About Time: Do Transformers Learn Temporal Verbal Aspect?

Anonymous ACL submission

Abstract

Aspect is a linguistic concept that describes
how an action, event, or state of a verb phrase
is situated in time. In this paper, we explore
whether different transformer models are capa-
ble of identifying aspectual features. We focus
on two specific aspectual features: telicity and
duration. Telicity marks whether the verb’s ac-
tion or state has an endpoint or not (telic/atelic),
and duration denotes whether a verb expresses
an action (dynamic) or a state (stative). These
features are integral to the interpretation of nat-
ural language, but also hard to annotate and
identify with NLP methods. We perform ex-
periments in English and French, and our re-
sults show that transformer models adequately
capture information on telicity and duration in
their vectors, even in their non-finetuned forms,
but are somewhat biased with regard to verb
tense and word order.

1 Introduction

Aspect is a linguistic concept that characterizes
how an action, event, or state (expressed by a verb
phrase) relates to time, beyond the scope of the
verb’s tense; via aspect, information such as fre-
quency, duration, and completion is conveyed. Lan-
guages may express aspect in various ways, €.g. by
using grammatical verb tense (incomplete actions
with continuous/progressive, perfect progressive
and imperfect, complete actions with perfect), mor-
phemes (e.g. Finnish, Czech) or with aspect mark-
ers (e.g. Mandarin Chinese). However, certain
aspectual features cannot simply be deduced from
morphosyntax and require some degree of semantic
knowledge. In this paper, we focus on two of these
aspectual features: telicity and duration. Telicity
is related to the goal-oriented nature of the verb
phrase. The verb’s action is said to be felic if it
has an endpoint; for example, verbs which demon-
strate an action such as kick, eat (“I kicked the
ball.", “I eat an apple.") telic, because the action
described has a perceived ending. When the verb

denotes a state, e.g. exist, or when the completion
of the verb’s action is either indefinite, impossible
or irrelevant, e.g. agree, stay (‘I agree with you.",
“We stayed at the hotel."), then the verb phrase is
characterized as atelic. Duration is another aspec-
tual feature, different from telicity: it distinguishes
between verbs that describe a state (stative, e.g. oc-
cupy, lie) or an action (durative, e.g. run, knock) re-
gardless of whether they have a perceived endpoint
or not. The perception of telicity and duration is the
outcome of the entire verbal phrase, and not solely
the verb’s features (Krifka, 1998). Besides, the con-
text can also place constraints on the aspectual class
of a verb (Siegel, 1998). Therefore, making sound
judgments on aspectual features such as telicity
and duration, especially in a morphologically-poor
language like English, is not always an easy task—
our datasets in Section 3.1 provide some examples
of sentences where these features are hard to as-
sess, even for a human. Aspect has been exploited
for tasks where semantic knowledge is necessary,
since it provides information on temporal relations
(Costa and Branco, 2012), textual entailment (Hos-
seini et al., 2018; Kober et al., 2019) and event
ordering (Chambers et al., 2014).

In recent years, transformer-based models have
shown great success in NLP tasks which tradition-
ally require in-depth language analysis and com-
plex strategies on capturing dependencies, seman-
tic information, and world knowledge. However,
it remains unclear whether the success of these
models is due to a genuine capability to accu-
rately model linguistic meaning, or whether the
models are just very good at picking up statisti-
cal correlations, but fail to capture fine-grained
semantic distinctions (Ettinger, 2020). With this
research question in mind, our goal is to investi-
gate whether transformer-based architectures (both
with and without fine-tuning) are able to capture
the semantic information related to telicity and du-
ration. To do so, we make use of two datasets anno-



tated for telicity and duration (Friedrich and Gateva,
2017; Alikhani and Stone, 2019), and we conduct a
range of experiments using several pretrained trans-
former architectures in two languages (English and
French). We aim to explore the capabilities of trans-
former architectures in classifying aspect beyond
mere quantitative evaluation: we made custom
qualitative datasets in order to observe how com-
plex context, verb tense and prepositional phrases
affect classification. We find that classification
with fine-tuned models is very successful—both
for telicity and duration—but this success can be
largely attributed to the knowledge built up during
pre-training, as contextual word embeddings by
themselves are already quite capable of capturing
this information. We noticed that complex cases
where the context was conflicting with the verbal
aspect were harder for the models to classify, and
we provide evidence that misclassification in com-
plex sentences is related to verb tense and word
order. Finally, comparing the two languages we
investigate, even though the French models show
lower accuracy, they were more successful in clas-
sifying more difficult cases of telicity and duration,
because of the properties of verbal tense in French.

2 Previous Work

Siegel and McKeown (2000) were the first to pro-
pose natural language processing methods for as-
pectual classification; they used decision trees, ge-
netic programming, and logistic regression to lo-
cate linguistic indicators of stativity and complete-
ness, and observed that there was an improvement
on the classification of these features, especially
with supervised methods, compared to unsuper-
vised classification.

Friedrich and Palmer (2014) use a semi-
supervised approach for learning lexical aspect,
combining linguistic and distributional features, in
order to predict a verb’s stativity/duration, and also
released two datasets of annotated sentences for sta-
tivity. Friedrich and Pinkal (2015) extended this ap-
proach by classifying verbal lexical aspect into mul-
tiple categories of duration, habitual/episodic/static,
and Friedrich et al. (2016) expanded their datasets
and categories, achieving 76% accuracy on su-
pervised classification compared to the 80% of
their human baseline. In their most recent work,
Friedrich and Gateva (2017) have released two
datasets in English with gold and silver annotations
of telicity and duration (gold is human annotated;

silver is obtained from parallel English—Czech cor-
pora where aspectual features were extracted from
Czech morphological markers). With these datasets
and a L1-regularized multi-class logistic regression
model, they report significant improvement on au-
tomatic telicity classification.

Lodiciga and Grisot (2016) exploit telicity in
order to improve on French—-English machine trans-
lation; they are using verb classification of telicity
(defined as boundedness) and notice improvement
on the translation of tense. Falk and Martin (2016)
also use a machine learning approach, alongside
morpho-syntactic and semantic annotations, to pre-
dict the aspect of French verbs in different contexts
(verb readings). Moving away from hard-coded
annotations and lexical aspect, Peng (2018) uses
two different compositional models to classify as-
pect, exploring the entire clause and not only the
verb, with the use of distributional vectors and with-
out annotated linguistic features, and highlights the
importance of the verbal phrase and the verb’s de-
pendents in the interpretation of telicity. Kober et al.
(2020) propose modeling aspect of English verbs
in context, with the use of compositional distribu-
tional models, and confirm that a verb’s context
and closed-class words of tense are strong features
for aspect classification.

3 Methodology
3.1 English Datasets

Telicity and duration-annotated sentences will be
used as two separate datasets for our experiments.
The two datasets from which we are sourcing sen-
tences are constructed by Friedrich and Gateva
(2017) and by Alikhani and Stone (2019).

Friedrich and Gateva’s dataset' includes gold-
and silver-annotations of telicity (telic/atelic) and
duration (stative/durative). The gold annotations
are based on the MASC dataset (Ide et al., 2008),
while the silver annotations were crafted on the ba-
sis of the InterCorp parallel corpus of English and
Czech (éermék and Rosen, 2012), extracting the
annotations from the Czech morphological markers
of telicity and duration and applying them to the
English translations. Each annotation corresponds
to a specific verb in each sentence and not the entire
clause.

The “Captions" dataset® by Alikhani and Stone

'https://github.com/annefried/telicity
https://github.com/malihealikhani/
Captions


https://github.com/annefried/telicity
https://github.com/malihealikhani/Captions
https://github.com/malihealikhani/Captions

(2019) was created from five image—text corpora, in
order to study inferential connections in sentences.
It has been annotated for telicity (telic/atelic) and
duration (stative/durative/punctual) based on the
verb’s aspect. Even though the focus of the orig-
inal work was on the head verb of each sentence,
the verbs were not separately annotated, therefore
we used dependency parsing with spaCy (Honni-
bal et al., 2020) in order to extract the verb and
its position for our experiments. We noticed some
inconsistencies in annotation, which we corrected,
and we also excluded the sentences annotated with
the punctual label, since there were too few sen-
tences to warrant a third category or to combine
with the durative label.

In Table 1 we present the sizes of the datasets and
our final dataset. We split this dataset in training,
validation and test sets with a ratio of 80-10-10%.

We also created some smaller datasets for testing
purposes, in order to observe specific phenomena
in our models. First, we created forty sentences
annotated for telicity, and forty for duration, a sam-
ple of which can be found in Table 2. We also
crafted “minimal pairs" of sentences with telicity
annotations, where each pair includes the same
verb but in a context that has a different degree
of telicity (see examples in Table 3). We also cre-
ated variations for some of these sentences, moving
prepositional phrases to different positions in the
sentence or changing the verb tense without chang-
ing the meaning or the degree of telicity, in order
to test whether the models are sensitive not only
to specific verbs but also word position and tenses
(see Table 4).

3.2 Verb position

Aspect is generally attributed to the verb; we
therefore wanted to mark the position of the verb
in the sentence. To do so, we made use of
token_type_ids vectors to specify the posi-
tion of the verb form without auxiliaries (or multi-
ple positions, when the verb is split into subwords
by the model tokenizer). An example is shown in
Table 5. Unfortunately, ROBERTa based models
(RoBERTa and CamemBERT) do not support the
use of token_type_ids vectors, therefore they
will only be used without explicit verb position.

3.3 Transformer models

Transformers are neural network models which as-
sign weighted attention to the different parts of the
input with a sequence of alternating neural feed-

Type Label Friedrich Captions Current Total
.. telic 1,831 785 2,885
telicity el 2661 1256 3288 %173
duration stative 1,860 419 2,036
durative 38 1,843 2,045 4,081

Table 1: Number of sentences and annotations in each
dataset, and our final dataset sizes.

label sentence

telic I ate a fish for lunch.
telic ~ John built a house in a year.

telic  The cat drank all the milk.

atelic  John watched TV.

atelic I always spill milk when I pour it in my mug.
atelic  Cork floats on water.

stative Bread consists of flour, water and yeast.
stative  This box contains a cake.
stative I have disliked mushrooms for years.
durative She plays tennis every Friday.
durative The snow melts every spring.

durative The boxer is hitting his opponent.

Table 2: A sample from our qualitative dataset.

label sentence

telic I will receive new stock on Friday.
atelic I will receive new stock on Fridays.

telic The boy is eating an apple.
atelic The boy is eating apples.

telic I drank the whole bottle.
atelic I drank juice.

telic The Prime Minister made that declaration yesterday.
atelic The Prime Minister made that declaration for months.

Table 3: A sample of minimal pairs for telicity.

label sentence

telic John built a house in a year.

telic John had built a house in a year.

telic In a year, John built a house.

telic In a year, John had built a house.
atelic We swim in the lake in the afternoons.
atelic We swim in the lake each afternoon.
atelic In the afternoons, we swim in the lake.
atelic Each afternoon, we swim in the lake.

Table 4: A sample of variations of tense and word order.

tokens He worked well and earned much

vector 0 1 0 0 0 0 0
tokens He work ###ed well and

earn #i##ed much .

vector 0 1 1 0 0 0 0 0 O

Table 5: Sentence tokens and the corresponding
token_type_1ids vectors, depending on tokeniza-
tion. Each sequence also includes the model’s special
tokens and padding.



forward layers and self-attention layers. These
models have proven to be very successful in a va-
riety of NLP tasks, and they have been shown to
implicitly capture syntactic and semantic informa-
tion and dependencies.

BERT (Devlin et al., 2019) is a transformer-
based bi-directional encoder, which is trained by
randomly masking words in the input sequence and
learning to fill the word in the masked position,
while also learning to predict the next sentence
given the first sentence.

RoBERTa (Liu et al., 2019) has the same model
architecture as BERT, but focuses only on the lan-
guage masking modeling objective, and expands
BERT’s use of subwords from unseen words to
almost all tokens. The model modifies key hyper-
parameters in BERT, has been trained with much
larger mini-batches and learning rates, and has im-
proved results on the masked language modeling
objective and on downstream task performance.

XLNet (Yang et al., 2019) is an auto-regressive
pretraining model which introduces permutation
language modeling, where all tokens are predicted
but in random order (unlike BERT, which predicts
only the masked tokens). This method allows the
model to better learn dependencies and relations
between words. XLNet reportedly outperforms
BERT on tasks such as question answering, nat-
ural language inference, sentiment analysis, and
document ranking.

ALBERT (Lan et al., 2019) is a transformer ar-
chitecture, based on BERT but using fewer parame-
ters more efficiently; the vocabulary is decomposed
into two small matrices and the size of the hidden
layer embeddings (which learn context-dependent
representations) is separated from the vocabulary
embeddings (which learn context-independent rep-
resentations). ALBERT has managed to outper-
form BERT on tasks such as reading comprehen-
sion, proving that better exploitation of contextual
representations could be more beneficial than larger
training and parameter sizes.

We made use of the model implementations pro-
vided by the t ransformers library (Wolf et al.,
2020).

3.4 Fine-tuning

One of our experiments explores the process of fine-
tuning a transformer model for binary sequence
classification of telicity and duration (separately),
and testing the fine-tuned model’s accuracy on pre-

dicting the telicity or duration annotated label of a
sentence. Fine-tuning is the strategy of adapting a
pretrained model to a specific task, by adding an
extra layer on top of the existing ones and special-
izing it on the given task. Thus, we can exploit
the existing model’s knowledge from its contextual
word embeddings, and further specialize the model
on a specific task without the need for large spe-
cialized resources, large computational power and
long training times; in many tasks, fine-tuned trans-
former models have consistently provided state-of-
the-art results (Sun et al., 2019).

We fine-tune the models as Devlin et al. (2019)
have recommended, with some modifications; we
use a batch size of 32 and a learning rate of 2x 1075,
We apply dropout with probability p = 0.1 and
weight decay with A = 0.01. We use the PyTorch’s
ADAM as our optimizer (AdamW) without bias cor-
rection. We fine-tune each model for a maximum
of 4 epochs, following the recommendation of De-
vlin et al. (2019) to train for 2-4 epochs when fine-
tuning on a specific task. For base models each
training epoch took ~3 minutes and for large
models ~7 minutes, using a single GPU.

As baselines, we make use of two standard bi-
nary classification models trained and tested on the
same sets: a simple bag-of-words logistic regres-
sion model, implemented with the Python library
scikit-learn (Pedregosa et al., 2011) with default
parameters and data scaling, and a one-dimensional
convolutional neural network model (CNN) imple-
mented with Pytorch (Paszke et al., 2019) and
trained for 50 epochs, which is commonly used for
text classification tasks (Kim, 2014). The CNN
model is trained with the fastText 300-dimensional
embeddings (Bojanowski et al., 2017), embedding
dimension of 300, filter size of [3, 4, 5], 100 filters
per dimension, dropout rate of 0.5, learning rate of
0.01 and the Adadelta optimizer.

3.5 Classification with layer embeddings and
logistic regression

Pretrained models already contain linguistic infor-
mation in their contextualized word embeddings,
which we can extract and use with task-specific
models for classification. The process of extracting
the knowledge of a transformer model’s embed-
dings has been explored since the popularization of
contextual word embeddings with ELMo (Peters
et al., 2018), since it allows for faster computations
with results comparable to fine-tuned transformer



models (Tang et al., 2019). We equally conduct
an experiment without any finetuning, where we
apply a logistic regression to the contextual embed-
dings of each layer as provided by the pre-trained
model. We extract the contextual word embeddings
(for the annotated verb) from each layer of a trans-
former model, and we train a logistic regression
model (using scikit—-learn) to classify telicity
and duration, in order to examine how much infor-
mation relevant to telicity and duration has been
learned by each layer.

3.6 Classification for French

We also wanted to examine whether telicity and
duration were classifiable in a different language
with transformer models. We chose French, as it
differs from English in the way verb tenses are
formed (conjugation, compound tenses) and used
(present continuous is morphologically the same
as present simple), but it does not have a dedicated
morpheme to expressing telicity such as Finnish
and Czech. There are two monolingual French
transformer models available from the trans-
formers library, CamemBERT (Martin et al.,
2020) (based on the RoBERTa architecture) and
FlauBERT (Le et al., 2020) (based on the XLM
architecture).

Since there are no available annotations of telic-
ity and duration in French, we translated our En-
glish datasets with the DeepL translator® and re-
viewed manually a portion of the datasets (200
sentences) for translation accuracy and annotation
correctness*. We also extracted the verb-head word
of each sentence with the spaCy dependency parser
to train with/without verb position, but we are not
entirely confident in the results, therefore we are
not testing the models’ verb embeddings per layer
and the unseen verbs of the test set, as we did in
English. We use the resulting datasets to fine-tune
the FlauBERT and CamemBERT models, and as-
sess their abilities on aspectual classification. In
addition, we manually translated our qualitative
test sets and made appropriate changes (when verb
tense did not convey the desired telicity, for exam-
ple), and in lieu of the 80 sentences on variations
of word order and verb tense, we created more min-
imal pairs with variations on prepositional phrases.

*https://www.deepl.com/translator
*Our 2 annotators marked translation accuracy at 88% and
annotation accuracy at 73.5%.

4 Results for English

4.1 Quantitative analysis

During the fine-tuning process, we were able to
identify via validation which models were most
and least successful in predicting binary tags. The
results for validation are presented in Table 6 for
telicity and Table 7 for duration.

On classifying telicity, the best performing
model was bert-large—-cased. Overall,
BERT models outperformed the other architectures,
but all models achieved accuracy of > 0.80. When
trained with the extra information of verb position
in the sentence, accuracy improved for all models
and sets (4+0.01 —0.04). Examining the probability
distribution of the two labels, we observed that the
BERT models, both base and 1arge, with the
use of the verb position, were the most confident
in assigning a label to a sentence (with the proba-
bility of each label being > 0.9) while the 1arge
versions of other models were the ones whose prob-
ability distribution included more cases with lower
label probability. In Figure 1 (Appendix A.1) we
are comparing the probability distributions for the
most and least successful model in terms of accu-
racy.

Our findings on classifying duration were simi-
lar to the ones on telicity, with the models perform-
ing overall better on this classification task despite
the dataset being smaller. The BERT models were
the most successful ones, achieving accuracy of up
to 0.96, however all models achieved accuracy of
> (0.93. The effect of the use of the verb position in-
formation is not apparent in this classification task,
since we notice an improvement or deterioration
of 0.01 in most models. Examining the probability
distribution of the two labels, all models were very
confident in classifying sentences, regardless of
their accuracy. In Figure 2 (Appendix A.1) we are
comparing the probability distributions for the most
and least successful model in terms of accuracy.

In both cases, the fine-tuned transformers models
outperformed the baselines we have established.

4.2 Qualitative analysis

As mentioned, we also created our own annotated
datasets of telicity and duration, in order to study
aspectual properties beyond the scope of classifica-
tion metrics. We took a closer look at the correct
and incorrect predictions of the models, in order to
determine which cases were easier or more difficult
for models to classify. For the sake of brevity, we


https://www.deepl.com/translator

Model Verb | Acc. | Prec. | Rec. | F1

ves | 0.86 ] 0.86 | 0.86 | 0.86

bert-base-uncased - 5o 0 g1 [0.81 [0.81
o yes [0.87] 0.87 | 0.87[0.87
bert-base-cased no [0.81] 0.80 [0.800.80
__ yes 10.86] 0.86 | 0.86 | 0.86
bert-large-uncased | 621080 70.80 [ 0.80
bert-large-cased yes | 0.88 | 0.87 | 0.87 | 0.87
no [0.81 0.81 [0.80]0.80

roberta-base no [0.84] 0.84 [0.84]0.84
roberta-large no [0.80| 0.81 |0.79]0.79
et basecased yes |0.82]0.82 [0.82]0.82
no [0.81 0.81 [0.81]0.80

AInetTarge-cased | 2% | 082 0.87 [0.82[0.82
no [0.80] 0.80 [0.800.80

o yes [0.84] 0.84 [0.84[0.84
albert-base-v2 no [0.8110.80 [0.80 [0.80
yes | 0.80 ] 0.80 [ 0.80]0.80

albert-large-v2 no [0.82] 0.81 [0.81 081
CNN (30 epochs) | no |0.75]0.75 | 0.750.75
Logistic Regression| no [0.61| 0.61 |0.61|0.61

Table 6: Results of classification accuracy on the telicity
test set. ‘Verb’ refers to training the model with the
added information of the verb position.

Model Verb | Acc. | Prec. | Rec. | F1
bertbasc.uncased | YeS | 0-96 | 0.96 [ 0.96 |0.96
no 10941 0.94 [0.94]0.94

o ves [0.96 1 0.96 | 0.96 0.96
B no [0.96] 0.95 [0.96 [0.96
bertlarge-uncased | Y€ | 0-96| 0.96 |09 0.96
no 10951095 [0.94]0.94

bertlargecased | Y¢S | 0.96| 0.96 | 0.9 0.96
no 1095095 095095

roberta-base no [0.95] 0.95(0.95]0.95
roberta-large no |0.95]0.95 |0.95]0.95
Anetbase.cased | YeS 094 0.94 [0.94 1094
no 1095095 [0.95[0.95

AInetlargecased |5 094|004 10041094
no 10951095 [0.95]0.95

. ves [0.95 | 0.95 095095
albert-base-v2 no 10951095 [0.95]0.95
o ves [0.96 | 0.96 | 0.960.96
albert-large-v2 no [0.96 [ 0.96 [0.96 [0.96
CNN (50 epochs) | no | 0.88 | 0.88 [0.88 |0.88
Logistic Regression| no |0.70| 0.70 | 0.69 | 0.69

Table 7: Results of classification accuracy on the dura-
tion test set. ‘Verb’ refers to training the model with the
added information of the verb position.

are presenting only a few examples of successes
and failures; our goal was to manually examine the
strengths and weaknessess of the models in diffi-
cult and conflicting cases of classification, hence
the smaller qualitative datasets and the presentation
of the most interesting examples.

For telicity, overall, models were quite success-
ful in classifying the sentences of our qualitative
dataset.For example, all models were able to iden-
tify that sentences with statements are atelic, such
as Cork floats on water. and The Earth revolves

around the Sun., and sentences with an action were
correctly classified almost all the time: [ spilled
the milk. was correctly classified as relic, and I al-
ways spill milk when I pour it in my mug. was also
correctly classified as atelic (except for the x1net
models).

For the majority of the models, the errors in
classification could be located in some specific sen-
tences, where the verb or the verbal phrase would
be considered (a)telic, but part of the context de-
fines the temporal aspect of the sentence in the
opposite way, either a prepositional phrase (e.g. /
eat a fish for lunch on Fridays.; eat with an object
would be considered telic, but the prepositional
phrase on Fridays shows an action without per-
ceived ending) or a grammatical tense (e.g. The
inspectors are always checking every document
very carefully.; even though the action should have
a perceived ending, the continuous tense and the
presence of the adverb always render this sentence
atelic).

Moving to our minimal pairs of telic-atelic sen-
tences, we observe that, in most cases, most models
are able to classify correctly a sentence based both
on the verb action and the context; I drank the
whole bottle. and I drank juice. were correctly
classified as telic and atelic respectively, despite of
the presence of the same verb and tense. However,
in our qualitative dataset, we noticed that the sen-
tence The cat drank all the milk. was incorrectly
classified as atelic by all the models. Another in-
teresting mistake we noticed was the classification
of the pair The boy is eating an apple. and The
boy is eating apples. as both atelic; in the former
sentence, the action is telic for pragmatic reasons
(one apple that will be finished), but the tense is
continuous.

In order to observe specific tenses, word posi-
tions and context more extensively, we can exam-
ine the variations of a sentence and see whether the
models classified them all with the same label or
not. The telic sentence [ ate a fish for lunch at noon.
has confused some of the models, whether the
prepositional phrase at noon was at the beginning
or the end. However, the same sentences regard-
less of the phrase’s position, with past perfect tense
had eaten is always classified as telic. In some
complex cases, such as the sentence The Prime
Minister made that declaration for months. we
notice that most models fail to classify it as atelic
in all its variations, except for when the preposi-



tional phrase is at the start and the tense is present
perfect continuous (has been making). We noticed
that even sentences with a more obvious degree of
telicity (John Wilkes Booth killed Lincoln on 1865.
— telic) were sometimes labeled incorrectly, when
the prepositional phrase was at the end rather than
the start.

Regarding duration, the models were less suc-
cessful at classifying stative sentences than dura-
tive; even some sentences with intransitive verbs,
such as Bread consists of flour, water and yeast.
and This cookbook includes a recipe for bread.
were classified as durative. However, stative sen-
tences with animate subjects such as I disagree with
you. were correctly classified. Durative sentences,
despite of verb tense and context, were always cor-
rectly classified, e.g. She plays tennis every Friday.
and She’s playing tennis right now..

4.3 Layer verb embeddings

By extracting the contextual word embeddings for
the verb of each sentence, from each layer, and
training a logistic regression model with these em-
beddings, we were able to examine how much in-
formation on telicity and duration is learned by
each layer. In Appendix, Figure 3, we present the
accuracy for each layer of the base models. Mod-
els achieved accuracy of up to 79% for telicity
classification and up to 90% for duration classifi-
cation, which is comparable to the performance of
the finetuned models. Improvement of accuracy is
not proportional as we move to higher layers; we
notice that for telicity, some models achieve high
accuracy in the middle layers, and again in the final
layers, with accuracy sometimes dropping in the
last layer.

4.4 Unseen verbs

In our training and test datasets, there was a large
variety of verb-head words, which allowed us to
test the classification success on sentences where
the verb has not been observed by the model. For
telicity, 267 verb forms which were the head of
their phrase were not “seen" by the model in the
training set (and 146 of them were not split in
subwords), and for duration, 117 verbs (and 80
intact). We tested which of the corresponding sen-
tences were marked incorrectly, and the models’
average probability of the assigned label. Overall,
few sentences were labeled incorrectly (see results
in Table 10), with labels of either category for both
classification tasks. This suggests that the context

plays an important role for the models’ choices,
even when the verb form has not been observed by
the model.

5 Results for French

5.1 Quantitative analysis

The results of the classification for telicity and du-
ration are presented in Tables 8 and 9. Accuracy is
overall lower than English, and the CNN classifier
baseline performed equally well or sometimes out-
performed some models. We questioned whether
this was a problem of the machine translation pro-
cess, but since all sets were created in the same way,
we consider this unlikely. However, the fact that
the additional verb position information was almost
always detrimental is probably a problem caused
by parsing, since French makes use of compound
tenses more often than English.

Model Verb | Acc. | Prec. | Rec. | F1
camembert-base no |0.77|0.77 |0.78 | 0.77
camembert-large no |0.76| 0.77 | 0.7710.77

yes [0.69 | 0.70 | 0.70 | 0.69
no [0.73]0.73 [0.73]0.72
yes | 0.74] 0.7510.7410.72
no [0.76]0.76 [0.76 | 0.75
yes [0.76 | 0.76 | 0.77 | 0.76
no [0.77]0.78 [0.7810.78
yes [0.73]0.74 | 0.74 ] 0.72
no [0.75] 0.76 [0.76 [ 0.74
CNN (50 epochs) no |[0.71] 0.69 | 0.65|0.65
Log. regression no |0.61]0.59 [0.59]0.59

flaubert-small-cased

flaubert-base-uncased

flaubert-base-cased

flaubert-large

Table 8: Accuracy metrics for telicity classification with
French transformer models.

Model Verb | Acc. | Prec. | Rec. | F1
camembert-base no |[0.820.82 |0.82(0.82
camembert-large no |0.87| 0.87 [0.87]0.87

yes | 0.79] 0.79 | 0.79 [ 0.79
no [0.81]0.81 [0.81] 0.8
yes [0.80 | 0.81 | 0.80{0.80
no [0.84]0.84 [0.84[0.84
yes | 0.81] 0.82 | 0.82]0.81
no [0.83]0.83 [0.83]0.83
yes | 0.81] 0.81 | 0.81[0.80
no [0.87]0.87 [0.87]0.87
CNN (50 epochs) no [0.80 0.82 |0.820.82
Log. regression no |0.68| 0.68 | 0.67 [ 0.67

flaubert-small-cased

flaubert-base-uncased

flaubert-base-cased

flaubert-large

Table 9: Accuracy metrics for duration classification
with French transformer models.

5.2 Qualitative analysis

We notice that for French, the fine-tuned models
performed better on the qualitative sets than their
English counterparts, avoiding common mistakes
such as classifying the atelic sentence Je mange un



poisson a midi le vendredi. (“I eat a fish for lunch
of Fridays.") as telic. However, there were (fewer,
but some) common mistakes through the models
which did not exist for English, e.g. Je renverse
toujours le lait quand je le verse dans ma tasse.
(“T always spill milk when I pour it in my mug." —
atelic) and Jenny a travaillé comme médecine toute
sa vie. (“Jenny worked as a doctor her whole life."
— atelic) in which the context affects telicity more
than the verb. Comparing minimal pairs, we no-
tice that, unlike in English, the sentence J ai bu
du jus de fruit. (“I drank juice." — atelic) was fre-
quently marked as telic by the models, and so did
its pair J’ai bu toute la bouteille. (“I drank the
whole bottle." — telic). And unlike the common
mistake of marking both sentences as telic in En-
glish, the French models marked the sentences Le
garcon mange [une pomme / des pommes]. (“The
boy is eating [an apple / apples]) both as atelic.

For the duration classification, as in English, we
observe that stative sentences were the ones which
were occasionally or always incorrectly classified
by the models; sentences with statements such as
Le pain est composé de farine, d’eau et de lev-
ure. (“Bread consists of flour, water and yeast.")
or J'aime le chocolat. (“I love chocolate.") were
labeled incorrectly.

6 Discussion

Transformer models were quite successful in the
classification tasks, outperforming our baselines to
a large extent, and they proved to be quite success-
ful even without fine-tuning. Contextual embed-
dings proved to be an efficient way to encode the
aspectual information of a verb and its interaction
with its context, and this knowledge is probably
already learned in the pretraining process.

The superior performance of the duration clas-
sification with fine-tuned models did raise a ques-
tion: from our datasets, most stative questions came
from the Friedrich dataset and most durative sen-
tences from the Captions dataset; did the models
learn to classify duration or to identify the differ-
ent corpora? With our qualitative analysis on two
languages, we can conclude that the models are in-
deed able to classify duration and were successful
because of the little overlap between stative and
durative verbs and contexts. However, the models
struggled with sentences for which world knowl-
edge is crucial, which is a known issue (Rogers
et al., 2021).

From our experiment with verb tenses and prepo-
sitional phrases, we noticed that perfect and contin-
uous tenses are beneficial to classification by the
models, and leading a sentence with a prepositional
phrase of time sometimes improved predictions.
However, conflicting context will almost always
confuse the models.

In addition, our findings on the French datasets
showed that, even with our lower-performing mod-
els, the syntactic and semantic choices that a lan-
guage makes in expressing aspect did affect the
models’ capabilities of classifying aspect.The dif-
ferences in classification errors and successes that
we observed, between the qualitative datasets of
the two languages, may also indicate that there is
a different way in which languages are semanti-
cally represented by transformer models, even with
different model architectures.

7 Conclusion

In this study, we conducted several experiments
that test the capability of transformer models to
grasp aspectual categories, viz. telicity and dura-
tion. We tested this capability using a binary classi-
fication setting. Using two annotated datasets for
telicity and duration (Friedrich and Gateva, 2017;
Alikhani and Stone, 2019), we fine-tuned trans-
formers models of different architectures and in
two languages and found that transformers models
were very successful on the classification of aspect
even when trained on small datasets. Providing the
verb position as additional information improved
performance in both telicity and duration classi-
fication for English. The pretained transformer
models also proved that they possess knowledge
of aspect even without fine-tuning, from our ex-
periment in contextual word embeddings per layer.
However, our models revealed weaknesses during
our qualitative analysis which were not surprising;
for complex sentences, where the verbal aspect
contradicted the temporal information in the con-
text (e.g. telic verb with an atelic prepositional
phrase, resulting in an overall atelic sentence), the
models classified based on verb rather than context,
meaning that they are able to distinguish the most
important part of the sequence but not capture more
fine-grained information when it is necessary.
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A Additional figures

A.1 Probability distributions (English)
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telicity labels, for the most successful model
(bert-large—cased with verb position) and
the least successful model (albert-large-v2
without verb position).

(bert-large-cased with verb position) and the
least successful model (albert-large—v2 with-
out verb position).

A.2 Correct label predictions on unseen verbs in test set (English)

Telicity Duration
Seen verbs Unseen Verbs Seen verbs Unseen Verbs
Model Correct Wrong | Correct Wrong | Correct Wrong | Correct Wrong

bert-base-cased_yes 1290 218 169 31 665 17 129 5
bert-base-uncased_yes 1286 240 180 41 681 26 142 6
bert-large-cased_yes 1308 200 168 32 666 16 128 6
bert-large-uncased_yes 1292 234 190 31 687 20 142 6
albert-base-v2_yes 1281 271 186 44 698 16 138 5
albert-large-v2_yes 1204 348 174 56 690 24 137 6
x1lnet-base—-cased_yes 1196 327 174 43 651 30 127 8
xlnet-large—-cased_yes 1190 333 174 43 653 28 127 8
bert-base-cased_no 1169 342 162 37 661 21 128 6
bert-base—-uncased_no 1194 336 170 50 678 29 143 5
bert-large-cased_no 1167 344 153 46 667 15 127 7
bert-large-uncased_no 1191 339 177 43 688 19 143 5
roberta-base_no 1243 291 185 41 662 19 126 8
roberta-large_no 1157 377 176 50 667 14 127 7
albert-base-v2_no 1194 362 187 42 696 18 137 6
albert-large-v2_no 1212 344 184 45 698 16 137 6
xlnet-base-cased_no 1175 350 171 45 656 25 129 6
xlnet-large—cased_no 1182 343 169 47 652 29 125 10

Table 10: The results on the test set, for sentences with seen/unseen verbs in the training set, for telicity and duration.
The ratio of correct/incorrect labels is similar, with seen and unseen verbs, both for telicity and duration.
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Classification with logistic regression for telicity
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Classification with logistic regression for duration
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Figure 3: Accuracy of classification of logistic regression, per layer of embeddings, (accuracy on validation set) for
base models.
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