
GRIFFIN: Effective Token Alignment for Faster
Speculative Decoding

Shijing Hu1 Jingyang Li2 Xingyu Xie2 Zhihui Lu1∗ Kim-Chuan Toh2 Pan Zhou3

1Fudan University 2National University of Singapore 3 Singapore Management University
sjhu24@m.fudan.edu.cn li_jingyang@u.nus.edu xyxie@pku.edu.cn

lzh@fudan.edu.cn mattohkc@nus.edu.sg panzhou@smu.edu.sg

Abstract

Speculative decoding accelerates inference in large language models (LLMs) by
generating multiple draft tokens simultaneously. However, existing methods often
struggle with token misalignment between the training and decoding phases, limit-
ing their performance. To address this, we propose GRIFFIN, a novel framework
that incorporates a token-alignable training strategy and a token-alignable draft
model to mitigate misalignment. The training strategy employs a loss masking
mechanism to exclude highly misaligned tokens during training, preventing them
from negatively impacting the draft model’s optimization. The token-alignable
draft model introduces input tokens to correct inconsistencies in generated fea-
tures. Experiments on LLaMA, Vicuna, Qwen and Mixtral models demonstrate
that GRIFFIN achieves an average acceptance length improvement of over 8%
and a speedup ratio exceeding 7%, outperforming current speculative decoding
state-of-the-art methods. Our code and GRIFFIN’s draft models will be released
publicly in https://github.com/hsj576/GRIFFIN.

1 Introduction

Large Language Models (LLMs) like GPT-4 [1] and LLaMA [2, 3] have shown impressive capa-
bilities in diverse domains, including dialogue [4] and code generation [5]. However, the standard
autoregressive decoding of LLMs generates tokens sequentially, with each token requiring a full
forward pass through the entire model. Given the large size of LLMs, this process is both compu-
tationally expensive and time-consuming, posing challenges for latency-sensitive applications. To
accelerate generation, speculative decoding [6, 7] has become widely adopted and shown significant
speed improvements. It leverages a lightweight draft model to propose multiple tokens, verifies them
in parallel with the target LLM, and accepts those aligned with the target’s predictions. This enables
multi-token generation per forward pass of the target LLM, substantially reducing latency.

However, the efficiency of speculative decoding depends critically on achieving a high acceptance rate
for draft tokens, while also minimizing the computational cost of generating them. Recent methods
like EAGLE [8, 9] and Medusa [10] address this by utilizing shallow-layer hidden states of the target
LLM to guide draft model’s token predictions. Despite their improved efficiency, these methods
face a fundamental limitation: misalignment between the training and decoding processes. During
training, the draft model uses features from the target model and ground-truth tokens from training
data, whereas in decoding, it relies on its own generated features and previously generated draft
tokens. This discrepancy introduces two key issues: (1) feature misalignment, where the features
generated by the draft model during decoding diverge from those features used during training, and
(2) token misalignment, where ground-truth tokens are replaced by draft tokens, often compounding

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/hsj576/GRIFFIN


Figure 1: Comparison between our GRIFFIN, EAGLE2, and HASS. (a) Speedup ratio comparison.
(b) Acceptance length under different training steps, in which "Step n" denotes aligning draft model
for n times in training. (c) Misaligned token rate under different forward passes in each drafting-
verification cycle, where "Forward n" denotes forwarding n passes to generate n draft tokens.

errors over multiple steps. These misalignments, akin to exposure bias [11, 12], significantly degrade
the acceptance rate of draft tokens and thus impair the overall speedup performance.

Efforts to address feature misalignment like HASS [13] use draft model’s features to replace target
model’s features during training. While aligning training with decoding, it neglects token misalign-
ment which is particularly problematic in decoding. Errors from earlier decoding steps propagate
and amplify, further exacerbating token misalignment. For instance, as shown in Fig. 1 (c), EAGLE2
suffers from a token misalignment rate of 48% during training, resulting in suboptimal acceptance
lengths and limiting its effectiveness. Similarly, while mitigating feature misalignment, HASS
sees token misalignment escalate to 37% in later training steps, rendering it ineffective for deeper
multi-forward harmonized training, e.g., training step n ≥ 3, as shown in Fig. 1 (b).

Contributions. We propose GRIFFIN, a novel speculative decoding framework that—unlike prior
work—explicitly identifies and addresses the previously unobserved token misalignment issue,
alongside feature misalignment. It introduces two core innovations: a token-alignable training strategy
and a token-alignable draft model, working together to significantly boost decoding efficiency.

Firstly, to mitigate token misalignment during training, GRIFFIN employs a dynamic loss masking
mechanism that selectively backpropagates only through aligned tokens—defined as those whose
ground-truth tokens appear in the draft model’s top-k predictions. This not only minimizes the
disruptive effect of highly misaligned tokens, but also harmonizes training and decoding since draft
trees in decoding builds upon top-k predictions rather than exact matching to the highest-probability
token. Unlike prior works [8, 9, 13] which train on exact targets, GRIFFIN embraces approximation
while preserving signal fidelity, improving both alignment and generalization across decoding steps.

Secondly, to further reduce token misalignment, GRIFFIN designs a token-alignable draft model
by incorporating the architectural innovation of Token-Guided Fusion (TGF) into draft model in
EAGLE [8]. TGF performs a two-step fusion to refine feature representations and mitigate incon-
sistencies between the draft and target models. By incorporating input tokens twice—initially with
features and later to refine them—our TGF module ensures that the draft model produces features
more closely aligned with the target model, reducing feature and token misalignment.

These two components are mutually reinforcing. The token-alignable draft model reduces misalign-
ment, increasing the number of aligned tokens available for effective training. In turn, the training
strategy ensures that these aligned tokens contribute meaningfully to model optimization. Crucially,
our approach is the first to expose and directly address token misalignment—an uncharted limitation
in speculative decoding that hampers draft token acceptance and decoding speed. As shown in Fig. 1
(c), GRIFFIN consistently maintains a much lower token misalignment rate compared to EAGLE2
and HASS across multiple forward steps. This yields longer accepted token sequences and greater
speedups, particularly in deeper harmonized training settings where previous methods degrade.

Experimental results show GRIFFIN’s superior performance over state-of-the-arts (SoTAs) across di-
verse tasks, including dialogue (MT-Bench [4]), code generation (HumanEval [5]), and mathematical
reasoning (GSM8K [14]). For example, Fig. 1 (a) and (b) show that on LLaMA2-7/13B, LLaMA3-8B,
and Vicuna-7B, GRIFFIN improves the average acceptance length by 20% over EAGLE2 and 8%
over HASS, while delivering a speedup ratio of 18% over EAGLE2 and 7% over HASS.

2



Figure 2: Token and feature misalignment in EAGLE.

2 Related Work

Speculative decoding [15–19] accelerates LLM inference by dividing each decoding step into a draft
stage and a verification stage. Existing methods differ primarily in their draft model architectures or
strategies, each addressing specific challenges in speculative decoding.

Several methods enhance draft quality through context retrieval, e.g., PLD [20], Lookahead [21], and
CLLMs [22], which rely on prompt-based retrieval from similar contexts. However, their effectiveness
is limited when relevant context is scarce or unavailable. Tree-based verification approaches like
Sequoia [23] and SpecExec [24] use hierarchical structures to improve verification but incur high
computational overhead, making them unsuitable for latency-sensitive scenarios. Other works,
including REST [25] and Ouroboros [26], reuse previous outputs or databases to guide drafting but
are constrained by the quality and accessibility of external resources. Chimera [27] and Glide [28]
enhance token quality by integrating target model into draft model with extra computational cost.

Lightweight draft models have also been explored to improve efficiency. Medusa [10] employs
MLPs for parallel candidate prediction, while Hydra [29] and Recurrent Drafter [30] use RNN-based
models for regressive generation. EAGLE [8] and EAGLE2 [9] introduces a transformer decoder for
autoregression over feature sequences, balancing accuracy and complexity. FSPAD [31] constructs
input sequences tailored for lightweight draft model predictions and introduces specialized training
methods to improve draft quality. Additionally, methods like HASS [13] address feature misalignment
during training and decoding but do not fully resolve token-level misalignment. In contrast, this work
focuses on addressing token misalignment, a critical challenge in speculative decoding. We propose
the GRIFFIN framework, which introduces a token-alignable training strategy and a token-alignable
draft model. By tackling this issue, GRIFFIN improves both acceptance length and speedup ratio,
offering a complementary perspective to existing methods.

3 Motivation: Token Misalignment

Speculative decoding [6, 7] accelerates text generation by employing a “draft-and-verify” strategy.
Per cycle, a lightweight draft model M first generates multiple tokens through multiple forward
passes, and a stronger target model T then verifies and accepts a subset in a single forward pass.

EAGLE [8] extends this paradigm by shifting autoregression from the token level to the feature level.
As shown in Fig. 2, instead of predicting tokens directly, the draft model generates intermediate
hidden state features that approximate those from the final layer of the target model T —just before the
language modeling (LM) head H. At time step t, let xt and x̄t denote the t-th ground-truth and draft
tokens, and Ft and F̄t their respective hidden features from T and M. During training, as illustrated
in Fig. 2, the draft model uses xt and Ft to predict x̄t+1 and F̄t+1. However, during decoding, the
draft model must rely solely on previously generated tokens x̄t and features F̄t—without access to xt

or Ft—since the target model is invoked only once per cycle after all draft tokens are produced. This
discrepancy introduces two fundamental issues: 1) feature misalignment where during decoding, for
prediction, the draft model uses F̄t instead of Ft as in training; and 2) token misalignment where
the tokens x̄t used in decoding differ from ground-truth tokens xt seen during training.

Among these, token misalignment is particularly severe yet underexplored. Fig. 1(c) shows that for
EAGLE2 and HASS, the rate at which x̄t ̸= xt—the token misalignment rate—increases sharply
with the number of forward passes. For instance, EAGLE2 reaches a misalignment rate of 48% when

3



generating five draft tokens per cycle. Even HASS, which partially mitigates feature misalignment,
still suffers from a 37% token misalignment rate. This degradation stems from error accumulation
across passes, where early mistakes in token generation propagate and compound in subsequent steps.

Critically, high token misalignment undermines training effectiveness. As shown in Fig. 1(b),
when the number of forward passes exceeds three in HASS, acceptance length plateaus—even with
continued training. This suggests that draft models only generate fewer acceptable tokens, directly
limiting decoding efficiency. Hence, solving token misalignment is not only important but necessary
to unlock deeper multi-pass speculative decoding and greater speedups.

A seemingly simple fix—replacing xt (ground-truth training tokens) with x̄t from the draft model
during training—fails in practice. This is because 1) frameworks like EAGLE and HASS precompute
and store Ft for all xt before training which avoids the computational burden of regenerating training
data; 2) swapping in x̄t leads to inconsistent input-feature pairs, which breaks the alignment needed
for loss computation and degrades performance, as confirmed by Appendix. B in HASS. In fact,
naive substitution significantly reduces acceptance length. In light of these challenges, we propose
an effective solution to the token misalignment problem that preserves compatibility with existing
training workflows and enables better alignment between training and decoding.

4 GRIFFIN: A Token-Alignable Framework

To address token misalignment challenges in Sec. 3, we propose GRIFFIN, a novel framework to
mitigate token misalignment through two key components: 1) token-alignable training introduced in
Sec. 4.1 and 2) a token-alignable draft model elaborated in Sec. 4.2.

4.1 Token-Alignable Training

At the core of GRIFFIN is a progressive training strategy that mirrors how the draft model operates
during decoding. Instead of relying on ground-truth tokens and features at every step—an assumption
that breaks down during inference—we gradually shift the model toward using its own outputs during
training. This alignment is critical to mitigating token misalignment.

Concretely, GRIFFIN organizes training into multiple steps, where each training step n involves draft
model performing n forward passes to predict n future tokens and their corresponding features. With
each additional pass, the model increasingly conditions on its own generated tokens and features from
prior steps rather than ground-truth tokens and features from target model. This effectively aligns
training process with decoding phase, as in training phase, the draft model simulates the similar input
conditions encountered during decoding. Then we detail the first training step and its subsequent step.

First Forward Pass (n = 1): Like vanilla autoregressive generation, draft model M predicts draft
tokens which are then fed into target model T to verify and accept. Specifically, at time step t, draft
model M and LM head H in target model predicts the t-th feature embedding F̄t and draft token x̄t:

F̄t = M(x1:t−1,F1:t−1), x̄t = H(F̄t), (1)

where x1:t−1 denotes the token sequence {xi}t−1
i=1 from training dataset and F1:t−1 are the feature

embedding sequence {Fi}t−1
i=1 generated by target model T .

Token misalignment arises only from the second forward pass onward. In the first pass, both training
and decoding share the identical ground-truth prefix x1:t−1, so all predicted tokens x̄t are perfectly
aligned. Therefore, no masking is needed in the first pass. The first-pass loss at step t is

L(1)
M =

l∑
t=1

ℓ(x̄t,xt, F̄t,Ft), (2)

where ℓ combines a feature-level loss, i.e., the ℓ1 distance between F̄t and Ft, and a token-level
loss, namely, cross-entropy between x̄t and xt. The detail implementation of ℓ is summarized in
Appendix. C.

n-th Forward Pass (n ≥ 2). Draft model M would predict n draft tokens at the n-th forward pass.
From the second forward pass, during decoding, speculative decoding may reject a draft token x̄t,
in which case all later tokens x̄t+1, x̄t+2, . . . in that draft sequence are also discarded. So, during

4



training, if x̄t is unpredictable (rejected), the subsequent draft tokens x̄t+1, x̄t+2, . . . in this draft
sequence are misaligned tokens. Training on those misaligned token provides no useful signal.

To address token misalignment challenge, we introduce a novel token-alignable training strategy that
aligns draft model’s training with its multi-pass behavior during decoding. Unlike prior approaches
like EAGLE which use only top-1 predictions during training, our method incorporates the tree-
structured decoding process directly into learning by supervising on top-k predictions. In EAGLE’s
decoding, each forward pass of draft model generates a top-k list of candidate tokens at each time
step, forming a tree where alternative branches can be explored if the top-1 token is rejected. To
match this, GRIFFIN considers a draft token x̄t to be predictable if the ground-truth token xt appears
within its top-k predictions Top-k(x̄t). This ensures that training reflects the decoding phase, where
any top-k token may be valid. Accordingly, we introduce a binary predictable mask m̄t ∈ {0, 1},
where m̄t = 1 if xt ∈ Top-k(x̄t), and m̄t = 0 otherwise. Since the current draft token x̄t is decided
by previous predicted draft tokens x̄t−n+1:t−1 predicted in earlier (n− 1) forward passes, then if
any draft token in x̄t−n+1:t−1 is unpredictable, the draft token x̄t would likely be misalignment.
To prevent the model from being penalised for such inevitably rejected positions, we introduce a
cumulative binary alignment mask mt adjusted by predictable masks m̄t−n+1:t−1 of draft tokens
xt−n+1:t−1:

mt =
∏t−1

i=t−n+1
m̄i. (3)

These masks indicate whether a token should contribute to the training loss, ensuring consistency
between training and inference. Next, to further ensure alignment between training and decoding,
we replace target-model features Ft−n+1:t−1 with draft-model-generated features F̄t−n+1:t−1 from
earlier passes. Then the draft model M and the LM head H are used to generate the feature F̄t and
the draft token x̄t:

F̄t = M(x1:t−1,F1:t−n, F̄t−n+1:t−1), x̄t = H(F̄t). (4)

Then, we define the following training loss to train the draft model M:

L(n)
M =

1∑l
t=1 mt

l∑
t=1

mtℓ(x̄t,xt, F̄t,Ft), (5)

GRIFFIN’s training strategy differs from priors like EAGLE and HASS that rely on ground-truth
tokens during training. By progressively adapting draft model to operate under its own predictions
and aligning its training with decoding, GRIFFIN addresses token misalignment issue via introducing
top-k alignment masks, self-conditioning through generated tokens, and mask propagation.

4.2 Token-Alignable Draft Model

To enhance draft token accuracy and effectively address token misalignment, we propose a token-
alignable draft model which systematically resolves feature inconsistency issues overlooked by prior
draft models. While our architecture builds on EAGLE’s draft model, it introduces two key extra
modules: Token-Guided Fusion (TGF) and Token-Enhanced Head (TEH). As shown in Fig. 3(a), we
insert TGF module before the autoregressive layer to fuse input features Ft and tokens xt. After
autoregression, we use TEH module, a dual-head design inspired by prior work [31], to output 1) a
predict feature F̄P

t+1 for token prediction and 2) a regress feature F̄R
t+1 to feed subsequent forward

passes. Accordingly, TEH can separate and decouple the conflicting objectives of token prediction
and feature generation within the draft model, improving draft token accuracy. Our ablation in
Appendix. B confirm its effectiveness.

TGF module is designed to address a core challenge: feature representations in draft models often
fail to match those of the target model, even after extensive training. Since feature-level losses can’t
be minimized to zero in practice, this gap leads to persistent misalignments, leading to the misaligned
features between draft and target models which impairs draft token’s accuracy. TGF tackles this by
prioritizing token embeddings in the fusion process, guiding the feature generation toward better
consistency with the target model. As illustrated in Fig. 3(b), TGF operates in three steps:

(1) Embedding Fusion in Fig. 3 (b-i). Given input feature F and token embedding x (both in Rd),
we concatenate them and use a lightweight MLP to project the result back to Rd:

h = C(F,x)Wm + bm. (6)

5



Figure 3: Structure of GRIFFIN’s darft model. (a) Token-Alignable Draft Model. (b) TGF module.
The diagram depicts the shared architecture used in both training and decoding phases—arrows
indicating token flow correspond to valid data dependencies in both regimes.

Here, Wm ∈ R2d×d and bm ∈ Rd are the MLP weights and bias, and C(·, ·) is the concatenation
operator. This produces a unified feature that blends both token and feature information.

(2) Feature Normalization and Expansion in Fig. 3 (b-ii). We apply layer normalization to both h
and x, then concatenate and expand the dimension to 4d using an Up Projector (a linear layer):

z = C(N (h),N (x))Wu + bu, (7)

with Wu ∈ R2d×4d and bu ∈ R4d. Here, N (·) denotes layer normalization. Operating in a
higher-dimensional space enables the model to disentangle and align more complex token-feature
relationships. This 4d expansion aligns with the intermediate size used in many transformer FFNs,
and our ablations in Sec. 5.2, Appendix A.2 and A.3 confirm its effectiveness.

(3) Refinement and Stabilization in Fig. 3 (b-iii). We apply a SiLU nonlinearity σ to z and project
it back to Rd using a Down Projector (a liner layer). A residual connection with h stabilizes training:

o = σ(z)Wd + bd + h, (8)

where Wd ∈ R4d×d and bd ∈ Rd. The nonlinearity enriches expressiveness, and the residual
addition preserves essential fused information.

By explicitly integrating token embeddings into feature fusion, TGF ensures that generated features
better reflect token distribution of target model. Combined with TEH, it enables draft model to
generate more accurate draft tokens and features, crucial for mitigating misalignment in multi-pass
decoding. This token- and feature-aware design is a key innovation that differs GRIFFIN from priors.

5 Experiments

Representative LLMs, including LLaMA2-Chat 7B/13B, LLaMA3-Instruct 8B/70B [3], Vicuna-1.5
7B [32], Qwen2-Instruct 7B [33] and Mixtral-8x7B-Instruct-v0.1 [34], are tested. For consistency, all
inference runs use one NVIDIA A100 80G GPU, except for LLaMA3-70B and Mixtral-8x7B, which
require two GPUs. Vanilla auto-regressive decoding is used as the baseline, serving as the benchmark
for speedup ratios (1.00x). We compare GRIFFIN against recent SoTA speculative decoding methods,
including SPS (standard speculative sampling with its draft model being Vicuna-68M) [6], PLD [20],
Lookahead [21], Medusa [10], EAGLE [8], EAGLE-2 [9], FSPAD [31], and HASS [13]. We follow
priors and train our draft model on ShareGPT dataset, with token-alignment set to top-k (k = 3)

6



Table 1: Comparison of different speculative decoding methods. This table presents evaluation
results on standard LLM benchmarks with temperature T ∈ {0, 1}, including speedup ratio SR and
acceptance lengths τ . Higher values indicate better performance.

Temperature = 0 Temperature = 1

Model Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

LLaMA2
Chat
7B

PLD 1.41 1.46 1.51 1.57 1.34 1.39 1.42 1.47 N/A, since the acceptance conditions are relaxedLookahead 1.64 1.71 1.75 1.81 1.57 1.63 1.65 1.72
EAGLE-2 2.69 4.50 3.22 5.24 2.77 4.72 2.89 4.82 2.41 4.29 3.00 5.01 2.63 4.66 2.68 4.65
FSPAD 2.89 4.82 3.38 5.62 2.95 4.99 3.07 5.14 2.61 4.53 3.14 5.35 2.84 4.88 2.86 4.92
HASS 2.97 4.97 3.46 5.69 3.06 5.12 3.17 5.26 2.72 4.64 3.18 5.22 2.83 5.08 2.91 4.98
GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23

LLaMA3
Instruct

8B

EAGLE 1.32 2.96 2.07 3.76 1.88 3.61 1.76 3.44 1.28 2.71 1.42 3.36 1.66 3.31 1.45 3.13
EAGLE-2 2.56 4.18 3.36 5.05 2.53 4.41 2.82 4.54 2.26 3.75 2.63 4.77 2.46 4.30 2.45 4.27
EAGLE-3 2.93 4.71 3.59 5.72 3.17 5.01 3.23 5.15 2.51 4.18 3.27 5.47 2.90 4.85 2.89 4.83
FSPAD 2.72 4.52 3.40 5.39 2.95 4.77 3.02 4.89 2.43 4.09 3.04 5.18 2.75 4.60 2.74 4.62
HASS 2.75 4.63 3.51 5.70 3.09 5.06 3.12 5.13 2.41 4.15 3.09 5.41 2.92 4.90 2.81 4.82
GRIFFIN 3.09 4.85 3.65 5.97 3.30 5.31 3.35 5.38 2.62 4.35 3.31 5.62 3.07 5.08 3.00 5.02

Vicuna1.5
7B

SPS 1.81 2.34 2.04 2.68 1.73 2.28 1.86 2.43 1.49 1.85 1.57 1.99 1.52 1.80 1.53 1.88
Medusa 1.97 2.60 2.07 2.75 1.93 2.65 1.99 2.67 N/A, since the acceptance conditions are relaxed
EAGLE-2 3.56 4.74 3.92 5.30 3.69 5.03 3.72 5.02 3.15 4.20 3.30 4.62 3.41 4.65 3.29 4.49
FSPAD 3.73 5.16 4.12 5.74 3.85 5.37 3.90 5.42 3.27 4.53 3.45 5.11 3.56 4.98 3.42 4.87
HASS 3.91 5.15 4.22 5.86 3.97 5.41 4.03 5.47 3.34 4.52 3.62 5.16 3.70 5.03 3.55 4.90
GRIFFIN 4.02 5.36 4.53 6.29 4.14 5.63 4.23 5.76 3.38 4.64 4.12 5.68 3.88 5.29 3.79 5.20

Qwen2
Instruct

7B

EAGLE-2 2.32 3.80 2.90 4.73 2.70 4.32 2.64 4.28 2.00 3.01 2.71 4.18 2.60 3.98 2.43 3.72
HASS 2.59 4.23 3.18 5.46 2.91 4.86 2.89 4.85 2.17 3.23 2.83 4.52 2.79 4.38 2.59 4.04
GRIFFIN 2.76 4.67 3.34 5.75 3.02 5.13 3.04 5.18 2.27 3.36 3.04 4.82 2.96 4.71 2.76 4.30

LLaMA2
Chat
13B

EAGLE-2 2.97 4.68 3.61 5.59 3.05 4.97 3.21 5.08 2.77 4.45 3.41 5.45 2.97 4.83 3.05 4.91
FSPAD 3.09 5.05 3.91 5.98 3.32 5.35 3.44 5.46 3.03 4.85 3.51 5.71 3.21 5.25 3.25 5.27
HASS 3.11 5.05 4.16 6.05 3.38 5.33 3.55 5.47 3.05 4.90 3.66 5.85 3.22 5.30 3.31 5.35
GRIFFIN 3.33 5.27 4.29 6.26 3.61 5.56 3.74 5.70 3.36 5.07 3.94 6.13 3.61 5.49 3.64 5.56

LLaMA3
Instruct

70B

EAGLE-2 2.96 4.13 4.03 5.08 3.21 4.42 3.40 4.54 3.04 4.05 3.65 5.01 3.20 4.32 3.34 4.46
HASS 3.36 4.59 4.61 5.73 4.01 5.21 3.99 5.17 3.35 4.48 4.23 5.65 3.84 5.17 3.80 5.10
GRIFFIN 3.52 4.66 4.71 6.03 4.09 5.39 4.11 5.36 3.49 4.54 4.33 5.94 3.90 5.30 3.91 5.26

Mixtral-v0.1
Instruct
8x7B

EAGLE-2 1.96 3.39 2.34 4.13 2.19 3.79 2.16 3.77 1.93 3.32 2.28 3.98 2.09 3.71 2.10 3.67
HASS 2.17 3.67 2.63 4.76 2.39 4.58 2.39 4.33 2.09 3.61 2.53 4.58 2.24 4.46 2.28 4.21
GRIFFIN 2.29 3.97 2.82 5.25 2.51 4.86 2.54 4.69 2.22 3.89 2.71 5.08 2.39 4.72 2.44 4.56

for N = 3 steps. Other hyperparameters (e.g., optimizer) match EAGLE-2 for fair comparison.
We proved the detailed description of GRIFFIN’s hyperparameter settings in Appendix. C and
implementation of baseline methods in Appendix. D.

We assess performance on three key tasks: multi-turn conversation (MT-Bench [4]), code generation
(HumanEval [5]), and mathematical reasoning (GSM8K [14]). To align with prior work (e.g.,
DistillSpec [35], EAGLE), we fix the batch size to 1 and set the temperature T ∈ {0, 1}. Like
prior speculative decoding methods, GRIFFIN is also lossless, eliminating the need for additional
quality evaluation of generation. Accordingly, we follow priors and focus on acceleration metrics: 1)
Speedup Ratio (SR) to measure actual test speedup ratio over vanilla autoregressive decoding; and
2) Acceptance Length (τ ) which is average token number accepted per drafting-verification cycle.

5.1 Comparison with SoTAs

We present the acceptance lengths and speedup ratio of various methods across three datasets in
Table 1. GRIFFIN consistently achieves the highest acceptance length and speedup ratio across all
datasets and LLMs tested. Each GRIFFIN drafting-verification cycle generates approximately 5–6
tokens, significantly exceeding other methods. This is roughly three times the amount of standard
speculative sampling and 1.5 times the amount of EAGLE.

For the multi-round conversation task (MT-Bench) with LLaMA3 8B (temperature T = 0), GRIFFIN
achieves an 8.7% higher speedup ratio compared to HASS. Even for temperature T = 1, GRIFFIN

7



Table 2: Ablation study on Token-Alignable Training (TAT) and Token-Alignable Draft Model (TAD).
This table presents the evaluation of speedup ratio SR and acceptance lengths τ on LLM benchmarks
with temperature T ∈ {0, 1}. Higher values indicate better performance.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
w/o both 2.69 4.50 3.22 5.24 2.77 4.72 2.89 4.82 2.41 4.29 3.00 5.01 2.63 4.66 2.68 4.65
w/o TAT 2.89 4.85 3.40 5.65 3.01 5.04 3.10 5.18 2.62 4.56 3.13 5.34 2.75 4.96 2.83 4.95
w/o TAD 2.95 4.94 3.45 5.68 3.08 5.14 3.16 5.25 2.73 4.65 3.24 5.31 2.82 5.05 2.93 5.00

Table 3: Comparison of different top-k parameter for GRIFFIN. This table presents evaluation
of speedup ratio SR and acceptance lengths τ on standard LLM benchmarks with temperature
T ∈ {0, 1}. Higher values indicate better performance. NA represents do not align token.

Temperature = 0 Temperature = 1

Top-k MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

1 3.01 5.03 3.56 5.85 3.05 5.17 3.21 5.35 2.75 4.73 3.27 5.52 2.85 5.10 2.96 5.12
3 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
5 3.09 5.09 3.59 5.91 3.08 5.23 3.25 5.41 2.78 4.78 3.32 5.61 3.01 5.19 3.04 5.19
10 3.03 5.05 3.55 5.84 3.06 5.19 3.21 5.36 2.74 4.72 3.30 5.60 2.89 5.12 2.98 5.15
NA 2.97 4.95 3.52 5.76 3.04 5.12 3.18 5.28 2.72 4.65 3.24 5.47 2.82 5.01 2.93 5.04

maintains a 7.8% improvement over HASS. For the code generation task (HumanEval) with Vicuna
7B, GRIFFIN demonstrates a 7.3% increase in speedup ratios compared to HASS at a temperature of
0, and a 13.8% improvement when the temperature is set to 1. For the mathematical reasoning task
(GSM8K with LLaMA2 13B), GRIFFIN achieves a 6.8% increase in speedup ratios compared to
HASS with temperature T = 0, and an 12.1% improvement at a temperature of 1. GRIFFIN also
outperforms EAGLE-3 across all benchmarks and temperature settings in LLaMA3 8B. GRIFFIN
achieves 3.7% higher speedup ratio and 4.5% higher acceptance length compared with EAGLE-3 at a
temperature of 0. GRIFFIN achieves 3.8% higher speedup ratio and 3.9% higher acceptance length
compared with EAGLE-3 when the temperature is set to 1.

GRIFFIN also demonstrates consistently strong acceleration across LLMs with different architectures
beyond LLaMA/Vicuna. On the Qwen2 7B model, GRIFFIN achieves a 5.8% improvement in
speedup over HASS. The speedup ratio for Qwen2 7B is slightly lower than LLaMA2 7B model. This
discrepancy can be attributed to Qwen2 7B’s larger vocabulary size, which results in a more substantial
LM Head and subsequently slows down the draft model’s decoding speed. For Mixtral-8x7B, the
acceleration from speculative decoding, including that of GRIFFIN, is less pronounced compared
to other LLMs. This is primarily due to the inherent challenges of applying speculative decoding
techniques to Mixture-of-Experts (MoE) architectures. In these settings, verifying multiple tokens
simultaneously imposes additional computational overhead, which affects all speculative decoding
methods such as GRIFFIN, HASS, and EAGLE-2. Nevertheless, even under the MoE scenario,
GRIFFIN achieves more than a 6.6% higher speedup ratio than HASS on Mixtral-8x7B, further
demonstrating its strong generalization ability across diverse large language model architectures.

The results across diverse tasks and models highlight the versatility and effectiveness of GRIFFIN.
The consistent improvements over HASS, even at different temperatures, underscore GRIFFIN’s
robustness in handling varying levels of uncertainty in token predictions. Moreover, the performance
gains in tasks like code generation and mathematical reasoning suggest that GRIFFIN’s token-
alignable speculative decoding framework is particularly advantageous for applications requiring
high precision and reasoning capabilities. These findings position GRIFFIN as a strong candidate for
accelerating LLM inference in real-world scenarios, where both speed and accuracy are critical.

8



Table 4: Comparision of varied training steps for GRIFFIN. This table presents evaluation results
of speedup ratio SR and acceptance lengths τ on standard LLM benchmarks with temperature
T ∈ {0, 1}. Higher values indicate better performance.

Temperature = 0 Temperature = 1

Step MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

1 2.89 4.85 3.40 5.65 3.01 5.04 3.10 5.18 2.62 4.56 3.13 5.34 2.75 4.96 2.83 4.95
2 2.99 5.02 3.51 5.81 3.06 5.15 3.19 5.33 2.74 4.73 3.26 5.49 2.92 5.14 2.97 5.12
3 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
4 3.13 5.13 3.62 5.96 3.12 5.31 3.29 5.47 2.82 4.84 3.35 5.66 3.08 5.31 3.08 5.27
5 3.13 5.14 3.63 5.98 3.13 5.33 3.30 5.48 2.83 4.86 3.36 5.68 3.10 5.34 3.10 5.29

5.2 Ablation Study

Effectiveness of GRIFFIN Components. We evaluate the impact of GRIFFIN’s two key
components—Token-Alignable Training (TAT) and the Token-Alignable Draft Model (TAD)—using
LLaMA2-Chat 7B. As shown in Table 2, removing either component significantly reduces acceptance
length and speed up ratio. Removing TAT leads to a consistent performance drop across all bench-
marks, with average acceptance length reduced by 0.26 at T = 0 and 0.28 at T = 1, speed up ratio
reduced by 0.18 at T = 0 and 0.24 at T = 1. This confirms the importance of TAT in aligning draft
tokens during training. Similarly, removing TAD causes noticeable degradation, with acceptance
length decreasing by 0.19 at T = 0 and 0.23 at T = 1, speed up ratio reduced by 0.12 at T = 0 and
0.14 at T = 1, highlighting TAD’s role in reducing misalignment during decoding. Notably, removing
both components results in the steepest decline—0.62 at T = 0 and 0.58 at T = 1—underscoring
their complementary effects. Together, TAT and TAD ensure that draft tokens are aligned during both
training and decoding, enabling GRIFFIN to achieve state-of-the-art performance.

Hyper-parameters in Token-Alignable Training. We analyze the effect of the hyper-parameter
k which determines the number of top-k tokens to align. As shown in Table 3, aligning top-k
tokens (from 1 to 10) consistently improves acceptance length and speed up ratio compared to no
token-alignment. Notably, aligning only the top-1 token is less effective, as it neglects many other
tokens that could benefit from alignment. The acceptance length and speed up ratio achieves its peak
when k = 3, suggesting that aligning a small but sufficient number of tokens provides the optimal
trade-off between alignment and generalization.

We further analyze the effect of increasing the number of training steps N in TAT. As shown in
Table 4, increasing the training steps steadily improves GRIFFIN’s acceptance length during the first
5 steps. Unlike HASS which plateaus after step 3 (see Fig. 1 b)), GRIFFIN continues to improve due
to its token alignment mechanism. However, as the number of aligned tokens decreases with each
additional training step, the improvements become less pronounced at steps 4 and 5. To ensure a fair
comparison with HASS, we choose the number of training steps N = 3 in our experiments.

Table 5: Ablation study on TGF. This table presents evaluation results of speedup ratio SR and
acceptance lengths τ on standard LLM benchmarks with temperature T ∈ {0, 1}. Higher values
indicate better performance. "Feature" and "Fused" denotes using F and h to replace x in Eqn. (7).

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
Feature 2.63 4.44 3.06 4.78 2.71 4.60 2.80 4.61 2.35 4.23 2.86 4.47 2.54 4.50 2.58 4.40
Fused 2.91 4.87 3.42 5.68 2.96 5.07 3.10 5.21 2.64 4.59 3.15 5.36 2.83 4.97 2.87 4.97

Effectiveness of Token-Guided Fusion (TGF). To assess whether TGF’s improvements stem from
its token-aware design rather than just increased capacity via using more parameters, we conduct
an ablation study in Table 5 by altering the secondary fusion input in Eqn. (7). To investigate this,

9



we replace token embeddings x with either raw features F or the initial fused features h in Eqn. (7),
while keeping model size and training process fixed.

Replacing token embeddings x with raw features F in Eqn. (7) reduces acceptance length by 0.83
and speed up ratio by 0.48, indicating that features alone are insufficient to resolve inconsistency.
Replacing them with the initial fused features h in Eqn. (7) performs better—these retain some token
information—but still lags behind the original design by 0.26 in acceptance length and 0.2 in speed
up ratio. These results confirm that TGF’s effectiveness is not due to parameter scaling but stems
from the explicit use of token embeddings, which are crucial for correcting inconsistent features and
aligning the draft model with the target distribution.

We further investigate the impact of varying the expansion dimension of Wu in Eqn. (7). As
reported in Table 7 of Appendix A.3, decreasing the expansion dimension to 4,096 significantly
hampers TGF’s capacity to separate essential information from noise, leading to marked reductions
in both acceptance length and speedup ratio. Conversely, increasing the expansion dimension to
22,016 results in a slight improvement in acceptance length, attributable to greater representational
capacity, but also introduces additional computational overhead, thereby reducing the speedup ratio.
These findings validate the expansion dimension choice in GRIFFIN, demonstrating a well-balanced
trade-off between performance and computational efficiency.

6 Conclusion

In this paper, we present GRIFFIN, a token-alignable speculative decoding framework. Prior methods
have largely ignored the token misalignment problem between training and decoding. GRIFFIN
addresses this by introducing a token-alignable training strategy that excludes misaligned tokens
from loss computation. It further incorporates a token-alignable draft model that substantially
reduces misalignment. Extensive evaluations across diverse LLMs and datasets show that GRIFFIN
consistently outperforms SoTAs, achieving the highest speedup ratios and acceptance lengths.

Limitations. GRIFFIN adopts a multi-step training process for token-alignable training, which incurs
additional training overhead compared to EAGLE. However, since the draft model is trained only
once, real-world applications prioritize decoding efficiency over training overhead, as inference is
the primary bottleneck. GRIFFIN improves the speedup ratio by over 18% compared to EAGLE2,
making the extra training cost a worthwhile trade-off for the significant inference acceleration it
delivers. Furthermore, GRIFFIN’s overall training overhead remains comparable to that of HASS.
Under the same training cost, GRIFFIN achieves an over 7% improvement in speedup ratio compared
to HASS, further highlighting its effectiveness.

Broader Impact. GRIFFIN advances the efficiency of LLM inference by accelerating decoding
speed without sacrificing output quality. This improvement can democratize access to powerful LLMs
by making real-time applications more feasible. Downstream, GRIFFIN could enable smoother,
faster interactive AI for education, healthcare assistants, accessibility tools, and scientific research,
broadening beneficial applications and reducing latency barriers for users worldwide.

Acknowledgement

This work was supported by the Yangtze River Delta Science and Technology Innovation Community
Joint Research Project (YDZX20233100004031), the National Key Research and Development
Program of China (2022YFC3302300), and the Singapore Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 1 grant (Proposal ID: 25-SIS-SMU-003). Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s) and do not
reflect the views of the Ministry of Education, Singapore.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 1

10



[2] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 1

[3] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. 1, 6

[4] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023. 1,
2, 7

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. 1, 2, 7

[6] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023. 1, 3, 6

[7] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023. 1, 3

[8] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling
requires rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024. 1, 2, 3, 6

[9] Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of
language models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024. 1, 2, 3, 6

[10] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads.
arXiv preprint arXiv:2401.10774, 2024. 1, 3, 6

[11] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. Advances in neural information processing
systems, 28, 2015. 2

[12] Florian Schmidt. Generalization in generation: A closer look at exposure bias. arXiv preprint
arXiv:1910.00292, 2019. 2

[13] Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized represen-
tations for speculative sampling. arXiv preprint arXiv:2408.15766, 2024. 2, 3, 6

[14] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021. 2, 7

[15] Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024. 3

[16] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 932–949, 2024.

[17] Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and
Jie Huang. Cascade speculative drafting for even faster llm inference. arXiv preprint
arXiv:2312.11462, 2023.

11



[18] Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36, 2024.

[19] Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao
Zhang. Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023. 3

[20] Apoorv Saxena. Prompt lookup decoding, November 2023. 3, 6

[21] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm
inference using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024. 3, 6

[22] Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large
language models. arXiv preprint arXiv:2403.00835, 2024. 3

[23] Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia,
and Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv
preprint arXiv:2402.12374, 2024. 3

[24] Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer
devices. arXiv preprint arXiv:2406.02532, 2024. 3

[25] Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based
speculative decoding. arXiv preprint arXiv:2311.08252, 2023. 3

[26] Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun.
Ouroboros: Speculative decoding with large model enhanced drafting. arXiv preprint
arXiv:2402.13720, 2024. 3

[27] Ziqian Zeng, Jiahong Yu, Qianshi Pang, Zihao Wang, Huiping Zhuang, Hongen Shao, and
Xiaofeng Zou. Chimera: A lossless decoding method for accelerating large language models
inference by fusing all tokens. arXiv preprint arXiv:2402.15758, 2024. 3

[28] Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai
Xu, Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate
speculative decoding. arXiv preprint arXiv:2402.02082, 2024. 3

[29] Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan
Ragan-Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa
decoding. arXiv preprint arXiv:2402.05109, 2024. 3

[30] Yunfei Cheng, Aonan Zhang, Xuanyu Zhang, Chong Wang, and Yi Wang. Recurrent drafter for
fast speculative decoding in large language models. arXiv preprint arXiv:2403.09919, 2024. 3

[31] Lujun Gui, Bin Xiao, Lei Su, and Weipeng Chen. Boosting lossless speculative decoding via
feature sampling and partial alignment distillation. arXiv preprint arXiv:2408.15562, 2024. 3,
5, 6

[32] Zhenyi Lu Chenghao Fan and Jie Tian. Chinese-vicuna: A chinese instruction-following
llama-based model. 2023. 6

[33] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023. 6

[34] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024. 6

[35] Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Ros-
tamizadeh, Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving
speculative decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023. 7

12



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Sec. 3 we identifies the token misalignment issue, and in Sec. 4 we proposed
our token-alignable training strategy and token-alignable draft model. Experimental results
in Sec. 5 verifies that our proposed methods effectively address the token misalignment
problem.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our proposed method in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [NA]
Justification: Our paper focuses on practical methods to accelerate LLM inference and does
not present theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of the dataset, computational resources,
training methods, and hyperparameter settings in Sec. 5 and Appendix. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in https://github.com/hsj576/GRIFFIN, along
with detailed guidelines for reproducing our experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed description of the dataset, computational resources,
training methods, and hyperparameter settings in Sec. 5 and Appendix. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Following the setting of the past papers in the speculative decoding area, the
core benchmarking process of speculative decoding involves running the same inference
workloads multiple times in each dataset, which yields highly consistent results with minimal
variance due to the deterministic nature of the inference pipeline. Therefore, the reported
numbers accurately reflect the acceleration performance without necessitating error bars, and
we are confident that overall speedup ratio and acceptance length is statistically significant.

Guidelines:

• The answer NA means that the paper does not include experiments.

15

https://github.com/hsj576/GRIFFIN
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a detailed description of the computational resources for reproduc-
tion in Sec. 5 and Appendix. F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper entirely conform with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

16

https://neurips.cc/public/EthicsGuidelines


Justification: We discuss the potential positive societal impacts of our proposed method in
Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper explicitly cites relevant sources for datasets, pre-trained models, and
baseline code, and it clearly states compliance with the respective licenses and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

17



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets of GRIFFIN’s draft models are well documented and made
accessible alongside comprehensive documentation in https://github.com/hsj576/
GRIFFIN.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper focuses on LLM inference acceleration and does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

18

paperswithcode.com/datasets
https://github.com/hsj576/GRIFFIN
https://github.com/hsj576/GRIFFIN


Justification: This paper focuses on LLM inference acceleration and does not involve
crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Analysis for the Architecture of Token-Guided Fusion (TGF)

A.1 Motivation Behind TGF

The Token-Guided Fusion (TGF) module is motivated by the limitations of the standard concat-then-
MLP strategy, as adopted in EAGLE, which does not fully capture the complementary information
between token embeddings and draft model features. In practice, features generated by the draft
model often remain misaligned with the target model’s representations, a discrepancy that cannot be
effectively eliminated with feature-level loss minimization alone. TGF addresses this challenge by
explicitly leveraging token embeddings to guide the fusion process, aligning feature distributions
more closely to those of the target model. As confirmed by ablation results (Table 5), this targeted
architectural enhancement significantly reduces feature inconsistency, demonstrating that the modest
complexity introduced by TGF provides strong empirical gains.

Key Architectural Enhancements in TGF:

• Feature Normalization and Dimensional Expansion: Separate layer normalization is
applied to both the initial fused features h and token embeddings x in Fig. 3 (b-ii), allowing
for independent statistical scaling and improved stability during training. The Up Projector in
Fig. 3 (b-ii) expands the feature dimensionality, which helps disentangle relevant information
and increase the expressiveness of fused representations.

• Nonlinear Refinement and Consolidation: The SiLU activation function in Fig. 3 (b-
iii) introduces nonlinearity, enhancing the module’s capacity to recover complex feature
interactions beyond linear operations. Afterwards, the Down Projector in Fig. 3 (b-iii)
compresses the representation back to the target dimension, aggregating enriched information
into a stable fused feature for downstream processing.

Overall, TGF enables the draft model to more accurately approximate the target model’s output
space, as evidenced by measurable improvements in acceptance lengths and speedup ratio as shown
in Table. 1.

A.2 Ablation Study on the TGF Architecture

To systematically assess the contributions of each component within the TGF module, we performed
targeted ablation experiments, with each variant constructed by selectively removing or modifying
specific submodules:

• Ablation 1: Simultaneous removal of the Up Projector (Fig. 3 (b-ii)) and the SiLU activation
(Fig. 3 (b-iii)).

• Ablation 2: Exclusion of the token embeddings x from the secondary fusion step in Eqn. (7).

• Ablation 3: Exclusion of the initial fused feature h from the secondary fusion step in
Eqn. (7).

Table 6: Ablation results for architecture of TGF. This table presents evaluation results on standard
LLM benchmarks with temperature T ∈ {0, 1}, including speedup ratio SR and acceptance lengths
τ . Higher values indicate better performance.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Mean MT-bench HumanEval GSM8K Mean

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
Ablation 1 2.93 4.85 3.36 5.73 3.04 5.07 3.11 5.21 2.68 4.55 3.20 5.39 2.69 4.96 2.86 4.96
Ablation 2 3.02 4.97 3.51 5.83 3.10 5.22 3.21 5.34 2.73 4.63 3.31 5.58 2.92 5.09 2.99 5.10
Ablation 3 1.76 2.75 1.92 3.09 1.65 2.58 1.78 2.81 1.67 2.65 1.88 3.04 1.49 2.53 1.68 2.74

Table 6 presents the results of these ablation settings. The following key observations can be drawn:

20



• Ablation 1: Omitting both the Up Projector and SiLU activation produces a marked decrease
in performance, with acceptance length reduced by 0.23 (T = 0) and 0.27 (T = 1), and
speedup ratio reduced by 0.17 (T = 0) and 0.21 (T = 1). This highlights the critical role
these components play in enabling expressive and stable feature fusion.

• Ablation 2: Removing token embeddings x from the secondary fusion step adversely affects
the model’s ability to inject token-specific information, resulting in lower acceptance length
(by 0.10 at T = 0, 0.13 at T = 1) and speedup ratio (by 0.07 at T = 0, 0.08 at T = 1).

• Ablation 3: Excluding the initially fused feature h from the secondary fusion produces
the most severe degradation: acceptance length decreases by 2.63 (T = 0) and 2.49
(T = 1), while speedup ratio drops by 1.50 (T = 0) and 1.39 (T = 1). This underscores
that the recurrent integration of fused features is indispensable for capturing high-quality
representations and achieving effective alignment.

Overall, these ablation results confirm the necessity of each architectural component within TGF for
maximizing acceptance length and speed up ratio.

A.3 Ablation on the Expansion Dimension of TGF

In the TGF module, the expansion dimension refers to the output dimensionality of the Up Projector
in Fig. 3 (b-ii). For GRIFFIN, we set this dimension to 11,008, matching the intermediate size of the
target model’s feed-forward network (FFN). To evaluate the impact of this design choice, we perform
ablation experiments by varying the expansion dimension, while holding all other components and
training protocols constant.

Table 7: Comparison of different expansion dimension of GRIFFIN. This table presents evaluation
results on standard LLM benchmarks with temperature T ∈ {0, 1}, including speedup ratio SR and
acceptance lengths τ . Higher values indicate better performance.

Temperature = 0 Temperature = 1

Expansion Dimension Draft Model Size MT-bench HumanEval GSM8K Mean MT-bench HumanEval GSM8K Mean

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

11,008 (GRIFFIN) 0.41B 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
4,096 0.33B 3.06 5.02 3.55 5.82 3.06 5.13 3.22 5.32 2.75 4.68 3.27 5.51 3.02 5.11 3.01 5.10
22,016 0.55B 2.97 5.15 3.38 6.01 2.95 5.34 3.10 5.50 2.60 4.84 3.14 5.76 2.71 5.17 2.82 5.25

Table 7 summarizes the results, from which we draw the following conclusions:

• Smaller expansion (4,096): Lowering the expansion dimension to 4,096 degrades TGF’s
capacity to extract and distinguish salient features, leading to a notable reduction in accep-
tance length (by 0.12 at T = 0, 0.13 at T = 1) and speedup ratio (by 0.06 at both T = 0
and T = 1).

• Larger expansion (22,016): Increasing the expansion dimension to 22,016 yields a slight
improvement in acceptance length (by 0.06 at T = 0, 0.02 at T = 1), suggesting marginal
gains in representational power. However, this is offset by a decline in speedup ratio (reduced
by 0.18 at T = 0, 0.25 at T = 1), primarily due to increased computational overhead and
an additional 0.14B parameters.

Overall, these results validate our chosen configuration: setting the TGF expansion dimension equal
to the target model’s FFN intermediate size achieves an effective balance between fusion performance
and computational efficiency.

B Effectiveness of Token-Alignable Draft Model (TAD) Components

We assess the individual contributions of Token-Guided Fusion (TGF) and Token-Enhanced Head
(TEH)—the two principal components of the Token-Alignable Draft model (TAD)—using LLaMA2-
Chat 7B as the base model. Ablation results are summarized in Table 8.

21



Table 8: Ablation results for TAD. This table presents evaluation results on standard LLM benchmarks
with temperature T ∈ {0, 1}, including speedup ratio SR and acceptance lengths τ . Higher values
indicate better performance.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Mean MT-bench HumanEval GSM8K Mean

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
w/o TEH 3.09 5.07 3.56 5.85 3.08 5.22 3.24 5.38 2.77 4.75 3.29 5.55 3.03 5.21 3.03 5.17
w/o TGF 3.04 4.99 3.49 5.75 3.05 5.13 3.19 5.29 2.75 4.70 3.25 5.43 2.88 5.11 2.96 5.08

Removing either component leads to a clear and consistent reduction in both acceptance length and
speedup ratio:

• Token-Enhanced Head (TEH): Excluding TEH results in a consistent performance drop
across all benchmarks, with the average acceptance length reduced by 0.06 and speedup
ratio decreased by 0.04. This highlights the critical role of TEH in boosting the draft model’s
token prediction accuracy.

• Token-Guided Fusion (TGF): Excluding TGF leads to even greater degradation: accep-
tance length drops by 0.15, and speedup ratio decreases by 0.09 at T = 0 and by 0.11 at
T = 1. These findings reinforce TGF’s efficacy in mitigating feature misalignment during
speculative decoding.

Collectively, these results underscore that both TGF and TEH are indispensable for maximizing the
effectiveness and efficiency of the TAD architecture.

C Implementation Details of GRIFFIN

C.1 Loss function

Per-step loss composition. The per-step loss ℓ(x̄t,xt, F̄t,Ft) in Eq. (5) combines two comple-
mentary components that supervise both the token prediction and the latent feature alignment of the
draft model M with the target model T :

ℓ(x̄t,xt, F̄t,Ft) = λtok ℓtok(x̄t,xt) + λfeat ℓfeat(F̄t,Ft), (9)

where λtok and λfeat are scalar weights (default: λtok = 1, λfeat = 0.1 unless otherwise stated).

Token-level loss. The token-level supervision aligns the predicted token distribution of the draft
model with the ground truth:

ℓtok(x̄t,xt) = − logPM(xt | x1:t−1), (10)

which corresponds to the standard cross-entropy between the predicted logits x̄t and the one-hot
target xt.

Feature-level loss. To encourage the internal representations of the draft and target models to
remain consistent, we minimize the ℓ1 distance between their hidden features:

ℓfeat(F̄t,Ft) = ∥F̄t − Ft∥1. (11)

This term regularizes the draft model toward the target model’s latent space, facilitating stable
alignment across multi-pass decoding.

C.2 Draft Tree Structure

For all experiments, we use a dynamic tree structure with a total of 60 draft tokens and set the draft
tree depth to 6, closely following the optimal configuration established in EAGLE-2 and HASS.

22



C.3 Training Configuration

The draft model is trained using the AdamW optimizer, with the following key settings:

• Learning rate: 3e−5

• Batch size: 4 (per GPU)
• Number of epochs: 20
• Total training steps: 800,000
• Warmup: 2,000 steps of linear warmup; learning rate scheduler enabled
• Optimizer: AdamW, with betas (0.9, 0.95)
• Gradient clipping: 0.5 (by value)
• Maximum sequence length: 2,048 tokens

All hyperparameters are kept fixed for all reported experiments unless otherwise specified. Addi-
tional hyperparameters and implementation scripts are provided in https://github.com/hsj576/
GRIFFIN.

D Clarification of Baseline Methods

For EAGLE, EAGLE-2, and Medusa, we directly utilized the publicly released draft model parameters
provided by the respective authors. For methods that do not require draft model training, such as PLD,
Lookahead, and SPS, we evaluated performance using official code from their GitHub repositories.

Regarding HASS, we used publicly released draft model parameters for LLaMA2-7B, LLaMA3-
8B, LLaMA2-13B, and LLaMA3-70B. However, at the time of submission, official draft model
parameters for Vicuna-7B, Qwen2-7B, and Mixtral-8x7B were unavailable. To enable fair comparison,
we trained the HASS draft models ourselves using their official GitHub repository and strictly
followed the configurations described in the HASS paper. The experimental results we obtained
closely corresponded to those reported by the HASS paper. Similarly, draft model parameters for
FSPAD were not publicly available at the time of submission. We therefore trained FSPAD’s draft
models with their official code and under the settings specified in the FSPAD paper. Our experimental
outcomes showed high consistency with the results published by the original FSPAD paper.

Regarding EAGLE-3, since EAGLE-3 doesn’t provide pre-trained draft models for LLaMA3-8B,
we used their official code to train on the ShareGPT dataset, maintaining all other hyperparameters
consistent with their paper. Training EAGLE-3 on ShareGPT alone required over 300 A100-80G
GPU hours. Following their paper’s full protocol (UltraChat-200K + ShareGPT) would require
approximately 2,400 GPU hours, which exceeded our computing resources. However, both EAGLE-3
and GRIFFIN used identical ShareGPT training data, ensuring fair comparison.

To ensure the validity of our comparisons, we aligned all key training settings, including dataset,
optimizer, and hyperparameters, with those used by EAGLE-2 and HASS. For example, we matched
the training procedure to HASS’s three-step schedule, ensuring consistency and reliability across all
experiments.

E Parameter Sizes of GRIFFIN’s Draft Models

For 7B, 8B, 13B, and 70B scale target models, the corresponding GRIFFIN draft model sizes are
0.41B, 0.42B, 0.65B, and 2.07B parameters, respectively. For Mixtral-8x7B, the draft model size is
0.45B parameters.

By comparison, the draft model sizes for EAGLE-2 and HASS are 0.24B, 0.25B, 0.37B, and 0.99B,
while those for FSPAD are 0.42B, 0.43B, 0.67B, and 2.09B, across corresponding target models. For
Mixtral-8x7B, the EAGLE-2 and HASS draft model size is 0.28B. Therefore, GRIFFIN’s draft model
contains between 0.17B and 1.08B more parameters than those of EAGLE-2 and HASS, but remains
similar in size to FSPAD’s.

Despite this modest increase in parameters, GRIFFIN consistently achieves an average speedup
improvement exceeding 8%, as shown in Table 1. The additional parameter count incurs only

23

https://github.com/hsj576/GRIFFIN
https://github.com/hsj576/GRIFFIN


marginal computational overhead, which is amply justified by the significant gains in inference
efficiency and overall performance.

F Training Overhead of GRIFFIN

All the methods(GRIFFIN, EAGLE-2, FSPAD, and HASS) utilize the ShareGPT dataset for draft
model training, ensuring an equal number of training tokens across methods.

In terms of computational resources, GRIFFIN employs the same multi-stage training strategy as
the state-of-the-art HASS method, with both adopting a three-step training regimen. For 7B, 13B,
and 70B parameter models, HASS typically requires approximately 130, 220, and 500 NVIDIA
A100 80G GPU hours, respectively, whereas GRIFFIN’s requirements are about 150, 250, and 600
NVIDIA A100 80G GPU hours.

Crucially, the draft model is trained only once but leveraged extensively during inference. Thus,
in practical scenarios, the primary computational cost lies in the decoding phase. GRIFFIN offers
roughly an 8% improvement in speculative decoding speed over HASS, meaning that the slight
increase in training overhead is well justified by the substantial gains in inference efficiency.

G Throughput of GRIFFIN

To evaluate GRIFFIN’s performance under batch sizes greater than 1, we integrated it into the
open-source vLLM framework, following the same speculative decoding interface used by EAGLE.
All experiments were conducted on the LLaMA3-8B-Instruct model using the MT-Bench dataset,
with a decoding temperature of 0. We report throughput (tokens per second) relative to the baseline
vLLM decoding without any speculative methods.

Results. Table 9 summarizes relative speedups across different batch sizes. GRIFFIN consistently
achieves higher throughput than both EAGLE and HASS for all evaluated batch configurations.

Table 9: Throughput comparison under different batch sizes. Numbers denote relative speedup
(×) over vanilla vLLM decoding (1.00× baseline). All speculative methods were evaluated using
sequential speculation with a maximum chain length of 2.

Batch Size 2 4 8 16
EAGLE 1.37× 1.32× 1.28× 1.18×
HASS 1.40× 1.35× 1.30× 1.20×
GRIFFIN 1.52× 1.45× 1.37× 1.25×

Implementation constraints. These evaluations were conducted under certain restrictions imposed
by the current speculative decoding support in vLLM. Specifically, the implementation does not
support tree-based drafting, which is a key component of our full decoding algorithm. Consequently,
all measurements used sequential speculation with a maximum chain length of 2. Therefore, the
throughput values in Table 9 are not directly comparable to the main-text results, which were obtained
using our native decoding backend configured for tree-structured speculation.

Analysis. The observed trend of decreasing relative speedup as batch size increases is expected
and consistent with theoretical expectations. Larger batch sizes improve GPU utilization for the
target model, reducing redundant computations and narrowing the efficiency gap between speculative
and standard decoding. Moreover, as batches grow, the memory footprint and compute overhead
associated with additional draft-model evaluations become increasingly significant, diminishing net
throughput gains.

Discussion. Despite these challenges, GRIFFIN maintains substantial advantages—achieving
6–11% higher throughput than EAGLE and 4–8% higher than HASS across the tested batch sizes.
These improvements demonstrate that GRIFFIN’s alignment mechanism continues to yield benefits
even in large-batch, high-throughput inference regimes that are typical in production deployments.

24



H Breakdown of Decoding Latency

Motivation. While speculative decoding yields substantial efficiency gains, the overall speedup
is bounded by the additional computation required by the draft model. In Table 1 of the main text,
the observed speedup ratio (SR) is notably lower than the corresponding acceptance length. This
discrepancy arises primarily from the non-negligible latency overhead of draft model inference.

Latency formulation. Let N denote the total number of tokens generated during decoding. For
standard autoregressive decoding, the total decoding latency is

Ta = N · t, (12)
where t is the average per-token latency of a single forward pass through the target model.

For speculative decoding, at each cycle the target model verifies τ candidate tokens produced by the
draft model with rollout depth d. The corresponding total latency can be approximated as

Ts =
N

τ
· (t+ d · t̄) , (13)

where t̄ is the draft model’s average per-pass latency. The resulting theoretical speedup ratio therefore
becomes:

Speedup Ratio (SR) =
Ta

Ts
=

t

t+ d · t̄
· τ. (14)

Empirical estimation. Using the LLaMA3-8B-Instruct model on an A100-80G GPU as a repre-
sentative setup, we measure the forward-pass latency of the target model as approximately t = 25ms
and of the draft model as t̄ = 1.5ms. If we set the acceptance length to τ = 5 and draft rollout depth
d = 6, Eq. (14) gives:

SR =
25

25 + 6× 1.5
× 5 = 3.68×,

which closely matches our empirical results. This quantitative agreement confirms that the latency
contributed by draft model inference is the primary factor limiting the achievable speedup.

Discussion. Although draft model latency constitutes a relatively small portion of the total budget,
its accumulation over multiple rollout steps can substantially reduce overall efficiency, particularly for
deep or large-d speculative configurations. Future efforts will explore techniques to further mitigate
this cost, such as:

• Draft-model distillation to reduce forward-pass complexity;
• Asynchronous drafting that overlaps draft and target evaluations;
• Kernel fusion and caching to minimize memory transfer overhead.

These analyses confirm that the gap between acceptance length and speedup ratio is quantitatively
explained by draft inference latency, and they motivate further system-level optimizations.

I Discussion with EAGLE-3

Motivation. EAGLE-3 recently proposed a simplified speculative decoding framework that removes
the feature-prediction loss from the draft model objective. To examine the practical effect of this
choice and its interaction with our token-alignment mechanisms, we conducted two complementary
studies: (i) an ablation of GRIFFIN in which the feature-level loss term was removed, and (ii)
a head-to-head comparison between our implementation of EAGLE-3 and full GRIFFIN under
matched training conditions.

Experimental setup. All experiments were performed on LLaMA3-8B-Instruct using three
standard evaluation suites—MT-Bench, HumanEval, and GSM8K—at decoding temperatures t=0
and t=1. For the EAGLE-3 baseline, we trained a draft model following their official open-source
repository and hyperparameter settings, including identical optimizer, learning-rate schedule, and
architecture. Due to computational constraints, training used the ShareGPT dataset only (excluding
the additional UltraChat-200K corpus), which would otherwise require roughly 2,400 GPU hours to
reproduce fully.

25



Results. Table 10 reports speedup ratio (SR) and acceptance length (τ ) across the three benchmarks
and two temperature settings.

Table 10: Comparison between GRIFFIN, its feature-loss ablation, and EAGLE-3 on
LLaMA3-8B-Instruct. This table reports results on standard LLM benchmarks (MT-Bench, Hu-
manEval, GSM8K) for temperatures T ∈ {0, 1}, including speedup ratio SR and acceptance length
τ . Higher values indicate better performance.

Temperature = 0 Temperature = 1

Method MT-Bench HumanEval GSM8K Mean MT-Bench HumanEval GSM8K Mean

SR τ SR τ SR τ SR τ SR τ SR τ SR τ SR τ

GRIFFIN 3.09 4.85 3.65 5.97 3.30 5.31 3.35 5.38 2.62 4.35 3.31 5.62 3.07 5.08 3.00 5.02
w/o FeatLoss 2.61 4.33 3.32 5.15 2.76 4.58 2.89 4.69 2.32 4.02 2.85 4.97 2.49 4.36 2.55 4.45
EAGLE-3 2.93 4.71 3.59 5.72 3.17 5.01 3.23 5.15 2.51 4.18 3.27 5.47 2.90 4.85 2.89 4.83

Observation 1: Importance of feature-level loss. Removing the feature-prediction term from
GRIFFIN produces a consistent degradation of roughly 10–15% in both SR and τ across all
evaluation settings. This confirms that the feature-level supervision remains critical for stabilizing
token alignment by enforcing coherence between the hidden representations of the draft and target
models.

Observation 2: Comparison with EAGLE-3. Under identical training data and inference settings,
full GRIFFIN outperforms EAGLE-3 on all metrics. This indicates that EAGLE-3’s removal of the
feature loss does not yield an advantage at this data scale and that GRIFFIN’s alignment mechanisms
lead to more efficient speculative decoding even when controlling for model and data size.

Observation 3: Applicability of GRIFFIN techniques. EAGLE-3 does not explicitly address to-
ken misalignment during training or decoding. In contrast, GRIFFIN introduces the Token-Alignable
Draft (TAD) architecture and the Token-Alignable Training (TAT) procedure, both designed to mit-
igate this issue. Importantly, these techniques are modular and could in principle be applied to
EAGLE-3-style draft models without altering their external decoding interface, potentially improving
alignment and throughput performance.

Summary. This study demonstrates that feature-level supervision remains beneficial even when the
draft model is trained with large-scale data, and that GRIFFIN’s token-alignment strategy provides
complementary improvements beyond what EAGLE-3 achieves. We hope these findings clarify
the design impact of feature prediction loss and encourage future integration of token-alignment
principles into other speculative decoding frameworks.

26


	Introduction
	Related Work
	Motivation: Token Misalignment
	GRIFFIN: A Token-Alignable Framework
	Token-Alignable Training
	Token-Alignable Draft Model

	Experiments
	Comparison with SoTAs
	Ablation Study

	Conclusion
	Analysis for the Architecture of Token-Guided Fusion (TGF)
	Motivation Behind TGF
	Ablation Study on the TGF Architecture
	Ablation on the Expansion Dimension of TGF

	Effectiveness of Token-Alignable Draft Model (TAD) Components
	Implementation Details of GRIFFIN
	Loss function
	Draft Tree Structure
	Training Configuration

	Clarification of Baseline Methods
	Parameter Sizes of GRIFFIN's Draft Models
	Training Overhead of GRIFFIN
	Throughput of GRIFFIN
	Breakdown of Decoding Latency
	Discussion with EAGLE-3

