information-theoretic lower bound of SubOptD. The detailed proof can be
found in Appendix C.

Theorem 2 (Information-theoretic lower bound). Let ρ = {ρh : S 7→ ∆(O)}h∈[H] denote any
hierarchical behavior policy to collect the dataset. Define the class of problem instances

M(Coption, z∗, z∗) :=

{
(M,ρ) : Exists deterministic µ∗ of an episodic MDP M

such that max
h,s,o

θµ
∗

h (s, o)

θρh(s, o)
≤ Coption, Zµ∗

O ≤ z∗, Z
µ∗

O ≤ z∗

}
.

Suppose that Coption ≥ 2, z∗ ≥ 1, and z∗ ≥ ⌊z∗⌋S, where ⌊x⌋ := max{n ∈ N : n ≤ x} is the
largest integer no greater than x ∈ R. Then, there exists an absolute constant c0 such that for any
offline algorithm that outputs a hierarchical policy µ̂, if the number of episodes

K ≤ c0 · CoptionHz∗z∗

ϵ2

then there exists a problem instance (M,ρ) ∈M(Coption, z∗, z∗) on which the hierarchical policy µ̂
suffers from ϵ-suboptimality, that is,

EM [SubOptD1
(µ̂, s)] ≥ ϵ

where the expectation EM is with respect to the randomness during the execution of ρ within MDP
M .

Theorem 2 shows that, when dataset D sufficiently covers the trajectories induced by µ∗, i.e.,
maxh,s,o θ

µ∗

h (s, o)/θρh(s, o) ≤ Coption, at least Ω(CoptionHZ∗
OZ

∗
O/ϵ

2) episodes are required to learn
an ϵ-optimal hierarchical policy from dataset D. Note that when O = A, it recovers the lower bound
Ω(H3SC∗/ϵ2) for offline RL with primitive actions, where C∗ is the concentrability defined therein.

4 The PEVIO Algorithm

Inspired by the Pessimistic Value Iteration (PEVI) algorithm (Jin et al., 2021), we propose the
PEssimistic Value Iteration for Learning with Options (PEVIO) in Algorithm 1. Given a dataset D
and the corresponding Offline Option Evaluation (OOE) subroutine, whose details are specified in
Sections 5.1 and 5.2, PEVIO outputs a hierarchical policy µ̂ = {µ̂h : S 7→ ∆(O)}h∈[H].

To estimate the Q-function, given a dataset D, PEVIO first constructs (T̂ , Û ,Γ) by the OOE subrou-
tine (line 3). Specifically, T̂h and Ûh are the empirical counterparts of Th and Uh presented in the
Q-function given by Equation (1), respectively. In addition, Γ is a penalty function computed based
on dataset D. We remark that the OOE subroutine varies when different data-collecting procedures

4

Algorithm 1 PEssimistic Value Iteration for Learning with Options (PEVIO)
1: Input: Dataset D and the corresponding Offline Option Evaluation (OOE) subroutine.
2: Initialize: Q̂h(s, o)← 0, V̂h(s)← 0, V̂H+1(s)← 0 for any (h, s, o) ∈ [H]× S ×O.
3: (T̂ , Û ,Γ)← OOE(D).
4: for h = H,H − 1, · · · , 1 do
5: for (s, o) ∈ S ×O do
6: Qh(s, o)← Ûh(s, o) +

∑H−h+1
τ=1 [T̂hV̂h+τ](s, o)− Γh(s, o).

7: Q̂h(s, o)← max{0,min{Qh(s, o), H − h+ 1}}.
8: end for
9: for s ∈ S do

10: µ̂h(·|s)← argmaxµh
⟨Q̂h(s, ·), µh(·|s)⟩O.

11: V̂h(s)← ⟨Q̂h(s, ·), µ̂h(·|s)⟩O.
12: end for
13: end for
14: Output: µ̂ = {µ̂h}h∈[H].

are considered and we provide the details in Sections 5.1 and 5.2, respectively. Given Ûh, T̂h, and
Γh, the estimated Q-function Q̂h is the derived (lines 6 and 7). Particularly, Qh computed in line 6
can be seen as first replacing Uh and Th with their empirical counterparts Ûh, T̂h in Equation (1),
and then subtracting the penalty function Γh. Further, a hierarchical policy µ̂h is constructed greedily
with Q̂h (line 10), where ⟨f(·), g(·)⟩O :=

∑
o∈O f(o)g(o) for any arbitrary functions f, g defined

on O. Finally, given Q̂h and µ̂h, the corresponding estimated value function V̂h is computed (line
11). To analyze the suboptimality of the hierarchical policy µ̂ output from PEVIO, we first provide
the the following definition, which motivates the design of the penalty function Γ.
Definition 1 (ξ-uncertainty quantifier for dataset D). The penalty function Γ = {Γh : S × O 7→
R+}h∈[H] output from the OOE subroutine in Algorithm 1 (line 3) is said to be a ξ-uncertainty
quantifier with respect to PD if the following event

E ={|Ûh(s, o)− Uh(s, o) +

H−h+1∑
τ=1

[(T̂h − Th)V̂h+τ](s, o)|

≤ Γh(s, o) for all (h, s, o) ∈ [H]× S ×O}

(5)

satisfies that PD(E) ≥ 1− ξ, where PD is the joint distribution of the data collecting process.

In other words, the penalty function Γ is a ξ-uncertainty quantifier if it upper bounds the estimation
errors in the empirical option transition function T̂ and the empirical option utility function Û . Next,
we show that the suboptimality of µ̂ output from PEVIO is upper bounded if Γ is a ξ-uncertainty
quantifier. (The detailed proof can be found in Appendix D.)
Theorem 3 (Suboptimality of learning with options using dataset D). Let µ̂ denote the hierarchical
policy output by Algorithm 1. Suppose that Γ = {Γh}h∈[H] output from the OOE subroutine is
a ξ-uncertainty quantifier. Conditioned on the successful event E defined in Equation (5), which
satisfies that PD(E) ≥ 1− ξ, we have that

SubOptD(µ̂, s1) ≤ 2

H∑
h=1

Eµ∗ [Γh(sh, oh)|s1] (6)

where Eµ∗ [g(sh, oh)] =
∑

(s,o) θ
µ∗

h (s, o)g(s, o) for any h ∈ [H] and arbitrary function g : S×O 7→
R.
Remark 1. Since the temporal structure of learning with options is much more complex than learning
with actions, PEVIO is significantly different from the algorithms proposed for offline RL with
primitive actions, such as PEVI (Jin et al., 2021) or VI-LCB (Xie et al., 2021), despite sharing a
similar intuition. First, in terms of the algorithm design, PEVI and VI-LCB estimate (one-step)
transition kernel and reward function to compute the Q-function of a state-action pair. However, by
Equation (1), the Q-function of a state-option pair depends on multi-step transitions and rewards.

5

Hence, it is challenging to design the OOE subroutine and analyze the estimated (T̂ , Û ,Γ) for
options. Indeed, if the dataset contains (s, o, u) (state-option-utility) tuples, then (T,U,Γ) can be
estimated similarly to the case of learning with primitive actions. However, if the dataset contains
only (s, a, r) (state-action-reward) tuples, then it remains elusive to estimate and analyze (T,U,Γ).
Second, in terms of the suboptimality analysis, previous works on offline RL with primitive actions
rely on the extended value difference lemma (Cai et al., 2020, Lemma 4.2), which also depends on
the one-step temporal structure of actions and cannot be directly applied to our setting. Hence, to
derive Theorem 3, it is non-trivial to generalize the extended value difference lemma to the options
framework (See Lemma 8 in the Appendices).

5 Data-Collection and Suboptimality Analysis

In this section, we consider two data-collection procedures that are widely deployed in the options
literature. The first one collects state-option-utility tuples (dataset D1) and similar datasets are
utilized in the work of Zhang et al. (2023). The second one collects state-action-reward tuples (dataset
D2) and is studied in a line of works (Ajay et al., 2021; Villecroze et al., 2022; Salter et al., 2022).
Intuitively, dataset D1 requires smaller storage and enables efficient evaluation of the options, while
dataset D2 provides richer information on the environment and even facilitates the evaluation of new
options. For each dataset, we design the corresponding OOE subroutine and derive a suboptimality
bound for the PEVIO algorithm. Based on these results, we further discuss the advantages and the
disadvantages of both data-collection procedures, which sheds light on offline RL with options in
practice.

5.1 Learning from State-Option Transitions

We consider dataset D1 := {(sk
tki
, ok

tki
, uk

tki
)}i∈[jk],k∈[K] consisting of state-option-utility tuples,

which is collected by the experimenter’s interaction with the environment for K episodes using a
hierarchical behavior policy ρ = {ρh : S 7→ ∆(O)}h∈[H]. More precisely, at timestep tki of the
kth episode, the experimenter selects a new option ok

tki
, uses it for (tki+1 − tki) timesteps, collects a

cumulative reward of uk
tki

within these (tki+1 − tki) timesteps, and finally terminates this option at

state sk
tki+1

at timestep tki+1. For convenience, we define tkjk+1 := H + 1 for any k ∈ [K].

Let a ∨ b := max{a, b} for any pair of integers a, b ∈ N. When dataset D1 is available, the OOE
subroutine in Algorithm 1 is given by Subroutine 2. Particularly, Subroutine 2 incorporates the data
splitting technique (Xie et al., 2021) (line 2). That is, given dataset D1, the algorithm randomly splits
it into H subdatasets {D1,h}h∈[H]. Then T̂h and Ûh are constructed using subdataset D1,h (lines
4-7).

To derive the suboptimality for µ̂ output from PEVIO, we follow the previous study and make a
standard assumption on the coverage of dataset D1.

Assumption 1 (Single hierarchical policy concentrability for dataset D1). The experimenter collects
dataset D1 by following a hierarchical behavior policy ρ = {ρh : S 7→ ∆(O)}h∈[H]. There exists
some deterministic optimal hierarchical policy µ∗ such that

Coption
1 := max

h,s,o

θµ
∗

h (s, o)

θρh(s, o)
(7)

(with the convention 0/0 = 0) is finite.

In other words, Assumption 1 states that dataset D1 sufficiently covers the trajectories of state-option-
utility tuples induced by some deterministic optimal hierarchical policy µ∗. We derive an upper
bound of SubOptD1

in the following theorem. (The detailed proof can be found in Appendix E.)

Theorem 4 (Suboptimality for dataset D1). Under Assumption 1, with probability at least 1− ξ, we
have that

SubOptD1
(µ̂, s1) ≤ Õ

√Coption
1 H3Z∗

OZ
∗
O

K

 (8)

6

Subroutine 2 Offline Option Evaluation (OOE) for Dataset D1

1: Input: Dataset D1 = {(sk
tki
, ok

tki
, uk

tki
)}i∈[jk],k∈[K].

2: Initialize: Randomly split the dataset D into H subdatasets {D1,h}h∈[H] with |D1,h| =
K/H . More precisely, let l := {lh}h∈[H] be a random partition of the set [K], where
lh := {lh,j}j∈[K/H] ⊂ [K] is uniformly sampled from [K] such that ∪h∈[H]lh = [K] and
lh ∩ lh′ = ∅ for any h ̸= h′. Then we have that D1,h = {(sk

tki
, ok

tki
, uk

tki
)}i∈[jk],k∈lh for any

h ∈ [H]. Let nh(s, o) :=
∑

k∈lh
I[h ∈ {tki }i∈[jk], s

k
h = s, okh = o] denote the number of times

that the experimenter selects a particular option o at state s at timestep h in subdataset D1,h.
3: for (h, s, o) ∈ [H]× S ×O do
4: for (s′, τ) ∈ S × [H − h+ 1] do

5: T̂h(s
′|s, o, τ)←

∑
k∈lh

I[h∈{tki }i∈[jk]
,skh=s,okh=o,skh+τ=s′]

1∨nh(s,o)

6: end for
7: Ûh(s, o)←

∑
k∈lh

I[h∈{tki }i∈[jk]
,skh=s,okh=o]uk

h

1∨nh(s,o)

8: Γh(s, o)← Õ
(√

H2

nh(s,o)∨1

)
9: end for

10: Output: (T̂ = {T̂h}h∈[H], Û = {Ûh}h∈[H],Γ = {Γh}h∈[H]).

where Z∗
O := Zµ∗

O and Z
∗
O := Z

µ∗

O .

Compared to the lower bound in Theorem 2, suboptimality bound (8) is near-optimal except for an
extra factor of H .4 More importantly, it shows that learning with options enjoys a faster convergence
rate to the optimal value than learning with primitive actions. Recall that the VI-LCB algorithm (Xie
et al., 2021) that learns with primitive actions attains the suboptimality bound Õ(

√
H5SC∗/K),

where C∗ is the concentrability defined therein. When ignoring the concentrability parameters, the
suboptimality bound (8) is smaller since Z∗

O ≤ H and Z
∗
O ≤ HS.

Remark 2. While, in the worst case, both Z∗
O and Z

∗
O can scale with H and HS, respectively, we note

that in many long-horizon planning problems, they often scale with the number of sub-tasks, which
are greatly smaller, especially for tasks that enables temporal abstraction and the reduction of the state
space. For example, while the route-planning task of going from City A to City B by transportation
takes thousands of primitive actions to finish, it can be efficiently solved by decomposing into the
following sub-tasks: (1) going to the airport/train station in City A; (2) taking transportation to City
B; and (3) reaching the final destination in City B, for which options are designed. In this case, both
Z∗
O and Z

∗
O/S may only scale as o(H). In other words, options facilitate more sample-efficient

learning through temporal abstraction, i.e., sticking to an option until a sub-task is finished. Another
concrete example is solving a maze, where options are often designed to move agents to bottleneck
states (Şimşek and Barto, 2004; Solway et al., 2014; Machado et al., 2017) that connect different
densely connected regions of the state space, e.g., doorways. In this case, while the number of option
switches may grow proportionally to H , i.e., Z∗

O/H = O(1), the number of states to switch options
can be greatly smaller than S, i.e., Z

∗
O/H = o(s). That is to say, options help improve the sample

complexity by the reduction of the state space.

Further, we show that learning with options attains a better performance than learning with primitive
actions, when either the options are carefully designed or the offline data is limited.

Corollary 1 (Better performance). Let TrueSubOptD1
(µ̂, s1) := V ∗,pri

1 (s1)−V µ̂
1 (s1), where V ∗,pri is

the optimal value function defined for the primitive actions. Ignoring the concentrability parameters,
we have that TrueSubOptD1

(µ̂, s1) ≤ Õ(
√
H5SC∗/K) attained by the VI-LCB algorithm (Xie et al.,

2021), when either the options are carefully designed (i.e., ∆O(s1) := V ∗,pri
1 (s1)− V ∗

1 (s1) = 0) or

4We note that the extra factor H in the suboptimality bound (8) can be reduced by applying the reference-
advantage decomposition technique (Xie et al., 2021).

7

the number K of trajectories in the dataset is

o

(
H3

∆2
O

(√
H2SC∗ −

√
Coption

1 Z∗
OZ

∗
O

)2

+

)
where (x)+ := max{0, x} for any x ∈ R.

Corollary 1 implies that when data is limited, e.g., in cases where the data collection is highly
expensive or risky, learning with options is beneficial since the output hierarchical policy yields a
higher value than learning with primitive actions.

5.2 Learning from State-Action Transitions

We consider dataset D2 := {(skh, akh, rkh)}h∈[H],k∈[K] consisting of state-action-reward tuples, which
is collected by an experimenter’s interaction with the environment for K episodes using any arbitrary
behavior policy. That is, the experimenter takes action akh at state skh at timestep h of the kth episode,
receives a reward of rkh, and transits to state skh+1.

When dataset D2 is provided, the OOE subroutine in Algorithm 1 is given by Subroutine 3. Note
that one difficulty is that we cannot directly estimate the option transition function and the option
utility function from dataset D2 as it only includes the information of the primitive actions. Hence,
Subroutine 3 first constructs the empirical transition kernel P̂ = {P̂h}h∈[H] and the empirical reward
function r̂ = {r̂h}h∈[H] (lines 4-7), and use them to further construct T̂h and Ûh (lines 8-20). To

Subroutine 3 Offline Option Evaluation (OOE) for Dataset D2

1: Input: Dataset D2 = {(skh, akh, rkh)}h∈[H],k∈[K].
2: Initialize: ÛH+1(·)← 0. Let Nh(s, a) :=

∑K
k=1 I[skh = s, akh = a] denote the number of visits

of state-action pair (s, a) at timestep h in dataset D2. Function ϕ := {ϕh : S ×O 7→ R}h∈[H] is
given by Equation (32) in the Appendices.

3: for h = H,H − 1, ..., 1 do
4: for (s, a) ∈ S ×A do

5: P̂h(s
′|s, a)←

∑
k∈[K] I[s

k
h=s,ak

h=a,skh+1=s′]

1∨Nh(s,a)
for any s′ ∈ S

6: r̂h(s, a)← I[Nh(s, a) ≥ 1]rh(s, a)
7: end for
8: for (s, o, s′) ∈ S ×O × S do
9: T̂h(s

′|s, o, 1)← βo
h+1(s

′)
∑

a∈A πo
h(a|s)P̂h(s

′|s, a)
10: T̂h(s

′|s, o, 1)← (1− βo
h+1(s

′))
∑

a∈A πo
h(a|s)P̂h(s

′|s, a)
11: for l = 2, · · · , H − h+ 1 do
12: T̂h(s

′|s, o, l)←
∑

a π
o
h(a|s)

∑
s′′ P̂h(s

′′|s, a)
(
1− βo

h+1(s
′′)
)
T̂h+1(s

′|s′′, o, l − 1)

13: T̂h(s
′|s, o, l)←

∑
a π

o
h(a|s)

∑
s′′ P̂h(s

′′|s, a)
(
1− βo

h+1(s
′′)
)
T̂h+1(s

′|s′′, o, l−1)
14: end for
15: end for
16: end for
17: for (h, s, o) ∈ [H]× S ×O do

18: Γh(s, o)← Õ

(√∑H
m=h

∑
(s,a)∈Xm

h,s,o

H3S
Nm(s,a)∨1 +Hϕh(s, o)

)
19: Ûh(s, o)←

∑
a∈A πo

h(a|s)r̂h(s, a) +
∑

s′∈S T̂h(s
′|s, o, 1)Ûh+1(s

′, o)
20: end for
21: Output: (T̂ = {T̂h}h∈[H], Û = {Ûh}h∈[H],Γ = {Γh}h∈[H]).

derive the suboptimality, we first define some useful notations. For any (h, s, o) ∈ [H]× S ×O and
h ≤ m ≤ H , we denote by Xm

h,s,o the set of state-action pairs that can be reached at timestep m by
using option o at state s and timestep h without being terminated.5 Further, let dρ := {dρh : S ×A 7→

5For convenience, we assume that Xm
h,s,o is known prior. When Xm

h,s,o is unknown, it can be replaced by a
superset that does not require prior knowledge and our results directly follow (See Remark 3 in Appendix F).

8

[0, 1]}h∈[H] denote the state-action distribution of the behavior policy ρ used by the experimenter.
That is, dρh(s, a) is the probability that the agent takes action a at state s at timestep h. Similarly, we
make the following assumption on dataset D2.
Assumption 2 (Single hierarchical policy concentrability for dataset D2). The experimenter collects
dataset D2 by following an arbitrary behavior policy ρ. There exists some deterministic optimal
hierarchical policy µ∗ such that

Coption
2 := max

h,s,o

∑
h≤m≤H,(s′,a′)∈Xm

h,s,o

θµ
∗

h (s, o)

dρm(s′, a′)
(9)

(with the convention 0/0 = 0) is finite.

Intuitively, Assumption 2 states that dataset D2 sufficiently covers the trajectories of state-action-
reward tuples induced by the optimal hierarchical policy µ∗. Next, we derive an upper bound of
SubOptD2

under Assumption 2. The detailed proof can be found in Appendix F.
Theorem 5 (Suboptimality for dataset D2). Under Assumption 2, with probability at least 1− ξ, we
have that

SubOptD2
(µ̂, s1) ≤ Õ

√Coption
2 H3SZ∗

OZ
∗
O

K
+

H2SOCoption
2

K

 (10)

which translates to

Õ

√Coption
2 H3SZ∗

OZ
∗
O

K


when K of dataset D2 is sufficiently large, i.e., K ≥ Õ(Coption

2 H5S9A2O2/(Z∗
OZ

∗
O)), where

Z∗
O = Zµ∗

O and Z
∗
O = Z

µ∗

O .

While, in general, suboptimality bound (10) does not compare favorably against the suboptimality
Õ(
√
H5SC∗/K) attained by the VI-LCB algorithm that learns with primitive actions, we argue that

it can be better in long-horizon problems where the horizon H is much greater than the cardinality of
the state space S.

5.3 Further Discussion

We analyze the pros and cons of both data-collection procedures, which sheds light on offline RL
with options in practice. Compared to D2, dataset D1 requires smaller storage and enjoys faster
convergence to the optimal value, which is further illustrated as follows.

• Storage: For dataset D2 = {(skh, akh, rkh)}h∈[H],k∈[K], the storage is simply HK. However,
for dataset D1 = {(sk

tki
, ok

tki
, uk

tki
)}i∈[jk],k∈[K], its expected size is K · Zρ

O ≤ HK, where ρ

is the hierarchical behavior policy. Therefore, in the case of a small Zρ
O, dataset D1 requires

much smaller storage than D2 (on average).
• Suboptimality: Ignoring the concentrability, the suboptimality bound (10) for dataset D2 is

worse than the suboptimality bound (8) for datasetD1 by a factor of
√
S, which is introduced

when estimating the option transition function and the option utility function using only the
information of the primitive actions.

However, since dataset D2 contains more information on the environment than D1, it has a weaker
requirement on the behavior (hierarchical) policy and allows the evaluation of new options, which is
illustrated as follows.

• Concentrability: Recall that the suboptimality bounds for both datasets build upon the suffi-
cient coverage assumptions, i.e., Assumption 1 for D1 and Assumption 2 for D2. While they
are generally incomparable (as dataset D2 can be collected by an arbitrary behavior policy),
we focus on the case that both datasets are collected by the same hierarchical behavior policy
ρ. Particularly, it can be shown that Assumption 2 is weaker than Assumption 1. Indeed, if ρ

9

covers the trajectories of state-option-utility tuples induced by µ∗ (i.e., Assumption 1 holds),
then it must have covered the trajectories of state-action-reward tuples induced by µ∗ (i.e.,
Assumption 2 holds). However, the opposite does not hold in general and we provide such
an example in Appendix H.

• Evaluation of New Options: In the options literature, a popular task is offline option
discovery (Ajay et al., 2021; Villecroze et al., 2022), i.e., designing new and useful options
from the dataset. Therefore, an important problem is whether these new options can be
evaluated through the dataset. We argue that dataset D2 yields greater flexibility than D1

in this case. Again, we assume that both datasets are collected by the same hierarchical
behavior policy ρ. Unfortunately, one cannot use dataset D1 to evaluate any (h, s, o) that is
not visited by ρ, i.e., θρh(s, o) = 0, let along evaluating the new options. However, this is
not the case for dataset D2. In fact, any (h, s, o) can be evaluated if the visiting state-action
pairs are also reachable by ρ, i.e.,

∑
h≤m≤H,(s′,a′)∈Sm

h,s,o
1/dρm(s′, a′) <∞. An interesting

problem is how to leverage the results in this paper to facilitate offline option discovery,
which we shall research in the future work.

6 Conclusions

In this paper, we provide the first analysis of the sample complexity for offline RL with options. A
novel information-theoretic lower bound is established, which generalizes the one for offline RL
with actions. We derive near-optimal suboptimality bounds of the PEssimistic Value Iteration for
Learning with Options (PEVIO) algorithm for two popular data-collection procedures. Our results
show that options facilitate more sample-efficient learning than primitive actions in offline RL in both
the finite-time convergence rate to the optimal value and the actual performance.

Acknowledgments and Disclosure of Funding

The work presented in this paper was partially supported by a research grant from the Research
Grants Council, Hong Kong, China (RGC Ref. No. CUHK 14206820). Part of the research reported
in this paper was done when the second author was with The Chinese University of Hong Kong. The
authors are grateful to the anonymous reviewers for their helpful comments.

References
Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum, O. (2021). OPAL: Offline primitive

discovery for accelerating offline reinforcement learning. In International Conference on Learning
Representations.

Bagaria, A., Senthil, J., Slivinski, M., and Konidaris, G. (2021). Robustly learning composable
options in deep reinforcement learning. In Zhou, Z.-H., editor, Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2161–2169. International
Joint Conferences on Artificial Intelligence Organization. Main Track.

Bradtke, S. and Duff, M. (1994). Reinforcement learning methods for continuous-time Markov
decision problems. In Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural
Information Processing Systems, volume 7. MIT Press.

Brunskill, E. and Li, L. (2014). PAC-inspired option discovery in lifelong reinforcement learning. In
Xing, E. P. and Jebara, T., editors, Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pages 316–324, Bejing,
China. PMLR.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. (2020). Provably efficient exploration in policy optimization.
In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 1283–1294. PMLR.

Chen, J. and Jiang, N. (2019). Information-theoretic considerations in batch reinforcement learning.
In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International Conference

10

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1042–1051.
PMLR.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. (2018). Self-consistent
trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings. In Dy, J.
and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1009–1018. PMLR.

Şimşek, O. and Barto, A. G. (2004). Using relative novelty to identify useful temporal abstractions in
reinforcement learning. In Proceedings of the Twenty-First International Conference on Machine
Learning, ICML ’04, page 95, New York, NY, USA. Association for Computing Machinery.

Drescher, G. L. (1991). Made-up minds: a constructivist approach to artificial intelligence. MIT
press.

Erraqabi, A., Machado., M. C., Zhao, M., Sukhbaatar, S., Lazaric, A., Ludovic, D., and Bengio,
Y. (2022). Temporal abstractions-augmented temporally contrastive learning: An alternative to
the Laplacian in RL. In Cussens, J. and Zhang, K., editors, Proceedings of the Thirty-Eighth
Conference on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine
Learning Research, pages 641–651. PMLR.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. (2019). Search on the replay buffer: Bridging
planning and reinforcement learning. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing generalized robot plans.
Artificial Intelligence, 3:251–288.

Fruit, R. and Lazaric, A. (2017). Exploration-Exploitation in MDPs with Options. In Singh, A. and
Zhu, J., editors, Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning Research, pages 576–584. PMLR.

Fruit, R., Pirotta, M., Lazaric, A., and Brunskill, E. (2017). Regret minimization in mdps with
options without prior knowledge. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven
reinforcement learning.

Gottesman, O., Johansson, F., Komorowski, M., Faisal, A., Sontag, D., Doshi-Velez, F., and Celi,
L. A. (2019). Guidelines for reinforcement learning in healthcare. Nature Medicine, 25(1):16–18.

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. (2018). When waiting is not an option: Learning
options with a deliberation cost. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1).

Hiraoka, T., Imagawa, T., Mori, T., Onishi, T., and Tsuruoka, Y. (2019). Learning robust options by
conditional value at risk optimization. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Hoang, C., Sohn, S., Choi, J., Carvalho, W., and Lee, H. (2021). Successor feature landmarks for
long-horizon goal-conditioned reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 26963–26975. Curran Associates, Inc.

Igl, M., Gambardella, A., He, J., Nardelli, N., Siddharth, N., Boehmer, W., and Whiteson, S. (2020).
Multitask soft option learning. In Peters, J. and Sontag, D., editors, Proceedings of the 36th
Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine
Learning Research, pages 969–978. PMLR.

11

Jiang, N. and Huang, J. (2020). Minimax value interval for off-policy evaluation and policy optimiza-
tion. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages 2747–2758. Curran Associates, Inc.

Jiang, Y., Gu, S. S., Murphy, K. P., and Finn, C. (2019). Language as an abstraction for hierarchical
deep reinforcement learning. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Jin, C., Jin, T., Luo, H., Sra, S., and Yu, T. (2020). Learning adversarial Markov decision processes
with bandit feedback and unknown transition. In III, H. D. and Singh, A., editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 4860–4869. PMLR.

Jin, Y., Yang, Z., and Wang, Z. (2021). Is pessimism provably efficient for offline RL? In Meila, M.
and Zhang, T., editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 5084–5096. PMLR.

Klissarov, M. and Precup, D. (2021). Flexible option learning. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing
Systems, volume 34, pages 4632–4646. Curran Associates, Inc.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review,
and perspectives on open problems.

Liu, Q., Li, L., Tang, Z., and Zhou, D. (2018). Breaking the curse of horizon: Infinite-horizon
off-policy estimation. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc.

Machado, M. C., Barreto, A., and Precup, D. (2021). Temporal abstraction in reinforcement learning
with the successor representation.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2017). A Laplacian framework for option
discovery in reinforcement learning. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 2295–2304. PMLR.

Mahadevan, S., Marchalleck, N., Das, T. K., and Gosavi, A. (1997). Self-improving factory simula-
tion using continuous-time average-reward reinforcement learning. In Proc. 14th International
Conference on Machine Learning, pages 202–210.

Mankowitz, D., Mann, T., Bacon, P.-L., Precup, D., and Mannor, S. (2018). Learning robust options.
Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine, S. (2019). Why does hierarchy (sometimes)
work so well in reinforcement learning?

Qu, G. and Wierman, A. (2020). Finite-time analysis of asynchronous stochastic approximation and
q-learning. In Abernethy, J. and Agarwal, S., editors, Proceedings of Thirty Third Conference on
Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages 3185–3205.
PMLR.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. (2021). Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 11702–11716. Curran Associates, Inc.

Riemer, M., Liu, M., and Tesauro, G. (2018). Learning abstract options. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc.

Sacerdoti, E. D. (1973). Planning in a hierarchy of abstraction spaces. Artif. Intell., 5:115–135.

12

Salter, S., Wulfmeier, M., Tirumala, D., Heess, N., Riedmiller, M., Hadsell, R., and Rao, D. (2022).
Mo2: Model-based offline options. In Chandar, S., Pascanu, R., and Precup, D., editors, Proceed-
ings of the 1st Conference on Lifelong Learning Agents, volume 199 of Proceedings of Machine
Learning Research, pages 902–919. PMLR.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-agent, reinforcement learning
for autonomous driving.

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., and Botvinick, M. M. (2014).
Optimal behavioral hierarchy. PLOS Computational Biology, 10(8):1–10.

Sorg, J. and Singh, S. (2010). Linear options. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 31–38.

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In Proceedings of the
5th International Symposium on Abstraction, Reformulation and Approximation, page 212–223,
Berlin, Heidelberg. Springer-Verlag.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211.

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D., and Mannor, S. (2017). A deep hierarchical
approach to lifelong learning in minecraft. Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1).

Uehara, M., Huang, J., and Jiang, N. (2020). Minimax weight and Q-function learning for off-policy
evaluation. In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 9659–9668.
PMLR.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and Kavukcuoglu, K.
(2017). FeUdal networks for hierarchical reinforcement learning. In Precup, D. and Teh, Y. W.,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3540–3549. PMLR.

Villecroze, V., Braviner, H., Naderian, P., Maddison, C., and Loaiza-Ganem, G. (2022). Bayesian
nonparametrics for offline skill discovery. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S., editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 22284–22299. PMLR.

Wang, R., Foster, D., and Kakade, S. M. (2021). What are the statistical limits of offline RL with
linear function approximation? In International Conference on Learning Representations.

Wulfmeier, M., Rao, D., Hafner, R., Lampe, T., Abdolmaleki, A., Hertweck, T., Neunert, M.,
Tirumala, D., Siegel, N., Heess, N., and Riedmiller, M. (2021). Data-efficient hindsight off-policy
option learning. In Meila, M. and Zhang, T., editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 11340–11350. PMLR.

Xie, T. and Jiang, N. (2020). Q* approximation schemes for batch reinforcement learning: A
theoretical comparison. In Peters, J. and Sontag, D., editors, Proceedings of the 36th Conference
on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning
Research, pages 550–559. PMLR.

Xie, T., Jiang, N., Wang, H., Xiong, C., and Bai, Y. (2021). Policy finetuning: Bridging sample-
efficient offline and online reinforcement learning. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,
volume 34, pages 27395–27407. Curran Associates, Inc.

Yang, M., Nachum, O., Dai, B., Li, L., and Schuurmans, D. (2020). Off-policy evaluation via the
regularized lagrangian. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems, volume 33, pages 6551–6561. Curran
Associates, Inc.

13

Yin, M., Bai, Y., and Wang, Y.-X. (2021). Near-optimal provable uniform convergence in offline policy
evaluation for reinforcement learning. In Banerjee, A. and Fukumizu, K., editors, Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 1567–1575. PMLR.

Zhang, F., Jia, C., Li, Y.-C., Yuan, L., Yu, Y., and Zhang, Z. (2023). Discovering generalizable multi-
agent coordination skills from multi-task offline data. In The Eleventh International Conference on
Learning Representations.

14

	Introduction
	Related Work
	Preliminaries
	Episodic MDP with Options
	Offline RL with Options

	The PEVIO Algorithm
	Data-Collection and Suboptimality Analysis
	Learning from State-Option Transitions
	Learning from State-Action Transitions
	Further Discussion

	Conclusions
	Notations
	Notations in Section 3
	Notations in Section 5.2

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proofs of Auxiliary Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 8
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 9

	Counterexample

