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ABSTRACT

Due to the high annotation costs and relatively small size of existing Image Quality
Assessment (IQA) datasets, attaining both consistent generalization and quality
representation capacity remains a significant challenge for prevalent deep learning
(DL)-based Blind IQA (BIQA) methods. Although effective representation learning
for distortion is deemed crucial for the generalization of the BIQA method, the
theoretical underpinnings for this belief remain elusive. Therefore, in this study,
we innovatively explore the theoretical quality-aware generalization bounds and
representation capacity of DL-based IQA models, as well as the relationship
between their respective determinants. For the generalization bound, under the
assumption that training and test distributions are identical, we derive the fine-
grained and coarse-grained upper bounds for BIQA generalization errors using
covering number and VC dimension, respectively. These two theoretical results are
presented in Theorem 1 and Theorem 2, revealing the role of low-level features in
generalization. Under distribution shifts, we propose a tighter generalization bound
to investigate the impact of distributional differences between training and test sets
on BIQA generalization in Theorem 3 using Intrinsic Dimension, which can further
confirm the generalization role of low-level features. For quality representation
capacity, in Theorem 4, we quantify the representation capacity for BIQA models
based on PAC-Bayes. The theoretical result demonstrates that learning higher-
level quality features can enhance the quality representation capacity. These
theorems offer theoretical support for enhanced performances in existing BIQA
methods. Interestingly, our theoretical findings reveal an inherent tension between
robust generalization and strong representation capacity in BIQA, which motivates
effective strategies to lower empirical errors without undermining generalization.
Extensive experiments confirm the reliability and practical value of our theorems.

1 INTRODUCTION

Image quality assessment (IQA) plays a crucial role in optimizing visual experiences across dif-
ferent domains, including image denoising (Tian et al., 2020), restoration (Cui et al., 2023), and
generation (Elasri et al., 2022). Its primary objective is to develop algorithms that can predict
image quality scores consistent with subjective human ratings (i.e., Mean Opinion Scores, MOS).
Based on the availability of reference information, existing IQA methods can be classified into
Full-Reference IQA (FR-IQA), Reduced-Reference IQA (RR-IQA), and Blind IQA (BIQA) (Zhai
& Min, 2020). Among these, BIQA exhibits broader applicability due to its independence from
the reference image (Simeng et al., 2023; Feng et al., 2021). Traditional BIQA methods aim to
evaluate the perceptual quality by manually extracting or selecting valid statistical features from
distorted images (Jiang et al., 2017; Liu et al., 2020; Zhou et al., 2017). These methods have shown
promising results in evaluating images with synthesized distortions, while they perform poorly in
authentically distorted scenarios. Consequently, many deep learning (DL)-based BIQA methods have
been introduced to handle authentic distortions by leveraging powerful visual features (Ke et al., 2021;
Madhusudana et al., 2022; Simeng et al., 2023; Talebi & Milanfar, 2018). However, the training
process of these methods requires substantial data to avoid overfitting, while no large database of
authentically distorted images is currently available due to the costly annotation process, leading to
limited generalization (Prabhakaran & Swamy, 2023; Yue et al., 2022).
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To address this issue, one of the most intuitive and effective ideas is to explore more effective network
architectures and training paradigms for IQA tasks (Liu et al., 2017; Lin et al., 2020; Ma et al., 2017;
Zhou et al., 2022). These studies have revealed that the enhanced generalization and quality feature
representation can be attained through either complex structural designs or knowledge injection, but
at the expense of greater training overhead. Therefore, the more economical design schemes are
worthy of investigation, which aim to attain a significant boost in both generalization and quality
representation capacity by only trading off a marginal efficiency loss without extra training modules
or data annotations. Although this insight has inspired the core idea of hierarchical feature fusion
in numerous BIQA methods (such as MUSIQ (Ke et al., 2021), Hyper-IQA (Su et al., 2020), and
Stair-IQA (Sun et al., 2022), etc), the theoretical foundations remain underexplored, leading to poor
interpretability of the success of these methods. Moreover, existing theoretical results about neural
networks mainly target classification tasks and fail to offer convincing support in the IQA domain.
Hence, in this work, we theoretically investigate the generalization ability and quality representation
capacity of the BIQA framework in a fully-supervised regressive setting.

For a systematic theoretical analysis of what governs the generalization bounds and representation
capacity in BIQA, we base our investigation on an unembellished CNN-based BIQA model, setting
aside the complex structural designs or additional knowledge injection. The core theoretical contribu-
tions comprise five novel theorems establishing fundamental relationships between the BIQA model
architectures and two key aspects: the generalization bound and the quality representation capability.
• Generalization Upper Bound. (1) Under distribution invariance in training and test sets, we firstly

use Covering number (Bartlett, 1998) to derive a coarse-grained upper bound of the generalization
error for a CNN-based BIQA model in Theorem 1. Then, to obtain a fine-grained generalization
bound, we provide Theorem 2 from the perspective of VC dimension (Sepliarskaia et al., 2024a).
These two theoretical results both imply that as the level of quality features increases, the gener-
alization ability tends to drop, highlighting the value of low-level features for quality perception.
(2) Under distribution shifts, we propose a tighter generalization bound based on Rademacher
complexity (Kakade et al., 2008) in Theorem 3, which further reveals how distribution differences
between training and test sets affect generalization. In addition, the Intrinsic Dimension can further
confirm the generalization role of low-level features.

• Quality Representation Capacity. We show that BIQA networks tend to possess smaller empirical
errors and higher divergence between the posterior distribution and the prior distribution of BIQA
models in the hypothesis space. Inspired by Probably Approximately Correct Bayesian (PAC-
Bayes) (McAllester, 1999), the divergence between posterior and prior model distributions can
measure the representation capacity; hence, we derive the divergence to obtain the theoretical
quality-aware representation capacity of BIQA models based on PAC-Bayes in Theorem 4, which
indicates that focusing on higher-level image features can boost quality representation capability.

These theoretical findings help explain why many BIQA methods, despite different structural designs,
manage to achieve good generalization and representation capability. They also unveil a fundamental
conflict between generalization (favoring lower-level features) and representation capacity (favoring
higher-level features). This conflict inspires further work on designing BIQA strategies that reduce
empirical errors without undermining generalization. On this basis, we offer some exploratory
suggestions for BIQA training to balance this trade-off, and cross-dataset experiments show that
these suggestions are effective in practice. In summary, the principal contributions of this work are:

• We provide a theoretical analysis about the upper bounds of the generalization and quality repre-
sentation capabilities for CNN-based BIQA models, identifying their primary determining factor:
the network attributes governing the hierarchical levels of the extracted quality features. This work
marks the first explicit theoretical treatment of IQA generalization and representation capacity.

• Under the conditions of distribution invariance or shift between training and test datasets, we
respectively provide the multi-granularity generalization bounds for CNN-based BIQA networks,
with rigorous proofs emphasizing the crucial role of low-level features in generalization.

• Through the analysis based on PAC-Bayes, we provide the upper bound of quality representation
capacity, and prove that the BIQA networks focused on learning higher-level features tend to
exhibit lower empirical errors and stronger representation capacities in quality perception, which
validates the importance of high-level features.

• We uncover the fundamental conflict between the generalization and representation capacities
of CNN-based BIQA models. Correspondingly, the proposed Theorems can offer theoretically
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valid suggestions for BIQA training. Experimental results demonstrate the effectiveness of these
suggestions, reflecting the reliability and practical value of our theoretical findings.

We provide Related Works in Appendix B, including BIQA and generalization bound in deep learning.

2 PRELIMINARIES

2.1 UNEMBELLISHED CNN-BASED BIQA MODEL

Without loss of generality, we consider a standard CNN-based BIQA network with L layers following
the architecture in (Sun et al., 2016). This includes L− 1 hidden layers for quality perception feature
extraction and an output layer for MOS prediction. Suppose each l-th layer (l = 0, · · · , L) has ml

units, with mL = 1 for regression training and reference. To control overfitting, it is standard to
constrain the sum of the weight magnitudes for each unit by a factor A. We denote the function space
of such CNN-based IQA networks with depth L by FL. Specifically, for convenience of presentation,
we first denote the input layer as follows for the input image x, formalized as the function class F0:

F0(x)← xp1,p2,p3
(1 ≤ p1 ≤ H, 1 ≤ p2 ≤W, 1 ≤ p3 ≤ 3), (1)

where xp1,p2,p3 is the pixel value in image x with the height, width, and channel index p1, p2, p3.

Then, the hidden layers (formalized as the function classes Fl, l = 1, · · · , L− 1) are computed by
two steps: (1) Linear transformation and activation: perform a linear combination of the outputs from
the previous layer, followed by an activation function ϕ (e.g., Sigmoid, ReLU). (2) Pooling operation:
apply pooling (e.g., max pooling or average pooling) to the activated results, denoted by the function
φpl

, where pl is the size of the pooling region in the l-th layer. The specific form of Fl is given by:

Fl(x)← φpl

(
ϕ
(∑ml−1

j=1
wjfj(x)

))
, where fj ∈ Fl−1,

∑ml−1

j=1
|wj | ≤ A. (2)

In Eq. (2), wi is the weight parameter in the BIQA network. If the hidden layer is a fully connected
layer, the pooling function reduces to the identity mapping (i.e., φpl

(t) = t with pl = 1); if it is
a convolutional layer, the weights wj exhibit sparsity, and ml is determined by ml−1 along with
the number of the convolution kernels with domain size kl in the hidden layer Fl. Note that the
frequently employed activation functions are typically 1-Lipschitz, such as the sigmoid function, the
hyperbolic tangent function, and the rectifier function.

Finally, the goal of the output layer (formalized as the function class FL) is to predict the MOS score
for input image x based on the extracted quality features, requiring only a linear transformation:

FL(x)←
∑mL−1

j=1
wjfj(x), where fj ∈ FL−1,

∑mL−1

j=1
|wj | ≤ A. (3)

During training, the back-propagation method is typically utilized to minimize the empirical loss on
the training set, where the weight parameters undergo updates through stochastic gradient descent.

2.2 EXPECTED AND EMPIRICAL ERRORS OF BIQA MODELS

In the fully-supervised BIQA tasks, we assume X ⊆ RH×W×3 as the input space of distorted images,
Y ⊆ [a, b] as the output space of MOS labels. P is the joint distribution over X × Y . We denote
S = {(x1, y1) , · · · , (xn, yn)} as the training dataset, each sample of which is i.i.d. sampled from
X ×Y based on the distribution P . The objective is to train an effective MOS prediction model on S,
i.e., f ∈ F : X → R with the regression loss such as L1 loss. Therefore, the empirical error errS(f)
and expected error errP (f) of the BIQA model f on the test set can be measured by:

errS(f) =
1

n

n∑
i=1

|f(xi)− yi| and errP (f) = E(x,y)∼P |f(x)− y|. (4)

The empirical error errS(f) in Eq. (4) evaluated on the training set S is the training error. The
expected error errP (f) on the test set is termed the test error, which serves as a proxy for assessing
the prediction accuracy due to the unknown underlying data distribution P . To theoretically expose
the effects of different architecture parameters of the BIQA model on the generalization performance,
we first prove that the setting of L1 loss in BIQA tasks satisfies the Lipschitz condition (Valentine,
1945). It is a necessary prerequisite for establishing the BIQA generalization bound subsequently.
Lemma 1. The L1 loss function satisfies the Lipschitz condition with Lipschitz constant Lℓ = 1.
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Proof. Please refer to the Appendix C.

Building upon Lemma 1, we can derive the upper bound of the expected error, which provides an
intuitive reflection of the generalization upper bound (i.e. errP (f) − errS(f)) and generalization
capability for BIQA models trained with the L1 loss. The remainder of this paper is organized
as follows: Sections 3 and 4 establish theoretical upper bounds for the generalization error and
representation capability of CNN-based BIQA models under different conditions. Sections 5 and 6
provide the in-depth discussion and experimental validation of our theoretical results and findings.

3 GENERALIZATION ERROR BOUND OF BIQA MODELS

In this section, we systematically analyze the generalization bounds for BIQA models under two
distinct scenarios: distribution invariance and distribution shift between training and test sets.

3.1 GENERALIZATION BOUNDS UNDER DISTRIBUTION INVARIANCE

For a systematic analysis of generalization under distribution invariance, we establish both fine-
grained and coarse-grained upper bounds for the generalization of BIQA models.

For the coarse-grained generalization bound, we establish it based on the Covering number
theory (Zhou, 2002; Zhang, 2002). Covering number is a fundamental tool in generalization theory
by quantifying the minimum cardinality of an ϵ-covering of function class F under the supremum
norm, representing the smallest number of functions required to approximate any element in F within
precision ϵ. Following (Bartlett, 1998) and (Shen, 2024), we first introduce the relevant definitions on
the concept of Covering number.

Definition 1 (ϵ–cover). Let (X, ρ) be a metric space and H ⊆ X a subset. A subset G ⊆ X is called
an ϵ–cover of H with respect to ρ if for every h ∈ H there exists g ∈ G satisfying ρ(h, g) ≤ ϵ. The
size of the smallest ϵ–cover of H is denoted by Nρ(H, ϵ).

Definition 2 (Covering number). For a domain Z, define a metric ρmax(f, g) = supz∈Z |f(z)−g(z)|
on pairs of functions f, g : Z → R. Nρmax(G, ε) is the covering number of G with respect to ρmax.

Definition 3 (Covering number with supremum norm). Let F = {f : X → R} be a class of
functions. The supremum norm of f ∈ F is defined as ∥f∥∞ := supx∈X |f(x)|. Then, for a given
ϵ > 0, we define the covering number of F with radius ϵ under the norm ∥·∥∞ as the least cardinality
of a subset G ⊆ F satisfying supf∈F ming∈G ∥f − g∥∞ ≤ ϵ, which is denoted by N (F , ϵ, ∥ · ∥∞).

Based on the above Definitions 1-3, we bound the covering number of the CNN-based BIQA model
in Eqs. (1-3) to derive its generalization upper bound. For simplicity, here, we assume that each
convolutional layer is parameterized by its convolutional kernels, where the l-th layer has dl filters
and each filter has kl parameters1, and that all the parameters are bounded by a in a suitable norm.

Theorem 1. Assume that the CNN-based BIQA model has L layers, the l-th layer has dl filters with
kernel size kl, all the parameters are bounded by a, the metric ρmax is ∥ · ∥∞ metric, and n is the
number of training samples. Then the covering number bound for the hypothesis class FL is:

logN (ϵ,FL, ∥ · ∥∞) ≤
∑L

l=1
kldl log

(a
ϵ

)
. (5)

Consequently, with probability at least 1− δ, every model f ∈ FL satisfies the generalization bound:

errP (f) ≤ errS(f) +O

(
1

n

√∑L

l=1
kldl log(a/ϵ) + log(1/δ)

)
. (6)

Based on Theorem 1, we can obtain a tighter generalization bound under a stricter assumption.

Corollary 1 (Tighter Generalization Bound). Under the same assumptions as in Theorem 1, suppose
further that the total number of learnable parameters across all L layers scales at most linearly with
the depth, i.e.,

∑L
l=1 klml = O(L). Then the generalization bound can be tightened to:

errP (f) ≤ errS(f) +O

(
1

n

√
L2 log(a/ϵ) + log(1/δ)

)
, (7)

Proof. Refer to Appendix D.1 and Appendix D.2 for the proofs of Theorem 1 and Corollary 1.
1This typically comes from the spatial kernel size kl, we absorb the number of parameters into kl.
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From the above theoretical results, we can make the following key observations and conclusions: (1)
The increasing depth and kernel size lead to a looser generalization bound, indicating that relying
solely on high-level quality perception features can have a negative impact on the generalization ability
of BIQA models. This highlights the importance of low-level image features for the generalization of
IQA. (2) As the sample size n increases, the generalization bound will decrease, which aligns with the
common understanding of neural network training. This also theoretically confirms that insufficient
training data is a major reason behind the poor generalization ability of existing BIQA models. (3)
The tighter weight parameter boundary may promote better generalization. This motivates us to apply
a regularization penalty on the model parameters during the training process.

For the fine-grained generalization bound, through the Vapnik–Chervonenkis theory (Vapnik &
Chervonenkis, 1971; Vapnik, 1982; Pollard, 1984; Haussler, 1992), we provide the fine-grained
bound based on VC dimension, the definition of which is as follows.

Definition 4 (Growth function, VC dimension, shattering (Sepliarskaia et al., 2024a)). Let H be
a class of functions mapping a domain F to {−1, 1} (the hypothesis class). For any non-negative

integer m, the growth function ofH is defined as ΠH(m) := maxf1,...,fm∈F

∣∣∣{(h(f1), . . . , h(fm)) :

h ∈ H
}∣∣∣. IfH can realise all 2m possible dichotomies on a set of m inputs, we say thatH shatters

that set. Formally, if
∣∣∣{(h(f1), . . . , h(fm)) : h ∈ H}

∣∣∣ = 2m, then H shatters {f1, . . . , fm}. The

Vapnik–Chervonenkis dimension ofH, denoted VC(H), is the largest m such that ΠH(m) = 2m; if
no such largest m exists, we set VC(H) =∞.

From Definition 4, the classical VC dimension applies only to Boolean-valued function classes. For
real-valued hypothesis classes—such as neural networks, we follow (Bartlett et al., 2019) and adopt
the Pseudodimension, which preserves the same uniform-convergence properties (Pollard, 1990;
Anthony & Bartlett, 1999).

Definition 5 (Pseudodimension (Sepliarskaia et al., 2024a)). For a real-valued function class H,
define sign(H) :=

{
sign(H − b)

∣∣ H ∈ H, b ∈ R
}
, where sign(x) = 1 for x > 0 and −1 otherwise.

The pseudodimension ofH is then VC(H) := VC
(
sign(H)

)
. ΠH is the growth function of sign(H).

For real-valued functions whose outputs are clipped to [−1, 1], the 0–1 loss can be upper-bounded by
the L1 loss. Thus, via the classic Vapnik–Chervonenkis inequality (Theorem 12.5 in (Anthony &
Bartlett, 1999)), we have:

Lemma 2. Let FL be a CNN-based BIQA model class with VC dimension dVC and e be the base of
natural logarithm. For any δ ∈ (0, 1), with probability at least 1− δ over an i.i.d. sample of size n,

errP (f) ≤ errS(f) +

√
8

n

(
dVC

(
log

2en

dVC

)
+ log

4

δ

)
, ∀f ∈ FL. (8)

Proof. Please refer to the Appendix E.

Based on Lemma 2, we can obtain the following fine-grained generalization bound by giving a tight
estimate of dVC for the CNN-based BIQA models with depth L and width mi in the i-th layer:

Theorem 2. Consider the CNN-based BIQA class FL defined in Eqs. (1-3) is the Growth function
H(k,m0, . . . ,mL, r), where L is the number of layers, mi is the width of the network in the i-th
layer, k is the kernel size (the number of parameters associated with the local receptive field in each
unit), and r is a bound on the output range determined by a scaling parameter. For any δ ∈ (0, 1),
with probability at least 1− δ over an i.i.d. sample of size n, any function f ∈ FL satisfies:

errP (f)≤errS(f)+O

(
1√
n

(
min

{√
kL2 log(rL) log

(
n

kL2 log(rL)

)
,
√

8
(
kL2 log

(
nr
k

))}
+
√

log( 1δ )

))
(9)

Proof. Please refer to the Appendix F.

Theorem 2 establishes a more fine-grained generalization bound for CNN-based BIQA models, which
aligns with the conclusions of Theorem 1. Specifically, it demonstrates that the dataset size n, kernel
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size k, and network depth L collectively govern the generalization bound, highlighting the role of
low-level quality-aware features. Additionally, two novel insights emerge: (1) the scaling parameter r
also influences the generalization bound, and the logarithmic term log(rL) captures the compounded
multiplicative effect of expanding output ranges and increasing network depth on the bound. (2) the
theoretical generalization bound holds under the condition that the number of training samples is
sufficiently large. Otherwise, the logarithmic term becomes negative and invalidates the bound.

3.2 GENERALIZATION BOUNDS UNDER DISTRIBUTION SHIFT

In Theorems 1 and 2, the generalization bound is not tight enough since it exhibits near-linear yet
supra-linear growth with depth L. In addition, the theoretical results in Eqs. (6,7,9) ignore the effect
of distribution difference on the generalization of BIQA models. Nevertheless, the effect of the
distribution shift from training set to test set on generalization performance is significant, leading to a
series of domain adaptation efforts on the IQA domain. Thus, it is meaningful to propose a tighter
generalization boundary related to the distribution difference between training and test sets in BIQA.

Based on Lemma 1, the L1 loss used in BIQA tasks is 1-Lipschitz, hence we can derive the
generalization error bound with regard to Rademacher complexity (Kakade et al., 2008).
Lemma 3 ((Bartlett & Mendelson, 2002)). Assume the loss ℓ is Lipschitz (with respect to its first
argument) with Lipschitz constant Lℓ and that ℓ is bounded by c. For any δ > 0 and with probability
at least 1− δ simultaneously for all f ∈ F , we have the upper bound of the expected error:

errP (f) ≤ errS(f) + 2LℓRn(F) + c

√
log(1/δ)

2n
(10)

where n is the sample size. Rn(F) is the Rademacher complexity (Kakade et al., 2008) of the function
class F , details of which are shown in Definition 8 in the Appendix H.

To obtain the generalization bound for CNN-based BIQA models, let F in Lemma 3 be the function
class of FL in Eqs. (1-3). Since the convolutional and fully-connected layers can be uniformly
represented by Eq. (2), and because the functionality of CNN can also be implemented by MLP (Tol-
stikhin et al., 2021), for analytical convenience, we consider BIQA network f as a unified MLP,
including all sub-MLPs in different levels of quality perception representations. This transformation
is mathematically equivalent, as all parameters and activation functions in this unified MLP can be
derived from the original model without extra computation (Wu et al., 2024c). From Definition 8 in
Appendix H and (Golowich et al., 2018), we have:
Lemma 4 ((Golowich et al., 2018)). Let n be the number of image samples in the training set, Wj

the parameter matrix in the j-th layer, MF (j) the upper-bound of ∥Wj∥F , and L the number of
layers. For the BIQA model class F , the Rademacher complexity is bounded by:

Rn (F) ≤
L log 2

nλ
+

1

nλ
log (·Eϵ exp (MλQ)) , M =

∏L

j=1
MF (j), Q =

∥∥∥∑n

i=1
ϵixi

∥∥∥ , (11)

where xi denotes the i-th instance, ϵi is a Rademacher variable, λ is a random variable.

To more accurately investigate the role of low-level quality features in the generalization of BIQA
models, in the sample space S = {xi, yi}, we consider that there exists a low-dimensional structure
in the high-dimensional space. Thus, we first adopt the concept of Intrinsic dimension (Tropp, 2015):
Definition 6 (Intrinsic dimension (Tropp, 2015)). The intrinsic dimension of a distribution (µ,Σ) is
the ratio 1 ≤ h(Σ) := tr(Σ)/∥Σ∥2 ≤ d, where ∥Σ∥2 is the spectral norm (largest eigenvalue) of Σ.

Based on Definition 6, we can obtain the measured dimension of the low-level quality features.
Lemma 5 (Measured dimension of low-level features). Let F1(x) ∈ Rd be a random feature whose
support is contained in an h-dimensional subspace of Rd. Let Σ be its covariance matrix, and
suppose Σ has rank h with non-zero eigenvalues λ1, λ2, . . . , λh. If these r eigenvalues are all equal
(that is, λ1 = λ2 = · · · = λh > 0), then the dimension measure h(Σ) = tr(Σ)/∥Σ∥2 coincides with
h. In other words, when the variance is equally distributed among the active directions, the measured
dimension of the low-level quality features equals the intrinsic dimension h.

Proof. Please refer to the Appendix G.
Based on the above Lemmas, we are now ready to state our results about the upper bound of low-
dimensional structural generalization error with distribution shift. Notably, Eq. (11) holds for every
real value λ, which is used to further analyze the generalization of BIQA models in Theorem 3.
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Theorem 3. Follow the notation in Lemma 4, and let D
(
Ptest∥Ptrain

)
denote the chi-square divergence

between the training and test distributions. Let Lℓ be the Lipschitz constant of the loss function ℓ,
and let L be the number of layers. Then, for the BIQA model class FL, with probability at least 1− δ,
for all f ∈ FL simultaneously, we have:

errP (f) ≤ errS(f) +O

(
LℓM

√
L (D (Ptest∥Ptrain)h(Σ) + 1)√

n

)
+ c

√
log(1/δ)

2n
. (12)

where c is the upper bound of the L1 loss, and h(Σ) is the intrinsic dimension of low level features.

Proof. Please refer to the Appendix H.

Beyond the conclusions derived from Theorems 1 and 2, Theorem 3 provides a much tighter bound
on depth L, and Eq. (12) can further demonstrate that: (1) Theorem 3 provides a theoretical guarantee
that the greater the distribution difference, the worse the generalization performance. (2) The
generalization boundary is linearly and positively correlated to the Lipschitz constant of the BIQA loss
function, suggesting that the choice of loss function has a significant influence on the generalization
capability of the BIQA model. (3) The greater the value of M =

∏L
i=1 MF (i), the larger the upper

bound, which implies that an excessively large number of parameters may diminish the generalization
ability of the BIQA model. (4) The generalization bound exhibits a positive correlation with Intrinsic
dimension of low-level quality feature, which theoretically reinforces its critical role in BIQA.

4 REPRESENTATION CAPACITY BOUND OF BIQA MODELS

To investigate what governs the upper bound of quality-aware representation capacity in BIQA, we
examine the posterior distribution of the BIQA model to characterize its representation capacity.

Specifically, as established in (McAllester, 1999), models that simultaneously maintain low empirical
risk and posterior distributions near the prior distribution tend to demonstrate reduced expected error.
Thus, we use the Probably Approximately Correct Bayesian (PAC-Bayes) (Langford & Seeger, 2001)
theorem to bound the representation capacity of BIQA models. To better illustrate our theoretical
insights, we consider the form of Kullback–Leibler (KL) divergence for PAC-Bayes in Lemma 6.
Lemma 6 (PAC-Bayes, KL divergence form (Dziugaite & Roy, 2017)). Let δ ∈ (0, 1), n ∈ N and µ
be a data-generating distribution over Rk. Let P be any prior distribution over a hypothesis space
H. Let Sn = {(xi, yi)}ni=1 be an i.i.d. sample drawn from µ. Then, with probability at least 1− δ
over the choice of Sn ∼ µn, for every posterior distribution Q onH, the following inequality holds:

KL
(
Ef∼Q [errSn(f)]

∥∥Ef∼Q [errµ(f)]
)
≤

KL(Q∥P ) + ln
(
n
δ

)
n− 1

, (13)

where errSn
(f) is the empirical risk of f on the sample Sn, and errµ(f) is the expected risk of f

under the true distribution µ. The expectations are taken over hypotheses f ∼ Q. KL(·∥·) is the
Kullback–Leibler divergence between Bernoulli distributions with respective mean values.

Although it is widely believed that the representation capacity of a CNN-based blind image quality
assessment (BIQA) model is primarily determined by its model dimension d, this assumption lacks
solid theoretical justification. Current understanding relies mainly on the empirical belief that a
larger number of trainable parameters enables the network to represent a richer class of functions.
However, from the perspective of PAC-Bayes theory, as shown in Eq. (13) of Lemma 6, the quality
representation capacity is fundamentally reflected by the KL divergence KL(Q∥P ), which measures
the discrepancy between the posterior and prior distributions. This is because a more expressive model
tends to induce a posterior distribution that deviates further from the prior to better fit the training
data, resulting in a higher KL value. Consequently, we can rigorously characterize the representation
capacity of a CNN-based BIQA model by analyzing the upper bound of KL(Q∥P ). Our theoretical
findings also provide formal justification for the aforementioned belief—demonstrating that a larger
model dimension d indeed serves as a valid indicator of enhanced representation capacity in BIQA.

Now, we aim to estimate the representation capacity via PAC-Bayes. Based on Lemma 6, we
use the Kullback–Leibler divergence term KL(Q∥P ) to characterize the representation capacity of
our CNN-based model. Intuitively, a larger divergence between the prior distribution P and the
posterior distribution Q implies that the posterior can capture a broader class of functions, indicating
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stronger expressive capacity. From this perspective, we are free to assume a relatively simple prior
distribution, while calculating the posterior is significantly complex. This idea is aligned with recent
studies (Dziugaite & Roy, 2017; Izmailov et al., 2021), which provide qualitative analyses of the
structure and expressivity of posterior distributions in Bayesian neural networks (BNNs). Given the
closure properties of Gaussian distributions under affine transformations, we adopt the assumption:

Assumption 1 (Gaussian Prior and Posterior for BCNNs). For Bayesian convolutional neural net-
works (BCNNs), we assume that the prior and posterior distributions both belong to the multivariate
Gaussian: P = N (0, In), where In is the identity covariance matrix; Q = N (µ,Σ), where µ ∈ Rn

is a learned mean vector and Σ ∈ Rn×n is a learned covariance matrix.

Under this assumption, we can provide a PAC-Bayesian estimate for the representation capacity of
the BIQA model in terms of the KL divergence.

Theorem 4 (KL Divergence Bound for CNN-based BIQA models). Let P = N (0, I) and Q =
N (µ,Σ) be the prior and approximate posterior distributions for a CNN-based BIQA model in
Rd, respectively. Suppose this CNN model has L layers, where the l-th layer has ml filters and
dl parameters, and the kernel size of each filter is k. Then the total number of parameters is∑L

l=1 dl = k
∑L

l=1 ml. If the output MOS scores are constrained in [0, r] for some r > 0, then:

KL(Q∥P ) ≤ O
(
k
( L∑
l=1

ml

)
r2
)
. (14)

Proof. Please refer to the Appendix I.

Through Theorem 4, we can make the following conclusions: (1) As the depth L and kernel size k
increase, the KL(Q∥P ) grows. This indicates that learning high-level quality perception features
has a positive impact on the representation capacity of BIQA models, allowing them to better fit the
training data and achieve smaller empirical errors. Our experiments show that this theoretical result
in Eq. (14) is consistent with our empirical observations on different datasets. (2) In BIQA models,
the MOS range r exhibits positive correlations with both representation capacity and generalization
capability (Theorem 2), though its correlation with representation capacity appears more pronounced.
This relationship may stem from the enhanced learning precision enabled by wider MOS ranges.

5 DISCUSSIONS

In this section, we first describe the conflict between robust quality-aware generalization and represen-
tation capacity in BIQA models based on the theoretical analysis in Sections 3 and 4. Then, we show
how the theoretical findings inspire a global and theoretical explanation for the good performance of
existing BIQA methods. Based on these discussions, we finally provide suggestions for improving
the BIQA performance in Appendix J.

5.1 CONFLICT OF STRONG REPRESENTATION AND GENERALIZATION IN BIQA MODELS

In addition to the conclusions in Sections 3 and 4, these theorems yield further insights. As discussed
in these sections, when the level of quality perception feature increases, (1) the generalization error
bound of BIQA models increase (see Theorems 1, 2 and 3); and (2) the representation capacity tends
to increase because of the greater KL divergence bound (see Theorem 4). Consequently, for BIQA
models with a limited number of hidden units, emphasizing only high-level quality perception features
is not necessarily beneficial, as there is a clear trade-off between achieving a good generalization
bound and having strong representation capacity. Specifically, we conclude that as the level of the
quality perception feature increases, the test error of BIQA networks may first decrease and then
increase. This outcome is proved in Section 6 of the experiments.

5.2 THEORETICAL EXPLANATION FOR EXISTING IQA MODELS

In current DL-based IQA models, various methods have been proposed to improve generalization.
They can be broadly categorized as follows: training with (1) extra datasets or network branches (for
example, CONTRIQUE (Madhusudana et al., 2022) and LIQA (Zhang et al., 2022a)); (2) superior
loss functions (such as NIMA (Talebi & Milanfar, 2018) and Norm-in-Norm (Li et al., 2020)); and
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(3) effective feature fusion (such as MUSIQ (Ke et al., 2021), Hyper-IQA (Su et al., 2020), and
Stair-IQA (Sun et al., 2022)). The benefit of approaches in Category (1) is evident; it parallels
the effect of increasing the data size n in Eqs. (6-7,9,12-13). For Category (2), since the Lipschitz
constant Lℓ of the loss function greatly affects the generalization bound (Eq. (12) in Theorem 3), a
suitable loss function can help improve generalization. For Category (3), according to the analysis in
Section 5.1, low-level and high-level image features complement one another, so multi-level image
quality feature learning and fusion can improve generalization. Moreover, in BIQA models using
test-time adaptation (TTA) (Roy et al., 2023), generalization is improved by reducing distribution
shifts between training and testing sets by unsupervised fine-tuning, which aligns with Theorem 3.

6 EXPERIMENTS

We empirically validate the theoretical results presented earlier through extensive experiments. More
experimental results are shown in Appendix L.1 to prove the practical values of our theorems. Details
about the datasets and experimental settings used in this study are provided in the Appendix L.2.

(a) EE on KonIQ-10k (b) EE on Live-C (c) TE on TID2013 (d) TE on Live-C

Figure 1: Impact of network depth on empirical error (EE) and test error (TE).

Experimental Verification of Theorem 4 As stated in Conclusion (1) of Theorem 4, the empirical
error of the BIQA model decreases when the network depth and the level of quality features increase.
To examine this, we train a CNN (based on the official demo) with different depths L and a restricted
number of hidden units on KonIQ-10k (Hosu et al., 2020) and Live-C (Ghadiyaram & Bovik, 2015),
extracting quality perception features in the (L− 1)-th layer. Figures 1(a-b) show that deeper BIQA
networks, which learn higher-level quality perception features, produce smaller empirical errors than
shallower networks with lower-level features. These observations confirm Theorem 4.

Experimental Verification of Theorems 1, 2, 3 and Discussion Results of Section 5.1 According
to Theorems 1, 2 and 3, the generalization ability of a BIQA model decreases as L grows. In
Section 5.1, we propose the conjecture that test error may first decrease and then increase with depth.
To test this, we use the same CNN setup as before with different depths L and a restricted number of
hidden units, training on KonIQ-10k (Hosu et al., 2020) and testing on TID2013 (Ponomarenko et al.,
2015) and Live-C (Ghadiyaram & Bovik, 2015). Figures 1(c-d) verify that the test error follows the
pattern predicted by Theorems 1, 2, 3 and Section 5.1.

7 CONCLUSION

From a theoretical standpoint, this work innovatively investigates the theoretical upper bounds of the
generalization ability and representation capacity of DL-based BIQA models. First, we propose three
different theorems to establish and prove generalization bounds for BIQA models under scenarios
with or without distribution shifts between training and test data, highlighting the importance of
low-level quality features. Then, we demonstrate the significance of high-level features on the
representation capacity. These findings reveal a conflict between the generalization capability and
the representation capacity of BIQA models. In response, we provide practical suggestions and
theoretical supports for existing BIQA training, proving the practical values of our theorems. To our
knowledge, this is the first work in IQA that offers the theoretical upper bounds for generalization
error and representation capacity, addressing a key gap in the theoretical study in the IQA domain.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research on image quality assessment is centered around theoretical derivation, and all experi-
ments were conducted on publicly available, anonymized benchmark datasets. This study did not
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized LLMs solely for the purpose of English language refinement. These models
were employed to assist with the proofreading and enhancement of written text, ensuring clarity,
coherence, and grammatical accuracy. The LLMs were not used for generating content, and all
research, analysis, and conclusions presented are the result of our own work and independent thought.

B RELATED WORKS

B.1 BLIND IMAGE QUALITY ASSESSMENT (BIQA)

BIQA has gained significant attention recently due to the absence of reference images in realistically
distorted image datasets (Zhai & Min, 2020). With the development and wide applications of Deep
Learning, numerous DL-based approaches have achieved notable progress in BIQA (Ke et al., 2021;
Golestaneh et al., 2022), such as RankIQA (Liu et al., 2017), CONTRIQUE (Madhusudana et al.,
2022), and GraphIQA (Simeng et al., 2023). Although these works enhance quality perception
ability on training datasets, their generalization is restricted by the limited size of existing IQA
datasets. To address this limitation, some methods seek to improve the generalization of BIQA
through more complex modules (Lin et al., 2020; Ma et al., 2017; Zhou et al., 2022) or unsupervised
pre-training strategies (Prabhakaran & Swamy, 2023; Saha et al., 2023).In order to handle the domain
shift between training and test sets, one recent approach integrates domain adaptation and ensemble
learning into the IOA task (Roy et al., 2023). In recent advances in the field of IQA, some new studies
are proposed to improve the generalization or robustness of IQA models by combining BIQA with
various learning paradigms adapted to specific scenarios (Zhang et al., 2024; Wang et al., 2023; Yang
et al., 2024; Zhang et al., 2022a; Wang & Ma, 2021; Wang et al., 2021; Zhang et al., 2022b) such
as Contrastive Learning, Continual Learning, Active Learning, Curriculum Learning, Multi-task
Learning and Adversarial Learning. Although existing IQA methods achieve strong performances
in different settings and scenarios, the improvements in generalization usually come with increased
training costs (Zhang et al., 2024; Zhong et al., 2024). while the importance of representation learning
for multi-level image features and distortion information is widely acknowledged in promoting IQA
generalization (Ke et al., 2021; Su et al., 2020; Sun et al., 2022), theoretical guarantees remain elusive.
Currently, there are no intuitive theoretical results addressing the generalization ability of BIQA
models in existing literature.

B.2 GENERALIZATION BOUND IN DEEP LEARNING

Commonly used classification objectives in deep learning (such as cross-entropy loss) encourage a
larger output margin, which is the gap between the predicted true label and the next most confident
label. These ideas appeared before deep learning and have strong statistical guarantees for linear
and kernel methods (Bartlett & Mendelson, 2002; Koltchinskii & Panchenko, 2002; Hofmann et al.,
2008; Kakade et al., 2008) which help explain the success of algorithms like SVM (Boser et al., 1992;
Cortes, 1995). Nevertheless, deep learning reveals statistical patterns that challenge conventional
understanding (Zhang et al., 2021; Neyshabur et al., 2017), providing new perspectives for studying
its generalization. These perspectives include insights into implicit and algorithmic regularization
mechanisms (Soudry et al., 2018; Li et al., 2018), recent investigations of interpolation-based
classifiers (Hastie et al., 2022; Bartlett et al., 2020), and analyses of the noise dynamics and the
stability of stochastic gradient descent (SGD) (Keskar et al., 2016; Chaudhari et al., 2019). More
recently, the generalization boundary of Multilayer Perceptrons (MLPs) has been established in the
algorithm selection tasks (Wu et al., 2024b;a). Most existing work on theoretical generalization
focuses on fully connected neural networks. Although some approaches (Zhou & Feng, 2018; Long
& Sedghi, 2019) have examined the generalization of CNNs in recent years, they generally target
classification rather than regression tasks. A few works (Jakubovitz et al., 2019; Amjad et al., 2021)
discuss the expected error bound for regression networks, but they do not address IQA-specific
characteristics. Our theoretical analysis fully considers the distinct properties of IQA, thus narrowing
the theoretical gap in this area. We further discuss the broader applicability of our analysis to other
regression tasks in Appendix M.
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C THE PROOF OF LEMMA 1

We first define the Lipschitz condition.

Definition 7 ((Valentine, 1945)). A loss function l is Lipschitz (with respect to its first argument) if
there exists a constant L > 0 such that, for any x1, x2 (belonging to the domain of the first argument
of l) and any fixed value y (for the other arguments of l, if any), the following inequality holds:

|l(x1, y)− l(x2, y)| ≤ L|x1 − x2| (15)

where L is named as the Lipschitz constant.

Now we provide the formal proof of Lemma 1.

Proof. To prove that the L1 loss function satisfies the Lipschitz condition, let x,y, z ∈ Rn be
arbitrary vectors. The L1 loss function between x and y is defined as:

L1(x,y) =

n∑
i=1

|xi − yi|. (16)

To show that L1 satisfies the Lipschitz condition, we need to find a constant K ≥ 0 such that

|L1(x,y)− L1(x, z)| ≤ K · ∥y − z∥1, (17)

where ∥y − z∥1 =
∑n

i=1 |yi − zi| is the L1 norm. Consider the absolute difference in L1 loss:

|L1(x,y)− L1(x, z)| =

∣∣∣∣∣
n∑

i=1

|xi − yi| −
n∑

i=1

|xi − zi|

∣∣∣∣∣ . (18)

By the triangle inequality for absolute values, we have

|a− b| ≤ |a|+ |b|, (19)

which implies
||xi − yi| − |xi − zi|| ≤ |(xi − yi)− (xi − zi)| = |yi − zi|. (20)

Summing over all i, we obtain

|L1(x,y)− L1(x, z)| ≤
n∑

i=1

|yi − zi| = ∥y − z∥1. (21)

Therefore, the L1 loss satisfies the Lipschitz condition with K = 1.

D THE PROOF OF THEOREM 1 AND COROLLARY 1

D.1 PROOF OF THEOREM 1

Here we provide the proof of our generalization bound for CNN-based BIQA models in Theorem 1.

Proof. For the l-th layer, the parameter space is a subset of Rkldl (each filter has kl parameters, and
there are dl filters). Standard estimates (via a grid argument on the ball of radius r) yield that for any
ϵ > 0 there exists an ϵ–cover of the parameter space of that layer with cardinality at most

Nl(ϵ) ≤
(
a · C
ϵ

)kldl

, (22)

where C > 0 is a universal constant. This follows by covering a ball in Rkldl with Euclidean balls of
radius ϵ; note that the metric on the parameters is typically the Euclidean one.

Suppose that the model in the CNN-based BIQA network class FL is a composition of L layers. If
each layer map is Lipschitz (which one shows under mild assumptions on the activation functions and
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pooling operations), then after re–scaling if necessary the covering number of the composite function
class F can be bounded by concatenating the covers for the individual layers. Hence one obtains:

N (ϵ,FL) ≤
L∏

l=1

Nl(ϵl). (23)

For an error budget allocation where the cumulative errors across all layers are bounded by ϵ, a
careful telescoping selection of layer-wise tolerances ϵl ∝ ϵ (or through optimal allocation) yields
the desired bound:

logN (ϵ,FL) ≤
L∑

l=1

kldl log
(a
ϵ

)
, (24)

Standard results in learning theory show that, for any f ∈ FL, if the true risk errP (f) (e.g., in a
regression loss in BIQA training) satisfies a uniform concentration inequality based on the covering
number of FL, then with probability at least 1− δ one has:

errP (f) ≤ errS(f) +O

(√
logN (ϵ,FL, ∥ · ∥∞) + log(1/δ)

n

)
, (25)

Often, the choice of ϵ is optimized or absorbed into the constant inside the logarithm, so one may
simply write:

errP (f) ≤ errS(f) +O

√∑L
l=1 kldl log(a/ϵ) + log(1/δ)

n

 . (26)

Q.E.D

D.2 THE PROOF OF COROLLARY 1

Here, we aim to prove the tighter upper bound for the generalization error based on Covering number
for CNN-based BIQA models. We first introduce the following Lemma:
Lemma 7 (Covering number of deep neural networks (Shen, 2024)). Consider the class of deep
neural networks

F := F(1, d0, d1, . . . , dL, a), (27)
which is parameterized by θ ∈ [−a, a]S . Let the vector (d0, d1, ..., dL) represent the dimensions
of the layers of the neural network f(x; θ) ∈ F . Suppose the radius of the domain X of f ∈ F is
bounded by ax for some ax > 0, and the activations ϕ1, . . . , ϕl are 1-Lipschitz. Then for any ϵ > 0,
the covering number N (F , ϵ, ∥ · ∥∞) is bounded by

(4(L+ 1)(ax + 1)(2a)L+2(
∏L

j=0 dj) · ϵ−1)S

d1! · d2! · · · dL!
, (28)

where S =
∑L

i=0 didi+1 + di+1. Especially, the range of the (i− 1)-th hidden layer is bounded by
[−a(i), a(i)] with

a(i) ≤ (2a)i
i∏

j=1

dj , for i = 1, . . . , L. (29)

Lemma 7 can be combined with the standard Dudley entropy integral upper bound on Rademacher
complexity (see e.g. (Mohri et al., 2012)). Then we give the formal proof of Corollary 1:

Proof. Recall that for any f ∈ FL, with probability at least 1− δ, one has

errP (f) ≤ errS(f) +O

(√
logN (ϵ,FL, ∥ · ∥∞) + log(1/δ)

n

)
. (30)

From the Lemmaa 7, the Covering number for the network class is bounded by
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logN (ϵ,FL, ∥ · ∥∞) ≤ S log

4(L+ 1)(ax + 1)(2a)L+2
(∏L

j=0 dj

)
ϵ

− L∑
l=1

log(dl!), (31)

where S =
∑L

i=0

(
didi+1 + di+1

)
.

Substitute the above logarithmic bound into the generalization error inequality. Then, with probability
at least 1− δ, every f ∈ FL satisfies:

errP (f) ≤ errS(f) +O
(
√√√√√S log

( 4(L+1)(rx+1)(2r)L+2

(∏L
j=0 dj

)
ϵ

)
−
∑L

l=1 log(dl!) + log(1/δ)

n

)
(32)

Roughly, the generalization error is approximately bounded by

errP (f) ≤ errS(f) +O

(√
L2 log(a/ϵ) + log(1/δ)

n

)
. (33)

Q.E.D

This estimation indicates that, roughly, the generalization gap grows with the square of the number of
layers L (up to a logarithmic factor in a) and decreases inversely with the square root of the sample
size n, while also depending logarithmically on the failure probability δ.

E THE PROOF OF LEMMA 2

Proof. From Sauer’s Lemma (Sauer, 1972), which provides a fundamental bound on the growth
function of a hypothesis classH for CNNs - specifically limiting the number of possible dichotomies
(i.e., splits or labelings) realizable on any n points. The lemma states that when the VC dimension
dvc ofH satisfies n ≥ dvc, then:

ΠH(n) ≤
dvc∑
i=0

(
n

i

)
. (34)

Here, ΠH(n) is the growth function—the maximum number of waysH can label any set of n points.
To simplify this sum, we use a standard bound on the binomial coefficients. In particular, for each i,
we have

(
n
i

)
≤
(
en
i

)i
, where e is the base of the natural logarithm (approximately 2.718). Since the

worst-case (largest) term in the sum occurs when i = d, the entire sum can be bounded by:

ΠH(n) ≤
dvc∑
i=0

(en
i

)i
≤
(
en

dvc

)dvc

, (35)

Through the application of a concentration inequality (in the spirit of Hoeffding’s inequality) coupled
with a union bound over all possible ΠH(2n) labelings realizable on the combined sample, one
obtains the standard generalization bound (as formalized in Theorem 3.3 of (Anthony & Bartlett,
1999)):

P

(
sup
h∈H

∣∣∣errP (f)− errS(f)
∣∣∣ ≥ ϵ

)
≤ 4ΠH(2n) exp

(
−nϵ2

8

)
. (36)

Set the right–hand side equal to δ:

4

(
2en

dvc

)dvc

exp
(
−nϵ2

8

)
= δ. (37)
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Solving for ϵ yields

ϵ ≤

√
8

n

(
dvc log

2en

dvc
+ log

4

δ

)
. (38)

Therefore, for any δ ∈ (0, 1) , with probability at least 1− δ over an i.i.d. sample of n samples, every
hypothesis h ∈ H (in our case, this is each CNN-based BIQA model) satisfies:

errP (f) ≤ errS(f) +

√
8

n

(
dvc log

2en

dvc
+ log

4

δ

)
. (39)

where errP (f) is the true (population) risk, errS(f) is the empirical (training) risk, and dvc is the
VC–dimension of the hypothesis classH (in our case, it is the class of CNN-based BIQA models).

F THE PROOF OF THEOREM 2

We adopt the lemma for the results of growth functions and upper bound on the VC dimension.
Lemma 8 ((Sepliarskaia et al., 2024b)). Consider a convolutional neural network (CNN) class
H(k,m0, . . . ,mL, r), where L is the number of layers, mi is the width of neural network in layer i,
k is the kernel size (number of parameters associated with the local receptive field in each unit), and
r is a bound on output range or an additional scaling parameter.

For the l-th layer, let

Wl =

l∑
j=1

mj

(
kmj−1 + 1

)
, (40)

denote the total number of parameters from the first layer up to layer l. Then for any integer m > 0,

ΠH(m) ≤ 2L
L∏

l=1

(
2emrmll

Wl

)Wl

· 2
(

2emL
WL+1

)WL+1

. (41)

and the VC dimension ofH(k,m0, . . . ,mL, r) is bounded above by

UB(dVC) = L+ 1 + 4

( L∑
l=1

Wl

)
log2

(
8er

L∑
l=1

ml

)
. (42)

The proof of Lemma 8 is provided in (Sepliarskaia et al., 2024b), with only an adjustment in the
parameter formulation. This result extends previous VC dimension bounds ((Sepliarskaia et al.,
2024b; Kohler & Walter, 2023)) of CNN by including the kernel size k, network width mi in the
parameter count Wl, reflecting that each unit in the i-th layer has kmi−1 weights plus one bias term.
Based on Lemma 8, we provide the proof of our VC dimension theorem.

Proof. We begin with the given bound and Eq. (42) into the result in Lemma 2:

errP (f) ≤ errS(f) +

√
8

n

(
dvc log

2en

dvc
+ log

4

δ

)
, (43)

So we get:

errP (f) ≤ errS(f) +O


√√√√kL2 log(rL) log

(
n

kL2 log(rL)

)
+ log(1/δ)

n

 . (44)

This is the big-O result in terms of L, k, r, n, and δ.
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On the other hand, we take Eq. (41) into Eq. (36), and we get:

ϵ ≤

√√√√√ 8

n
log

(
4 · 2L

∏L
l=1

(
4enrmll

Wl

)Wl

· 2
(

4enL
WL+1

)WL+1

δ

)
. (45)

Since we are told that Wl =
∑l

j=1 mj

(
kmj−1 + 1

)
, so after taking the product over l = 1, . . . , L,

we get:

L∏
l=1

(
O
(nr
k

))O(kl)

= exp

(
O
(
k

L∑
l=1

l
)
log
(nr
k

))
= exp

(
O
(
kL2 log

(nr
k

)))
. (46)

Thus, the bound becomes

ϵ ≤ O
(√ 8

n

(
kL2 log

(nr
k

)
+ log(1/δ)

))
. (47)

This is also the desired Big-O upper bound in terms of L, k, r, n, and δ. Thus we have the following:

errP (f) ≤errS(f) +O

(
min

{√√√√kL2 log(rL) log
(

n
kL2 log(rL)

)
+ log(1/δ)

n
,√√√√8

(
kL2 log

(
nr
k

)
+ log(1/δ)

)
n

})
.

(48)

Q.E.D

G THE PROOF OF LEMMA 5

Proof. We write the low level quality feature as: F1(x) ∈ Rd with covariance Σ:

Σ = E
[
(F1(x)− µ)(F1(x)− µ)⊤

]
with µ = E [F1(x)] . (49)

From the Definition 6, we first assume that the random feature F1(x) actually lives in an h-
dimensional linear subspace of Rd. In other words, there exists an h with 1 ≤ h ≤ d such
that the support of F1(x) is contained in an h-dimensional subspace. In that case, the covariance
matrix Σ has rank h and we can write its spectral (eigenvalue) decomposition as

Σ = U diag(λ1, λ2, . . . , λh, 0, . . . , 0)U
⊤, (50)

with λ1 ≥ λ2 ≥ · · · ≥ λh > 0. By definition, the spectral norm is ∥Σ∥2 = λ1, and the trace is
tr(Σ) =

∑h
i=1 λi.

Now, consider the particularly nice case in which the variance is equally distributed among the h
active directions. That is, assume λ1 = λ2 = · · · = λh. Then one immediately obtains tr(Σ) = hλ1,
and hence h(Σ) = tr(Σ)/∥Σ∥2 = hλ1/λ1 = h.

Thus, when the feature is exactly h-dimensional (and the data is isotropically spread among those
directions), the effective dimension measured by hΣ) coincides with the actual dimension h.

In practice, especially for CNN features, the output F1(x) may lie in Rd with d large, but the
significant variability is often concentrated in only a few directions.
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H THE PROOF OF THEOREM 3

We first give the definition of Rademacher Average.

Definition 8 ((Kakade et al., 2008)). Suppose F : X → R is a model space with a single dimensional
output. The Rademacher Average (RA) (also known as Rademacher Complexity) of F is defined as
follows:

Rn(F) = Ex,σ

[
sup
f∈F

1

n

n∑
i=1

f (xi)σi

]
(51)

where σi independently takes values in {+1,−1} with equal probability. x = {x1, · · · , xn} ∼ Pn
x .

Now we provide the formal proof of Theorem 3.

Proof. According to the Definition 8 and considering the distribution shift in training and test sets in
Lemma 4, the Rademacher complexity for FL defined in Eqs. (1-3) can be upper bounded as:

Rn,η (FL) ≤
1

nλ
log

(
2L · Eϵ exp

(
Mλ

∥∥∥∥∥
n∑

i=1

ϵiηixi

∥∥∥∥∥
))

(52)

where n denotes the number of training instances, xi denotes the i-th instance, ϵi is a Rademacher
variable, λ is a random variable, ηi = Ptest(xi)/Ptrain(xi) is the defined importance weight for sample
xi, and M satisfies that:

M =

L∏
j=1

MF (j) (53)

Let Z = M ∥
∑n

i=1 ϵiηixi∥, as a random function of the n Rademacher variables. Then we have:

Rn,η (FL) ≤
1

n

1

λ
log
{
2LE exp(λZ)

}
(54)

Note that:

1

λ
log
{
2LE exp(λZ)

}
=

L log(2)

λ
+

1

λ
log{E expλ(Z − E[Z])}+ E[Z] (55)

For the third term in the right part of Eq. (55), by Jensen’s inequality and Lemma 5, we have
n∑

i=1

η2i ∥xi∥2 ≤ h(Σ)∥Σ∥2
n∑

i=1

η2i . (56)

Substituting into the estimate for E[Z] we obtain

E[Z] ≤M

√√√√h(Σ)∥Σ∥2
n∑

i=1

η2i . (57)

According to the property of Rademacher variable, we have:

Z(ϵ1, . . . , ϵi, . . . , ϵn)− Z(ϵ1, . . . ,−ϵi, . . . , ϵn) ≤ 2Mηi∥xi∥. (58)

Hence, by standard results in bounded-difference condition (Boucheron et al.; 2013), the function Z
is sub-Gaussian with variance factor

σ2 =
1

4

n∑
i=1

(
2Mηi∥xi∥

)2
= M2

n∑
i=1

η2i ∥xi∥2. (59)

This implies that for any λ > 0

1

λ
log
{
E exp

(
λ(Z − E[Z])

)}
≤

λM2
∑n

i=1 η
2
i ∥xi∥2

2
. (60)
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Thus, we obtain

1

λ
log{2LE exp(λZ)} ≤ L log 2

λ
+

λM2
∑n

i=1 η
2
i ∥xi∥2

2
+ E[Z]. (61)

Then, according to Eq. (56), we can write:

λM2
∑n

i=1 η
2
i ∥xi∥2

2
≤

λM2h(Σ)∥Σ∥2
∑n

i=1 η
2
i

2
. (62)

The next step is to choose λ > 0 optimally to balance the two λ-dependent terms. That is, we want to
minimize

f(λ) =
L log 2

λ
+

λM2h(Σ)∥Σ∥2
∑n

i=1 η
2
i

2
. (63)

Taking the derivative with respect to λ and setting it to zero gives

−L log 2

λ2
+

M2h(Σ)∥Σ∥2
∑n

i=1 η
2
i

2
= 0, (64)

or, equivalently,

λ =

√
2L log 2

M2h(Σ)∥Σ∥2
∑n

i=1 η
2
i

. (65)

Plugging this optimal λ back into Eq. (61), the sum of the first two terms becomes

L log 2

λ
+

λM2h(Σ)∥Σ∥2
∑n

i=1 η
2
i

2
= M

√√√√2L log 2h(Σ)∥Σ∥2
n∑

i=1

η2i . (66)

Hence, the overall bound becomes

1

λ
log{2LE exp(λZ)} ≤M

√√√√2L log 2h(Σ)∥Σ∥2
n∑

i=1

η2i +M

√√√√h(Σ)∥Σ∥2
n∑

i=1

η2i . (67)

Thus, we finally obtain the bound

Rn,η(FL) ≤
M

n

√√√√h(Σ)∥Σ∥2
n∑

i=1

η2i

(√
2L log 2 + 1

)
, (68)

where h(Σ) = tr(Σ)
∥Σ∥2

, 1 ≤ h(Σ) ≤ d.

Following (Jeffreys, 1946), the chi-square divergence from the training distribution to the test
distribution is given by

D (Ptest∥Ptrain) =

∫
P 2

test(x)

Ptrain(x)
dx− 1. (69)

Note that ηi =
Ptest(xi)
Ptrain(xi)

is the the importance weight for data samples {xi}ni=1 (drawn from Ptrain).

Then the quantity 1
n

∑n
i=1 η

2
i ∥xi∥2 as an empirical average approximates Ex∼Ptrain

[
P 2

test(x)

P 2
train(x)

∥x∥2
]
.

By the Law of Large Numbers (see, e.g., (Durrett, 2019)), in the limit n→∞ we have:

1

n

n∑
i=1

η2i ∥xi∥2 =
1

n

n∑
i=1

P 2
test(xi)

P 2
train(xi)

∥xi∥2

≈ lim
n→+∞

1

n

n∑
i=1

P 2
test(xi)

P 2
train(xi)

∥xi∥2 = Exj∼Ptrain

[
P 2

test (xj)

P 2
train (xj)

∥xj∥2
]
.

(70)
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Recall that the feature vector x may in fact have high ambient dimension, but its significant variability
is captured by its covariance matrix.

Σ = Ex∼Ptrain

[
(x− µ)(x− µ)⊤

]
, µ = E[x], (71)

which leads to recognizing that the average squared norm 1
n

∑n
i=1 ∥xi∥2 is essentially tr(Σ) and that

the “per-direction” maximal magnitude is given by ∥Σ∥2, yielding the equivalent bound as:

1

n

n∑
i=1

η2i ∥xi∥2 ≤ (D (Ptest∥Ptrain) + 1)
tr(Σ)

∥Σ∥2
+ o

(
1√
n

)
. (72)

That is,
1

n

n∑
i=1

η2i ∥xi∥2 ≤ (D (Ptest∥Ptrain) + 1)h(Σ) + o

(
1√
n

)
, (73)

which appears as a multiplicative factor in the complexity term of the risk bound for the BIQA model.
Then, substituting the bound (73) into the derivation of Rn,η(FL) , we can obtain:

Rn,η(FL) ≤ O

(√
(D (Ptest∥Ptrain) + 1)h(Σ) · Φ(n)

n

)
+ o

(
1√
n

)
, (74)

where Φ(n) denotes additional terms arising from, for example, the complexity of the function class
FL and other constants. In other words, the effective dimension h(Σ) acts as an “amplifier” of the
divergence between the test and training distributions in the risk bound.

Specifically, we can obtain:

Rn,η (FL) ≤
1

n

1

λ
log
{
2LE exp(λZ)

}
≤ 1√

n
M(
√
2 log(2)L+ 1)

√√√√ n∑
i=1

η2i ∥xi∥2

= M(
√
2 log(2)L+ 1)

√√√√ 1

n

n∑
i=1

η2i ∥xi∥2

≤M(
√
2 log(2)L+ 1)

√(
D (Ptest∥Ptrain) + 1

)
h(Σ) + o

( 1√
n

)
.

(75)

Ignoring the lower-order term, it gives:

Rn,η(FL) ≤ O
(
M(
√
2 log(2)L+ 1)

√
h(Σ) (D (Ptest∥Ptrain) + 1)

)
. (76)

Finally, we can substitute Rn,η (FL) into Lemma 3 and obtain the result in Theorem 3. Namely, for
any BIQA model f in the considered function class, we have

errP (f) ≤ errS(f) +O

(
LlM(

√
2 log(2)L+ 1)

√
h(Σ) (D (Ptest∥Ptrain) + 1)√
n

)
+ c

√
log(1/δ)

2n
.

(77)
Since

√
2 log(2)L+ 1 = O(

√
L) for large L, we can simplify this as

errP (f) ≤ errS(f) +O

(
LlM

√
L (D (Ptest∥Ptrain)h(Σ) + 1)√

n

)
+ c

√
log(1/δ)

2n
. (78)

Q.E.D
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I THE PROOF OF THEOREM 4

Proof. From the Assumption 1, we are given the prior distribution: P = N (0, I), and the approxi-
mate (posterior) distribution produced by the CNN Bayesian network: Q = N (µ,Σ) for CNN-based
BIQA models. The Kullback–Leibler (KL) divergence between two multivariate Gaussian distribu-
tions Q = N (µ,Σ) and P = N (0, I) in d dimensions is given by:

KL(N (µ0,Σ0)∥N (µ1,Σ1)) =
1

2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0)− d+ ln
detΣ1

detΣ0

)
(79)

In our problem: µ0 = µ and Σ0 = Σ (from Q), µ1 = 0 and Σ1 = I (from P ), thus we have:

KL(Q∥P ) =
1

2

(
tr(Σ) + µTµ− d− ln detΣ

)
(80)

Assume the CNN-based BIQA model has L layers, the l-th layer has ml filters, and each filter’s kernel
size is k. Then, if each layer contributes dl = kml(l = 1, · · · , L) parameters, the total parameter
count is d =

∑L
l=1 dl = k

∑L
l=1 ml. If the posterior covariance is diagonal with entries {σ2

i }di=1 and
corresponding means {µi}di=1, we can write

tr(Σ−1) =

d∑
i=1

1

σ2
i

, µTΣ−1µ =

d∑
i=1

µ2
i

σ2
i

, ln |Σ| =
d∑

i=1

lnσ2
i . (81)

Hence, we have a Bayesian CNN where the parameters follow multivariate Gaussian distributions, in
accordance with standard Bayesian deep learning methodology. Thus,

KL(Q∥P ) =
1

2

[
d∑

i=1

(
σ2
i + µ2

i

)
− d−

d∑
i=1

lnσ2
i

]
. (82)

Substituting the total number of parameters d = k
∑L

l=1 ml into Eq. (82), we have the final expres-
sion:

KL(Q∥P ) =
1

2

k
∑L

l=1 ml∑
i=1

(
σ2
i + µ2

i

)
− k

L∑
l=1

ml −
k
∑L

l=1 ml∑
i=1

lnσ2
i

 . (83)

Then, in the application of BIQA domain, we can assume that the output MOS scores of CNN-based
BIQA models are forced to lie in a bounded range, say [0, r], which implies that each mean satisfies:

|µ(l,i)| ≤ r =⇒ µ2
(l,i) ≤ r2. (84)

Then we obtain:

KL(Q∥P ) ≤ 1

2

[
d∑

i=1

σ2
i + dr2 − d−

d∑
i=1

lnσ2
i

]
, (85)

We further assume that the contributions from σ2
i and lnσ2

i are both bounded by positive constants
(i.e., each term contributes O(1) per parameter). Then,

∑d
i=1 σ

2
i = O(d), and

∑d
i=1 lnσ

2
i = O(d).

Thus, the term dr2 dominates if r is not just a fixed constant. Combining these above observations, we
can obtain the representation capacity of CNN-based BIQA models with the format of KL divergence:

KL(Q∥P ) ≤ O
(
k
( L∑

l=1

ml

)
r2
)
. (86)

Q.E.D
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J EXEMPLARY SUGGESTIONS RELATED TO PROPOSED THEOREMS

The proposed theorems not only clarify existing work but also suggest further possibilities. Below are
some practical recommendations for BIQA network design: (1) In the feature perspective, according
to Conclusion (1) of Theorem 1 and Conclusion (1) of Theorem 4, low-level and high-level features
are complementary. We thus suggest fusing multi-level features to handle distortion complexity and
improve generalization. Figure 3 in Appendix L.3 shows such a strategy by integrating two levels
of features. (2) In the loss perspective, based on Eq. (12) in Theorem 3, we propose to improve the
loss function. For example, by incorporating a regularization term to minimize empirical error and
enhance representation capacity without increasing network depth, the conflict between high-level
and low-level image features can be avoided. (3) In terms of network parameters, according to
Conclusion (3) of Theorem 3, limiting the size of parameters via another regularization term can
be helpful. Detailed explanations for these suggestions are provided in Appendix K. Based on the
Suggestions (2) and (3), we propose the following exemplary loss function:

LBIQA = L1 (f(x), y) + µNorm {cos [RB (xf ) , RB (y)]}+ ν∥WL∥F (87)

where xf denotes the extracted quality perception feature vector, and RB (xf ) is the ordering (from
smallest to largest) of Euclidean distances between xf and the feature vectors of other images in
the same batch B. The functions cos and Norm denote the cosine similarity and the max-min
normalization (with maximum value 1 and minimum value cos([1, 2, . . . , B − 1], [B − 1, B −
2, . . . , 1])), respectively. The second term (consistency regularizer) in Eq. (87) corresponds to
Suggestion (2), which can directly minimize empirical error by remaining the consistency between
feature space and label space. The third term (parameter regularizer) corresponds to Suggestion (3),
which constrains the size of the final prediction layer’s weight parameter WL using the Frobenius
norm ∥ · ∥F . µ and ν are the hyper-parameters. More details on Eq. (87) are given in Appendix L.4.

K THEORETICAL EXPLANATION FOR THREE SUGGESTIONS

For Suggestion (1), according to Theorems 1, 2 and 3, as the level of image feature decreases, the
generalization bound also decreases, and the generalization for quality perception becomes more
excellent, which illustrates the significant role of low-level image features. According to Theorem 4,
as the level of image feature increases, the greater representation capacity of BIQA network tends
to increase due to the growing KL(Q∥P ), which illustrates the important role of high-level image
features. Therefore, Suggestion (1) is theoretically valid.

For Suggestion (2), on the one hand, since the Lipschitz constant Lℓ of the loss function is strongly
related to the generalization bound, as shown in Eq. (12) in the proof of Theorem 3, an appropriate
loss function can facilitate better generalization. Similar to the methods described in Category (2) in
Section 5.2, Suggestion (2) promotes better generalization by improving the loss function with one
regular term in Eq. (87). On the other hand, according to the analysis in Section 3 and Section 4, we
can conclude that there exists a conflict between good generalization and strong representation for
BIQA networks with a restricted number of hidden units. In other words, when attempting to enhance
the representation capacity of a BIQA network by increasing the learning level of quality perception
features for MOS prediction, the model might have to incur the cost of weaker generalization capacity.
This naturally leads to the following question: Can we reduce expected error and enhance the
representation capacity of a BIQA network without increasing the complexity of learning quality
perception features through an alternative approach? The answer is yes, and the regularization
term in Suggestion (2) is a typical approach, which can enhance the representation capacity (i.e.,
reduce expected error) and keep good generalization simultaneously. Therefore, Suggestion (2) is
theoretically valid.

For Suggestion (3), according to the theoretical result in Eqs. (11-12) in Theorem 3, we can observe
that a tighter weight parameter boundary M may promote better generalization. This motivates us
to apply a regularization penalty on the model parameters during the training process. Therefore,
Suggestion (3) is theoretically valid.

Notably, these suggestions are just examples to show that our theoretical results and contributions can
offer valuable insights for further exploration, which can be used as theoretical guidance or support
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for designs of the IQA models. Therefore, the theoretical results in the three proposed Theorems are
the core contributions of this paper, rather than the three illustrative suggestions put forward.

L MORE EXPERIMENTS AND EXPERIMENTAL DETAILS

L.1 MORE EXPERIMENTS

Impacts of Different Hyper-parameters in Eq. (87) Based on our theoretical results, we introduce
the Consistency Regularizer and the Parameter Regularizer in Eq. (87). For the Parameter Regularizer,
we focus on the vector of weight parameters, since there are many layers in a deep BIQA network
and constraining each would be impractical. We train a BIQA model with a ResNet-18 (He et al.,
2016) backbone on KonIQ-10k (Hosu et al., 2020) and test on CID2013 (Virtanen et al., 2014). The
PLCC and SRCC results for different choices of µ and ν are reported in Tables 1 and 2.

Table 1: The impacts of µ with fixed ν = 0.01.
BIQA model (ResNet-18 (He et al., 2016)) is
trained on KonIQ-10k (Hosu et al., 2020) and
tested on CID2013 (Virtanen et al., 2014).
µ 0 1 5 10 15
PLCC 0.681 0.685 0.702 0.713 0.708
SRCC 0.685 0.679 0.692 0.697 0.684
RMSE 13.37 14.16 13.05 12.21 12.74

Table 2: The impacts of ν with fixed µ = 10.
BIQA model (ResNet-18 (He et al., 2016)) is
trained on KonIQ-10k (Hosu et al., 2020) and
tested on CID2013 (Virtanen et al., 2014).
ν 0 0.01 0.05 0.1 1
PLCC 0.709 0.713 0.712 0.704 0.690
SRCC 0.687 0.697 0.701 0.695 0.678
RMSE 13.19 12.21 12.06 12.89 13.52

Ablation Study for Suggestions in Appendix J In light of the theoretical results and related
analysis, we offer three guidelines for designing BIQA models to demonstrate the practical value of
our theorems. We denote B, S1, S2, and S3 as the baseline ResNet-50 (He et al., 2016) (the same
as in Figure 3 in Appendix L.3), Suggestion (1), Suggestion (2), and Suggestion (3), respectively,
with µ = 10 and ν = 0.01. The results summarized in Tables 3 and 4 confirm the value of these
suggestions and the soundness of our theoretical findings. The moderate effect of Suggestion (3) may
stem from only considering weights in the prediction layer, while ignoring other network parameters.

Table 3: Ablation Study on KonIQ-10k (Hosu
et al., 2020), it is divided into 8:2 for training
and testing.

Models PLCC SRCC RMSE
B 0.857 0.865 7.005
B+S1 0.863 0.872 6.846
B+S1+S2 0.872 0.886 6.703
B+S1+S2+S3 0.873 0.892 6.674

Table 4: Cross-data Ablation Study on
KADID-10k (Virtanen et al., 2014) (train) and
CID2013 (Virtanen et al., 2014) (test).

Models PLCC SRCC RMSE
B 0.711 0.689 12.91
B+S1 0.718 0.705 12.27
B+S1+S2 0.725 0.726 11.68
B+S1+S2+S3 0.719 0.731 11.80

Experimental Verification of the Conclusion (1) from Theorem 3 We train the BIQA network
with backbone of ResNet-18 on KonIQ-10k, which is divided into two subsets with different distri-
butions. Specifically, we divide the dataset into low-score set LS and high-score set HS based on
the median of their MOS labels. Then LS and HS are then divided into 1:9 respectively, termed
as LS1, LS9 and HS1, HS9. Subsequently, LS9 and HS1 are combined as F1, LS1 and HS9 are
combined as F2, hence the distributions of F1 and F2 are different. In order to simulate various
distribution differences between different training sets and test sets, we divided F1 into 2 equal parts
named F 1

1 and F 2
1 randomly, where F 1

1 is used as the training set, and F 2
1 and F2 are combined

as the test set. For the convenience of presentation, F test
1 :F test

2 denotes the proportion of the two
distributions F1 and F2 in the test set, and F train

1 denotes the training set from distribution F1. The
whole construction process can be referred intuitively in Figure 2 in the Appendix L.2. According
to Table 5, we can observe that the greater the distribution difference, the worse the generalization
performance.

Combination of Advanced BIQA Network with Design Suggestions To further verify the
rationality of our theoretical results and suggestions about the generalization ability of BIQA models,
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Table 5: The impact of distribution differences on generalization performances of BIQA model.
F test
1 :F test

2 denotes the proportion of the two different distributions in the test set. F train
1 denotes the

training set from F1. The experiments are conducted on the dataset KonIQ-10k (Hosu et al., 2020).
F train
1 :(F test

1 :F test
2 ) 1:(1:0) 1:(1:0.5) 1:(1:1) 1:(1:2) 1:(0:2)

PLCC 0.818 0.775 0.746 0.723 0.695
SRCC 0.807 0.784 0.759 0.738 0.716
RMSE 8.308 8.621 9.248 9.874 10.122

Table 6: Results on KonIQ-10k (Hosu et al., 2020) dataset.
Models PLCC SRCC
DBCNN (Zhang et al., 2020) 0.884 0.875
MetaIQA (Zhu et al., 2020) 0.887 0.850
MUSIQ (Ke et al., 2021) (our run) 0.917 0.904
MUSIQ (Ke et al., 2021)+S2+S3 0.922 0.910

Table 7: Results on SPAQ (Fang et al., 2020) dataset.
Models PLCC SRCC
FRIQUEE (Ghadiyaram & Bovik, 2017) 0.830 0.819
DBCNN (Zhang et al., 2020) 0.915 0.911
MUSIQ (Ke et al., 2021) (our run) 0.912 0.909
MUSIQ (Ke et al., 2021)+S2+S3 0.914 0.916

we train the advanced BIQA network MUSIQ (Ke et al., 2021) with Suggestion (2) (µ = 10) and
Suggestion (3)2 (ν = 0.005) on SPAQ and KonIQ-10k, the results of which are compared with that
of the original MUSIQ (Ke et al., 2021). We record experimental results on KonIQ-10k and SPAQ on
Table 6 and Table 7 respectively. In addition, we compare our result with other baselines, including
DBCNN (Zhang et al., 2020) and MetaIQA (Zhu et al., 2020) in the experiments on KonIQ-10k, and
FRIQUEE (Ghadiyaram & Bovik, 2017) and DBCNN (Zhang et al., 2020) on SPAQ. The details
of experimental settings are the same as described in MUSIQ (Ke et al., 2021). From Table 6 and
Table 7, the results of the combination of MUSIQ (Ke et al., 2021) and Suggestions (2) and (3) are
better than that of original MUSIQ (Ke et al., 2021), which confirms the soundness of our theoretical
findings and suggestions.

L.2 EXPERIMENTAL SETTINGS

Implementation Details Our experiments are conducted with the Pytorch library on two Intel
Xeon E5-2609 v4 CPUs and four NVIDIA RTX 2080Ti GPUs. The batch size B is set as 64. The
training is conducted for just 100 epochs in total with SGD optimization. Meanwhile, we resize all
the images into 256× 256 and randomly crop 10 sub-images to the size of 224× 224. For the BIQA
model with backbone of ResNet-18 in Table 1, Table 2 and Table 5, and BIQA model with backbone
of ResNet-50 Table 3 and Table 4, we initialize the backbone by the pre-training weights obtained by
classification task on ImageNet (Deng et al., 2009) before training. In the experiments of Table 3
and Table 4, we set µ = 10 and ν = 0.01. In cross-dataset experiments, there exist 5 epochs of
fine-tuning before the test. In the experiments of Table 5, we do not apply our three suggestions to
the BIQA model with backbone ResNet-18 since this part of the experiment aims to study the impact
of changes in the distribution from the training set to the test set on generalization performance.
Since most experiments in this paper are cross-data experiments, we normalized the MOS labels
of all datasets to [1,100] before training and testing. The intuitive construction process of different
distributions of KonIQ-10k for the verification of Theorem 3 are shown in Figure 2.

Datasets In this paper, we perform experiments on five representative authentic image databases:

2Suggestion (1) is not considered here since the multi-scale features have already been incorporated in
MUSIQ (Ke et al., 2021) during the training process.
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Figure 2: The intuitive construction process of different distributions of KonIQ-10k for the verification
of Theorem 3 in experiments of Table 5 in the main text.

Table 8: Attributes of five typical IQA databases in experiments.
Databases Number MOS Range Distortion Type

TID2013 (Ponomarenko et al., 2015) 3,000 [0,9] Synthetic
KADID-10k (Virtanen et al., 2014) 10,125 [1,5] Synthetic

KonIQ-10k (Hosu et al., 2020) 10,073 [1,5] Authentic
LIVE-C (Ghadiyaram & Bovik, 2015) 1,162 [0,100] Authentic

CID2013 (Virtanen et al., 2014) 480 [0,100] Authentic
SPAQ (Fang et al., 2020) 11,125 [0,100] Authentic

• KonIQ-10k (Hosu et al., 2020). It includes 10,073 images with authentic distortions chosen from
YFCC100M (Thomee et al., 2016). Eight depth feature-based content or quality metrics are used in
sampling process to ensure a wide and uniform distribution of image content and quality in terms
of brightness, color, contrast and sharpness. And its quality is reported by MOS with the range of
[1, 5].

• LIVE-C (Ghadiyaram & Bovik, 2015). LIVE-C consists of 1,162 authentically distorted images
captured from many diverse mobile devices. Each image was assessed on a continuous quality
scale by an average of 175 unique subjects, and the MOS labels range in [0, 100].

• TID2013 (Ponomarenko et al., 2015). This database contains 3,000 images, which are obtained
from 25 reference images, 24 types of distortions for each reference image, and 5 levels for each
type of distortion. The MOS labels range in [0, 9]

• SPAQ (Fang et al., 2020). SPAQ includes 11,125 images taken by 66 mobile phones, which contains
a wide range of distortions during shooting, such as: sensor noise, blurring due to out-of-focus,
motion blurring, over- or under-exposure, color shift, and contrast reduction. And the MOS labels
range in [0, 100].

• KADID-10k (Virtanen et al., 2014). It includes 81 pristine images, where each pristine image was
degraded by 25 distortions in 5 levels. For each distorted image, 30 reliable degradation category
ratings were obtained by crowdsourcing performed by 2,209 crowd workers. The MOS labels
range in [1, 5].

• CID2013 (Virtanen et al., 2014). CID2013 includes six image sets; on average, 30 subjects have
evaluated 12–14 devices depicting eight different scenes for a total of 79 different cameras, 480
images, and 188 subjects. The MOS labels range in [0, 100].

Evaluation Metrics We evaluate BIQA models by two typical metrics, including Pearson Linear
Correlation Coefficient (PLCC) and Spearman Rank-order Correlation Coefficient (SRCC). In ad-
dition, the L1 loss is also used as one metric to study the impact of the different learning level of
quality perception features.
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Figure 3: The design example that fuses multi-level features for BIQA model under suggestion (1).
C1|C2 denotes a fully-connected (FC) layer mapping from dimension C1 to C2.

(a) F1 (b) F2

Figure 4: Distributions of MOS values in F1 (a) and F2 (b) on KonIQ-10k.

L.3 DESIGN EXAMPLE AND OTHER RESULTS

An Example of Our Suggestions for BIQA Model Design Figure 3 is an example with Resnet-
50 (He et al., 2016) as the backbone, which fuses 2 levels of features.

Distribution of MOS values of F1 and F2 from KonIQ-10k In the Experimental Verification of
Theorem 3, to study the impact of changes in the distribution from the training set into the test set
on generalization performance, we have divided KonIQ-10k (Hosu et al., 2020) to two subsets with
different distributions named F1 and F2. Figure 4 shows the distributions of MOS values in F1 and
F2 on KonIQ-10k (Hosu et al., 2020).

L.4 MORE DETAILED DESCRIPTION ABOUT EQ. (87)

In Eq. (87), xf denotes the extracted quality perception feature vector, and RB (xf ) represents the
order (from smallest to largest) of the Euclidean distances between xf and the feature vectors of
other image samples in the same batch B. y denotes the ground truth MOS label for xf , and RB (y)
represents the order (from smallest to largest) of the absolute distances between y and the MOS labels
of other image samples in the same batch B. The absolute distances are computed by the absolute
difference between two MOS scalars. cos refers to the cosine similarity. Norm denotes the max-min
normalization, for an original random variable x, that is:

Norm(x) =
x− xmin

xmax − xmin
(88)

where the maximum value of the cosine similarity in Eq. (87) is 1, and the minimum value f the
cosine similarity in Eq. (87) is cos([1, 2, . . . , B − 1], [B − 1, B − 2, . . . , 1]).

The second term in Eq. (87) means the consistency regularizer, corresponding to Suggestion
(2), which directly minimizes empirical error by maintaining the consistency between the feature
space and label space. The core idea stems from the conflict between strong representation and
generalization in BIQA models revealed by Theorem 1 and Theorem 3. To avoid this conflict,
instead of enhancing the model’s representation capacity by increasing network depth, we focus on
directly minimizing empirical error while maintaining good generalization. Therefore, the proposed
consistency regularizer is an intuitive and effective choice. The third term in Eq. (87) means the
parameter regularizer, corresponding to Suggestion (3), where WL denotes the weight parameter
of the final prediction layer, and | · |F is the Frobenius norm. µ and ν are the hyper-parameters.
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Table 9: The MAE performances of our suggestions in this paper on the UTK-Face dataset (Zhang
et al., 2017) in the age prediction task.

Models B B + S1 B + S1 + S2 B + S1 + S2 + S3

MAE 4.96 5.03 4.88 4.91

According to Appendix J, the proposed theorems can not only provide theoretical support for existing
works, but also offer valuable insights for further exploration. Therefore, what we wish to emphasize
is that: the proposed loss function in Eq. (87) just serves as the practical examples for the guidance
of BIQA network design based on these theorems. In our future work, we will explore more
comprehensive generalization theories for BIQA models and uncover practical values and insights to
guide the design of future deep learning-based BIQA models.

M APPLICABILITY OF OUR SUGGESTIONS TO OTHER REGRESSION TASKS.

Although the network settings and loss functions may not be IQA-specific, the theoretical analysis
and contributions in this paper have fully considered the task characteristics of the IQA domain. This
is one of the core differences of this paper, distinguishing it from existing theoretical research, and it
mainly includes the following two aspects.

• Focus on Regression Tasks in IQA: As stated in Appendix B.2, most existing theoretical studies
on deep neural networks focus on fully connected networks. Although some recent works have
explored the generalization of CNNs, they are primarily applicable to classification tasks rather
than regression tasks. However, the IQA task studied in this paper is a classic regression problem,
making prior theoretical results for classification tasks unsuitable for the IQA tasks.

• Consideration of IQA-Specific Characteristics: As discussed in Section 5, this paper thoroughly
considers the unique characteristics of IQA tasks: (1) quality perception information predominantly
resides in low-level image features, and (2) effective representation learning of multi-level image
features and distortion information is critical for the generalization of Blind IQA (BIQA) methods.
In contrast, existing theoretical studies on general deep neural networks often overlook the role of
low-level image features.

To illustrate this more intuitively, we conducted an experiment on another regression task, i.e. on
the UTK-Face dataset (Zhang et al., 2017), where the task is to predict age from input facial images.
Using ResNet-50 as the backbone, 80% of the data was used for training, and 20% for testing. The
experimental setup followed Table 3, and the recorded MAE (Mean Absolute Error) results for B,
B + S1, B + S1 + S2,B + S1 + S2 + S3 as follows:

From Table 9, we can observe that the three suggestions proposed in this paper perform poorly in the
age prediction task. This is probably because the age prediction task primarily relies on high-level
features about the age of the face in the input image. This indirectly confirms that the contributions
of this paper are more relevant to IQA tasks, which differ significantly from other tasks.
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