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Abstract
Reinforcement Learning (RL) has emerged as
a powerful tool for neural combinatorial opti-
mization, enabling models to learn heuristics that
solve complex problems without requiring expert
knowledge. Despite significant progress, existing
RL approaches face challenges such as diminish-
ing reward signals and inefficient exploration in
vast combinatorial action spaces, leading to inef-
ficiency. In this paper, we propose Preference
Optimization, a novel method that transforms
quantitative reward signals into qualitative prefer-
ence signals via statistical comparison modeling,
emphasizing the superiority among sampled so-
lutions. Methodologically, by reparameterizing
the reward function in terms of policy and utiliz-
ing preference models, we formulate an entropy-
regularized RL objective that aligns the policy di-
rectly with preferences while avoiding intractable
computations. Furthermore, we integrate local
search techniques into the fine-tuning rather than
post-processing to generate high-quality prefer-
ence pairs, helping the policy escape local optima.
Empirical results on various benchmarks, such as
the Traveling Salesman Problem (TSP), the Ca-
pacitated Vehicle Routing Problem (CVRP) and
the Flexible Flow Shop Problem (FFSP), demon-
strate that our method significantly outperforms
existing RL algorithms, achieving superior con-
vergence efficiency and solution quality.

1. Introduction
Combinatorial Optimization Problems (COPs) are funda-
mental in numerous practical applications, including route
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planning, circuit design, scheduling, and bioinformatics (Pa-
padimitriou & Steiglitz, 1998; Cook et al., 1994; Korte et al.,
2011). These problems require finding an optimal solution
from a finite but exponentially large set of possibilities and
have been extensively studied in the operations research
community. While computing the exact solution is impeded
by their NP-hard complexity (Garey & Johnson, 1979), effi-
ciently obtaining near-optimal solutions is essential from a
practical standpoint.

Deep learning, encompassing supervised learning and rein-
forcement learning, has shown great potential in tackling
COPs by learning heuristics directly from data (Bengio
et al., 2021; Vinyals et al., 2015). However, supervised
learning approaches heavily rely on high-quality solutions,
and due to the NP-hardness of COPs, such collected training
datasets may not guarantee optimality, which can lead mod-
els to fit suboptimal policies. In contrast, RL has emerged as
a promising alternative, achieving success in areas involving
COPs such as mathematical reasoning (Silver et al., 2018)
and chip design (Mirhoseini et al., 2021). (Deep) RL-based
solvers leverage neural networks to approximate policies
and interactively obtain rewards/feedback from the envi-
ronment, allowing models to improve in a trial-and-error
manner. (Bello et al., 2016; Kool et al., 2019).

Despite its potential, applying RL to COPs presents signifi-
cant challenges. Diminishing reward signals: As the policy
improves, the magnitude of advantage value decreases sig-
nificantly. Since RL rely on these numerical signals to drive
learning, the reduction in their scale leads to vanishing gradi-
ents and slow convergence. Unconstrained action spaces:
The vast combinatorial action spaces complicate efficient ex-
ploration, rendering traditional exploration techniques like
entropy regularization of trajectories computationally infea-
sible. Additional inference time: While neural solvers are
efficient in inference, they often suffer from finding near-
optimal solutions. Many works adopt techniques like local
search as a post-processing step to further improve solutions,
but this incurs additional inference costs.

To address the issue of diminishing reward signals and in-
efficient exploration, we propose transforming quantitative
reward signals into qualitative preference signals, focusing
on the superiority among generated solutions rather than
their absolute reward values. This approach stabilizes the
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learning process and theoretically emphasizes optimality,
as preference signals are insensitive to the scale of rewards.
By deriving our method from an entropy-regularized objec-
tive, we inherently promote efficient exploration within the
vast action space of COPs, overcoming the computational
intractability associated with traditional entropy regulariza-
tion techniques. Additionally, to mitigate the extra inference
time induced by local search, we integrate such techniques
into the fine-tuning process rather than using them for post-
processing, which enables the policy to learn from improved
solutions without incurring additional inference time.

Furthermore, preference-based optimization has recently
gained prominence through its application in Reinforcement
Learning from Human Feedback (RLHF) for large language
models (Christiano et al., 2017; Rafailov et al., 2024; Meng
et al., 2024). Inspired by these advancements, we intro-
duce a novel update scheme that bridges preference-based
optimization with COPs, leading to a more effective and con-
sistent learning process. In this work, we propose a novel
algorithm named Preference Optimization (PO), which can
seamlessly substitute conventional policy gradient methods
in many contexts. In summary, our contributions are:

1. Preference-based Framework for RL4CO: We
present a novel method that transforms quantitative
reward signals into qualitative preference signals, en-
suring robust learning independent of reward scaling.
This addresses the diminishing reward differences com-
mon in COPs, stabilizing training and consistently em-
phasizing better solutions with relation preservation.

2. Reparameterized Entropy-Regularized Objective:
By reparameterizing the reward function in terms of
policy and leveraging statistical preference models, we
formulate an entropy-regularized objective that aligns
the policy directly with preferences. This approach
bypass the intractable enumeration of the entire action
space, maintaining computational feasibility.

3. Integration with Local Search: We demonstrate how
our framework naturally incorporates heuristic local
search for fine-tuning, rather than relegating it to post-
processing. This integration aids trained solvers in
escaping local optima and enhances solution quality
without introducing additional time at inference.

Extensive experiments across a diverse range of COPs vali-
date the efficiency of our proposed PO framework, which
achieves significant acceleration in convergence and supe-
rior solution quality compared to existing RL algorithms.

2. Related Work
RL-based Neural Solvers. The pioneering application of
Reinforcement Learning for Combinatorial Optimization

problems (RL4CO) by (Bello et al., 2016; Nazari et al.,
2018; Kool et al., 2019) has prompted subsequent explo-
ration on frameworks and paradigms. We classify the ma-
jority of RL4CO research from the following perspectives:

End-to-End Neural Solvers. Numerous works have focused
on designing end-to-end neural solvers that directly map
problem instances to solutions. Techniques exploiting the
inherent equivalence and symmetry properties of COPs have
been introduced to facilitate near-optimal solutions (Kwon
et al., 2020; Kim et al., 2022; Ouyang et al., 2021; Kim
et al., 2023). For example, POMO (Kwon et al., 2020) em-
ploys multiple diverse starting points to improve training
efficiency, while Sym-NCO (Kim et al., 2022) leverages
problem symmetries to boost performance. Other studies
incorporate entropy regularization at the step level to encour-
age exploration and improve solution diversity (Xin et al.,
2021a; Sultana et al., 2020). Further efforts to enhance
generalization include diversifying training datasets to han-
dle a broader range of problem instances (Bi et al., 2022;
Wang et al., 2024; Zhou et al., 2023; Jiang et al., 2024). Al-
though most of these works primarily focus on architectural
or learning-paradigm improvements, less efforts has been
paid to developing novel optimization framework.

Hybrid Solvers. Another promising direction integrates
neural methods with conventional optimization techniques,
combining established heuristics such as k-Opt, Ant Colony
Optimization, Monte Carlo Tree Search, or Lin-Kernighan
to refine solution quality (d O Costa et al., 2020; Wu et al.,
2021; Ye et al., 2023; Xin et al., 2021b). For instance,
NeuRewriter (d O Costa et al., 2020) couples deep learning
with graph rewriting heuristics, while NeuroLKH (Xin et al.,
2021b) embeds neural methods into the LKH algorithm. In
many cases, these heuristics function as post-processing
steps to refine near-optimal solutions (Fu et al., 2021; Ma
et al., 2021; Ouyang et al., 2021), but the associated ad-
ditional inference time can reduce efficiency and may be
infeasible for time-critical scenarios.

In this work, we primarily focus on end-to-end neural
solvers because hybrid methods rely heavily on heuristic-
based solution generation, making it difficult to evaluate
the algorithmic impact of RL-based approaches. Therefore,
considering the end-to-end modeling can provide a practical
evaluation of how different algorithms affect performance.

Preference-based Reinforcement Learning. Preference-
based reinforcement learning (PbRL) is another area re-
lated to our work, which has been widely studied in of-
fline RL settings. PbRL involves approximate the ground
truth reward function from preference information rather
than relying on explicit reward signals (Wirth et al., 2017).
This approach is particularly useful when reward signals
are sparse or difficult to specify. Recently, works such as
(Hejna & Sadigh, 2024; Rafailov et al., 2024; Meng et al.,
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Figure 1: Algorithmic framework of PO for COPs. In the Preference Comparison module, pairwise comparisons are
conducted between solutions based on their grounding quality (e.g., trajectory length). The Local Search slightly refines
solution τ to produce improved solution LS(τ) which contribute additional preference signals Lfinetune during fine-tuning.

2024) have proposed novel paradigms to directly improve
the KL-regularized policy without the need for learning an
approximate reward function, leading to more stable and
efficient training. This has led to the development of a series
of works (Azar et al., 2024; Park et al., 2024; Hong et al.,
2024) in the RLHF phase within language-based models,
where preference information is leveraged to align large
language models effectively.

Our work bridges the gap between these domains by intro-
ducing a preference-based optimization framework specifi-
cally tailored for COPs. By transforming quantitative reward
signals into qualitative preferences, we address key chal-
lenges in RL4CO, such as diminishing reward differences
and exploration inefficiency, while avoiding the need for
explicit reward function approximation as in PbRL.

3. Methodology
In this section, we first recap Reinforcement Learning
for Combinatorial Optimization (RL4CO), and Preference-
based Reinforcement Learning (PbRL). Next, we explain
how to leverage these techniques to develop a novel frame-
work to efficiently train neural solvers that rely solely on rel-
ative superiority among generated solutions. Subsequently,
we investigate the compatibility of our approach with Local
Search techniques for solver training, i.e. fine-tuning. The
algorithmic framework of our method is illustrated in Fig. 1.

3.1. Reinforcement Learning for Combinatorial
Optimization Problems

RL trains an agent to maximize cumulative rewards by inter-
acting with an environment and receiving numerical reward

signals. In COPs, the state transitions are typically modeled
as deterministic. A commonly used method is REINFORCE
(Sutton & Barto, 2018) and its variants, whose update rule
is given by:

∇θJ(θ) = Ex∼D,τ∼πθ(τ |x) [(r(x, τ)− b(x))∇θ log πθ(τ | x)]

≈ 1

|D|
∑
x∈D

1

|Sx|
∑
τ∈Sx

[(r(x, τ)− b(x))∇θ log πθ(τ | x)] , (1)

where D is the dataset of problem instances, x ∈ D repre-
sents an instance, Sx is the set of sampled solutions (tra-
jectories) for x, r(x, τ) is the reward function derived from
distinct COPs and b(x) represents the baseline used to cal-
culate the advantage function A(x, τ) = r(x, τ) − b(x),
which helps reduce the variance of the gradient estimator.

A critical challenge in REINFORCE-based algorithms is
their sensitivity to baseline selection. As demonstrated in
(Kool et al., 2019), training without an appropriate baseline
led to significantly degraded performance in COP appli-
cations. The policy πθ(τ | x) defines a distribution over
trajectories τ = (a1, a2, . . . , aT ) given the instance x. Each
trajectory τ is a sequence of actions generated by the policy:
πθ(τ | x) =

∏T
t=1 πθ(at | st−1), with s0 being the initial

state determined by x, and st representing the state at time
step t, which depends on the previous state and the taken
action (e.g., st = T (st−1, at)). Here, T (·) represents the
state transition function, which is deterministic in COPs.
The action at is selected by the policy based on state st−1.

Unlike popular RL environments such as Atari (Belle-
mare et al., 2013) and Mujoco (Todorov et al., 2012),
which provide stable learning signals, COPs present dis-
tinctive challenges. As the policy improves, the magnitude
of advantage value diminishes significantly. Specifically,
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|r(x, τ)− b(x)| < ϵ, where ϵ is small except for the initial
training process. This leads to negligible updates to the pol-
icy objective J(θ) in REINFORCE-variants , which heavily
relies on the advantage value A(x, τ) = r(x, τ) − b(x).
Consequently, the policy struggles to escape local optima
during later training stages.

3.2. Preference-based Reinforcement Learning

Preference-Based Reinforcement Learning (PbRL) (Wirth
et al., 2017) trains an agent using preference labels instead
of explicit reward signals obtained through direct interaction
with the environment. Concretely, we assume access to a
preference dataset Dp = {(τ1, τ2, y)}, where each triplet
consists of two trajectories τ1, τ2 and a preference label
y ∈ {0, 1}. A label y = 1 indicates that τ1 is preferred over
τ2 (τ1 ≻ τ2), while y = 0 indicates the opposite.

These preferences are assumed to be generated by an un-
derlying (latent) reward function r̂(x, τ). Various models,
such as Bradley-Terry (BT), Thurstone (David, 1963), and
Plackett-Luce (PL) (Plackett, 1975), link differences in re-
ward values to observed preferences, enabling us to formu-
late an objective for learning the reward function.

In paired preference models like BT and Thurstone, a func-
tion f(·) maps the difference in rewards to a probability of
one trajectory being preferred over another:

p∗(τ1 ≻ τ2) = f
(
r̂(x, τ1)− r̂(x, τ2)

)
, (2)

where the Bradley-Terry model adopts the sigmoid function
σ(x) = (1 + e−x)−1, and the Thurstone model uses the
CDF Φ(x) of the normal distribution.

This relationship allows us to learn r̂ϕ(x, τ) via a binary
classification problem: maximizing the likelihood of the
observed preferences,

max
ϕ

E(τ1,τ2,y)∼Dp

[
y log pϕ(τ1 ≻ τ2)

]
.

Once r̂ϕ is learned, a policy πθ can be optimized under this
learned reward, ensuring τ1 ≻ τ2 =⇒ πθ(τ1) > πθ(τ2),
so that preferred trajectories receive higher probabilities
under the policy.

A major challenge in PbRL is obtaining reliable preference
data. Labels often depend on expert judgment, leading to
potential preference conflicts, such as cyclic preferences
τ1 ≻ τ2, τ2 ≻ τ3, and τ3 ≻ τ1. These contradictions
violate transitivity, making it critical to construct consistent
preference labels to ensure stable policy learning.

3.3. Derivation of Preference Optimization

The key insight of our method is to transform the quantita-
tive reward signals into qualitative preferences. This trans-
formation stabilizes learning process by avoiding the depen-

dency on numerical reward signals and consistently empha-
sizes optimality. We begin our derivation with the entropy-
regularized RL introduced by (Haarnoja et al., 2017), which
was originally designed to encourage exploration.

A challenge in applying RL to COPs is the exponential
growth of the state and action spaces with problem size,
making efficient exploration difficult. A common approach
to encourage exploration is to include an entropy regulariza-
tion termH(πθ) to balance exploitation and exploration:

max
πθ

Ex∼D
[
Eτ∼πθ(·|x) [r(x, τ)] + αH (πθ(· | x))

]
, (3)

where α > 0 controls the strength of the entropy regulariza-
tion, and H (πθ(· | x)) = −

∑
τ πθ(τ | x) log πθ(τ | x) is

the entropy of the policy for instance x. However, comput-
ing the entropy termH(πθ) is intractable in practice due to
the exponential number of possible trajectories.

Following prior works (Ziebart et al., 2008; Haarnoja et al.,
2017), it is straightforward to show that the optimal policy
to the maximum entropy-based objective in Eq. 3 admits an
analytical form:

π∗(τ | x) = 1

Z(x)
exp

(
α−1r(x, τ)

)
, (4)

where the partition function Z(x) =
∑

τ exp
(
α−1r(x, τ)

)
normalizes the policy over all possible trajectories τ . The de-
tailed derivation is included in the Appendix D.1. Although
the solution space of COPs is finite and the reward function
r(x, τ) is accessible, computing the partition function Z(x)
is still intractable due to the exponential number of possi-
ble trajectories. This intractability makes it impractical to
utilize the analytical optimal policy directly in practice.

The specific formulation of Eq. 4 implies that the latent
reward function r̂(x, τ) can be reparameterized in rela-
tion to the corresponding policy π(τ | x), analogous to
the approach adopted in (Rafailov et al., 2024) for a KL-
regularized objective and in (Hejna & Sadigh, 2024) within
the inverse RL framework. Eq. 4 can thereby be rearranged
to express the reward function in terms of its corresponding
optimal policy π for the entropy-regularized objective:

r̂(x, τ) = α log π(τ | x) + α logZ(x). (5)

From Eq. 5, the grounding reward function r can be explic-
itly expressed by the optimal policy π∗ of Eq. 3. Then we
can relate preferences between trajectories directly to the
policy probabilities. Specifically, the preference between
two trajectories τ1 and τ2 can be modeled by projecting the
difference in their rewards into a paired preference distri-
bution. Note that this analytic expression naturally avoids
intractable term Z(x), since Z(x) is a constant w.r.t. the τ
and cancels out when considering reward differences.
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Using preference models, by substituting Eq. 5 into Eq. 2,
the preference probability between two trajectories is:

p(τ1 ≻ τ2 | x) = f (α [log π(τ1 | x)− log π(τ2 | x)]) , (6)

By leveraging this relationship, we transform the quantita-
tive reward into qualitative preferences in terms of policy π.
Next, we could approximate π with parameterized πθ.

Proposition 3.1. Let r̂(x, τ) be a reward function consistent
with the Bradley-Terry, Thurstone, or Plackett-Luce models.
For a given reward function r̂′(x, τ), if r̂(x, τ)− r̂′(x, τ) =
h(x) for some function h(x), it holds that both r̂(x, τ) and
r̂′(x, τ) induce the same optimal policy in the context of an
entropy-regularized reinforcement learning problem.

Based on Proposition 3.1, we can conclude that shifting the
reward function by any function of the instance x does not
affect the optimal policy. This ensures that canceling out
Z(x) in Eq. 6 still preserves the optimality of the policy πθ

learned, we defer the proof to Appendix D.2.

Comparison Criteria. We adopt the grounding reward
function r to generate conflict-free preference labels y =
1 (·) : R→ {0, 1}. As the reward function r(x, τ) in COPs
can be seen as a physical measure, pairwise comparisons
generated in this manner preserve a consistent and transitive
partial order of preferences throughout the dataset. More-
over, while traditional RL methods may rely on affine trans-
formations to scale the reward signal, our approach benefits
from the affine invariance of the preference labels. Specifi-
cally, the indicator function is invariant under positive affine
transformations: 1 (k · r(x, τ1) + b > k · r(x, τ2) + b) =
1 (r(x, τ1) > r(x, τ2)) , for any k > 0 and any real number
b. This property implies that our method emphasizes opti-
mality independently of the scale and shift of the explicit
reward function (e.g., reward shaping), facilitating the learn-
ing process by focusing on the relative superiority among
solutions rather than their absolute reward values.

Objective. To make the approach practical, we approximate
the optimal policy π∗ with a parameterized policy πθ. This
approximation allows us to reparameterize the latent reward
differences using πθ, naturally transforming the policy op-
timization into a classification problem analogous to the
reward function trained in PbRL. Guided by the preference
information from the grounding reward function r(x, τ), the
optimization objective J(θ) can be formulated as:

max
θ

E
x∼D,τ∼πθ(·|x)

[1 ((r(x, τ1) > r(x, τ2)) · log pθ(τ1 ≻ τ2 | x)] , (7)

while instantiating with BT model σ(·), maximizing p(τ1 ≻
τ2 | x) = σ(r̂θ(x, τ1)− r̂θ(x, τ2)) leads to the gradient:

∇θJ(θ) ≈
α

|D||Sx|2
∑
x∈D

∑
τ∈Sx

∑
τ ′∈Sx

[(gBT(τ, τ
′, x)−

gBT(τ
′, τ, x))∇θ log πθ(τ | x)] (8)

where gBT(τ, τ
′, x) = 1 (r(x, τ) > r(x, τ ′)) ·σ(r̂θ(x, τ ′)−

r̂θ(x, τ)), and r̂θ(x, τ)) = α log πθ(τ | x) + α logZ(x).
Taking a deeper look at the gradient level, compared to
the REINFORCE-based algorithm in Eq. 1, the term about
g(τ, τ ′, x) − g(τ ′, τ, x) serves as a quantity-invariant ad-
vantage signal. A key finding is that this reparameterized
reward signal ensures that if r(x, τ1) > r(x, τ2), then the
gradient will favor increasing πθ(τ1) over πθ(τ2).

Algorithm 1 Preference Optimization for COPs.

Input: problem set D, number of training steps T , fine-
tune steps TFT ≥ 0,batch size B, learning rate η, ground
truth reward function r, number of local search iteration
ILS, initialized policy πθ.
for step = 1, . . . , T + TFT do

//Sampling N solutions for each instance xi

xi ← D, ∀i ∈ {1, . . . , B}
τi = {τ1i , τ2i , . . . , τNi } ← πθ(xi), ∀i ∈ {1, . . . , B}
// Fine-tuning with LS for TFT steps (Optional)
if step > T then
{τ̂1i , τ̂2i , . . . , τ̂Ni } ← LocalSearch(τi, r, ILS), ∀i
τi ← τi ∪ {τ̂1i , τ̂2i , . . . , τ̂Ni }

end if
//Calculate conflict-free preference labels via ground-
ing reward function r(x, τ)

yij,k ← 1

(
r(xi, τ

j
i ) > r(xi, τ

k
i )
)
, ∀j, k

//Approximating the gradient according to Eq. 8

∇θJ(θ)←
α

B|τi|2
B∑
i=1

|τi|∑
j=1,k=1

[(
g(τ ji , τ

k
i , xi)−

g(τki , τ
j
i , xi)

)
∇θ log πθ(τ

j
i | xi)

]
θ ← θ + η∇θJ(θ)

end for

3.4. Fine-Tuning with Local Search

Although neural solvers offer computational efficiency, they
often struggle to achieve near-optimal solutions compared
to the heuristic solvers. After policy convergence, additional
standard training fails to improve the policy’s performance,
which can be observed in both PO and REINFORCE-based
algorithms within the RL4CO framework.

Local Search (LS) is commonly employed as a post-
processing step to refine solutions generated by combinato-
rial solvers, guaranteeing monotonic improvement. Specif-
ically, for any solution τ , the refined solution LS(τ) satis-
fies r(x,LS(τ)) ≥ r(x, τ) through localized adjustments.
When integrating it into learning, traditional RL algorithms
typically depend on numerical reward magnitudes, which
may exhibit small variations following LS and thus yield
weak gradient signals. In contrast, PO framework relies on
qualitative comparisons rather than numerical reward values,
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Table 1: Experiment results on TSP and CVRP. Gap is evaluated on 10k instances and Times are summation of them.

Solver Algorithm
TSP CVRP

N = 20 N = 50 N = 100 N = 20 N = 50 N = 100

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

H
eu

ri
st

ic Concorde - 0.00% 13m 0.00% 21.5m 0.00% 1.2h - - - - - -
LKH3 - 0.00% 28s 0.00% 4.3m 0.00% 15.6m 0.09% 0.5h 0.18% 2h 0.55% 4h
HGS - - - - - - - 0.00% 1h 0.00% 3h 0.00% 5h

N
eu

ra
lS

ol
ve

rs

AM (Kool et al., 2019) RF 0.28% 0.1s 1.66% 1s 3.40% 2s 4.40% 0.1s 6.02% 1s 7.69% 3s
PO 0.33% 0.1s 1.56% 1s 2.86% 2s 4.60% 0.1s 5.65% 1s 6.82% 3s

Pointerformer (Jin et al., 2023) RF 0.00% 6s 0.02% 12s 0.15% 1m - - - - - -
PO 0.00% 6s 0.01% 12s 0.06% 1m - - - - - -

Sym-NCO (Kim et al., 2022) RF 0.01% 1s 0.16% 2s 0.39% 8s 0.72% 1s 1.31% 4s 2.07% 16s
PO 0.00% 1s 0.08% 2s 0.28% 8s 0.63% 1s 1.20% 4s 1.88% 16s

POMO (Kwon et al., 2020)
RF 0.01% 1s 0.04% 15s 0.15% 1m 0.37% 1s 0.94% 5s 1.76% 3.3m
PO 0.00% 1s 0.02% 15s 0.07% 1m 0.16% 1s 0.68% 5s 1.37% 3.3m

PO+Finetune 0.00% 1s 0.00% 15s 0.03% 1m 0.08% 1s 0.53% 5s 1.19% 3.3m

making it inherently compatible with LS-driven fine-tuning.

To harness the benefits of LS while avoiding additional in-
ference costs, we integrate LS into the post-training process
(i.e. fine-tuning) after the policy has converged through stan-
dard RL training procedures. For each generated solution τ ,
we apply a small number of LS iterations to obtain an im-
proved solution LS(τ). In practice, r(x,LS(τ)) > r(x, τ)
for most cases except in the case that LS fails to improve.

We then form a preference tuple (τ,LS(τ), y), where y =
1
(
r(x,LS(τ)) > r(x, τ)

)
. The optimization objective dur-

ing fine-tuning becomes:

max
θ

E
x∼D, τ∼πθ(·|x)

[
y · log pθ

(
LS(τ) ≻ τ

∣∣ x)]
= E

x∼D, τ∼πθ(·|x)
f (α [log πθ(LS(τ)) | x)− log πθ(τ | x)]) ,

(9)

where the LS-refined solutions act as high-quality prefer-
ence references. By incorporating these references directly
into training, the solver can internalize local search improve-
ments rather than relying on LS as a separate, computa-
tionally expensive post-processing step. Although each LS
iteration introduces some overhead, it remains manageable
by limiting the number of LS calls per trajectory. As sum-
marized in Algorithm 1, the resulting algorithm seamlessly
combines neural policy learning and local search in a unified,
end-to-end training pipeline.

A potential concern lies in the off-policy nature of LS-
refined solutions, since existing REINFORCE-based algo-
rithms require on-policy sampling. When adopting such a
fine-tuning process into REINFORCE, distribution shifts
introduced by LS could demand importance sampling to
correct for. However, during fine-tuning, PO’s preference-
based objective naturally aligns with an imitation learning
perspective (e.g., BC (Pomerleau, 1988) and DAgger (Ross

et al., 2011)), treating LS outputs as expert demonstrations.
Thus, PO can absorb these LS-refined solutions without
encountering severe off-policy issues, allowing the policy
to imitate these expert-like trajectories effectively.

4. Experiments
In this section, we present the main results of our experi-
ments, demonstrating the superior performance of the pro-
posed Preference Optimization (PO) algorithm for COPs.
We aim to answer the following questions: 1. How does
PO compare to existing algorithms on standard benchmarks
such as the Traveling Salesman Problem (TSP), the Capac-
itated Vehicle Routing Problem (CVRP) and the Flexible
Flow Shop Problem (FFSP)? 2. How effectively does PO
balance exploitation and exploration by considering entropy,
in comparison to traditional RL algorithms?

Benchmark Setups. We implement the PO algorithm upon
various RL-based neural solvers, emphasizing that it is a
general algorithm not tied to a specific model structure. The
fundamental COPs including TSP, CVRP and FFSP, serve
as our testbed. In routing problems, the reward r(x, τ) is
defined as the Euclidean length of the trajectory τ . The TSP
aims to find a Hamiltonian cycle on a graph, minimizing
the trajectory length, while the CVRP incorporates capacity
constraints for vehicles and points, along with a depot as
the starting point. Our main experiments utilize problems
sampled from a uniform distribution, as prescribed in (Kool
et al., 2019). The experiments on the FFSP are conducted
to schedule tasks across multiple stages of machines with
the objective of minimizing the makespan (MS.), which
refers to the total time required for completing all tasks. To
evaluate generalization capabilities, we conduct zero-shot
testing on problems with diverse distributions as specified
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Table 2: Experiment results on FFSP. MS and Gap are evaluated on 1k instances, Time are summation of them. * indicate
the results are sourced from MatNet (Kwon et al., 2021) and Aug. indicate the data augmentation for inference.

Solver FFSP20 FFSP50 FFSP100

MS. ↓ Gap Time MS. ↓ Gap Time MS. ↓ Gap Time
H

eu
ri

st
ic

CPLEX (60s)* 46.4 84.13% 17h × ×
CPLEX (600s)* 36.6 45.24% 167h × ×

Random 47.8 89.68% 1m 93.2 88.28% 2m 167.2 87.42% 3m
Shortest Job First 31.3 24.21% 40s 57.0 15.15% 1m 99.3 11.33% 2m

Genetic Algorithm 30.6 21.43% 7h 56.4 13.94% 16h 98.7 10.65% 29h
Particle Swarm Opt. 29.1 15.48% 13h 55.1 11.31% 26h 97.3 9.09% 48h

N
eu

ra
lS

ol
ve

r MatNet (RF) 27.3 8.33% 8s 51.5 4.04% 14s 91.5 2.58% 27s
MatNet (PO) 27.0 7.14% 8s 51.3 3.64% 14s 91.1 2.13% 27s

MatNet (RF+Aug.) 25.4 0.79% 3m 49.6 0.20% 8m 89.7 0.56% 23m
MatNet (PO+Aug.) 25.2 0.00% 3m 49.5 0.00% 8m 89.2 0.00% 23m

in (Bi et al., 2022) and on standard benchmark datasets:
TSPLib (Reinelt, 1991) and CVRPLib (Uchoa et al., 2017).
The hyperparameter configurations for these solvers pri-
marily follow their original implementations, with detailed
specifications provided in Appendix E.3. Most experiments
were conducted on a server with NVIDIA 24GB-RTX 4090
GPUs and an Intel Xeon Gold 6133 CPU.

Baselines. We employ well-established heuristic solvers,
including LKH3 (Helsgaun, 2017), HGS (Vidal, 2022),
Concorde (Applegate et al., 2006) for routing problems
and CPLEX (Cplex, 2009) for FFSP, to evaluate the op-
timality gap. We also compare against RL-based neural
solvers that use variants of REINFORCE: AM (Kool et al.,
2019), POMO (Kwon et al., 2020), Sym-NCO (Kim et al.,
2022), Pointerformer (Jin et al., 2023) and ELG (Gao et al.,
2024) for TSP/CVRP, and MatNet (Kwon et al., 2021) for
FFSP. Additional experiments on large scale COPs with
hybrid solver DIMES (Qiu et al., 2022) are included in
Appendix F.1. Since all these neural solvers are originally
trained using modified REINFORCE methods, we collec-
tively refer to these algorithms as RF(s) for simplicity. AM
estimates the advantage function using its previous step
solver, while POMO refines this by averaging the quality
of sampled solutions from the same instance as a base-
line. Building upon POMO, Sym-NCO further improves
REINFORCE by leveraging problem equivalences for data
augmentation, and Pointerformer enhances stability through
reward normalization (i.e., reward shaping).

Choice of parameter α. The parameter α in PO framework
stems from the entropy-regularized objective, which gov-
erns the exploration-exploitation trade-off during training.
Higher α values increase entropy regularization, thereby pro-
moting exploration of the solution space, while lower values
emphasize exploitation. In our implementation, we system-
atically adopt lower α values for training the solvers that
incorporate built-in exploration mechanisms (e.g., POMO,
Sym-NCO, and Pointerformer), as these architectures al-

ready maintain sufficient diversity in their solution sampling.
This calibration prevents excessive exploration that could
impede convergence. Further details regarding our parame-
ter tuning methodology are provided in Appendix E.2.

4.1. Comparison with Existing Algorithms on Standard
Benchmarks

We aim to compare the proposed Preference Optimization
(PO) method with existing modified REINFORCE (termed
as RF) methods, considering sample efficiency during train-
ing, solution quality during inference and generalization
ability on unseen instances with different distributions and
sizes on TSPLib and CVRPLib.

Sample Efficiency. The training performance of PO and RF
upon POMO, Sym-NCO and Pointerformer are illustrated
in Figure 2. PO achieves a convergence speed 1.5x to 2.5x
faster than RFs on such solvers. Notably for POMO and
Sym-NCO, training with PO for 80 epochs yields compa-
rable performance to that with RF for 200 epochs. Sim-
ilar improvements are observed for Pointerformer. For
FFSP using MatNet and large-scale TSP using DIMES,
PO achieves comparable performance with only 60%–70%
training epochs to that of RFs. This demonstrates the in-
herent exploration ability of PO, which stem from entropy-
regularized objective in Eq. 3. Additional experiments on
COMPASS (Chalumeau et al., 2023) and Poppy (Grinsztajn
et al., 2023) are included in Appendix F.3.

Solution Quality. As shown in Table 1, while sharing
the same inference times, models trained with PO mostly
outperform those trained with the RFs in terms of solution
quality. We also perform fine-tuning with Local Search
(2-Opt (Croes, 1958) for TSP and swap* (Vidal, 2022) for
CVRP) as mentioned in Section 3.4. After few steps for
fine-tuning, POMO achieves an gap of only 0.03% on TSP-
100 and 1.19% on CVRP-100, demonstrating that when
approaching the optimal solution, PO can further enhance
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Table 3: Zero-shot generalization experiments on TSPLib and CVRPLib-Set-X benchmarks. Results show averaged
computational time over entire testing set and optimality gaps across different problem size ranges. The SL and RL indicate
Supervised Learning and Reinforcement Learning paradigms respectively.

Solver Paradigm
TSPLib CVRPLib

(0, 200] (200, 1002] Total Time (0, 200] (200, 1000] Total TimeGap Gap Gap Gap Gap Gap

LKH3 Heuristic 0.00% 0.00% 0.00% 24s 0.36% 1.18% 1.00% 16m
HGS Heuristic - - - - 0.01% 0.13% 0.11% 16m

NeuroLKH (Xin et al., 2021b) Heuristic+SL 0.00% 0.00% 0.00% 24s 0.47% 1.16% 0.88% 16m

POMO (Kwon et al., 2020)

Neural Solver+RL

3.07% 13.35% 7.45% 0.41s 5.26% 11.82% 10.37% 0.80s
Sym-NCO (Kim et al., 2022) 2.88% 15.35% 8.29% 0.34s 9.99% 27.09% 23.32% 0.87s

Omni-POMO (Zhou et al., 2023) 1.74% 7.47% 4.16% 0.34s 5.04% 6.95% 6.52% 0.75s
Pointerformer (Jin et al., 2023) 2.31% 11.47% 6.32% 0.24s - - - -

LEHD (Luo et al., 2023)

Neural Solver+SL

2.03% 3.12% 2.50% 1.28s 11.11% 12.73% 12.25% 1.67s
BQ-NCO (Drakulic et al., 2023) 1.62% 2.39% 2.22% 2.85s 10.60% 10.97% 10.89% 3.36s
DIFUSCO (Sun & Yang, 2023) 1.84% 10.83% 5.77% 30.68s - - - -

T2TCO (Li et al., 2023) 1.87% 9.72% 5.30% 30.82s - - - -

ELG (RF) (Gao et al., 2024) Neural Solver+RL 1.12% 5.90% 3.08% 0.63s 4.51% 6.46% 6.03% 1.90s
ELG (PO) 1.04% 5.84% 3.00% 0.63s 4.39% 6.37% 5.94% 1.90s

the policy by using expert knowledge to fine-tune. Moreover,
we extended our evaluation to the FFSP. As summarized
in Table 2, solvers trained with PO consistently achieve
optimal compared to their RF counterparts and heuristic
solvers. These results confirm that PO not only improves
training efficiency but also leads to higher-quality solutions.

Generalization Ability. As PO is a general algorithmic
improvement that can be applied to RL-based solvers, it
could inherit the architectural advantages of existing neural
solvers and enhance them. To empirically validate this, we
adopt it to the ELG (Gao et al., 2024), which is specifically
designed for generalization by incorporating a local policy.
The zero-shot experiments on TSPLib and CVRPLib-Set-X
in Table 3 demonstrate PO improves results in all cases com-
pared with their original REINFORCE-based version ELG
(RF). Further results about cross-distribution generalization
experiments are included in Appendix F.5.

4.2. How Effectively does PO Balance Exploitation and
Exploration?

Consistency of Policy. A key superiority of the proposed
PO algorithm is its ability to consistently emphasize bet-
ter solutions, independent of the numerical values of the
advantage function. Figure 3a compares the advantage as-
signment between PO and REINFORCE-based algorithms.
PO marginally separates high-quality trajectories by assign-
ing them positive advantage values while allocating negative
values to low-quality ones. In contrast, RFs struggles to dif-
ferentiate trajectory quality, with most advantage values
centered around zero. This distinction showcases PO’s ca-
pability to both highlight superior solutions and suppress

inferior ones. Additionally, Figure 3b presents the distri-
bution of advantage scales, where RFs exhibits a narrow,
peaked distribution around zero, indicating limited differ-
entiation. Conversely, PO-based methods display broader
distributions, covering a wider range of both positive and
negative values. This indicates PO’s enhanced ability to dis-
tinguish between high- and low-quality trajectories, further
supporting its effectiveness in solvers’ learning process.

Furthermore, Figure 3c evaluates the consistency of the poli-
cies. PO significantly improves the consistency compared
to RFs, and fine-tuning a pretrained solver with local search
within PO framework further enhances consistency.

Diversity for Exploration. One limitation of existing
REINFORCE-based algorithms is its incompatibility with
entropy regularization at the trajectory level. In contrast, the
PO method is derived from an entropy-regularized objective,
which inherently promotes exploration. We compare the
sum of entropy at each step during the early stage of train-
ing between PO and RF. As shown in Figure 3d, the model
trained using PO achieves significantly higher entropy, indi-
cating a more diverse set of explored strategies. On the other
hand, the RF update scheme results in lower entropy, poten-
tially leading to less efficient exploration. In conclusion, PO
effectively balances exploration and exploitation, enabling
the model to explore the solution space more thoroughly.

Study on Preference Models. A crucial aspect of PO is
the choice of the preference model, as discussed in Sec-
tion 3.3. Different preference models may lead to varying
implicit reward models, as outlined in Eq. 7 and 8. As-
suming a differentiable paired preference model f(·), the
generalized form of the latent reward assigned for each
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Figure 2: (a)-(c): Comparison of PO and RFs on TSP-100 on different neural solvers; PO achieves RFs-level performance in
only 40% - 60% training epochs, and surpasses RFs’ solution quality consistently. (d): Comparison of different preference
models: Bradley-Terry (BT), Plackett-Luce (PL), Thurstone (Th), and unbounded Exponential (Exp) (Azar et al., 2024).
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Figure 3: (a): Advantage values for solutions sorted by their length, sampled from the trained model, PO significantly
assigns separable advantage values than RF. (b): Distribution of advantage scales among different algorithms, comparing
REINFORCE-based method, PO with the Thurstone model (PO-Th), and PO with the Bradley-Terry model (PO-BT).
(c): Consistency measured as p(π(τ1) > π(τ2) | r(τ1) > r(τ2)). PO shows higher consistency than RF, with further
improvement after fine-tuning. (d): Trajectory entropy, which is calculated as the sum of entropy at each step.

τ will be: 1
|Sx|

∑
τ ′∈Sx

[gf (τ, τ
′, x)− gf (τ

′, τ, x)] , where

gf (τ, τ
′, x) = 1 (r(x, τ) > r(x, τ ′)) · f

′(r̂θ(x,τ)−r̂θ(x,τ
′))

f(r̂θ(x,τ)−r̂θ(x,τ ′))

for any τ ′ ∈ Sx. The results, shown in Figure 2d, indi-
cate that the Bradley-Terry model outperforms the others on
TSP-100. This suggests an interesting direction for further
research, exploring the rationale behind the choice of prefer-
ence models on different problems and their impact on the
optimization landscape. More analyses and discussions are
provided in Appendix F.4.

5. Conclusion
In this paper, we introduced Preference Optimization, a
novel framework for solving COPs. By transforming quan-
titative reward signals into qualitative preference signals,
PO addresses the challenges of diminishing reward differ-
ences and inefficient exploration inherent in traditional RL
approaches. We naturally integrate PO with heuristic lo-
cal search techniques into the fine-tuning process, enabling
neural solvers to escape local optima during training and

generate near-optimal solutions without additional time dur-
ing inference . Extensive experimental results demonstrate
the practical viability and effectiveness of our approach,
achieving superior sample efficiency and solution quality
compared to common algorithms in RL4CO.

Notably, our work distinguishes itself from preference opti-
mization methods in RLHF especially for LLMs in a criti-
cal dimension. While RLHF typically relies on subjective,
offline human-annotated datasets, our Preference Optimiza-
tion framework for COPs employs an active, online learning
strategy grounded in objective metrics (e.g., route length) to
identify and prioritize superior solutions.

Despite the promising results, we acknowledge several
avenues for future research. The stability of our re-
parameterized reward function across diverse COPs war-
rants comprehensive investigation. Looking ahead, beyond
COPs, applying PO to optimization problems where reward
signals are difficult to design but preference information
is readily available, such as multi-objective optimization,
remains a valuable direction.
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A. Combinatorial Optimization Problems: TSP and CVRP
We provide concise introductions to three fundamental combinatorial optimization problems: the Traveling Salesman
Problem (TSP), the Capacitated Vehicle Routing Problem (CVRP) and the Flexible Flow Shop Problem (FFSP).

A.1. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) seeks to determine the shortest possible route that visits each city exactly once and
returns to the origin city. Formally, given a set of cities C = {c1, c2, . . . , cn} and a distance matrix D where Di,j represents
the distance between cities ci and cj , the objective is to find a trajectory τ = (c1, c2, . . . , cn, c1) that minimizes the total
travel distance:

min
τ

n∑
k=1

Dτ(k),τ(k+1).

Subject to:
τ is a permutation of C, τ(n+ 1) = τ(1).

Here, τ(k) denotes the k-th city in the trajectory, and the constraint τ(n+ 1) = τ(1) ensures that the tour returns to the
starting city.

A.2. Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) extends the TSP by introducing multiple vehicles with limited carrying
capacities. The goal is to determine the optimal set of routes for a fleet of vehicles to deliver goods to a set of customers,
minimizing the total distance traveled while respecting the capacity constraints of the vehicles.

Formally, given:

• A depot c0,

• A set of customers C = {c1, c2, . . . , cn},

• A demand di for each customer ci,

• A distance matrix D where Di,j represents the distance between locations ci and cj ,

• A fleet of m identical vehicles, each with capacity Q,

the objective is to assign trajectories {τ1, τ2, . . . , τm} to the vehicles such that each customer is visited exactly once, the
total demand on any trajectory does not exceed the vehicle capacity Q, and the total distance traveled by all vehicles is
minimized:

min
{τ1,τ2,...,τm}

m∑
k=1

|τk|−1∑
l=1

Dτk(l),τk(l+1).

Subject to:
τk(1) = τk(|τk|) = c0, ∀k ∈ {1, 2, . . . ,m},

m⋃
k=1

{τk(2), τk(3), . . . , τk(|τk| − 1)} = C,

τk(i) ̸= τk(j) ∀k ∈ {1, 2, . . . ,m},∀i ̸= j,∑
ci∈τk

di ≤ Q, ∀k ∈ {1, 2, . . . ,m}.

Here, τk(l) denotes the l-th location in the trajectory τk assigned to vehicle k. The constraints ensure that:

• Each trajectory starts and ends at the depot c0.

• Every customer is visited exactly once across all trajectories.

• No customer is visited more than once within the same trajectory.

• The total demand served by each vehicle does not exceed its capacity Q.
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A.3. Trajectory Representation

In both TSP and CVRP, a trajectory τ represents a sequence of actions or decisions made by the policy to construct a
solution. For TSP, τ is a single cyclic permutation of the cities, whereas for CVRP, τ comprises multiple routes, each
assigned to a vehicle. Our Preference Optimization framework utilizes these trajectories to model and compare solution
quality through preference signals derived from statistical comparison models.

A.4. Flexible Flow Shop Problem

The Flexible Flow Shop Problem (FFSP) is a combinatorial optimization problem commonly encountered in scheduling
tasks. It generalizes the classic flow shop problem by allowing multiple parallel machines at each stage, where jobs can be
processed on any machine within a stage. The primary goal is to assign and sequence jobs across stages to minimize the
makespan, which is the total time required to complete all jobs.

The optimization objective for FFSP can be mathematically formulated as:

min
σ,x

Cmax = max
j∈J

{
Cms

j

}
,

subject to:

Cms
j = Sms

j + pms
j , ∀j ∈ J , ∀ms ∈M,

Sms
j ≥ C

ms−1

j , ∀j ∈ J , ∀ms−1 ∈M,

Sms
j ≥ Cms

j′ , ∀(j, j′) ∈ J , if σ(j) > σ(j′),

xj,ms = 1, if job j is assigned to machine ms,∑
ms∈M

xj,ms
= 1, ∀j ∈ J .

Here: J is the set of jobs.M is the set of machines at each stage. σ represents the sequence of jobs. x is the assignment
matrix of jobs to machines. Sms

j is the start time of job j on machine ms. Cms
j is the completion time of job j on machine

ms. pms
j is the processing time of job j on machine ms. Cmax is the makespan to be minimized.

The constraints ensure that jobs are scheduled sequentially on machines, maintain precedence, and adhere to the assignment
rules. The FFSP is NP-hard and challenging to solve for large-scale instances.

B. Graph Embedding and Solution Decoder
The Attention Model (AM)(Kool et al., 2019) represents a groundbreaking approach that successfully applied the Transformer
architecture, based on attention mechanisms, to solve typical COPs such as routing and scheduling problems. AM adopts a
classic Encoder-Decoder structure. Its core innovation lies in the Encoder, which utilizes a self-attention mechanism to
comprehensively capture relationships between input nodes, while the Decoder employs a specialized attention mechanism
(often a variant of Pointer Networks(Vinyals et al., 2015)) to sequentially construct solutions. Both POMO (Kwon et al.,
2020) and Pointerformer (Jin et al., 2023) inherit this fundamental architecture.

B.1. Graph Encoder

The encoder first projects raw features xi ∈ Rdx (e.g., 2D coordinates) into initial node embeddings via a shared MLP:

h
(0)
i = MLP(xi) ∈ Rdh (10)

These initial embeddings are then refined through N layers of multi-head attention (MHA). In each layer l ∈ {1, 2, . . . , N},
the embedding for node i is updated as follows:

h̃
(l)
i = h

(l−1)
i + MHA

(
{h(l−1)

j }nj=1

)
(11)
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h
(l)
i = h̃

(l)
i + FFN

(
h̃
(l)
i

)
(12)

where FFN represents a feed-forward network with activation.

To provide the Decoder with global contextual information about the entire problem instance, a graph-level embedding ĥ is
computed by aggregating all final node embeddings. A common method is mean pooling:

ĥ =
1

n

n∑
i=1

h
(N)
i (13)

where h(N)
i represents the final embedding of node i after N layers of attention, and ĥ captures the aggregate features of the

entire graph.

B.2. Solution Decoder

Following the encoding phase, a decoder is employed to sequentially generate the solution in an auto-regressive manner,
modeling the COP as a Markov Decision Process. At each step t, it maintains a context vector hctx

t that represents the
current state of the solution construction process. This context is initialized with the graph embedding and the first selected
node (often a designated starting point, such as a depot in routing problems):

hctx
0 = [ĥ;h(N)

τ0 ] (14)

At subsequent steps t > 0, the context is updated to incorporate information about the most recently selected node:

hctx
t = MLP(hctx

0 ,h(N)
τt−1

) (15)

The context-dependent query vector and node-specific key vectors are computed as:

qt = Wdec
Q htctx (16)

kj = Wdec
K h

(N)
j (17)

The compatibility between the current context and each potential next node is calculated using an attention-based scoring
mechanism:

utj =

{
C · tanh

(
q⊤
t kj√
dh

)
if j ∈ Ut

−∞ otherwise,
(18)

where C is a temperature scaling parameter, dhis the dimension of the hidden representation, and Ut represents the set of
feasible (typically unvisited) nodes at step t.

Finally, by applying the softmax function to the logits, the probability distribution for selecting the next node τt is obtained:

p(τt = j | st, τ1:t−1) =
exp(utj)∑

k∈Ut
exp(utk)

(19)

B.3. Model Variants and Extensions

Different architectural variants have been proposed to enhance the performance of attention-based neural solvers:

POMO (Kwon et al., 2020) leverages the inherent symmetry in many COPs by exploring multiple trajectories starting from
different initial nodes. For a problem with nn n nodes, POMO generates nn n different solutions by starting the decoding
process from each node, sharing parameters across all instances to improve training efficiency.

Pointerformer (Jin et al., 2023) enhances the encoder-decoder architecture with reversible residual network in Transformer
blocks to effectively reduce the memory demand for larger-scale problems.

Sym-NCO (Kim et al., 2022) further exploits problem symmetry through sophisticated augmentation techniques, allowing
the model to learn invariant representations that generalize better across different problem instances.

In all these variants, the core principle of encoding graph structure via attention mechanisms and decoding solutions via
pointer-based selection remains consistent, demonstrating the flexibility and effectiveness of this paradigm for neural
combinatorial optimization.
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C. Preference Models
In this section, we provide a concise overview of three widely used preference models: the Bradley-Terry (BT) model, the
Thurstone model, and the Plackett-Luce (PL) model. These models are fundamental in statistical comparison modeling and
form the basis for transforming quantitative reward signals into qualitative preference signals in our Preference Optimization
(PO) framework.

C.1. Bradley-Terry Model

The Bradley-Terry model is a probabilistic model used for pairwise comparisons. It assigns a positive parameter to each
trajectory τi, representing its preference strength. The probability that trajectory τi is preferred over trajectory τj is given by:

p(τi ≻ τj) =
exp(r̂(τi))

exp(r̂(τi)) + exp(r̂(τj))

=
1

1 + exp(−(r̂(τi)− r̂(τj)))

= σ(r̂(τi)− r̂(τj)).

This model assumes that the preference between any two trajectories depends solely on their respective preference strengths,
and it maintains the property of transitivity.

C.2. Thurstone Model

The Thurstone model, also known as the Thurstone-Mosteller model, is based on the assumption that each trajectory τi has
an associated latent score si, which is normally distributed. The probability that trajectory τi is preferred over trajectory τj
is modeled as:

p(τi ≻ τj) = Φ

(
r̂(τi)− r̂(τj)

σ

)
,

where Φ is the cumulative distribution function of the standard normal distribution, and σ represents the standard deviation
of the underlying noise. This model accounts for uncertainty in preferences and allows for probabilistic interpretation of
comparisons. We adopt a normal distribution throughout this work.

C.3. Plackett-Luce Model

The Plackett-Luce model extends pairwise comparisons to handle full rankings of multiple trajectories. It assigns a positive
parameter λi to each trajectory τi, representing its utility. Given a set of trajectories to be ranked, the probability of observing
a particular ranking τ = (τ1, τ2, . . . , τn) is given by:

P (τ) =

n∏
k=1

exp(r̂(τk))∑n
j=k exp(r̂(τj))

.

This model is particularly useful for modeling complete rankings and can be extended to partial rankings. It preserves
the property of independence of irrelevant alternatives and allows for flexible representation of preferences over multiple
trajectories.

D. Mathematical Derivations
D.1. Deriving the Optimal Policy for Entropy-Regularized RL Objective

In this section, we derive the analytical solution for the optimal policy in an entropy-regularized reinforcement learning
objective.

Starting from the entropy-regularized RL objective in Eq. 3:

max
π

Ex∼D
[
Eτ∼πθ(·|x) [r(x, τ)] + αH (π(· | x))

]
,
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whereH (π(· | x)) = −Eτ∼π(τ |x) (log π(τ | x)) is the entropy of the policy, and α > 0 is the regularization coefficient.

We can rewrite the objective as:

max
π

Ex∼D, τ∼π(τ |x) [r(x, τ)− α log π(τ | x)] . (20)

Our goal is to find the policy π∗(τ | x) that maximizes this objective. To facilitate the derivation, we can express the problem
as a minimization:

min
π

Ex∼D, τ∼π(τ |x)

[
log π(τ | x)− 1

α
r(x, τ)

]
. (21)

Notice that:

log π(τ | x)− 1

α
r(x, τ) = log

π(τ | x)
exp

(
1
αr(x, τ)

) . (22)

Introduce the partition function Z(x) =
∑

τ exp
(
1
αr(x, τ)

)
, and define the probability distribution:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r(x, τ)

)
. (23)

This defines a valid probability distribution over trajectories τ for each instance x, as π∗(τ | x) > 0 and
∑

τ π
∗(τ | x) = 1.

Substituting Eq. 23 into Eq. 22, we have:

log π(τ | x)− 1

α
r(x, τ) = log

π(τ | x)
π∗(τ | x)

+ logZ(x). (24)

Therefore, the minimization problem in Eq. 21 becomes:

min
π

Ex∼D

[
Eτ∼π(τ |x)

[
log

π(τ | x)
π∗(τ | x)

]
+ logZ(x)

]
. (25)

Since logZ(x) does not depend on π, minimizing over π reduces to minimizing the Kullback-Leibler (KL) divergence
between π(τ | x) and π∗(τ | x):

min
π

Ex∼D [DKL (π(τ | x) ∥ π∗(τ | x))] , (26)

where the KL divergence is defined as:

DKL (π(τ | x) ∥ π∗(τ | x)) = Eτ∼π(τ |x)

[
log

π(τ | x)
π∗(τ | x)

]
.

The KL divergence is minimized when π(τ | x) = π∗(τ | x) according to Gibbs’ inequality. So, the optimal policy is:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r(x, τ)

)
. (27)

This shows that the optimal policy under the entropy-regularized RL objective is proportional to the exponentiated reward
function, normalized by the partition function Z(x).

Conclusion. We have derived that the optimal policy π∗(τ | x) in the entropy-regularized RL framework is given by Eq. 27.
This policy assigns higher probabilities to trajectories with higher rewards, balanced by the entropy regularization parameter
α, which controls the trade-off between exploitation and exploration.
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D.2. Proof of Proposition 3.1

Proposition. Let r̂(x, τ) be a reward function consistent with the Bradley-Terry, Thurstone, or Plackett-Luce models. For a
given reward function r̂′(x, τ), if there exists a function h(x) such that r̂′(x, τ) = r̂(x, τ) − h(x), then both r̂(x, τ) and
r̂′(x, τ) induce the same optimal policy in the context of an entropy-regularized reinforcement learning problem.

Proof: In an entropy-regularized reinforcement learning framework, the optimal policy π∗(τ | x) for a given reward function
r̂(x, τ) is given by:

π∗(τ | x) = 1

Z(x)
exp

(
1

α
r̂(x, τ)

)
,

where α > 0 is the temperature parameter (inverse of the regularization coefficient), and Z(x) is the partition function
defined as:

Z(x) =
∑
τ

exp

(
1

α
r̂(x, τ)

)
.

Similarly, for the reward function r̂′(x, τ) = r̂(x, τ)− h(x), the optimal policy π′∗(τ | x) is:

π′∗(τ | x) = 1

Z ′(x)
exp

(
1

α
r̂′(x, τ)

)
=

1

Z ′(x)
exp

(
1

α
[r̂(x, τ)− h(x)]

)
, (28)

where Z ′(x) is the partition function corresponding to r̂′(x, τ):

Z ′(x) =
∑
τ

exp

(
1

α
r̂′(x, τ)

)
=
∑
τ

exp

(
1

α
[r̂(x, τ)− h(x)]

)
.

Simplifying the exponent in Eq. 28:

exp

(
1

α
[r̂(x, τ)− h(x)]

)
= exp

(
1

α
r̂(x, τ)

)
exp

(
− 1

α
h(x)

)
.

Since h(x) depends only on x and not on τ , the term exp
(
− 1

αh(x)
)

is a constant with respect to τ . Therefore, we can
rewrite Eq. 28 as:

π′∗(τ | x) = 1

Z ′(x)
exp

(
− 1

α
h(x)

)
exp

(
1

α
r̂(x, τ)

)
. (29)

Combining constants:

π′∗(τ | x) =

(
exp

(
− 1

αh(x)
)

Z ′(x)

)
exp

(
1

α
r̂(x, τ)

)
.

Notice that the term
exp(− 1

αh(x))
Z′(x) is a normalization constant that ensures

∑
τ π

′∗(τ | x) = 1. Similarly, for π∗(τ | x), the
normalization constant is 1

Z(x) .

Since both π∗(τ | x) and π′∗(τ | x) are proportional to exp
(
1
α r̂(x, τ)

)
, they differ only by their respective normalization

constants. Therefore, they assign the same relative probabilities to trajectories τ .

To formalize this, consider any two trajectories τ1 and τ2. The ratio of their probabilities under π∗(τ | x) is:
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π∗(τ1 | x)
π∗(τ2 | x)

=
exp

(
1
α r̂(x, τ1)

)
exp

(
1
α r̂(x, τ2)

) = exp

(
1

α
[r̂(x, τ1)− r̂(x, τ2)]

)
. (30)

Similarly, under π′∗(τ | x):

π′∗(τ1 | x)
π′∗(τ2 | x)

=
exp

(
1
α r̂

′(x, τ1)
)

exp
(
1
α r̂

′(x, τ2)
) = exp

(
1

α
[r̂′(x, τ1)− r̂′(x, τ2)]

)
. (31)

Substituting r̂′(x, τ) = r̂(x, τ)− h(x):

r̂′(x, τ1)− r̂′(x, τ2) = [r̂(x, τ1)− h(x)]− [r̂(x, τ2)− h(x)] = r̂(x, τ1)− r̂(x, τ2).

Therefore, the ratios in Eq. 30 and 31 are equal:

π∗(τ1 | x)
π∗(τ2 | x)

=
π′∗(τ1 | x)
π′∗(τ2 | x)

.

Since the policies assign the same relative probabilities to all trajectories, and they are both properly normalized, it holds:

π∗(τ | x) = π′∗(τ | x), ∀τ.

Thus, r̂(x, τ) and r̂′(x, τ) induce the same optimal policy in the context of an entropy-regularized reinforcement learning
problem. This result holds for the Bradley-Terry, Thurstone, and Plackett-Luce models because these models relate
preferences to differences in reward values, and any constant shift h(x) in the reward function does not affect the differences
between reward values for different trajectories.

E. Experiment Detail and Setting
E.1. Implementation Details of the Code

The implementation of the Preference Optimization (PO) algorithm in Python using PyTorch is as follows:

import torch.nn.functional as F

def preference_optimazation(reward, log_prob):
"""

reward: reward for all solutions, shape(B, P)
log_prob: policy log prob, shape(B, P)

"""
preference = reward[:, :, None] > reward[:, None, :]
log_prob_pair = log_prob[:, :, None] - log_prob[:, None, :]

# Under Brandley-Terry model:
pf_log = torch.log(F.sigmoid(self.alpha * log_prob_pair))

# Exponential: torch.log(torch.exp(self.alpha * log_prob_pair)):
pf_log = self.alpha * log_prob_pair

loss = -torch.mean(pf_log * preference)
return loss

19



Preference Optimization for Combinatorial Optimization Problems

E.2. Parameter Tuning

Methodological views. From PO’s entropy-regularized objective, the parameter α represents the exploration-exploitation
trade-off. Higher α values promote exploration, while lower values emphasize exploitation. In our experiments, we
employed a grid search within 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0 for each problem-model combination.

Empirical views. Our empirical findings suggest that PO’s performance is influenced by two additional factors:

Network architecture’s inherent exploration capacity: Models with built-in exploration mechanisms (e.g., POMO and its
variants with multi-start approaches) typically benefit from lower α values to prioritize exploitation but DIMES require more
exploration with higher α values. For POMO and its variants on different problems, we observed that routing problems
typically perform well with α in the range of 1e-2 to 1e-3, while FFSP benefits from α values between 1.0 and 2.0.

Preference model selection: As PO serves as a flexible framework, different preference models could yield distinct
parameterized reward assignments, necessitating different α calibrations. The Exponential model could be a good candidate
when the Bradley-Terry model underperforms on new problems, particularly for challenging problems, before exploring
alternatives like Thurstone or Plackett-Luce models (which generalize Bradley-Terry beyond pairwise comparisons). Besides,
we also provide detailed analyses regarding different preference models in Appendix F.4.

Adapting to new problems. For new applications, there are two intuitions for practical extensions:

Length-control regularization: For problems where sampled solutions have varying lengths and shorter solu-
tions with lower costs are preferred, a length-control regularization factor 1

|τ | can be effective, resulting in:

f(α
[

1
|τ1| log πθ(τ1|x)− 1

|τ2| log πθ(τ2|x)
]
).

Margin enhancement: For models with limited capacity, a margin enhancement term f(α [log πθ(τ1|x)− log πθ(τ2|x)]− γ)
can help prioritize better solutions, where γ serves as a margin parameter when f(·) is a non-linear function.

E.3. Hyperparameters Setting

In our experimental setup, we set the tanh clip to 50.0 for VRPs, which has been shown to facilitate the training process (Jin
et al., 2023). The following table presents the parameter settings for the four training frameworks: POMO (Kwon et al.,
2020), Pointerformer (Jin et al., 2023), AM (Kool et al., 2019), and Sym-NCO (Kim et al., 2023).

POMO framework hyperparameter settings:

Table 4: Hyperparameter setting for POMO.

TSP-100 CVRP-100

Alpha 0.05 0.03
Preference Function BT Exponential

Epochs 2000 4000
Epochs (Finetune) 100 200
Epoch Size 100000 50000
Encoder Layer Number 6 6
Batch Size 64 64
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Tanh Clip 50 50
Learning Rate 3e-4 3e-4

Additional linear projection layer was adopted followed MHA in decoder as in (Kool et al., 2019).

20



Preference Optimization for Combinatorial Optimization Problems

Pointerformer framework hyperparameter settings:

Table 5: Hyperparameter setting for Pointerformer.

TSP

Alpha 0.05
Preference Function BT

Epochs 2000
Epoch Size 100000
Batch Size 64
Embedding Dimension 128
Attention Head Number 8
Feed Forward Dimension 512
Encoder Layer Number 6
Learning Rate 1e-4

AM framework hyperparameter settings. Batch size of 512 contains 32 instances, each with 16 solutions, totaling 512
trajectories:

Table 6: Hyperparameter setting for AM.

TSP CVRP

Alpha 0.05 0.03
Preference Function BT BT

Epochs 100 100
Epoch Size 1280000 1280000
Encoder Layer Number 3 3
Batch Size 256 256
Embedding Dimension 128 128
Attention Head Number 8 8
Tanh Clip 50 50
Learning Rate 1e-4 1e-4

Sym-NCO framework hyperparameter settings:

Table 7: Hyperparameter setting for Sym-NCO.

TSP CVRP

Alpha 0.05 0.03
Preference Function BT Exponential

Epochs 2000 4000
Epoch Size 100000 50000
Batch Size 64 64
SR Size 2 2
Embedding Dimension 128 128
Attention Head Number 8 8
Feed Forward Dimension 512 512
Encoder Layer Number 6 6
Learning Rate 1e-4 1e-4

21



Preference Optimization for Combinatorial Optimization Problems

DIMES framework hyperparameter settings:

Table 8: Hyperparameter Setting for DIMES.

TSP500 TSP1000 TSP10000
Alpha 2 2 2
Preference Function Exponential Exponential Exponential
KNN K 50 50 50
Outer Opt AdamW AdamW AdamW
Outer Opt LR 0.001 0.001 0.001
Outer Opt WD 1e-5 1e-5 1e-5
Net Units 32 32 32
Net Act SiLU SiLU SiLU
Emb Depth 12 12 12
Par Depth 3 3 3
Training Batch Size 3 3 3

MATNET framework hyperparameter settings:

Table 9: Hyperparameter Setting for MATNET.

FFSP20 FFSP50 FFSP100
Alpha 1.5 1.5 1
Preference Function Exponential Exponential Exponential
Pomo Size 24 24 24
Epochs 100 150 200
Epoch Size 1000 1000 1000
Encoder Layer Number 3 3 3
Batch Size 50 50 50
Embedding Dimension 256 256 256
Attention Head Number 16 16 16
Feed Forward Dimension 512 512 512
Tanh Clip 10 10 10
Learning Rate 1e-4 1e-4 1e-4

F. Additional Experiments.
F.1. Experiments on Large Scale Problems

We further conduct experiments on large-scale TSP problems to validate the effectiveness of PO using the DIMES model
(Qiu et al., 2022). DIMES leverages a reinforcement learning and meta-learning framework to train a parameterized heatmap,
with REINFORCE as the optimization method in their original experiments. Solutions are generated by combining the
heatmap with various heuristic methods, such as greedy decoding, MCTS, 2-Opt, or fine-tuning methods like Active Search
(AS), which further train the solver for each instance.

As summarized in Table 10, our experiments demonstrate that PO improves the quality of the heatmap representations
compared to REINFORCE. Across all decoding strategies (e.g., greedy, sampling, Active Search, MCTS (with 2-Opt as
an inner loop)), PO-trained models consistently outperform their REINFORCE-trained counterparts in terms of solution
quality, as evidenced by lower gap percentages across TSP500, TSP1000, and TSP10000. This confirms that PO enhances
the learned policy, making it more effective regardless of the heuristic decoding method applied.
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Table 10: Experiment results on large scale TSP.

Method TSP500 TSP1000 TSP10000

Len. ↓ Gap Time Len. ↓ Gap Time Len. ↓ Gap Time

LKH-3 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.79 0.00% 8.8h

DIMES-G(RL) 19.30 16.62% 0.8m 26.58 14.96% 1.5m 86.38 20.36% 2.3m
DIMES-G(PO) 18.82 13.73% 0.8m 26.22 13.39% 1.5m 85.33 18.87% 2.3m
DIMES-S(RL) 19.11 15.47% 0.9m 26.37 14.05% 1.8m 85.79 19.50% 2.4m
DIMES-S(PO) 18.75 13.29% 0.9m 26.07 12.74% 1.8m 85.21 18.67% 2.4m
DIMES-AS(RL) 17.82 7.68% 2h 24.99 8.09% 4.3h 80.68 12.39% 2.5h
DIMES-AS(PO) 17.78 7.42% 2h 24.73 6.97% 4.3h 80.14 11.64% 2.5h
DIMES-MCTS(RL) 16.93 2.30% 3m 24.30 5.10% 6.3m 74.69 4.04% 27m
DIMES-MCTS(PO) 16.89 2.05% 3m 24.33 5.23% 6.3m 74.61 3.93% 27m

F.2. Training POMO for Long Time

Figure 4 compares the training efficiency of the PO and RL algorithms for TSP and CVRP. In the TSP task (a), PO
reaches an objective value of 7.785 at epoch 400, while RL requires up to 1600 epochs to achieve comparable performance,
demonstrating the sample efficiency of PO. This difference becomes more pronounced as training progresses. In the more
challenging CVRP environment (b), PO continues to outperform RL, indicating its robustness and effectiveness in handling
more complex optimization problems.

For TSP, each training epoch takes approximately 9 minutes, while each finetuning epoch with local search takes about 12
minutes. For CVRP, a training epoch takes about 8 minutes, and a finetuning epoch takes around 20 minutes. Since local
search is executed on the CPU, it does not introduce additional GPU inference time. The finetuning phase constitutes 5% of
the total epochs, adding a manageable overhead to the overall training time.
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Figure 4: (a) Training curve for TSP (N=100) over 2000 epochs. (b) Training curve for CVRP (N=100) over 4000 epochs.

F.3. Experiments on COMPASS and Poppy

To validate the PO’s flexibility, we adapt it to the recent population-based framework COMPASS (Chalumeau et al.,
2023) and Poppy (Grinsztajn et al., 2023). COMPASS learns a continuous latent space representing diverse strategies for
combinatorial optimization and Poppy trains a population of reinforcement learning agents for combinatorial optimization,
guiding unsupervised specialization via a ”winner-takes-all” objective to produce complementary strategies that collaborate
effectively to solve the problems. We implement PO upon these baselines and train them from scratch for 100k steps on a
single 80GB-A800 GPU.
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(c) CVRP-100 Poppy
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Figure 5: Training curves of PO and REINFORCE on Poppy and COMPASS.

The results above demonstrate that 1) PO significantly ensures lower optimality gap at the same iteration number; 2) PO
ensures much faster convergence speed for the same gap, and higher stability during optimization. Moreover, these results
also validate that our proposed algorithmic improvement method is consistently effective in various RL-based baselines.

F.4. Preference Modeling

As indicated in (Azar et al., 2024), the Bradley-Terry and Thurstone models struggle to handle extreme scenarios where
p(τ1 ≻ τ2) ≈ 1. Achieving such a near-certain preference requires r̂θ(x, τ1) − r̂θ(x, τ2) → +∞, implying πθ(τ1)

πθ(τ2)
≈ 0.

However, both the logistic function (in the Bradley-Terry model) and the CDF of the normal distribution (in the Thurstone
model) exhibit gradient vanishing in this regime, as shown in Figure 6b. A natural alternative is the unbounded exponential
function f(·) = exp(·), which places a much stronger emphasis on preferred solutions compared to Bradley-Terry and
Thurstone.

Empirically, we observe that while the Bradley-Terry model performs better on smaller-scale problems (where overfitting
is more likely, and a conservative preference function can mitigate this), the exponential function is more effective for
larger-scale or complex (harder) COPs, as it prevents convergence to suboptimal local optima more vigorously. Future
research could investigate theoretical properties of these preference models in different reward regimes, develop adaptive
mechanisms that switch between them based on problem complexity.
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Figure 6: Comparison of three preference models—Thurstone, Bradley-Terry, and Exponential— under different reward
differences rθ(x, τ1)− rθ(x, τ2). (a) Illustrates how each model’s preference function behaves as the reward gap changes.
(b) Shows the corresponding weight (gradient) scaling factor, highlighting the gradient vanishing issue in Bradley-Terry and
Thurstone for large positive reward gaps, and the strong emphasis provided by the exponential model.

F.5. Generalization

We conducted a zero-shot cross-distribution evaluation, where models were tested on data from unseen distributions. Since
models trained purely with RL tend to overfit to the training data distribution (Zhou et al., 2023), they may struggle with
different reward functions in new distributions. However, training with PO helps mitigate this overfitting by avoiding the
need for ground-truth reward signals. Following the diverse distribution setup in (Bi et al., 2022), the results are summarized
in Table 11. Our findings show that the model trained with PO outperforms the original RL-based model across all scenarios.

Table 11: Zero-shot generalization experiment results. The Len and Gap are average on 10k instances.

Method
Cluster Expansion Explosion Grid Implosion

Len.↓ Gap Len.↓ Gap Len.↓ Gap Len.↓ Gap Len.↓ Gap

T
SP

LKH 3.66 0.00% 5.38 0.00% 5.83 0.00% 7.79 0.00% 7.61 0.00%
POMO-RL 3.74 2.09% 5.41 0.60% 5.85 0.20% 7.80 0.16% 7.63 0.15%
POMO-PO 3.70 1.12% 5.40 0.34% 5.84 0.06% 7.79 0.04% 7.62 0.05%

C
V

R
P HGS 7.79 0.00% 11.38 0.00% 12.35 0.00% 15.59 0.00% 15.47 0.00%

POMO-RL 7.97 2.28% 11.51 1.29% 12.48 0.97% 15.79 0.86% 15.60 0.87%
POMO-PO 7.93 1.73% 11.49 1.12% 12.45 0.76% 15.76 0.63% 15.57 0.65%
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