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Abstract

Characteristic classes, which are abstract topological invariants associated with
vector bundles, have become an important notion in modern physics with surprising
real-world consequences. As a representative example, the incredible properties of
topological insulators, which are insulators in their bulk but conductors on their
surface, can be completely characterized by a specific characteristic class associated
with their electronic band structure, the first Chern class. Given their importance to
next generation computing and the computational challenge of calculating them
using first-principles approaches, there is a need to develop machine learning
approaches to predict the characteristic classes associated with a material system.
To aid in this program we introduce the Haldane bundle dataset, which consists
of synthetically generated complex line bundles on the 2-torus. We envision this
dataset, which is not as challenging as noisy and sparsely measured real-world
datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing
ground for architectures that incorporate the rich topological and geometric priors
underlying characteristic classes.

1 Introduction

As a family of fundamental topological invariants of vector bundles, characteristic classes have long
been a central tool in differential topology [16]. As is often the case, it was only after they had
become an established tool in mathematics that their importance to physics was recognized in, for
example, Chern-Simons theory [22, 6]. Another surprising appearance of characteristic classes is in
topological materials, where they can be associated with the electronic band structure of a crystal
lattice. Remarkably, non-trivial topology in this setting often has dramatic physical consequences. For
example, topological insulators are topologically protected insulators in their interior but conductors
on their surface (or edge) [11].

Because materials with topological properties are of intense interest in applications (e.g., next
generation computing [13] and advanced sensors [14]), substantial effort has gone into finding them.
While this hunt has seen some successes, first-principles approaches to calculating the topological
characteristics of a material and then experimentally validating these predictions remain time-, labor-,
and resource-intensive. There has thus been interest in leveraging machine learning as a cheap
way to predict the topological properties of a material. Most approaches thus far have relied on
off-the-shelf architectures and generic data-processing procedures that do not take advantage of the
unique data-type that is a vector bundle. However, the problem of predicting the characteristic classes
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of a material system is well-aligned with current research directions in the field of geometric deep
learning (e.g., invariance to Lie group actions).

We believe that part of the challenge of developing methods of learning from vector bundles arises
from the fact that there are no benchmark datasets where the bundle structure is actually exposed.
Indeed, the features in large topological materials databases [1, 15] consist solely in the geometric
structure and constituent atoms in the crystal lattice with associated atomic characteristics. While
topological labels to these datasets ultimately depend on an underlying vector bundle structure, this is
several layers beneath the features that are given. To create a dataset where researchers can develop
architectures for learning on vector bundles, we introduce the Haldane Bundle dataset, a dataset of
complex line bundles on the 2-torus with labeled first Chern number. Our process of generating valid
random line bundles, which is mathematically non-trivial, is inspired by the Haldane model [8], an
influential toy model for the anomalous quantum Hall effect. Our contributions in this paper include
the following.

• A description of a method of sampling random line bundles on the 2-torus and our approach
to efficiently calculating the Chern number of these line bundles.

• Summary statistics of the resulting Haldane Bundles dataset as well as off-the-shelf model
performance.

• A discussion of some of the geometric and topological properties that a model designed for
this task should have.

We hope that our work will begin the process of building a connection between the geometric deep
learning community and scientists studying topological materials. Code to generate our datasets can
be found at https://github.com/shadtome/haldane-bundles.

2 Related Work

There has been significant interest in using machine learning approaches for materials design and
discovery [7]. In the realm of topological materials, several works have looked at predicting the
topological properties of a material. For example, [3] and [18] both use tree-based methods that take
as input a mix of categorical and numeric features like atomic properties. On the other hand, [23] look
at the simple case of predicting topological properties of 1-dimensional insulators directly from a
Hamiltonian. This amounts to calculating the winding number. An off-the-shelf convolutional neural
network is used. Finally, [17] try to learn to predict the Hamiltonian which they then diagonalize to
get the band structure. None of these papers learn directly from the underlying vector bundles and
thus are not able to support development of models that incorporate the mathematical constructions
beneath the topological properties of materials.

While vector bundles are a fundamental concept in both mathematics and physics, they have seen
limited use in machine learning. Notable exceptions include [19], where a vector bundle framework
is used for dimensionality reduction, [5, 4] where a more general fiber bundle framework is used to
model many-to-one and many-to-many maps respective, and [12] where frames in a subbundle of
the tangent bundle of data manifolds are used to better understand the learning process in computer
vision models.

3 A Lightening Tour of Vector Bundles, Characteristic Classes, and the
Haldane Model

3.1 Vector bundles

Vector bundles were introduced to provide a systematic way of studying tangent vectors, differential
forms, and other geometric constructions on manifolds. Roughly speaking, a continuous vector bundle
is a collection of vector spaces, one attached to each point on a manifold, which vary continuously.
The standard example is the tangent bundle of a smooth manifold, which captures the space of tangent
vectors as they vary from point to point. More formally, a vector bundle of rank n on a manifold M
is a space E with a surjective map (the bundle projection) π : E → M such that for any x ∈ M ,
there is a neighborhood U ⊆M and a homeomorphism φ : π−1(U)→ U ×Rn. π further satisfies a
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commutative diagram that we omit here but that can be informally interpreted as saying that π maps
U × Rn to U . That is, π collapses all the points in the vector space Rn. One consequence of this
definition is that for any x ∈M , π−1(x) = Rn. This space is known as the fiber at x. Vector bundles
can be defined for both fields of R and fields over C and this choice has a substantial impact on the
structure and properties of the vector bundle.

Vector bundles can have non-trivial topology introduced by “twists” in the way that the vector spaces
(sitting above points in the manifold) change as one moves around the manifold. Line bundles on the
circle provide a visualization of this phenomenon (see Figure 1). In both the left and right example,
lines (1-dimensional vector spaces) are assigned to each point on the circle S1 (shown in the bottom
of the figure). In both cases, if one only looks at the points along a small interval of (α, β) ⊂ S1

(thought as an open subset of angles between α and β) along with their associated lines, the resulting
space is topologically equivalent to (α, β) × R. That is, the vector bundle is trivial locally. But
looking at all of S1 one sees that in the example on the right (which is a Möbius band), there is a twist
such that if we start at a non-zero point on a fiber and then travel around the circle and come back to
the same fiber, we will find ourself at a different point in that fiber. This shows that it is impossible to
define a continuous function from the whole circle to the Möbius bundle that does not have any zeros.

π

S1

= S1 × R

p

(a) The tangent bundle over the circle

π

S1

p

(b) Möbius bundle over the circle

Figure 1: There are only two non-isomorphic line bundles over the circle. The left is trivial, the right
is not.

3.2 Characteristic classes

The example of the cylinder and the Möbius band in Figure 1 suggests that the extent to which
vector bundles twist may be a useful global statistic that can be used to describe a bundle. This
and similar notions of vector bundle shape are formalized in the concept of a characteristic class.
Characteristic classes are topological invariants that capture global statistics of a vector bundle. They
appear in a number of guises and are a fundamental tool in algebraic topology, algebraic geometry,
differential geometry, and mathematical physics [16]. For example, the Stiefel-Whitney class is a
characteristic class of real vector bundles that takes values in Z/2Z and detects whether a vector
bundle is orientable. Hence, the cylinder (Figure 1, left) has trivial Stiefel-Whitney class since it is
orientable and the Möbius band has Stiefel-Whiteny class 1 since it is not orientable. The complex
vector bundles in the Haldane Bundles dataset are labeled by a different characteristic called the first
Chern class c#1 which takes values in Z and detects how far a bundle is twisted from being trivial.

Even though they are a topological and not a geometric construction, the Chern class of a vector
bundle can be calculated via an integral (over the manifold) of a specific differential form c1 called
the curvature form. In particular, if L is a line bundle, then

c#1 (L) =

∫
M

c1(L).

One method of calculating the Chern number requires one to find a connection of the line bundle and
compute its curvature. For more information about this see, [2].

Finally, it is important to note that a vector bundle is always trivial if it can be defined consistently
with a global set of coordinates. This explains why in Section 4.1, we define line bundles in local
patches which we then glue together. If we did not, every vector bundle we defined would be trivial
(equivalent to M ×R).
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3.3 The Haldane Model

Our Haldane Bundles dataset is inspired by the Haldane model [8], which is a 2-dimensional toy
model of a Chern insulator (a type of topological insulator whose properties arise from its electronic
band structure having non-trivial Chern number). This simplified quantum system is defined over a
honeycomb lattice (reminiscent of graphene). Due to the periodic nature of the lattice and Bloch’s
Theorem, the momentum space for this system can be viewed as sitting on the 2-torus, T2. Thus, the
Hamiltonian is a function of points on T2, H : T2 → Mat(C)2,2. In particular, for p ∈ T2,

H(p) =

[
G(p) F (p)
F (p) −G(p)

]
(1)

where F (p) = t1
∑3
j=1 e

ai·p, G(p) = M + 2t2
∑3
j=1 sin(bi · p), ai are the vectors forming the

honeycomb lattice, and the bi are the second neighbor hopping vectors. One can build a C-line
bundle on T2 associated to H by looking at one of the eigenvectors of H . Note that besides p, several
other parameters determine H including M , t1, and t2. In the case where |t2/M | < 1

3
√

3
, the Chern

number is zero. On the other hand, when |t2/M | > 1
3
√

3
, we obtain non-zero Chern numbers. In the

latter case we get a model of a topological insulator.

The Haldane model is an attractive starting point for development of methods of learning to predict
Chern numbers from line bundles because different line bundles can be explicitly generated by
varying M , t1, and t2 and based on these choices we know immediately what the Chern number is.
Unfortunately, the resulting dataset is too simple for development of generalizable models. Indeed,
because of the regularity in the resulting eigenvectors, a model can easily memorize predictive
features without any generalization ability. This motivates our introduction of the Haldane Bundles
dataset.

4 The Haldane Bundle Dataset

In this section, we describe how we construct the class of line bundles on the 2-torus that are the
datapoints of the Haldane Bundles dataset. These line bundles have a range of nice computational and
theoretical properties, are easily parameterized since they are fully determined by a pair of smooth
functions G and F on T2, yet provide sufficient variation to create a challenging machine learning
task.

4.1 Constructing Lots of Line Bundles

We begin by describing a generic and abstract algorithm for constructing line bundles on any smooth
manifold M and then specify to T2. Pick a collection of smooth maps ψα : Vα → Cn+1 \ {0}
for α ∈ A where A is some index set such that {Vα}α∈A covers the space M . The {ψα}α∈A
induce smooth maps {Ψα}α∈A from each Vα to complex projective space CPn, a smooth 2n-
dimensional manifold where each point corresponds to a line in Cn+1. This connection is defined
by Ψα(p) = [ψα(p)] where [ψα(p)] means the unique line traveling through the point ψα(p) and the
origin.

The functions {Ψα}α∈A each independently assign lines to the points in their respective domains
{Vα}α∈A of M . To define a single consistent assignment on M , we need to be able to glue the
{Ψα}α∈A together. When {Ψα}α∈A are sufficiently consistent, we can do this by introducing some
gluing maps τα,β : Vα ∩ Vβ → C∗ such that τα,β(p)ψβ(p) = ψα(p) for all p ∈ Vα ∩ Vβ and for
all α, β ∈ A. These gluing maps ensure that we can consistently translate between Ψα to get a
well-defined line bundle where pairs of Ψα are both defined. Taken together, this construction gives a
line bundle that is well-defined on all of M . Note that the existence of τα,β is impossible if either
ψβ(p) or ψβ(p) is zero and the other is not (this will motivate the construction in the next paragraph).

We construct our Haldane Bundles following this method. Let G : M → R, F : M → C be smooth

maps with no common zeros, and define R,R† : M → R by R(p) = G(p) +

√
G(p)2 + F (p)F (p)

and R†(p) = G(p) −
√
G(p)2 + F (p)F (p). Let ψ : V → C2 \ {0}, ψ† : V † → C2 \ {0} be

4



defined by

ψ(p) =

[
R(p)
F (p)

]
ψ†(p) =

[
−F (p)
R†(p)

]
(2)

where V and V † are the open subsets of M where ψ and ψ† are not zero, respectively. Note that
V ∪ V † = M , since F and G have no common zeros. The smooth function τ : V ∩ V † → C∗

defined as τ = R†

F is a gluing function for the pair of maps ψ and ψ† with τ(p)ψ(p) = ψ†(p) making
the induced map Ψ : M → CP1, where Ψ|V = [ψ] and Ψ|V † = [ψ†], a well-defined line bundle on
M (note that F does not vanish on V ∩ V † by construction so τ is well-defined).

We call the pair of functions G and F a Haldane pair, and we will call the corresponding line bundle
L(G,F ), the Haldane bundle with respect to G and F .

Theorem 1. For any Haldane pair (G,F ) on a 2-dimensional smooth manifold M , the Chern
number for L(G,F ) is computed through the following integral

c#1 (L(G,F )) =
i

2π

(∫
V

d(δF ) ∧ d(δF ) +

∫
V †\(V ∩V †)

d(δ†F ) ∧ d(δ†F )

)

where δ = 1√
2R(R−G)

and δ† = 1√
2R†(R†−G)

.

We provide a proof of Theorem 1 in Section B.1 of the Appendix.

4.2 Over the Torus

We can realize T2 as the product space S1×S1 and hence to find a function defined on T2 it suffices
to find a function of two variables that is doubly periodic. We therefore use Fourier polynomials
to construct our Haldane pair. We call a smooth function f : T2 → C a complex-valued Fourier
polynomial if for all p ∈ T2 it takes the form

f(p) =
1

2π

∑
k∈Z2

cke
2πi(k·p)

where all but a finite number of the ck ∈ C are zero and (k · p) is the ordinary dot product. Similarly,
we call a function g : T2 → R a real-valued Fourier polynomial if for all p ∈ T2 we have

g(p) =
1

2π

∑
k∈Z2

(ak cos(2π(k · p)) + bk sin(2π(k · p)))

where all but a finite number of the ak ∈ R and bk ∈ R are zero.

Because the torus is equivalent to the product S1 × S1, we can represent real-valued functions f on
the torus as n× n 2-dimensional arrays (generalized images) where f(i, j) = f(i+ n, j + n). Note
that the condition that makes this different from standard images is that the array "wraps around"
on both axes, so that the (n+ 1)th column (respectively row) is equal to the 1st column (resp. row).
This imposes a constraint on the boundary of "images" representing features on the torus.

We can approximate the Chern number on the torus using the formula 1 by partitioning the torus into
small enough squares and approximating the integrand on these small patches. This is possible, since
in local coordinates the integrand in the integral is just a sum and product of values of F, δ, δ† and
partial derivatives of these. Since our functions are Fourier polynomials, we can compute these easily
on a GPU by using discrete convolutions with the coefficients. For more information on this see B.2
in the Appendix.

The distribution of Chern numbers that one gets depends on the degree of Fourier polynomials that
are used. These distributions are visualized in Figure 2 for some small degrees. The time it took us to
compute Chern number as a function of Fourier polynomial degree and resolution (of the grid on the
torus) on a single GPU (Nvidia Tesla p100 @ 16GB) is shown in Figure 3.
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Figure 2: The distribution of Chern numbers for different degrees of Fourier polynomials. The
vertical axis is the maximum degree of the polynomials.

Figure 3: Time to compute the Chern number depending on the max degree of the polynomials and
the partition size of the torus, in seconds.

4.3 Is the Haldane Model Enough for an Interesting Machine Learning Task?

Before describing the Haldane Bundles dataset described in Section 4, it is worth asking if all this is
necessary. Indeed, might we generate a dataset sufficient for developing a machine learning capability
to predict characteristic classes by simulating the simpler Haldane model (described in Section 3.3)?
To test this we first fixed the form of G and F in the Hamiltonian in Equation 1 and varied the
parameters M, t1, and t2 to obtain 10k distinct Hamiltonians. For each Hamiltonian, we sampled the
corresponding eigenvector line bundles uniformly over T2 at a 32× 32 resolution and compute the
Chern number (based on the choice of M , t1, and t2). Because the line bundles are complex-valued,
but high-performing off-the-shelf architectures are real-valued, we convert the complex eigenvector
line bundles into separate real and imaginary channels.

On five random 80/20 train/test splits for this dataset, a ResNet9 [9] achieves 99.8 ± 0.2% test
accuracy, averaged across all runs. As derived in [21] from the Brouwer degree formula, the Chern
number for the Haldane model can be determined by the sign of G(p) in Equation 1 at the zeros of F .
The zeros, or Dirac points, are highlighted in the top row of Figure 4, demonstrating a clear pattern
that distinguishes between the different Chern numbers. A simple VanillaGrad saliency map [20] on
the trained model shows that the model exploits this pattern to make its classification. That these
points are not present/predictive for arbitrary line bundles yet off-the-shelf models perform with high
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Figure 4: Top: A representative example of one channel of the eigenvector line bundle for the
Haldane model for each of the three possible Chern numbers. The plots depict the real part of the
first component of the eigenvector. The highlighted points are the zeros of F . Bottom: The saliency
maps of a trained model, averaged over 100 examples of each class. Observe that for the nontrivial
Chern classes, the highlighted regions are centered around the Dirac points.

accuracy suggests that this dataset has too many easily learnable incidental correlations that do not
really get at the heart of what Chern numbers are.

4.4 Generating and Evaluating Machine Learning Models on the Haldane Bundle Dataset

Figure 5: Three examples from the Haldane Bundle dataset with Chern numbers 1, 0, and −2. From
left to right the plots depict Re(R(p)), Im(R(p)),Re(F (p)), and Im(F (p)) sampled over T2 (where
Re and Im are the real and imaginary part of a complex number.

To create a more challenging machine learning task, we use the framework from Section 4.1 to
generate 50k Fourier polynomial Haldane pairs (G,F ) by randomly sampling ak, bk ∈ R and
ck ∈ C for k ∈ Z2 such that |k1| ≤ 4 and |k2| ≤ 4. We also calculated the Chern number of each
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Haldane pair. We downsample the generated dataset to obtain a class balanced dataset with 2.5k
examples of each Chern number ∈ {−2,−1, 0, 1, 2}. In contrast to the dataset in the previous section
where we fixed the form of G and F and varied parameters to obtain the dataset, here we generate a
different form of G and F for each example. As a result, the zeros of F are not spatially fixed within
the representation and there is not a trivial pattern of zeros for the model to exploit. Some examples
from this dataset are visualized in Figure 5. Details for the actual calculation can be found in Section
B.2 of the Appendix.

We train a Vision Transformer (ViT) [10], a ResNet9, and a ResNet9 with standard convolutions
replaced by circular convolutions that wrap around to account for the fact that the line bundle is over
the torus (see Section 4.2 for a discussion of this aspect of the data representation). We report model
performance averaged over five random 80/20 train/test splits in Table 1. The best test accuracy any
of these standard off-the-shelf models achieved is 31.07%, illustrating the more challenging nature of
this dataset and providing evidence that this is a task where some research into novel architectures is
warranted.

Table 1: Benchmarking the Haldane Bundle Dataset on various off-the-shelf models. All accuracies
are averaged over five random train/test splits and model initializations. Models are trained on
normalized line bundles. 95% confidence intervals are included for each.

Architecture Train Accuracy (%) Test Accuracy (%)
ViT 100.0± 0.0 29.1± 1.16
ResNet 99.99± 0.02 26.57± 1.26
ResNet-C 100.0± 0.0 26.81± 1.03
Null Classifier 20.66± 0.07 21.36± 0.19

5 Topological and Geometric Priors Intrinsic to This Dataset

We want to end by highlighting some of the interesting geometric and topological features intrinsic to
the challenge of trying to predict characteristic classes that may be attractive to the geometric deep
learning community and other researchers that are interested in incorporating non-trivial mathematical
ideas into deep learning frameworks.

Complex-valued deep learning: The applications that motivated this research (topological materials)
and other physics applications where characteristic classes are important all work over the complex
numbers. While there is work in complex-valued deep learning, the vast majority of research
(including almost all of the science of deep learning) is over R. On the other hand, Chern class
prediction is fundamentally connected to the complex numbers. While our baselines incorporated
complex numbers in a naive way, it would be interesting to understand whether deeper integration of
complex numbers into the networks would improve performance.

The Geometry of the Underlying Manifold: Characteristic classes are calculated over manifolds.
In this case, that manifold is the 2-torus whose symmetries can be incorporated into a CNN with only
minor modification. On the other hand, there may be cases where characteristic classes need to be
calculated over more complicated spaces. One can imagine such a setting being an ideal application
for recently developed methods from geometric deep learning that can capture the structure of
non-Euclidean spaces.

U(1)-invariance: The data stored over any point in a vector bundle is a vector space. An n-
dimensional F-vector space is invariant to actions of the group GLn(F). That is, if one applies
g ∈ GLn(F) to V , one gets other elements of V . This symmetry becomes especially important in
applications, like data science, where a vector space V needs to be represented concretely by, for
example, a basis b1, . . . , bn. In the line bundle case of the Haldane Bundles dataset, the line l is
represented by a non-zero vector v that l passes through it. It is understood by the mathematician that
for any non-zero a ∈ F, cv represents the same line, but this is likely not true for the model. It may
be interesting to think about whether specialized augmentation or equivariant architectures might
help build a more robust model.

Global properties from local characteristics: Topological characteristics are intrinsically global
descriptors of a space. That is, they can rarely be consistently inferred if one only examines part of a
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space. While at its best, deep learning is powerful precisely because it can extract high-level features
by aggregating low-level ones, it is also known to catastrophically fail by focusing on spurious
correlations. Developing methods of nudging a model away from single feature correlations is critical
in the problem of predicting characteristic classes and could be usefully applied in a host of other
problems.

6 Conclusion

In this paper we introduced the dataset Haldane Bundles for the purpose of developing better machine
learning techniques of predicting the characteristic classes of a vector bundle. While our ultimate
motivation comes from the importance of characteristic classes in a range of applications (most
importantly, topological materials), we also aim to show that this is an interesting problem from the
perspective of incorporating sophisticated mathematical ideas into deep learning.
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A Further Constructions of Haldane Bundles

Whenever one obtains a class of line bundles, one can start taking tensor products to obtain even
more varied line bundles. Furthermore, the Chern number of a tensor product of line bundles is just
the sum of the Chern numbers of each piece. This gives us a way to calculate the Chern number of
the tensor product of Haldane bundles, for which we already have a way to calculate.

First, we will generalize a Haldane pair, to a sequence to represent the individual tensor products.
Definition 1. A Haldane sequence is a sequence of Haldane pairs Y = ((G1, F1), . . . , (Gn, Fn)),
and the corresponding Line bundle is

L(Y ) = L(G1, F1)⊗ · · · ⊗ L(Gn, Fn).

By theorem 1 and the fact that Chern number is additive over tensor products, we can calculate the
Chern number for any Haldane sequence Y = ((G1, F1), . . . , (Gn, Fn)) as

c#1 (Y ) =

n∑
j=1

c#1 (L(Gj , Fj)).
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These type of line bundles we do not use in our data sets, but we do include them in our code. They
give a way to get larger Chern number by using smaller degrees. But, to represent the data for models
to learn on they can be more complicated as they have more components since these line bundles are
represented by the smooth maps Ψ : M → CP2n−1 for n ≥ 1.

B Proofs

B.1 Proof of Theorem 1

For this section, we will give a short construction of the curvature form used in computing the Chern
number and give a proof to theorem 1 .
Definition 2. A pre-line bundle of degree n is a triple X = (Vα, ψα, τα,β)α,β∈A on some arbitrary
index set A consisting of the following properties:

• the maps ψα : Vα → Cn+1 \ {0} and τα,β : Vα ∩ Vβ → C∗ are smooth for all α, β ∈ A,

• for each α, β ∈ A, ψα(p) = τα,β(p)ψβ(p) for all p ∈ Vα ∩ Vβ and all α, β ∈ A,

• and (Vα)α∈A covers M .

As in section 4.1, if X = (Vα, ψα, τα,β) is a pre-line bundle, we can build a smooth map ΨX : M →
CPn with Ψ(p) = [ψα(p)] for p ∈ Vα. Let Ln be the tautological line bundle on CPn with

Ln = {(p, v) : p ∈ CPn, v ∈ lp}
where lp is the 1-dimensional vector space spanned by a representative of p. Then the corresponding
line bundle is defined as L(X) := Φ∗X(Ln).

To build our curvature, we first need to build a connection on L(X), and we need to make sure our
maps ψα, τα,β are normalized. We say that a pre-line bundle X = (Vα, ψα, τα,β) of degree n is
normalized if |ψα(p)| = 1 for all p ∈ Vα and |τα,β(p)| = 1 in the complex plane for all p ∈ Vα ∩ Vβ
and for all α, β ∈ A.
lemma 2. Let X = (Vα,Ψα, τα,β)α∈A be a complex line bundle of degree n. For each Vα, there is
a local frame Σα : Vα → L(X) such that on Vα ∩ Vβ we have the following transformation law

Σα = τα,βΣβ

for all α, β ∈ A.

Proof. Let ΨX : M → CPn be the induced smooth map from the pre-line bundle X . For each
α ∈ A, define

Σα(p) = (p,Ψ(p), (ψ0
α(p), . . . , ψnα(p)))

for p ∈ Vα, which is a smooth frame on Vα. It is easy to see that we have

τα,βΣβ = (p,Ψ(p), τα,β(ψ0
β(p), . . . , ψnβ (p))

= (p,Ψ(p), (ψ0
α(p), . . . , ψnα(p)))

= Σα.

This completes the proof.

Next, we will define our connection form on each of the local sections Vα and show that they
transform in the expected way for connections. For this definition, we define ΩnM (U,C) to be the
space of complex differential n-forms on an open subset U of M .
Definition 3. Let X = (Vα, ψα, τα,β)α,β∈A be a normalized complex line bundle of degree n on a
smooth manifold M . For each Vα, define the 1-form ωα ∈ Ω1

M (Vα,C) as

ωα =

n∑
r=1

ψrαdψ
r
α

for all α ∈ A.
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lemma 3. Let X = (Vα,Ψα, τα,β)α,β∈A be a normalized complex line bundle of degree n over a
smooth manifold M . The collection of one forms ωBα on each local trivialization Vα defines a global
connection∇ : Γ(L(X)→ Γ((T ∗M)C ⊗C L(X)) with

∇(Σα) = ωα ⊗ Σα

on each open subset Vα.

Proof. We need to show that the collection of 1-forms ωα transform like a connection. On Vα ∩ Vβ ,
we have

ωα =

n∑
r=1

ψrαdψ
r
α

=

n∑
r=1

τα,βψrβd(τα,βψ
r
β)

=

n∑
r=1

τα,βψrβτα,βdψ
r
β +

n∑
r=1

τα,βψrβψ
r
αdτα,β

=

n∑
r=1

ψrβdψ
r
β +

n∑
r=1

(ψrβψ
r
β)τα,βdτα,β

= ωβ + τα,βdτα,β .

Multiplying both sides by τα,β will get the result.

For each α, we can compute Ωα = dωα ∈ Ω2
M (Vα,C), and these glue together to make a global

curvature form Ω on M . This shows that the curvature is of the form

Ω|Vα =

n∑
r=0

dψrα ∧ dψrα

for each α ∈ A. By Chern-Weil theory the curvature gives us a Chern class c1(X) = [ iΩ2π ] ∈
H2
dR(M ;C) and hence gives us the chern number

c#1 (X) =
i

2π

∫
M

Ω

whenever M is a 2-dimensional manifold.

Now that we have our curvature form, we can use this to give the proof of theorem 1.

proof of theorem 1. Let (G,F ) be a Haldane pair with our smooth maps ψ : V → C2 \ {0} and
ψ† : V † → C2 \ {0} defined as in 4.1. We need to normalize these vectors to use our connection
in definition 3, and it is not too hard to show that |ψ| =

√
2R(R−G) and |ψ†| =

√
2R†(R† −G).

We define

ψ̃ = δψ ψ̃† = δ†ψ†

with δ = 1√
2R(R−G)

and δ† = 1√
2R†(R†−G)

..

Now that we normalized our vectors, we can use these to compute our curvature. On V , we have

Ω|V = d(δR) ∧ d(δR) + d(δF ) ∧ d(δF )

= d(δF ) ∧ d(δF )

= δ2dF ∧ F + δFdF ∧ dδ + δFdδ ∧ dF
using the fact that R and δ are real and the product rule for the exterior derivative. Similarly, we
obtain

Ω|V † = d(δ†F ) ∧ d(δ†F )

= (δ†)2dF ∧ dF + δ†Fdδ† ∧ dF + δ†FdF ∧ dδ†.

We can break our integral apart on the two open subset V and V † \ V ∩ V † to get the result.
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B.2 Computation of Chern number over the Torus

In the case where (G,F ) is a Haldane pair over T2 consisting of Fourier polynomials, we can
approximate the Chern number using the formula in theorem 1 in a very efficient manner on the GPU.
First, we need to give a description on how we save our data of Fourier polynomials in the computer,
as this will be important for computation later. Let

F (p) =
1

2π

∑
k∈Z2

cke
2πi(k·p) (3)

for ck ∈ C where all but a finite number of them are nonzero, and let

G =
1

2π

∑
k∈Z2

(ak cos(2π(k · p)) + bk sin(2π(k · p))) (4)

for ak, bk ∈ R, where all but a finite number of them are zero.

Next, we need to describe some bounds to when the coefficients are zero. Let N−(F ) and N+(F )
be positive integers such that N−(F ) is the minimal integer such that ck = 0 for all k1 < −N−(F )
and k2 < −N−(F ), and define N+(F ) to be the minimal positive integer such that ck = 0 for
all k1 > N+(F ) and k2 > N+(F ). Similarly, we can define N−(G) and N+(G) as well applied
to both coefficients ak and bk. Let NF = N−(F ) + N+(F ) + 1 and construct a matrix AF of
size NF × NF with entries (AF )i,j = c(i−N−(F ),j−N−(F )) for 1 ≤ i, j ≤ NF . Similarly, define
NG = N−(G) +N+(G) + 1 and define the matrices BtG of size NG ×NG for t = 1, 2 with

(B1
G)i,j = a(i−N−(G),j−N−(G) (B2

G)i,j = b(i−N−(G),j−N−(G) (5)

for 1 ≤ i, j ≤ NG. For example, if N−(F ) = N+(F ) = d, then AF is of the form
c(−d,−d) · · · c(0,−d) · · · c(d,−d)

... · · ·
... · · ·

...
c(−d,0) · · · c(0,0) · · · c(d,0)

... · · ·
... · · ·

...
c(−d,d) · · · c(0,d) · · · c(d,d)

 . (6)

Example 1. Here is a simple example, that is related to the Haldane model. Suppose we have a
Haldane pair (G,F ) with the Fourier polynomials

F (p) = t1e
2πi(x+y) + t1e

2πi(−y) + t1e
2πi(−x)

G(p) = M + 2t2 sin(−2πx+ 2πy) + 2t2 sin(4πx+ 2πy) + 2t2 sin(−2πx− 4πy)

with parameters t1, t2,M ∈ R. Then then N−(F ) = N+(F ) = 1 and N−(G) = N(G,−) = 2 and
we would have the following matrices for the coefficients:

AF =

[
0 t1 0
t1 0 0
0 0 t1

]
B1
G =


0 0 0 0 0
0 0 0 0 0
0 0 M 0 0
0 0 0 0 0
0 0 0 0 0

 , B2
G =


0 2t2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 2t2 0 0 2t2
0 0 0 0 0

 .
With our representation of our Fourier polynomials through square matrices containing their coeffi-
cients, we can start describing how we calculated the Chern number using theorem 1. We proceed in
the usual method by partitioning our torus in to small enough squares and evaluate our Ω on each of
the sampled points of each square, multiplying by the area of that square, and then taking the sum to
approximate the integral. The most expensive part of all of this is finding the values of F ,G, and the
partial derivatives at each of the sampled points and adding up the values. As the partition size of
the torus grows, the more computationally expensive this becomes. To handle this, it is fruitful to
calculate the values of F ,G and the partial derivatives using the parallel capabilities of GPU’s.

First, partition our torus into 1/N × 1/N sized squares for some large enough N > 1, so that
there are N2 boxes in total, and we have sampled a point in each of these boxes, say the bottom
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left corner of each of them. Let P = [0, . . . , i/N, . . . , (N − 1)/N ] be a vector with N entries
essentially representing either the first or second entry of a sampled point in the torus. Furthermore,
let KF = [−N−(F ), . . . , 0, . . . , N+(F )] and KG = [−N−(G), . . . , 0, . . . , N+(G)] be two vectors
representing the possible entries for k ∈ Z2 where ak, bk, ck are possibly non-zero. We will be using
these vectors with certain operations to make it possible to implement the computation on the GPU.

Before we start the computation, we will review the Kronecker product, Kronecker sum of two
vectors, and a new operation that combines these together which makes it possible to evaluate the
sampled points on the Torus using the GPU.

Definition 4. Let v = [v1, . . . , vn], h = [h1, . . . , hm] two vectors with components in an arbitrary
field F. The Kronecker product of v and h is the vector w = Kron(v ⊗ h) of length nm with

w = [v1h1, v1h2, . . . , v1hm, . . . , vnh1, . . . , vnhm] (7)
= [v1h, . . . , vnh]. (8)

The Kronecker product is essentially a ordered list of all possible multiplications of elements from v
and h. Note that Kron : Fn ⊗ Fm → Fnm is a linear map over F and it is not commutative.

Next, is the Kronecker sum, which is similar to the Kronecker product, except it calculates all possible
sums between two vectors and arranges it into a matrix.

Definition 5. Let v = [v1, . . . , vn] and h = [h1, . . . , hm] be two vectors with components in an
arbitrary field F. The Kronecker sum of v and h is the matrix C = KronΣ(v, h) defined as follows.
Let A be a matrix of size m× n with each row is the vector v as in

A =

v...
v

 . (9)

Similarly, let B be a matrix of size m× n with each column is the vector hT as in

B =
[
hT · · · hT

]
. (10)

We define C to be the m× n matrix

C = A+B =


v1 + h1 v2 + h1 · · · vn + h1

v1 + h2 v2 + h2 · · · vn + h2

...
...

...
...

v1 + hm v2 + hm · · · vn + hm

 . (11)

The Kronecker sum KronΣ : Fn × Fm → Matm,n(F) is linear over F and it is also non-
commutative.

With these two operations, we define a new linear map mdot : Fn ⊗ Fn →Matnm(F) defined for
v ∈ Fn and h ∈ Fm as

mdot(v ⊗ h) = KronΣ(Kron(v, h),Kron(v, h)) (12)

=



v1h1 + v1h1 · · · v1hm + v1h1 · · · vnh1 + v1h1 · · · vnhm + v1h1

v1h1 + v1h2 · · · v1hm + v1h2 · · · vnh1 + v1h2 · · · vnhm + v1h2

... · · ·
... · · ·

... · · ·
...

v1h1 + v1hm · · · v1hm + v1hm · · · vnh1 + v1hm · · · vnhm + v1hm
... · · ·

... · · ·
... · · ·

...
v1h1 + vnh1 · · · v1hm + vnh1 · · · vnh1 + vnh1 · · · vnhm + vnh1

... · · ·
... · · ·

... · · ·
...

v1h1 + vnhm · · · v1hm + vnhm · · · vnh1 + vnhm · · · vnhm + vnhm


(13)

which essentially a dot product between all possible combinations (vi, vj) · (hr, ht) for 1 ≤ i, j ≤ n
and 1 ≤ r, t ≤ m. One very useful property of this product is that we can break this matrix into a
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n× n block matrix of the form

mdot(v, h) =


A1,1 A2,1 · · · An,1
A1,2 A2,2 · · · An,2

...
... · · ·

...
A1,n A2,n · · · An,n

 (14)

where

Ai,j =


(vi, vj) · (h1, h1) (vi, vj) · (h2, h1) · · · (vi, vj) · (hm, h1)
(vi, vj) · (h1, h2) (vi, vj) · (h2, h2) · · · (vi, vj) · (hm, h2)

...
... · · ·

...
(vi, vj) · (hm, h1) (vi, vj) · (hm, h2) · · · (vi, vj) · (hm, hm)

 . (15)

Note that this operation is non-commutative, and the ordering we do the product in the next section is
very important. Furthermore, since all of these operations are operations that can be done in parallel
in the computer, hence mdot is able to be computed in the GPU.

With our new operation mdot at our disposal, we can continue our computation of our Chern number
on the torus. Our goal was to compute the values of F,G,and the partial derivatives on the whole
torus. The first essential part of this, is to compute the matrices mdot(P ⊗KF ) for F , mdot(P ⊗KG)
for G, and similar products for the partial derivatives. We will focus our attention on the values of F
on the torus, as it is similar for G and the partial derivatives.

By definition mdot(P ⊗KF ) is a N ×N block matrix (Ai,j)i,j described in the definition of mdot
above. Apply the exponential function component wise to get matrix

exp (2πimdot(P ⊗KF )) =


exp 2πiA1,1 exp 2πiA2,1 · · · exp 2πiAn,1
exp 2πiA1,2 exp 2πiA2,2 · · · exp 2πiAn,2

...
... · · ·

...
exp 2πiA1,n exp 2πiA2,n · · · exp 2πiAn,n

 . (16)

Here, the matrix exp 2πiAi,j represents all possible values e2πi(k·p) for a fixed point p = ( i−1
N , j−1

N )

and all possible k ∈ Z2 with respect to N+(F ) and N−(F ). Applying a discrete convolution with
weight AF , input exp (2πimdot(P,KF )), and stride N results in a N ×N matrix

F (0, 0) F ( 1
N , 0) · · · F (N−1

N , 0)
F (0, 1

N ) F ( 1
N ,

1
N ) · · · F (N−1

N , 1
N )

...
... · · ·

...
F (0, N−1

N ) F ( 1
N ,

N−1
N ) · · · F (N−1

N , N−1
N )

 (17)

which are the values of F on each of the sampled points of our partition.

With this and applying the same idea for G and the partial derivatives, we get our values of F ,G, and
the partial derivatives on the sampled points of the torus. We can use this to compute the integrands
in the GPU and take the sum at the end to obtain an approximation to the integral.
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