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ABSTRACT

Deep Neural Networks (DNNs) are well-known to act as over-parameterized
deep image priors (DIP) that regularize various image inverse problems. Mean-
while, researchers also proposed extremely compact, under-parameterized im-
age priors (e.g., deep decoder) that are strikingly competent for image restoration
too, despite a loss of accuracy. These two extremes push us to think whether there
exists a better solution in the middle: between over- and under-parameterized
image priors, can one identify “intermediate” parameterized image priors that
achieve better trade-offs between performance, efficiency, and even preserving
strong transferability? Drawing inspirations from the lottery ticket hypothesis
(LTH), we conjecture and study a novel “lottery image prior” (LIP) by exploiting
DNN inherent sparsity, stated as: given an over-parameterized DNN-based im-
age prior, it will contain a sparse subnetwork that can be trained in isolation, to
match the original DNN’s performance when being applied as a prior to various
image inverse problems. Our results validate the superiority of LIPs: we can suc-
cessfully locate the LIP subnetworks from over-parameterized DIPs at substantial
sparsity ranges. Those LIP subnetworks significantly outperform deep decoders
under comparably compact model sizes (by often fully preserving the effective-
ness of their over-parameterized counterparts), and they also possess high trans-
ferability across different images as well as restoration task types. Besides, we
also extend LIP to compressive sensing image reconstruction, where a pre-trained
GAN generator is used as the prior (in contrast to untrained DIP or deep decoder),
and confirm its validity in this setting too. To our best knowledge, this is the first
time that LTH is demonstrated to be relevant in the context of inverse problems or
image priors. Codes will be publicly available upon acceptance.

1 INTRODUCTION

Deep neural networks (DNNs) have been powerful tools for solving various image inverse problems
such as denoising (Zhang et al., 2017; Guo et al., 2019; Lehtinen et al., 2018; Jiang et al., 2022),
inpainting (Pathak et al., 2016; Yu et al., 2018; 2019b), and super-resolution (Ledig et al., 2017; Lim
et al., 2017; Zhang et al., 2018). Conventional wisdom believes that is owing to DNNs’ universal
approximation ability and learning from massive training data. However, a recent study (Ulyanov
et al., 2018) discovered that degraded images can be restored independently using randomly ini-
tialized and untrained convolutional neural networks (CNNs) without the supervised training phase,
which is called Deep Image Prior (DIP). A series of works (Cheng et al., 2019; Gandelsman et al.,
2019) have been proposed to improve CNN-based DIPs, which indicates that specific architectures
of CNNs have the inductive bias to represent and generate natural images well.

Despite the advantageous performance, most DIP methods use highly over-parameterized
CNNs with a massive number of parameters (we show this in Table 3 in appendices). Over-
parameterization causes computational inefficiency and overfitting (and thus proneness) to noises.
This trend has naturally invited the curious question: does DIP have to be heavily parameter-
ized? That question is partially answered by Heckel & Hand (2018) by proposing the first under-
parameterized, non-convolutional neural network for DIP named “deep decoder”. Deep decoder
shares across all pixels a linear combination over feature channels in each layer and thus has an
extremely compact parameterization. Thanks to its under-parameterization, deep decoder alleviates
the “noise overfitting noise” in DIP. However, the empirical performance of deep decoder is often not
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on par with overparameterized DIP models, especially on tasks like inpainting and super-resolution.
This is potentially attributed to the extremely restricted capacity of deep decoder from the very be-
ginning. The dissatisfaction on both extremes, that is using either over-parameterized CNN DIPs or
under-parameterized deep decoders, pushes us to think if there is a better “middle ground”: Between
over- and under-parameterized image priors, can one identify “intermediate” parameterization bet-
ter trade-offs between performance, efficiency, as well as even preserving strong transferability?

In this work, we adopt sparsity as our main tool for the above question. We seek more compactly
parameterized subnetworks by pruning superfluous parameters from the dense over-parameterized
CNN DIPs (overview of our work paradigm is shown in Figure 1), essentially viewing pruning as
a way to smoothly and flexibly “interpolate” between over- and under-parameterization. We have
several motivations for choosing sparsity and pruning from over-parameterization. On one hand,
compared with dense and overparameterized DIP models, sparsity saves computations during infer-
ence and DIP fitting. Moreover, sparsity can serve as an effective prior that regularizes DNNs to have
better robustness to noise (Chen et al., 2022), that is important for DIP which is tasked to distinguish
image content from noise. These two blessings combined make sparsity a promising “win-win” for
not only DIP efficiency but also performance. On the other hand, unlike deep decoder which sticks
to a compact design, exploiting sparsity follows a different “first redundant then compact” training
route, which is widely found to enhance performance compared to training a compact model directly
from scratch (Zhou et al., 2020). Since overparameterized (especially wide) DNNs have smoother
loss surfaces while smaller ones have more rugged landscapes, starting from overparameterization
can ease the training difficulty (Safran et al., 2021) and may particularly help the “chaotic” early
stage of training (Frankle et al., 2020c).

The recently emerged Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018; Frankle et al.,
2020a) suggests that every dense DNN has an extremely sparse “matching subnetwork”, that can
be trained in isolation to match the original dense DNN’s accuracy. While the vanilla LTH studies
training from random scratch, the latest works also extend similar findings to fine-tune the pre-
trained models (Chen et al., 2020a; 2021b). LTH has widespread success in image classification,
language modeling, reinforcement learning and multi-modal learning, e.g., (Yu et al., 2019a; Renda
et al., 2020; Chen et al., 2020a; Gan et al., 2021). Drawing inspirations from the LTH literature, we
conjecture and empirically study a novel “lottery image prior” (LIP), stated as:

Given an (untrained or trained) over-parameterized DIP, it will have a sparse subnetwork
that can be trained in isolation, to match the original DIP’s performance when being
applied as a prior to regularizing various image inverse problems. Moreover, its perfor-
mance shall surpass under-parameterized priors of similar parameter counts.

Diving into this question has two-fold appeals. On the algorithmic side, as the first attempt to
investigate LTH in the DIP scenario, it could help us understand how the topology and connectivity
of CNN architectures encode natural image priors, and whether “overparameterization + sparsity”
make the best DIP recipe. On the practical side, the affirmative answer to this question can lead to
finding compact DIP models that are more performant than the deep decoder, hence yielding more
computationally efficient solutions for image inverse problems without sacrificing performance.

1.1 SUMMARY OF CONTRIBUTIONS

We now state our intended contributions from two angles: how our work might affect the deep image
prior research (application), and the lottery ticket hypothesis research (methodology). To avoid
misunderstandings, we want to state again: efficiency is definitely not the key target or motivation.
Our key target instead is to verify the existence of a ”compact” DIP model that is free from severe
overfitting but at the same time different from the deep decoder. We want it partially because the
deep decoder is bad in terms of performance (e.g., inpainting and super-resolution). Efficiency is
also a natural byproduct that results from pruning and sparsity. Improving efficiency could reduce
the single-image inference time of DIP to accelerate restoration and reconstruction, which could be
helpful in latency-sensitive applications.

For DIP research community, In between over- and under-parameterized image prior models, we
aim to use sparsity to find an intermediate parameterized network. Specifically, compared to over-
parameterized CNN DIPs:

2



Under review as a conference paper at ICLR 2023

Over-parameterized Image Priors

Denoising Inpainting

Super

Resolution

Compressed 

Sensing

y =
𝐴𝑥∗ + 𝜂

B1 B2 Bd…

𝑘1
𝑘2

𝑘𝑑

Under-parameterized Image Priors

Skip 

Connections

Downsampling Upsampling

Skip 

Connections

Downsampling Upsampling

Lottery Image Priors

Prune Inference

Loss of accuracy

Redundant parameters; 

Overfit noises

Figure 1: Overview of our work. Between the over- and under-parameterized image priors, we aim
to find the sparse matching networks with better performances, efficiency and strong transferability.

• We successfully locate the “matching subnetworks” 1 from over-parameterized DIP models
by iterative magnitude pruning. Their prevailing existence demonstrates that sparsity, as
arguably the most classical natural image prior, remains relevant as a component in DIPs.

• Beyond “matching”, our found LIP subnetworks can even outperform DIP models on sev-
eral image restoration tasks (shown in Figure 2), which is in line with the previous findings
that the sparsity can enhance DNN robustness to noise and degradations Chen et al. (2022).

• Also, the sparse LIP subnetworks are found with powerful transferability across both test
images and restoration tasks. Importantly, that amortizes the extra cost of finding the sub-
network per DIP network, by extensively reusing the found sparse mask. It is also neatly
aligned with the recent study of LTH transferability (Redman et al., 2022).

Meanwhile, regarding under-parameterized image priors such as the deep decoder:

• Our found LIP subnetworks perform remarkably better than the deep decoder of com-
parable parameter counts, regardless of test images or restoration tasks. It strongly sig-
nifies that pruning from over-parameterization is more promising than sticking to under-
parameterization: perhaps the first time indicated in the DIP field up to our best knowledge.

• Besides untrained DIP scenarios (over- and under-parameterized), we extend our method
to the pre-trained GAN generator as an image prior used in compressive sensing, which
further validates the prevalence of LIPs. It is beyond the existing scope of deep decoder.

For the LTH research community, studying this new LIP problem is also NOT a naive extension
from the existing LTH methods, owing to several technical barriers that we have to cross: We sum-
marize the contributions as follows:

• Till now, LTH has not been demonstrated for image inverse problems or DNN-based priors,
to our best knowledge. Most LTH works studied discriminative tasks, with few exceptions
(Chen et al., 2021d). It is therefore uncertain whether high-sparsity DNN is still viable for
low-level vision tasks such as DIPs. Interestingly though, despite that we demonstrate the
existence of LIP, we also find that the LIP matching subnetworks cannot directly transfer
to high-level vision tasks such as classification.

• Existing LTH works typically require a training set to locate the sparse subnetwork. In stark
contrast, owing to the nature of DIP, we train a DNN to overfit one specific image. While a
handful of papers studied LTH in “data diet” settings (Chen et al., 2021a; Paul et al., 2022),
this paper pushes the extreme to “one-shot lottery ticket finding” for the first time. We also
develop a multi-image variant of LIP which boosts performance in the cross-domain fitting.

1A matching subnetwork (Frankle & Carbin, 2018) is defined as a pruned subnetwork whose performance
can match the original dense one, when separately trained from scratch
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Figure 2: LIP visual results: inpainting (row 1), super-resolution (rows 2/3) and denoising (row 4).
The last column (in blue) intends to display the results with the most extremely sparse subnetwork.

• DIP fitting practically relies on early-stopping to avoid over-fitting noise in images. The
same risk exists in our iterative pruning, and we demonstrate how to robustly find the sparse
matching subnetwork from one noisy image, without needing a clean reference image.

2 BACKGROUND WORK

2.1 OVER-PARAMETERIZED IMAGE PRIORS

Despite CNNs’ tremendous success on various imaging tasks, their outstanding performance is often
attributed to massive data-driven learning. DIP (Ulyanov et al., 2018) pioneered to show that CNN
architecture alone has captured important natural image priors: by over-fitting a randomly initialized
untrained CNN to a single degraded image (plus some early stopping), it can restore the clean output
without accessing ground truth. Follow-up work (Mataev et al., 2019) strengths DIP performance
by incorporating it with the regularization by denoising (RED) framework and a series of works
(Mastan & Raman, 2020; 2021) use the contextual feature learning method to achieve the same goal
of DIP. Besides natural image restoration, DIP was successfully applied to PET image reconstruction
(Gong et al., 2018), dynamic magnetic resonance imaging (Jin et al., 2019), unsupervised image
decomposition (Gandelsman et al., 2019) and quantitative phase imaging (Yang et al., 2021).

There have been several efforts toward customizing DIP network architectures. Liu et al. (2019)
extends the DIP framework with total variation (TV) and this combination leads to considerable per-
formance gains. Jo et al. (2021) further propose the “stochastic temporal ensemble (STE)” method
to prevent DIP models from overfitting noises and thus improving performances. Chen et al. (2020c)
proposed a neural architecture search (NAS) algorithm, which searches for an optimal DIP neural
architecture from a search space of upsampling cell and residual connections. The searched ‘NAS-
DIP’ model can be reused across images and tasks. Arican et al. (2022) observe that different images
and restoration tasks often prefer different architectures, and hence design the image-specific NAS
to find an optimal DIP network architecture for each specific image. While our work also pursues
better DIPs, it substantially differs from those prior arts in terms of model compactness (approaching
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the under-parameterization end) and reusability. The simple pruning-based recipe also overcomes
any extra design hassle (search space or algorithm) caused by NAS. We compare the results with
them in the paragraph “Comparisons with NAS-DIP and ISNAS-DIP models” in Appendix B.

2.2 UNDER-PARAMETERIZED IMAGE PRIORS

Recall that, classical image regularizers in the spatial or frequency domains often rely on no learning
component (Tomasi & Manduchi, 1998; Sardy et al., 2001; Dabov et al., 2007b), or just a little (Cao
et al., 2008; Elad & Aharon, 2006). As another important concern, while over-parameterized DIPs
are prone to overfitting the corrupted image, they can generate almost uncorrupted images surpris-
ingly after a few iterations of gradient descent. Inspired by those, Heckel & Hand (2018) pioneered
to design a concise and non-convolution neural network as the “prior for image restoration tasks.
Such under-parameterized DIPs not only improve the efficiency of DIP-based restoration but also
enable researchers to theoretically analyze the signal process. Besides, they find the architecture’s
simplicity could effectively avoid overfitting in the restoration process. Heckel & Soltanolkotabi
(2019) further analyzed the dynamics of fitting a two-layer convolutional generator to a noisy signal
and prove that early-stopped gradient descent denoises/regularizes.

2.3 LOTTERY TICKET HYPOTHESIS

LTH (Frankle & Carbin, 2018) states that the dense, randomly initialized DNN contains a sparse
matching subnetwork, which could reach the comparable or even better performance by indepen-
dently being trained for the same epoch number as the full network do. Since then, the statement
has been verified in a variety of fields, such as image classification (Frankle & Carbin, 2018; Liu
et al., 2018; Wang et al., 2020; Evci et al., 2019; Frankle et al., 2020d; Savarese et al., 2019; Yin
et al., 2019; You et al., 2019; Ma et al., 2021; Chen et al., 2021b), natural language processing (Gale
et al., 2019; Chen et al., 2020a), reinforcement learning (Yu et al., 2019a), lifelong learning (Chen
et al., 2020b), graph neural networks (Chen et al., 2021c), and adversarial robustness (Cosentino
et al., 2019). Rewinding was proposed by (Frankle et al., 2019) to scale up the LTH to large models
and datasets. The found matching subnetworks also demonstrate transferability across datasets and
tasks (Morcos et al., 2019; Desai et al., 2019).

3 PRELIMINARIES AND APPROACH

3.1 FINDING LOTTERY TICKETS

Algorithm 1 Single Image-based IMP

Input: The desired sparsity s, the random
code z, the untrained model fu.
Output: A sparse DIP model f(z; θ ⊙ m)
with image prior property.
Initialization: Set mu = 1 ∈ R||θ||0 . Set
iteration i = 0, training epochs N and j ∈
[0, N ].
while the sparsity of mu < s do

1. Train the fu(z; θ0⊙mu) for N epochs;
2. Create the mask m′

u;
3. Update the mask mu = m′

u;
4. Set the model parameters: f(z; θj);
5. create the sparse model: f(z; θj⊙mu);
6. i++;

end while

Algorithm 2 Weight-sharing IMP

Input: The desired sparsity s, the random
code z, the untrained model fu, x̃ denotes
the degraded image and images from n do-
mains xa ∈ {x1, x2, ..., xn}.
Output: A sparse DIP model f(z; θ ⊙ m)
with image prior property.
Initialization: Set mu = 1 ∈ R||θ||0 . Set
iteration i = 0, training epochs N and j ∈
[0, N ].
while the sparsity of mu < s do

1. loss =
∑n

a=1 E(f(z; θ ⊙m); x̃a);
2. Train the fu(z; θ0⊙mu) by Backprop-
agation (loss) for N epochs;
3. Update the mask mu = m′

u;
4. Set the model parameters f(z; θj);
5. create the sparse model f(z; θj ⊙mu);
6. i++;

end while
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Figure 3: Experimental results of finding LIP subnetworks. The first row of the figure summarizes
the LTH IMP training loops and the second row denotes the evaluation of found LIP. Note that we
compare the LTH IMP with Random Prune (Random) and SNIP (Lee et al., 2018) prune methods,
on images from different (F16 and Woman) or same domains (Face2 and Face4). Background task
is denoising.

Networks For simplicity, we formulate the dense network output as f(z, θ), where z is the input
tensor and θ ∈ Rd is the model parameters. In the same way, a subnetwork is defined as f(z,m⊙θ)
with the binary mask m ∈ {0, 1}d, where ⊙ means element-wise product.

Pruning Methods We use the classic iterative magnitude-based pruning (IMP) method (Frankle
& Carbin, 2018), which iteratively prunes the 20% of the model weight each time. In each IMP
iteration, models are trained towards the standard DIP objective to fit the degraded observations for
a certain number of training steps following the original DIP (Ulyanov et al., 2018). Our basic algo-
rithm performs IMP over just one degraded image, and the algorithm is summarized in Algorithm 1.
We further design an extended algorithm, that can perform IMP for DIP over multiple degraded im-
ages, through backbone weight sharing: the algorithm is outlined in Algorithm 2 (neither algorithm
requires clean images). To show the non-triviality of the identified matching subnetworks, we also
compare LIP with random pruning and SNIP (Lee et al., 2018), a pruning-at-initialization method.
We also derive a new method based on empirical observations to decide when to stop IMP iterations
to find matching networks with maximal sparsities without any reference to the clean ground truths.
More details are in Appendix B.

Experimental Setup For evaluation models, we use hourglass architecture (Ulyanov et al., 2018)
and deep decoder (Heckel & Hand, 2018), as two representative untrained DNN image priors in
the over- and under-parameterization ends, respectively. For evaluation datasets, we use the popular
Set5 (Bevilacqua et al., 2012) and Set14 (Zeyde et al., 2010). We also evaluate the transferability of
subnetworks on image classification datasets such as ImageNet-20 (Deng et al., 2009) and CIFAR10
(Krizhevsky et al., 2009). For metrics, we mainly compare the PSNR and/or SSIM results between
the restored image and the ground truth, as in Fig. 11.

The parameter count of the original DIP model is 2.2 million (M); and that of the deep decoder is
0.1 M for denoising and super-resolution experiments, and 0.6 M for inpainting experiments, all
following the original settings of (Heckel & Hand, 2018). The model sizes are plotted as horizontal
coordinates in the figures. We run all experiments with 10 different random seeds: every solid
curve is plotted over the 10-time average, and the accompanying shadow regions indicate the
10-time variance. Most plots see consistent results across random seed experiments and hence
small variances. All images used are summarized in Fig. 16.

4 LIP IN UNTRAINED IMAGE PRIORS

Existence of LIPs In over-parameterized image priors, we first find the matching subnetworks
with LIP property by implementing the single-image IMP on the DIP model. We apply the im-
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Figure 4: Experimental Results of Multi LIP on images from same/different domains. We compare
Multi LIP with LIP and random prune methods. The background task is denoising.
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Figure 5: Transferability (cross tasks) experimental results. We study the transferability of denois-
ing LIP on the restoration tasks such as inpainting and super-resolution (SR); we also study the
inpainting and SR LIP on the denoising task. We consider two SR scale factors = 4, 8. We evaluate
Multi-LIP subnetworks here.

plemented Algorithm 1 on Set5 and Set14 to obtain the sparse subnetworks2 and evaluate these
subnetworks on the denoising task. Results of single-image IMP in Fig. 3 (curves in gray colors)
verify the existence of LIPs. To be specific, during the IMP finding process, we can find the LIP sub-
networks on untrained DIPs at sparsity as high as 86.58%. While at the evaluation stage, the found
LIP subnetworks with the modified objectives are still applicable, matching the dense performance
at sparsity as high as 83.23%. We also compare the single-image IMP with Random Pruning, and
SNIP (Lee et al., 2018). We observe from the first row in Fig. 3 that single-image IMP outperforms
them at a wide sparsity range [20%, 96%].

Is Multi-image IMP A Good Extension for Finding LIPs? Like the original DIP, single-image
IMP over-fits an untrained DNN on a single image and learns the features in that specific image

2We prune 20% of the remaining weights in each IMP iteration, resulting in sparsity ratios si = 1− 0.8i.
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Figure 6: High- and low-level task transferability experiments. We test the denoising LIP on
ImageNet-20 (a subset of ImageNet with images resized to 256*256) and CIFAR10 datasets. Note
that we replace the last convolutional layer of DIP models with the linear layer and load the same
initial weights. We also evaluate the classification LIP on the denoising task.
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Figure 7: Layer-wise sparsity ratio results of LIP, SNIP and randomly pruned tickets. Note that
we summarize the sparsity ratio of each layer: the ratio of the number of parameters whose values
are equal to zero to the number of total parameters of the layer. And the x-axis of these figures
is composed of the serial numbers of model layers. We sampled subnetworks with four different
sparsities (sparsity = 36%, 59%, 89%, 95%) to observe.

during iterative magnitude pruning loops. To obtain the LIP subnets with more general features, we
propose a new multi-image IMP (Algorithm 2) for DIP where we replace the DIP objective with the
average of multiple images. Note that all images will share the same fixed random code during IMP.

We evaluate the multi-image IMP in two different settings: (i) cross-domain setting where we apply
the multi-image IMP to the five images from Set5 (Bevilacqua et al., 2012); (2) single-domain
setting where we apply the multi-image IMP to five images of human faces with glasses. We think
images from Set 5 are more diversified because they include bird, butterfly and human face contents.
We compare single-image IMP winning tickets found on the F16 and the Woman images from Set5
with the cross-domain ticket, and the single-image IMP winning tickets found on Face-4 and Face-
2 images with the single-domain ticket. Results presented in Fig. 4 show that multi-image LIP
subnetworks can achieve better performances than dense DIP models and randomly pruned ones in
the cross-domain setting.

To What Extent Can LIP tickets Be Transferred? In this part, we evaluate the transferability of
LIP for DIP models from three perspectives, i.e., across images, across image restoration task types,
and from low-level to high-level tasks.

Observation 1: LIP can transfer across images. As we obtained the multi-image LIPs from Set5,
we evaluate them on different images in Fig.4. For instance, Fig. 4(a) shows the evaluation results
on F16.png and we found the multi LIPs perform comparably well (better at extreme sparsities)
with LIP dedicatedly found on the F16.png (the same phenomenon is reflected on the face-4.png
(Fig.4(c)) and face-2.png (Fig.4(d))). This shows that LIP has reasonable transferability across
images, even for those coming from slightly different domains.

Observation 2: LIP can transfer across image restoration tasks but not to other high-level tasks. We
conduct experiments to verify if a LIP matching subnet identified on one restoration task can be re-
used in another. Furthermore, if the above question has an affirmative answer, is such transferability
sustainable when transferring to or from some high-level tasks such as classification?

To evaluate the transferability of LIP between image restoration tasks, we first find three LIPs for
the denoising, inpainting and super-resolution tasks respectively and then transfer between them, as
shown in Fig. 5. We observe that a LIP winning ticket transferred from another image restoration
task always yields restoration performance comparable with the single-image LIP found on the
original task, sometimes even better, for examples in Fig. 5(a) and 5(g).

We then evaluate the transferability of LIP between the denoising task and image classifications
on CIFAR-10 and ImageNet-20 datasets. We show the results of transferring the denoising LIP to
ImageNet-20 in Fig. 6(c) and CIFAR-10 in 6(a); the CIFAR-10 LIPs to denoising task in Fig. 6(b)
and ImageNet LIPs to denoising in Fig.6(d). We find transferring denoising LIP to classification is
unsuccessful. Moreover, transferring winning tickets on CIFAR-10 back to the denoising DIP task
also fails to generate winning tickets that are comparable with denoising LIPs.

Why is the LIP Subnetwork Special and Good? To answer this, we investigate the inner struc-
tures of different subnetworks in Fig. 7. The structure of the LIP subnetwork is drastically different
from those found by SNIP and random pruning, in particular the distribution of layer-wise sparsity
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ratios. LIP tends to preserve weights of the earlier layers (closer to the input), while pruning the
latter layers more aggressively (e.g, Fig. 7(a)). In contrast, SNIP tends to prune much more of the
earlier layers compared to the latter ones. Random pruning by default prunes each layer at approx-
imately the same ratio. Comparing the three methods seem to suggest that for finding effective and
transferable LIP subnetworks, specifically keeping more weights at earlier layers is important. That
is an explainable finding, since for image restoration tasks, the low-level features (color, texture,
shape, etc.) presumably matter more and are more transferable, than the high-level features (ob-
ject categories, etc.). The earlier layers are known to capture more low-level image features, hence
contributing more to retraining the image restoration performance with DIP.

The failure of transferring LIP subnetworks to image classification could also be partially ex-
plained by the aforementioned sparsity distribution discrepancy: LIP subnetwork tends to prune
more weights from later layers, which might damage the network’s capability in capturing semantic
features (usually needing mid-to-high network layers). However, we observe that the bottleneck
layers with presumably higher levels of pruning/sparsity will carry more contextual information and
would lead to better downstream classification. Also, we could finetune on top of the intermediate
layers of the model when more level information is needed. We assume that if we want the DIP
model to transfer better to the image classification task, adding and finetuning linear layers on top
of the intermediate layers (i.e., transferring only the winning tickets of the encoder) will help.

5 EXTENDING LIP TO PRE-TRAINED NEURAL NETWORK PRIORS

Table 1: Results of GAN LIP. We evaluate the LIPs found in PGGAN on the compressed sensing
(CS) and the inpainting (I) tasks. The results are based on celebA-HQ dataset (Lee et al., 2020).
Note that we use the MSE (per pixel) to evaluate the LIP effectiveness and compare the LIP with
random pruning results.

Sparsity 0% 20% 36% 49% 59% 67% 74%

Random-CS 0.0725 0.0963 0.1165 0.1276 0.2184 0.2086 0.3655
LIP-CS 0.0725 0.0744 0.0732 0.0737 0.0711 0.0728 0.0728

Random-I 0.0541 0.0682 0.0748 0.08101 0.1142 0.1904 0.2195
LIP-I 0.0541 0.0542 0.0504 0.0514 0.0506 0.0524 0.0509

Full Model S = 20% S = 36% S = 49% S = 59% S = 67% S = 74%

(a) PGGAN-Compressive Sensing

Full Model S = 20% S = 36% S = 49% S = 59% S = 67%Masked

(b) PGGAN-Inpainting

Figure 8: Visual results of compressed sensing and inpainting using LIPs. The images framed in red
are the reconstruction results of sparse subnetworks, which are better than those of the full model.

Existence of LIP in GANs for Compressive Sensing We use PGGAN (Karras et al., 2017) pre-
trained on CelebA-HQ dataset (Lee et al., 2020) as the model in this section. To obtain LIP tickets
in pre-trained GANs, we apply the IMP algorithm. In each IMP iteration, PGGAN is first fine-tuned
on 40% of images in CelebA-HQ for 30 epochs, has 20% of its remaining weights pruned, and then
reset to the pre-trained weights. We only prune the generator in the IMP process because it is found

9



Under review as a conference paper at ICLR 2023

in (Chen et al., 2021d) that pruning discriminator only has a marginal influence on the quality of the
winning tickets. We then evaluate the tickets on the compressive sensing task following the setting
in (Jalal et al., 2020): we fix the number of measurements to 1,000 with 20 corrupted measurements,
and minimize the MOM objective (Median-of-Means, an algorithm proposed by (Jalal et al., 2020))
for 1,500 iterations to recover the images. We compare the performance (measured in per-pixel
reconstruction error) of LIP with the dense baselines in the first row of Table. 1 and provide a visual
example in Fig. 8(a). Tickets with higher sparsities can match the reconstruction performance of the
dense model, confirming the existence of the winning tickets.

Transfer to other image restoration tasks – inpainting Besides the experiments on the com-
pressed sensing restoration tasks, we also evaluate the effectiveness of GAN LIP on the inpainting
task: masking the image and then optimizing the input tensor of the generator in the GAN LIP range
to reconstruct the pristine image. More formally, consider the input tensor z′ ∈ R1×512, the pristine
image x sampled from CelebA-HQ, inpainting mask A (binary mask), masked image y = Ax and a
generator G, then the optimization loss function is: ||AG(z) − y||2. The results are summarized in
Table. 1 and Fig. 8(b), demonstrating the transferability of GAN LIP.

6 CONCLUSION

This paper identifies the new intermediate solution between the under- and over-parameterized DIP
regimes. Specifically, we validate the lottery image prior (LIP), a novel, non-trivial extension of the
lottery ticket hypothesis to the new domain. We empirically demonstrate the superiority of LIP in
image inverse problems: those LIP subnetworks often compare favorably with over-parameterized
DIPs, and significantly outperform deep decoders under comparably compact model sizes. They
also possess high transferability across different images as well as restoration task types.
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A MORE DISCUSSIONS OF THE EXPERIMENTS

Images Used in Experiments In Fig. 16, we organize and present the images used in this paper
with their names. Note that these images are sampled from Set5 (Bevilacqua et al., 2012) and Set14
(Zeyde et al., 2010) datasets, and we use their default names. Note that these names are used in
Section 4 (in curves and analyses). Also, in Table 5, we conduct the evaluation experiments on
BM3D (Dabov et al., 2007a), CBM3D (Dabov et al., 2007a) and Set12 (Zhang et al., 2017) datasets
for fair comparisons with NAS-DIP and ISNAS-DIP models.

Parameter Redundancy Problem The commonly used hourglass model in DIP (Ulyanov et al.,
2018) is highly complex in its parameters. The statistic results of parameter numbers is summarized
in Table 3. We compare the parameter numbers of dense DIP models with the identified winning
tickets using LIP and discover that the winning tickets could perform better than the full model while
containing 2 million parameters fewer. This phenomenon motivates us to suspect that there is a high
possibility of finding the matching subnetworks of the pristine dense DIP model, which indicates
that the subnetworks may also contain the outstanding image prior property as the dense one does.

As to the under-parameterized image prior networks (e.g., deep decoder), we also count the number
of non-zero parameters in Table 2 for a fair comparison in restoration tasks with LIP networks.
As shown in the table, for denoising and super-resolution tasks, the number of parameters of the
deep decoder is 0.1 million. For inpainting tasks, the parameter number is 0.6 million. Therefore,
for denoise and super-resolution tasks, we choose the sparsity 97.19% of LIP for comparisons; for
inpainting tasks, we choose the sparsity 73.70% for comparisons.

Table 2: Compare the number of non-zero parameters in Deep Decoder (DD)(Heckel & Hand, 2018)
and our LIP tickets. Note that we compare these models on three restoration tasks: Denoising (DN),
Super-resolution (SR) and Inpainting (IP). And ’LIP - 97.15%’ means the sparsity of the LIP subnet
is 97.15%.

Model
Structure

DD - 128
(DN, SR)

DD - 320
(IP)

LIP - 97.15%
(DN, SR)

LIP - 97.19%
(DN, SR)

LIP - 73.79%
(IP)

LIP - 79.03%
(IP)

Non-zero
Parameter Numbers

100224
(0.1M)

619200
(0.6M)

102746
(0.1M)

90923
(0.09M)

608298
(0.6M)

494251
(0.5M)

Table 3: Evaluation of the dense and LIP models on denoising task with the image bird. The LIP
tickets achieve comparable results as the dense model when in extreme sparsity (parameter number:
2.2 million vs 0.2 million).

Dense Model LIP Matching Subnetwork

Parameter Numbers (non-zero) 2.2 Millon 0.2 Millon

Performance (PSNR) 30.35 30.61

Definition of Subnetworks and Finding Them Consider a network f(x; θ) parametered by θ
with input x, then a subnetwork is defined as f(x;m ⊙ θ), where ⊙ ∈ {0, 1}d, d = ||θ||0 and ⊙
is the element-wise product. Let AT

t (f(x; θ)) to be the training algorithm, that is, training model
f(x; θ) on the specific task T with t iterations. We also denote the random initialization weight as
θ0 and the pre-trained weight as θp; θi as weight at the i-th training iteration and ET (f(x; θ)) the
model performance evaluation. Following the definitions of Frankle et al. (2020a), we define that if
the subnetworks is matching, it satisfies the following conditions (we use θp for example, to denote
a pre-trained lottery ticket (Chen et al., 2020a; 2021b); θ0 can be defined likewise):

ET (AT
t (f(x; θp)) ≤ ET (AT

t (f(x;m⊙ θ)). (1)

That is a matching subnetwork that performs no worse than the dense model under the same training
algorithm AT and the evaluation metric ET . Similarly, we define the winning tickets: if a matching
subnetwork f(x;m⊙ θ) has θ = θp, then it is the winning tickets under the training algorithm AT .
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Figure 9: Experiments of the rewind strategy (background task: denoising). Note that we train the
model with N epochs in IMP and Rewind j means rewinding the ticket parameter to θj , the weights
after j%×N steps of training.
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Figure 10: Learning curves using four different training targets: a clean image (Baby.png), the same
image added with noises, the same randomly scrambled and white noise. Note that we use four
different models: the LIP subnetwork (S = 89%), randomly pruned subnetwork (S = 89%), SNIP
subnetwork (S = 89%) and the dense model (S = 0%). And we trained them in isolation in the
same experimental settings for 10000 iterations.

B ABLATION STUDY OF LIP SUBNETWORKS

The Effect of Weight Rewinding In this part, we study the effect of weight rewinding (Frankle
et al., 2019) when applied to the single-image IMP for DIP models. Weight rewinding is proposed
to scale LTH up to large models and datasets. Specifically, we say we use p% weight rewinding if
we reset the model weights at the end of each IMP iteration to the weights in the dense model after
a p% ratio of training steps within a standard full training process, instead of the model’s random
initialization. For the single-image IMP in DIP, we consider 5%, 10% and 20% weight rewinding
schemes. The resulting models are denoted as Rewind 5, Rewind 10 and Rewind 20, respectively.
The results of different weight rewinding schemes are summarized in Fig. 9. We can see that weight
rewinding is not beneficial for identifying LIP in the DIP setting. Too much rewinding (10% and
20%) even hurts performance or fails it completely. We conjecture that this is due to the extremely
low data complexity in DIP (single image).

Learning Curves of Subnetworks with Different Training Targets To better explain the success
of the LIP subnetworks, inspired by Figure 2 of (Ulyanov et al., 2018), we further train the obtained
subnetworks (LIP, SNIP and random pruning) with four different targets: 1) a natural image, 2) the
same added with noise, 3) the same after randomly permuting the pixels and 4) the white noise. We
also train the dense model as the baseline results. The experimental details are summarized in the
caption of Fig. 10. We first observe that for LIP, SNIP, and dense models, the optimization converges
much faster in case 1) and 2) than in case 3) and 4). But the randomly pruned subnetworks have
failed in all cases. Interestingly, we also find that SNIP subnetworks perform similarly to the dense
model. Meanwhile, the parameterization of LIP subnetworks offers a higher impedance to noise
and a lower impedance to signal than the dense model, which indicates that the separation of high
frequency and low frequency is more obvious for winning network architectures.

Does the Pruning Hurt the High-frequency Information of the Model? Also, in order to ob-
serve whether the high-frequency information will be lost during the pruning, we apply Fourier
Transformation to the Baby figure (described in Fig. 16) and visualize the frequency intensity of the
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Figure 11: The learning curve plots when using different subnetworks towards the DIP task. In
the figure, S denotes the sparsity of the model. We compare both PSNR and SSIM values. For
fair comparisons, we trained these subnetworks on the denoising task on the Baby image with 3000
iterations, then trained in isolation (the iteration number is recommended by (Chen et al., 2020c) to
capture the ”early-stopping” phenomenon of DIP), and summarized their performances.
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Truth
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Figure 12: Visualize the learning process of the LIP subnetworks. We compare the results of dense
model and LIP tickets to study their learning ability toward one image. We use the default opti-
mization iteration numbers (F16.png: 3000 iterations; Snail.png: 2400 iterations) in (Ulyanov et al.,
2018).

ground-truth image and the reconstructions from three different subnetworks (LIP, SNIP and random
pruning). The results are summarized in Fig. 17 and Fig.18. We found that compared with random
pruning, LIP and SNIP can maintain most of the high frequency information in the ground-truth
(e.g., in Fig 17, SNIP and LIP can both maintain the high-frequency information at the sparsity of
79%; however, SNIP could lose more high-frequency information than LIP at lower sparsity ratios.).

Learning Curve Comparison of Using Various Subnetworks for the Restoration Task We
further compare the training convergence curves of different subnetworks on the restoration task.
In Fig. 11, we summarize the convergence of LIP, SNIP and randomly pruned subnetworks on the
denoising task, and the experimental details are included in the caption. We use the PSNR and
SSIM metrics to measure the quality of the generated images: SSIM is often considered better
“perceptually aligned”, by attending more to the contrast in high-frequency regions than PSNR.

At the early stage of optimization, we observe that the learning curves of LIP and SNIP subnetworks
are almost overlapped (either PSNR or SSIM curves), while the randomly pruned subnetworks failed
to perform comparably with them. Yet when the iterations increase, the SNIP subnetworks start to
lag behind the LIP subnetworks (e.g., the largest PSNR gap between the two can reach 3dB and the
largest SSIM gap can be 0.7). Only the LIP subnetworks can match the comparable performances of
the full model when reaching the 3000-th iteration. Lastly, the SSIM gap is noticeably enlarged at
higher sparsity levels (95%) when comparing LIP and SNIP, which implies LIP is better at capturing
perceptually aligned details.
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Figure 13: Study of early-stopping in IMP loops. For comparisons, we study the IMP loss values
and the model performances during single-image IMP loops. We experiment with face3 and face5
images on three restoration tasks (denoising, inpainting and super-resolution). For comparisons, we
plot the IMP loss and model performances during IMP loops. Note that we use the yellow star to
denote the matching subnetworks and the green star for the dense model.

Visualization Results of the LIP Subnetworks In Fig. 2, we present the restoration results of
these subnetworks on tasks such as: denoising, inpainting and super-resolution (factor= 4, 8). We
successfully find the LIP subnetworks with high sparsities (e.g., 91.4% for inpainting, 89% for
super-resolution and 74% for denoising), they achieve the comparable or better performance than
the dense model. Moreover, we show the LIP subnetworks in the extreme sparsity (e.g., sparsity
s = 99.53%). We find that the performances of the LIP subnetworks are not largely degraded (e.g.,
the PSNR value decreases by 1.37 for super-resolution with factor 8.), which demonstrates the LIP
subnetworks retain the image prior property of the dense models. In Fig. 12, we visualize the DIP
learning process on the denoising task with the LIP subnetworks. And we also compare the learning
ability of the dense model and LIP tickets. Interestingly, we find these subnetworks learn the general
outline of the image at the early stage of the optimization process (e.g., the outline of the snail’s shell
at the first 500 iterations), and then they learn the detailed features of the image objects at the late
stages (e.g., the eye features of the snail at the last 400 iterations). The outstanding learning ability
also demonstrates their excellent image prior property.

Comparisons with NAS-DIP (Chen et al., 2020c) and ISNAS-DIP (Arican et al., 2022) mod-
els. Chen et al. (2022) first builds the searching space for upsampling and residual connections
to capture better image priors for the dense DIP model. Arican et al. (2022) first finds that there
is a small overlap of the best DIP architectures for different images and restoration tasks (e.g., de-
noising, inpainting and super-resolution). Therefore, they propose to do the NAS algorithm on DIP
frameworks on specific images for computational savings. These methods aim to optimize the ar-
chitecture of over-parameterized models to achieve better performances, and therefore, the model
size of these two networks is still comparable to that of the dense DIP model (they neither compact
the model nor prune its layers). In Table 5, we compare the performances of LIP subnetworks (the
parameter number is 0.6 million) with DIP, NAS-DIP and ISNAS-DIP models. We find that LIPs
can achieve comparable or even better performances than NAS-DIP models (especially on denois-
ing and inpainting tasks). The ISNAS-DIP model gains state-of-the-art performances on restoration
tasks such as denoising and inpainting. But when it comes to the super-resolution, LIP subnetworks
and the NAS-DIP model outperform the ISNAS-DIP network.

Discussions about the “early-stopping” in the single-image based IMP loops. Similar to the
DIP optimization, the single-image based IMP also needs “early-stopping” during the iterative prun-
ing loops, or the final subnetwork will overfit the noises. In Figure 13, we summarize and plot the
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Figure 14: Evaluate different LIPs on the baby.png. Note that the background task is denoising.
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Figure 15: Evaluate the random structure of the DIP models. We compare the performance of
randomly pruned subnetworks with the ones randomly pruned with LIP sparsities. The background
task is denoising.

IMP loss and model performances during the iterative magnitude pruning. Specifically, we ex-
periment with face3 and face5 images on three restoration tasks (e.g., denoising, inpainting and
super-resolution.). We find that the matching subnetwork (yellow stars in the figure) appears where
the value of IMP loss continuously increases two or three times. Based on this observation, we
summarize the approach as follows: To robustly find the matching subnetworks when on the single
noisy image IMP loops, one can stop the iterative magnitude pruning when observing the continuous
increases in IMP loss values. However, there may be other ways (based on other signals) to identify
the matching subnetworks in the single-image based IMP loops. For example, one can observe the
gradient flow or the magnitude of gradients in the IMP loops to find the inner links between these
signals and the appearance of matching subnetworks, which will be our future works. So far, the
IMP loss value has been the most obvious signal in training loops.

Transferability study of the single-image based LIP subnetworks We evaluate several single-
image based LIP subnetworks (Baby-LIP, Bird-LIP, Woman-LIP and Butterfly-LIP) on the Baby.png
and compare their performances with MUlti-LIP subnetworks. The experimental results are summa-
rized in Fig.14. We found that when the sparsity level is low (0%-40%), the single-LIP subnetworks
perform a little worse than the LIPs obtained on Baby.png. When the sparsity level increases (e.g.,
the number of remaining parameters is less than 0.6 million), they usually tend to perform compara-
bly. Another intriguing phenomenon is that Multi-LIP performs comparably with the LIPs obtained
on Baby.png but can perform better than the other LIPs when sparsity level is high, which also
demonstrate that Multi-LIP could have better transferability than single-image based LIP subnet-
works.

Ablation Study on Random Structures of original DIP models We have compared the ran-
domly pruned subnetworks with LIP ones and have found these randomly pruned sparse networks
perform worse, especially at high sparsity levels. This phenomenon indicates that the uniform ran-
domness will lead to inferior performances. But what if we provide the LIP sparsity to the random
structure? In Fig. 15, we summarize the experimental results on Baby.png, Bird.png, Woman.png
and F16.png. We observed that the randomly pruned subnetworks with LIP sparsity will collapse
at a much earlier stage than those that are uniformly randomly pruned. They may have compara-
ble performances when at low sparsity levels (e.g. from 0% to 40%.). But the performance curve
will quickly fall at high sparsity levels (e.g., from 50% to 90%.), which demonstrates that the inner
structure of LIP subnetworks is unique.
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Comparison with Other State-of-the-art Pruning Methods In the paper, we compare the ef-
fectiveness of LIPs with SNIP and random pruning. To better explore the effectiveness of LIP
subnetworks, we further compare the sparse models with the “SynFlow” pruning methods Tanaka
et al. (2020). The experimental results are summarized in Table.4. We observed that SynFlow sub-
networks achieve comparable performances with the dense network and LIPs when at low sparsity
levels (e.g., from 0% to 20%.). But LIP subnetworks start to win them out when the sparsity level
increases (e.g., from 60% to 90%.). Also, the LIPs can achieve comparable performances when at
extreme sparsities (e.g., when sparsity level equals to 80%.). But the “SynFlow” subnetworks have
already failed. These phenomena indicate the effectiveness of proposed LIP methods, which also
act as side support to Frankle et al. (2020b).

Table 4: Comparison with synaptic-flow pruning method Tanaka et al. (2020). We compare the
performances of LIPs and “SynFlow” subnetworks at various sparsity levels. Notice that the back-
ground task is denoising and the experiment image is F16.png.

Sparsity (%): 0 (dense) 20 40 50 60 70 80 90

SynFlow 31.06 31.05 30.62 30.54 30.59 30.41 30.11 28.98
LIP 31.06 31.15 31.11 31.12 31.13 31.11 31.03 30.91

Table 5: Comparison results between LIP (sparsity = 73.79%, parameter number = 0.6M), DIP
(Ulyanov et al., 2018), NAS-DIP (Chen et al., 2020c) and ISNAS-DIP (Arican et al., 2022) mod-
els. The evaluation datasets are BM3D (Dabov et al., 2007a), Set12 (Zhang et al., 2017), CBM3D
(Dabov et al., 2007a), Set5 (Bevilacqua et al., 2012) and Set14 (Zeyde et al., 2010). And the results
of DIP, NAS-DIP and ISNAS-DIP models are directly picked from Table 2 in Arican et al. (2022).
Since NAS-DIP and ISNAS-DIP both aim to find better architectures to gain better model perfor-
mances via NAS, their model sizes are comparable to that of the dense DIP network (there are no
model compressions during the optimization). And we use “*” to denote this in the table.

Datasets DIP (2.2M) LIP (0.6M) NAS-DIP (*) ISNAS-DIP (*)

Denoising

BM3D 27.87 28.27 27.44 28.39
Set12 27.92 28.12 26.88 28.06

CBM3D 28.93 29.45 29.13 30.36
Inpainting

BM3D 31.04 32.44 30.55 32.90
Set12 31.00 31.78 30.86 32.22

Super-resolution

Set5 ×4 29.89 30.52 30.66 30.22
Set5 ×8 25.88 26.17 25.88 25.94
Set14 ×4 27.00 27.31 27.36 27.19
Set14 ×8 24.15 24.31 23.96 24.03

20



Under review as a conference paper at ICLR 2023

Face_1 Face_2 Face_3 Face_4 Face_5

Bird Baby Butterfly Woman Head

KateVase F16 Baboon Pepper

Figure 16: Images used in plotting the curves of experiments.
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Ground-truth LIP - S = 59% LIP - S = 67% LIP - S = 79%

Ground-truth SNIP - S = 59% SNIP - S = 67% SNIP - S = 79%

Ground-truth Random - S = 67% Random - S = 79%Random - S = 59%

Figure 17: Evaluating the reconstruction images of different subnetworks (LIP, SNIP and random
pruning) by FFT (Fast Fourier Transformation) to check whether the high-frequency information
has been lost during pruning. Note that we experimented on the Baby.png. We found that com-
pared with random pruning, LIP and SNIP can both maintain the high frequency information of the
ground-truth. For example, the LIP and SNIP subnetworks both maintain most of the high-frequency
information of the ground-truth at the sparsity 79%, but the LIP could also perform well at the spar-
sity 67% where the SNIP loses more high-frequency information.
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Figure 18: we visualize the difference maps between the FFT (Fast Fourier Transformation) results
of reconstruction images generated by different methods (e.g., LIP, SNIP and random pruning). For
example, ‘LIP - random’ means the difference map between the FFT results of restored images
generated by LIP and randomly pruned subnetworks. The brighter color means a larger difference
in values. Also, the center of the visualization images represents the image areas with frequency
equal to zero and the surrounding parts denote areas with high frequency. We can observe that the
reconstructions generated by LIP are consistent with those from other methods in the low-frequency
domain (the center area of the FFT map) and mainly differ from other methods in the high-frequency
domain.
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