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Abstract

Visual Reinforcement Learning is a popular and powerful framework that takes full
advantage of the Deep Learning breakthrough. It is known that variations in the
input (e.g., different colors of the panorama due to the season of the year) or task
(e.g., changing the target speed of a car) domains could disrupt agents performance,
therefore requiring new training. Recent advancements in Latent Communication
Theory, show that it is possible to combine components of different neural networks
to create new models in a zero-shot fashion. In this paper, we leverage upon such
advancements to show that components of agents trained on different visual and task
variations can be combined by aligning the latent representations produced by their
encoders, to obtain new agents that can act well in visual-task combinations never
seen together during training. Our findings open to more efficient training processes,
significantly reducing time and computational costs. We release the code at https:
//github.com/antoniopioricciardi/rl_relrepr_gymnasium.git

1 Introduction

→

Figure 1: Using translation methods, a controller trained on an environment with a given visual
variation (left) can be reused without any training or fine-tuning on a different environment (right)
with comparable performance. In red we see the trajectory of a car driven by the same controller
when connected to two different encoders, one for each visual variation.
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Reinforcement Learning (RL) drives some of the most prominent achievements in modern artificial
intelligence. Its combination with deep learning enables superhuman performances in complex and
articulated tasks like strategic games [26, 27], showing micro and macro adaptability to settings with
a wide variety of inputs [32].

However, Deep RL’s outstanding performance is not accessible to everyone. Training agents without
labeled data comes at the cost of time-consuming computations, generating millions of interactions
and requiring weeks of training. Furthermore, these architectures face sensitive training procedures:
for example, different random seeds may cause divergent training behaviors. Finally, agents specialize
in exploiting the world they observed during training, and any shift in the visual, task, or domains
usually requires training new agents from scratch.

Many works try to cover for possible domain shift a priori, by using domain randomization [31] or
data augmentation techniques [9, 36, 35, 11], so that invariance can be produced by “memorizing”
what is irrelevant to the task during training, but often requiring longer training and more complex
architectures. Moreover, it might be necessary to know what types of perceptual shifts would occur
during deployment. Latent alignment techniques [10, 37] aim to produce feature invariance at
deployment time, assuming the task remains the same. This is obtained by collecting latent features
during training as examples of what the agent knows about the task so that, when presented with
a new visual domain, the new latents are trained to match the distribution of those that appeared
during training, while other methods work to make neural components reusable by imposing training
constraints [4, 14]. Recent advances in the representation learning field show that it is possible to
reuse neural components from trained models in a zero-shot fashion, by either projecting the spaces
of different models to a common one [23], or by mapping the produced latent space from a model to
another [20].

In this work, we show how these methods can be applied in the setting of visual deep RL so that
learned visual representations and skills can be reused by recombining neural network models in a
zero-shot fashion. For example, imagine an agent trained to drive a car on a racing track exclusively
during spring: to drive during summer, it would be necessary to retrain the agent to account for the
visual variation given by the different grass colors. We empirically show that learned representations
from different models can be glued in a zero-shot setting. For example, as illustrated in Figure 1, we
can reuse and combine neural components between agents trained during spring and agents trained
during summer, to create a new agent able to perform on visual and task variations never-seen together
during training.

Contributions. We propose a method to combine encoders and controllers trained in different
regimes with perceptual shifts or task objective variations. We assemble new agents capable of
visual-task pairs never seen nor collected for training, without any retraining or fine-tuning. We base
our investigation on recent advancements in representation learning [20, 23], and for the first time in
RL, we show that it is possible to either: (i) recover a map to translate model representations between
them; (ii) unifying their spaces and producing a universal policy. We test our method on various
environments with visual, task, and seed variations. All the experiments demonstrate that under the
instability of RL training lies a similar understanding of the world. Our opening to direct translation
between these representations leads to exciting theoretical and applicative perspectives.

In summary, our work contributes to exploring emerging patterns in the representations learned in
different environments and their variations. We propose to investigate end-to-end trained models as a
union of two different components, and we use this ground to propose a novel procedure to achieve
zero-shot stitching of modules learned from different trainings. This zero-shot stitching allows for
policies components trained on a variation of a certain environment to be transferred into another
one. Indeed, as shown in Section 4, the proposed methodology can generalize to variations in the
observations domain (e.g., different background colors or camera perspective) and changes in the
environment objective (e.g., different task or action space).

2 Related Work

Model Stitching The concept of "Model Stitching" has been explored to analyze the similarity
of latent spaces across different models. For instance, stitching layers as discussed in [18, 1, 3]
provide a metric for measuring similarity. Recently, model stitching has been extended to facilitate
model reuse by integrating parts from multiple networks. Rather than designing compatible and
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reusable components, which can complicate the model architecture [8, 34], these recent approaches
demonstrate the feasibility of zero-shot stitching between neural networks [23, 24, 20]. They assume
the knowledge of a semantic correspondence between the training distributions, which can be
leveraged to unify the representations into a universal space or to estimate a direct translation between
them.

RL Modular Agents Transferring agent policies across visual or dynamic environment variations
remains an open challenge [40, 22, 13]. The idea of reusing components like value functions [30, 19],
policies [5, 4], parameters [16, 6], features [2] has been widely explored. On a similar line, [39]
combines reward and latent space distance by minimizing bisimulation metrics to train encoders
invariant to certain visual distractors or small differences in the input space. An alternative is to design
agents as the composition of multiple modules. Modular RL approaches work in a “sense-plan-act”
paradigm [15] to mitigate sample inefficiency by combining different modules, each able to solve
different sub-problems [21], such that when combined they can solve more complex tasks [25, 28].
In numerous instances [33], existing prior knowledge and other sources of information are used. In
this sense, a module can be considered a policy dedicated to a sub-task. Then, a neural network acts
as a planner, selecting the correct policy at the right moment [29, 7]. However, module subdivisions
also constitute a major drawback, since they require specific architectures and careful manual design.

Latent alignment for RL Another family of techniques in RL seeks for invariances in the latent
space, relying on the assumption that for some input variations, “the task remains the same, and so
the agent experiences internally should also remain the same” [37]. For example, PAD [10] trains
an inverse dynamics model in a supervised manner, meanwhile ILA [37] uses finetuning to match
prior distributions in visual variations without needing paired image data. Both works, however,
exclusively address visual variations, without investigating task changes. Differently, [4] perform
task-robot stitching in what they call interconnected modules. However, they need to restrict agents to
a limited number of hidden units to keep things manageable, while combining trajectory optimization
and supervised learning to train a global neural network policy, using regularization techniques to
achieve task-invariance and avoid overfitting to the robot-task combinations seen during training.
Finally, [14] shows promising results in policy stitching for a robot arm, relying on the relative
representation framework Moschella et al. [23], with the caveat of working with low-dimensional
signals as input and necessitating the training of new models to project latent spaces to a common
one using relative representations.

Our Positioning Following the recent methodologies proposed by [23] and [20], we frame our work
in the context of latent communication for reinforcement learning agents, focusing on performing
zero-shot stitching between different neural models trained under different conditions. In particular,
we enable communication between policy encoders by projecting their latent spaces to a common
space or mapping from one space to another. By employing relative representations, we can create
a shared latent space that facilitates compositionality between encoders and controllers, as controllers
can interpret the latent spaces of other encoders if they share the same space. Unlike Jian et al. [14],
we work with high-dimensional features (images) rather than low-dimensional states and avoid the
need for fine-tuning during stitching. Furthermore, we explore latent alignment techniques for
reinforcement learning, which directly map between different latent spaces. These techniques allow
stitching arbitrary models trained on various visual and task variations of a given environment and
create new policies for unseen visual-task combinations in a zero-shot manner.

3 Method

Context We formally model an RL problem as a Markov decision process (MDP) M =
(S,A,O, R, P, γ), where S defines the set of states, A the set of actions, o ∈ O the observa-
tion produced as input for the agents, P : S ×A 7→ S the probability distribution P (s′|s,a) of
transitioning to state s′ upon executing action a in state s, R : S ×A 7→ R the reward function, and
γ the discount factor that reduces the importance of rewards obtained far in the future. The agent’s
behavior is dictated by a policy π : O → A that receives an observation and selects an action at each
state, and is trained to maximize the discounted long-term returns E[

∑∞
i=0 γ

iR(si,ai)].
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Environments Variations We are interested in studying the effects of variations between different
training and agents. To better frame the concept of “variation”, we redefine the environments as
follows. First, we will refer to Mi

u = (Ou, Ti) as the environment that produces observations
ou ∈ Ou and has a task Ti : Si × Ai × Ri × Pi 7→ Ri to solve. We will say that a distribution
of observations Ou is different from another when there is a major variation between them (e.g.,
background color, camera perspective). At the same time, task variations can impact the agent
behavior, and can depend on transition dynamics, internal states, action spaces, and reward functions.
Information about the task Ti is not explicitly given to the agent, and it must be inferred using the
guidance of the reward signal provided while acting in the environment. During training, we train
agents on different combinations of visual-task variations, separately for each combination. When
testing, we also use environments with visual-task variations never seen during training, i.e., testing
on Mj

u means that no agent has been trained end-to-end to solve the task Tj for the observations Ou.

Modular Agents The standard practice to obtain a policy πi
u is to end-to-end train a neural network

on environment Mi
u. However, we argue that this network can be seen as a composition of two

functions: an encoder ϕiu : Oi
u 7→ X i

u trained on an environment with an observation space Ou to
produce a latent representation xi

u, and a controller ψi
u : X i

u 7→ Ai trained to act on task Ti given
the latent representation coming from the encoder. Given an observation ou, πi

u can be defined by
composition:

πi
u(ou) = ψi

u[ϕ
i
u(ou)] = ψi

u(x
i
u). (1)

Latent representation Consider the existence of a second environment Mj
v = (Ov, Tj), where

the observations Ov differ from the ones from Ou just for a visual variation (e.g., different color for
the grass in CarRacing), and a trained policy πj

v . Given two corresponding observations ou ∈ Ou and
ov ∈ Ov , the latent representations produced by the respective encoders are different:

ϕiu(ou) ̸= ϕjv(ov) and therefore xi
u ̸= xj

v. (2)

In the following, we describe how to leverage the emerging similarities in these learned latent
representations to unify them, enabling zero-shot stitching between encoders and controllers. This
can be achieved either by projecting latent spaces into a common space (Section 3.1), or by directly
mapping from one space to another (Section 3.2).

3.1 Relative Representations

The main idea of Relative Representations [23] is to represent latent space elements not in terms of
their original embeddings (absolute embeddings), but encoding them w.r.t. some selected samples
A called anchors. Namely, given an observation ou and its corresponding latent space produced by
the encoder, ϕiu(ou) = xi

u, the relative representations ziu are produced by computing the similarity
between the encoded frame and the selected anchors:

ziu = sim(ϕiu(ou), ϕ
i
u(Au)) (3)

= sim(xi
u, ϕ

i
u(Au)) (4)

= [sim(xi
u, ϕ

i
u(A

(0)
u )), sim(xi

u, ϕ
i
u(A

(1)
u )), . . . sim(xi

u, ϕ
i
u(A

(d)
u ))], (5)

where d is the dimension of the latent space and one of the controller’s inputs. Per the original
paper, we select the cosine similarity as sim function. However, the original anchor selection process
assumes the availability of an offline dataset to sample A from, we generalize this assumption to the
online RL setting in Section 3.3.

Intuition This relative representation disregards the latent points’ absolute positions, which are
heavily influenced by the agent’s training process, and instead focuses on the relationships be-
tween observations. We expect encoders to produce different absolute latent representations due to
environment variations, yet yield roughly similar relative latent representations:

sim(ϕiu(ou), ϕ
i
u(Au)) ≈ sim(ϕjv(ov), ϕ

j
v(Av)) (6)

sim(xi
u, ϕ

i
u(Au)) ≈ sim(xj

v, ϕ
j
v(Av)) (7)

ziu ≈ zjv (8)
Thus, we train the controller directly on the relative spaces to produce a universal controller, reusable
across a variety of settings.
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Module stitching We exploit such quasi-equivalence between the latent relative representation
of different agents to perform zero-shot stitching. For example, if we are given policies πi

u and πj
v

trained with relative representations to act on Mi
u = (Ou, Ti) and Mj

v = (Ov, Tj) respectively, we
can combine the encoder ϕiu from πi

u and the controller ψj
v from πj

v to create a new policy π̂j
u that

can act on Mj
u = (Ou, Tj):

π̂j
u(ou) = ψj

v(z
i
u). (9)

This can be done because encoders ϕiu and ϕjv produce similar latent spaces, therefore controllers
ψi
u and ψj

v are trained on similar representations. Throughout this paper, we will use encoders and
policies trained using PPO.

3.2 Latent Alignment

Consider an environment Mj
u for which we do not have a trained policy, but we have an encoder ϕiu

and a controller ψj
v trained for the policies πi

u and πj
v , respectively. Relative Representations involves

mapping the output of each encoder to a shared latent space, enabling the subsequent training of a
universal policy. Instead, employing latent alignment techniques allows us to obtain a direct mapping
τvu : X i

u 7→ X j
v , from the latent space produced by the encoder ϕiu to the one resulting from the

encoder ϕjv . This translated space is compatible with the existing ψj
v , so that:

τvu(ϕ
i
u(ou)) ≈ ϕjv(ov) (10)

τvu(x
i
u) ≈ xj

v (11)

Thus, we can reuse encoders and controllers from πi
u and πj

v , respectively, to obtain a new policy π̃j
u,

without additional training:
π̃j
u(ou) = ψj

v[τ
v
u(ϕ

i
u(ou))] (12)

Estimating τ The latent translation method [20] allows us to estimate τvu . Furthermore, this work
suggests that, given two latent spaces X ∈ Rn×d1 and Y ∈ Rm×d2 from independently trained deep
neural networks, the transformation τ that directly maps X to Y: (i) is mostly orthogonal and (ii) can
be estimated from a few corresponding elements between the two spaces. In our work, X and Y are
produced by ϕu and ϕv, respectively. As in [20], we use Singular Value Decomposition (SVD) to
estimate the optimal orthogonal transformation. We leverage this method in the context of online
reinforcement learning to zero-shot create policies that can perform in environments with visual-task
combinations never seen during training.

3.3 Data Collection

Previous research on latent space translations and their methods [23, 14, 20] relies on supervision
provided by samples in partial correspondence between the two domains (anchors), which are subsets
of the training data. In online reinforcement learning (RL), there is no associated training data to
sample from. To address this challenge, we assume the existence of a mapping function that translates
observations from one environment Ou to another target environment Ov. This mapping can be
estimated in various ways, such as through manual annotation, replaying sequences of actions in
the environments, or directly estimating the transformation in the observation space (e.g., pixel
space). Furthermore, we assume that an agent trained end-to-end to solve a specific task in a specific
environment will generate a comprehensive set of observations, providing a reasonable approximation
of the entire latent space. Nevertheless, forcing the agent to explore more could be beneficial in this
context.

In our experiments, we gather parallel samples either by directly translating the observation in pixel
space, when there is a well-defined known visual variation between the environments, or by replaying
the same sequence of actions in both environments, that in this case must be deterministic and
initialized with the same random seed. We leave to future research other possible approximation
techniques for translating observations between different environments.

4 Experiments

In this Section, we assess the zero-shot performance of stitched policies on novel visual-task variations
combinations. In Section 4.1 we employ relative representations to study the latent space similarity,
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providing a qualitative analysis of the projected spaces and showing that aligned frames with different
visual variations exhibit similar latent representations. In Section 4.2 we first show how relative
models train when compared to standard (absolute models) and then compare their performance
when no stitching is applied. Finally, in Section 4.3 we perform a quantitative analysis comparing
zero-shot stitching performance for all of our models. This involves: stitching absolute models in
a naive approach (no latent communication technique applied), and stitching models that employ
relative representations and latent translation approaches.

Notation We refer to standard, end-to-end policies using absolute representations as E. Abs, and
to E. Rel for end-to-end policies trained using relative representations. We will use S. Abs, and to
S. Rel to instead refer to policies created with zero-shot-stitching through relative representations,
where encoders and controllers variations can include seed, background colors and tasks. Finally,
we will refer to S. Transl for stitched policies obtained by mapping absolute latent spaces via τ
projection. Unlike end-to-end models, stitched agent modules come from encoders and controllers
trained independently and assembled as detailed in Section 3.1 and Section 3.2.

Environment For the following experiments, we consider the CarRacing [17] environment, which
simulates driving a car from a 2D top-down perspective around a randomly generated track, focusing
on speed while staying on the track. It provides RGB image observations, and uses a discretized
action space with five options: steer left, steer right, accelerate, brake, and idle. The agent earns
rewards for progress and penalties for going off-track. We modified the environment to enable visual
changes (e.g, grass color or camera zoom) and task alterations (e.g., speed limits or different action
spaces). The possible visual variations are: background (grass) colors green, red, blue and far camera
zoom, while tasks are divided in: standard and slow car dynamics and different action spaces, such
as scrambled, which use a different action space and therefore a different output order for the car
commands, and no idle, which removes the “idle” action. Please refer to Appendix A.3 for the
implementation and tests with another environment.

Training procedures We train policies using the PPO implementation provided in the CleanRL
library [12] with default hypermarameters for both absolute and relative representations.

Zero-Shot Stitching Procedure. In Section 3.1 and Section 3.2, we outlined the methodologies
for stitching modules together using relative representations and semantic alignment, respectively.
We consider the encoder to be the group of convolutional layers up to the first flatten layer, while
the controller is everything that comes immediately after, that is a succession of linear layers and
activation functions. Once diverse policies are trained under various conditions, we can generate new
policies by assembling independently trained encoders and controllers through zero-shot stitching.
The training variations for these individual components are tailored to the requirements of each
experimental section; nevertheless, the zero-shot stitching performance evaluation is always on visual-
task variation not seen during training. It is crucial to select encoders and controllers that correspond
to the specific visual or task variations they were trained on. For instance, when operating within an
environment featuring a green background, an encoder trained on that specific visual variation should
be utilized. Similarly, for tasks that involve driving a car at low speeds, a controller trained for that
specific driving condition must be employed.

4.1 Latent space analysis

We analyze the latent spaces produced by the encoders trained in the CarRacing environment with
different grass colors. As described in Section 3.3, we collect parallel observation between the two
environment variations by rolling out a policy on an environment and replaying the same sequence of
actions in the other environment, setting a fixed seed to ensure reproducibility. In Figure 2a, we report
the pairwise cosine similarities of the first ∼ 800 frames between the two latent spaces. Therefore,
the diagonal shows the similarity between two perfectly aligned frames where the only difference is
the grass color. As anticipated, the absolute similarities are consistently low, even for the aligned
frames along the diagonal. This is expected because the two spaces are not directly comparable.
However, when we unify the spaces using relative representations, we observe a strong similarity on
the diagonal, along with some spurious similarities off-diagonal. In Figure 2b, we present the frames
associated with high similarity points in the relative space. Although these points are off-diagonal and
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Figure 2: (a) Comparison between absolute (left) and relative (right) representations produced by the
same model. Rows and columns show the cosine similarity between the latent spaces coming from
frames of the CarRacing environment with different visual variations (i.e., green and red grass color).
Relative representations let similarities emerge not only along the diagonal, where frames are aligned,
but also off-diagonal, highlighting similarities between different parts of the track. (b) We report
qualitative examples by visualizing frame pairs associated to high similarity regions in (a) (denoted
by the frame number). Each pair is semantically similar, even though not in direct correspondence.
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Figure 3: Comparison of E. Abs and E. Rel. training curves. We report three different Car Racing
environment variations, noting that in all the training the convergence follows similar tendencies for
the two methods and that the relative encoding is not cause of training instability.

Table 1: Mean scores for models trained end-to-end, without stitching. Models trained using relative
representations (Rel) have comparable performance, with small performance loss on average. Scores
are computed over four training seeds and, for each combination, over ten distinct track seeds.

Visual variations Task variations

green red blue far (green) slow scrambled no idle

E. Abs 829 ± 54 854 ± 26 852 ± 48 872 ± 35 996 ± 6 879 ± 42 889 ± 19
E. Rel (ours) 832 ± 54 797 ± 86 811 ± 21 820 ± 22 624 ± 125 874 ± 20 862 ± 69

not in direct correspondence, they are semantically similar. This shows the effectiveness of relative
representations in capturing semantic relationships across different spaces.

In summary, this analysis demonstrates that different policies trained in the Visual RL context exhibit
emerging similarities in their latent representations.

4.2 End-to-end performance

Relative representations Figure 3 shows the training curves for CarRacing variations, comparing
E. Abs. to E. Rel. (ours) under different conditions. The curves are generated using evaluation scores
obtained during training, averaged over four different seeds. Solid lines represent the mean values,
and shaded areas indicate the standard deviation. The training stability with relative representations
is comparable to that of standard (absolute) training. Furthermore, the results in Table 1 demonstrate
that the end-to-end performance of agents is generally comparable to those of absolute models, except
for the model trained on the slow task. This table also includes a reference baseline of a model trained
on all color variations simultaneously.
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These results show that relative representations do not impact training stability and that evaluation
performance remains generally comparable. Refer to Appendix A.3.1 for end-to-end tests for some
games in the Atari game suite.

Latent Alignment When using latent alignment with relative representations, it is unnecessary
to train new models to project the latent variables into a new space. Instead, by mapping directly
from one space to another, we can utilize any previously trained model to perform latent alignment.
Therefore, we use our Absolute models as a base.

4.3 Zero-shot stitching

The advantages of latent communication techniques become most apparent when performing zero-
shot stitching, which allows assembling agents capable of operating in environments they have never
encountered during training. Indeed, as shown in Section 4.1, models trained with different seeds or
under different settings develop distinct latent representations, making it impossible to naively stitch
together independently trained encoders and controllers.

Table 2 presents the zero-shot stitching performance between encoders and controllers across seed,
visual, and task variations. Each component is trained with a unique seed. When Encoder and
Controller variations are the same (e.g., green-green), we only consider the performance of stitching
between different seeds. Visual and task variations are analyzed independently; hence, the Task
Variations (green) columns only consider controllers originally trained on a green background, while
they are stitched to encoders trained on different background colors.

Both latent communication methodologies significantly outperform the naive baseline, which, to our
knowledge, is the only baseline capable of zero-shot generalization to novel environments without
further fine-tuning, changes to the agents’ architecture or the observations seen during training.
Interestingly, agents trained with relative representations maintain high performance when visual
variations are the only source of variation. However, there is a marked performance decline with
the slow task variation. Surprisingly, agents stitched using latent translation exhibit performance
comparable to the original ad-hoc end-to-end models across all visual variations and tasks.

In summary, these findings indicate that latent translation is a promising technique for assembling
agents capable of operating in novel environment variations. Again, stitching results for the Atari
suite can be seen in Appendix A.4.

4.3.1 Computational Advantage

The proposed methods offer a significant computational advantage by reducing the training time
required to develop new policies. Indeed, they enable the assembly of new policies from existing
ones, making it possible to adapt to novel environments more efficiently.

By reusing policy components, we can create new policies without starting training from scratch.
Table 3 illustrates the amount of time saved through zero-shot stitching for the CarRacing models. This
table shows the training time required for agents across all visual-task combinations, as previously
detailed in Table 2. Normally, training models for every visual-task combination would require 110
hours. However, our approach significantly reduces this time, needing only the highlighted cells in
light blue, representing a fraction of the total training time. Indeed, it is sufficient to have at least one
encoder and one controller for each variation. This enables the creation of all other agents, saving
88 hours of training. Importantly, this time-saving benefit scales quadratically with the number of
visual variations and tasks considered, providing substantial efficiency gains as the complexity of the
environment increases.

In summary, latent communication significantly reduces training time in RL by allowing the reuse of
policy components to assemble novel policies without the need to train from scratch.

5 Conclusion and limitations

Limitations and Future Works We believe our work opens to several compelling research di-
rections. While we restricted our analysis to controlled environments in favor of interpretability,
extending our methodology to more complex and real environments would provide further insights
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Table 2: Mean score of new agents created via zero-shot stitching, combining encoders and controller
trained with different visual and task variations or training seeds. The original domains for the
encoders and the controllers are listed in the columns and rows, respectively. The table compares
policies obtained via zero-shot stitching in a naive way (absolute) and with relative and translation
methods. Visual variations wise, using any of the stitching methods allow to retain performance that
are close to those of the end-to-end models. Task wise, instead, translation generally outperforms the
relative approach, especially in the slow task. Both methods greatly outperforms the naive baseline.
Each cell reports the mean score and standard deviation calculated across ten seeds for the track, four
encoders, and four controllers

Controller
Visual Variations (task standard) Task Variations (green)

green red blue slow scrambled no idle

E
nc

od
er

gr
ee

n S. Abs 175 ± 304 167 ± 226 -4 ± 79 148 ± 328 106 ± 217 213 ± 201
S. Rel 781 ± 108 787 ± 62 794 ± 61 268 ± 14 781 ± 126 824 ± 82

S. Transl 822 ± 62 786 ± 82 829 ± 49 764 ± 287 846 ± 66 781 ± 72

re
d S. Abs 157 ± 248 43 ± 205 22 ± 112 83 ± 191 138 ± 244 252 ± 228

S. Rel 810 ± 52 776 ± 92 803 ± 58 476 ± 430 790 ± 72 817 ± 69
S. Transl 859 ± 41 807 ± 52 809 ± 60 824 ± 192 838 ± 52 853 ± 50

bl
ue

S. Abs 137 ± 225 130 ± 274 11 ± 122 95 ± 128 138 ± 224 144 ± 206
S. Rel 791 ± 64 793 ± 40 792 ± 48 564 ± 440 804 ± 41 828 ± 50

S. Transl 839 ± 57 808 ± 70 814 ± 52 746 ± 319 832 ± 60 808 ± 62

fa
r S. Abs 152 ± 204 65 ± 180 2 ± 152 -49 ± 9 351 ± 97 349 ± 66

S. Rel 527 ± 142 605 ± 118 592 ± 86 303 ± 100 594 ± 39 673 ± 91
S. Transl 714 ± 45 712 ± 71 727 ± 52 762 ± 131 738 ± 44 626 ± 77

Table 3: Table of training times. We only need to train combinations for the cells highlighted in blue
and then perform zero-shot stitching to assemble all the other agents (totaling 13 hrs). Normally,
it would be required to train agents for each domain-task combination (totaling 46 hrs). Visual
variations V1: green, V2: red, V3: blue, V4: far (green) and task variations T1: standard, T2: slow, T3:
no idle, T4: scrambled.

V1 V2 V3 V4

T1 3h 3h 3h 3h
T2 4h 4h 4h 4h
T3 3h 3h 3h 3h
T4 3h 3h 3h 3h

into its scalability. Similarly, all our agents are trained from scratch on specific tasks for consistency.
Relying instead on large pre-trained vision models and stitching to different controllers would provide
even further computational savings and flexibility.

Conclusions In this work, we propose an analysis of simple yet effective techniques in visual
reinforcement learning to stitch encoders and controllers coming from different training regimes.
Relying on recent representation learning advancements, we demonstrate how to unify representations
learned in different training and compose new agents solving on visual-task pairs never seen at training
time. Our extensive experiments highlight that despite RL’s training instability, models from different
random seeds, visuals, and tasks learn a consistent representation of the world. Our approach provides
a paradigm that makes RL more accessible, provides more efficient training, and significantly reduces
computational costs.
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A Appendix

A.1 Environments

CarRacing We use the discretized version of CarRacing, which has the following Action space:
0: left, 1: right, 2: accelerate, 3: brake, 4: do nothing. We use the standard dynamics, with small
rewards for passing through checkpoints and a small penalty every step otherwise, -100, and end
episode if the car goes out of the boundaries. Normal car density (the "weight" of the car) is 1.0.
Zoom = 2.7. During our trials, we perform visual (grass color, camera with zoom=1) and behavior
variations. The latter are performed via reward constraints (car speed), or by modifying the action
space (scrambled actions, smaller action space).

Table 4: Complete list of variations applied for the CarRacing environment.
Variation Type ep. length Other Details

color visual 1000 colors: green, red, blue
camera visual 1000 far view (zoom = 1)

slow task 3000 no negative reward per step, −100 if speed > 35.
scrambled task 1000 action space: shuffled

no idle task 1000 action space: noop action removed

Models for all visual and task variations are trained with the same set of hyperparameters
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A.2 Atari Games

We base our environment suite on NaturalEnv [38], which originally allowed to replace default game
background with images or solid colors. Our selection of games is: Breakout, Boxing, Pong. For all
we select the NoFrameskip-v4 version, with default action space. Models are trained for 10000000
steps and default training parameters as in [12].

A.3 Latent communication on the Atari game suite

To test the generalizability of our method we also perform stitching tests with the following Atari
games: Breakout, Boxing, Pong from the NaturalEnv collection [38], which allow background
customization with solid colors; the actions are game-specific. In the Breakout environment, scores
typically range between 0 and 200-300, representing a satisfactory final score. In Boxing, scores fall
within the range of [-100, 100], where a score of 100 indicates that the agent defeats the opponent
without sustaining any hits. For Pong, scores range from [-21, 21], with 21 signifying victory over
the opponent without conceding a single point. As we did for the CarRacing environment, we first
evaluate end-to-end performance of standard and relative models followed by the stitching evaluation.

Training with relative representations The training procedure is the same described in section
4.2. Training curves comparing E. Abs. to E. Rel. (ours) for the Atari suite with visual variations
are shown in 4. Also in this case, training using relative representations is comparable to standard
training, with the exception of the Breakout environment where the curve tends to grow more slowly.
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Figure 4: Comparison of E. Abs and E. Rel. training curves for some games in the Atari suite. We
see that in all the training the convergence follows similar tendencies for the two methods, and the
relative encoding is not cause of training instability.

A.3.1 End-to-end performance

Results can be seen in Table 5. Performance of relative models for Pong and Boxing are comparable
to those of the absolute models. Breakout, however, has much lower scores. We attribute this to the
higher visual complexity caused by the numerous bricks in the level.

Table 5: Episode mean scores for models trained end-to-end, therefore when no stitching is per-
formed. Models trained using relative representations (Rel) have comparable performance, with small
performance loss on the average.

Visual variations
plain green red

Pong E. Abs 21 ± 0 21 ± 0 21 ± 0
E. Rel (ours) 21 ± 0 20 ± 1 21 ± 0

Boxing E. Abs 95 ± 2 95 ± 3 96 ± 2
E. Rel (ours) 95 ± 3 93 ± 4 88 ± 6

Breakout E. Abs 298 ± 63 262 ± 61 132 ± 19
E. Rel (ours) 146 ± 60 77 ± 25 119 ± 135

A.4 Zero-shot stitching

Zero-shot stitching performance Table 6 presents zero-shot stitching evaluation. Although relative
models outperform absolute ones in all the environments, there is a significant performance drop in
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Table 6: Mean score of new agents created via zero-shot stitching, combining encoders and controller
trained with different visual and task variations or training seeds. The original domains for the
encoders and the controllers are listed in the columns and rows, respectively. The table compares
policies obtained via zero-shot stitching in a naive way (absolute) and with relative and translation
methods. Visual variations wise, using any of the stitching methods allow to retain performance that
are close to those of the end-to-end models. Task wise, instead, translation generally outperforms the
relative approach, especially in the slow task. Both methods greatly outperforms the naive baseline.
Each cell reports the mean score and standard deviation calculated across ten seeds for the track, four
encoders, and four controllers

Controller
Pong Boxing Breakout

plain green red plain green red plain green red

E
nc

od
er

pl
ai

n S. Abs -21 ± 0 -21 ± 0 -21 ± 1 -29 ± 10 -25 ± 22 -33 ± 5 8 ± 6 12 ± 5 8 ± 5
S. Rel 0 ± 20 -2 ± 19 7 ± 17 65 ± 39 11 ± 54 46 ± 40 71 ± 73 16 ± 18 17 ± 11

S. Transl -16 ± 6 -10 ± 11 -14 ± 10 89 ± 5 49 ± 42 46 ± 53 265 ± 59 217 ± 59 172 ± 100

gr
ee

n S. Abs -20 ± 1 -21 ± 0 -21 ± 0 -18 ± 17 -21 ± 15 -33 ± 10 9 ± 7 15 ± 4 7 ± 6
S. Rel -1 ± 20 -7 ± 19 8 ± 18 66 ± 38 42 ± 36 58 ± 27 28 ± 19 64 ± 100 44 ± 59

S. Transl -3 ± 16 13 ± 12 -13 ± 10 86 ± 6 47 ± 49 56 ± 58 169 ± 99 229 ± 98 165 ± 93

re
d S. Abs -21 ± 0 -21 ± 0 -21 ± 0 -27 ± 17 -20 ± 16 -38 ± 13 9 ± 6 13 ± 5 8 ± 5

S. Rel 1 ± 18 -3 ± -18 6 ± 20 62 ± 40 20 ± 56 49 ± 39 17 ± 9 25 ± 28 14 ± 10
S. Transl -7 ± 16 -7 ± 13 -20 ± 1 80 ± 22 52 ± 32 38 ± 52 31 ± 26 75 ± 58 145 ± 92

the mean performance indicated by the lower mean scores. The high the standard deviation, however,
signifies that some of the models are still able to perform well in some cases. We argue that the high
precision required by Atari games might be the reason for the performance drop in stitching, as even
small noise in the encoders’ latent spaces can bring to minor mistakes in action predictions, which in
turn can bring to a losing condition in the game. Meanwhile, the CarRacing environment is far more
accommodating, and in the event of a mistake, the policy can compensate in subsequent actions.

A.5 Computing

We trained all of our models on an RTX 3080 with an Intel i7-9700K CPU @ 3.60GHz and 64 GB
of RAM. All of our models were trained with the CleanRL implementation of PPO, running 16
environments in parallel.

CarRacing We trained all of our CarRacing models for a total of 5 million steps. Training took
around 3h for every model, except for the slow task, which took 4, mainly because episodes were set
to be longer to allow the car to complete the track, and therefore evaluation episodes took longer to
complete.

Atari Suite Games in the Atari suite were trained for 10 million steps. Pong and Breakout required
around 2h30m, boxing 2h40m.
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