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Abstract. Neural language models (LMs) have been extensively trained
on vast corpora to store factual knowledge about various aspects of the
world described in texts. Current technologies typically employ knowl-
edge editing methods or specific prompts to modify LM outputs. How-
ever, existing knowledge editing methods are costly and inefficient, strug-
gling to produce appropriate text. Additionally, prompt engineering is
opaque and requires significant effort to find suitable prompts. To ad-
dress these issues, we introduce a new method called PSPEM (Prefix
Soft-Prompt Editing Method), that can be used for a lifetime with just
one training. It resolves the inefficiencies and generalizability issues in
knowledge editing methods and overcomes the opacity of prompt en-
gineering by automatically seeking optimal soft prompts. Specifically,
PSPEM adopts a prompt encoder and an encoding converter to com-
press and refine key information in prompts and adopts prompt align-
ment techniques to guide model generation, ensuring text consistency
and adherence to the intended structure and content. We have validated
the effectiveness of PSPEM through knowledge editing and attribute in-
serting. On the COUNTERFACT dataset, PSPEM achieved nearly 100%
editing accuracy and demonstrated the highest level of fluency. We fur-
ther analyzed the similarities between PSPEM and original prompts and
their impact on the model’s internals. The results indicate that PSPEM
can serve as an alternative to original prompts, supporting the model in
effective editing.

Keywords: Language model · Prompt learning · Knowledge editing ·
Knowledge representation

1 Introduction

Language models based on the Transformer architecture, such as GPT and
BERT, have revolutionized various natural language processing tasks with their
capacity to store and utilize real-world factual knowledge within their parame-
ters [8, 24, 27]. For example, when asked, “Where is the Eiffel Tower located?”
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Danielle Darrieux was born  in 
America.

Tawnie enjoys indoor cycling 
and yoga, a good glass of red 

wine with friends, and of course 
anything to do with being in the 

kitchen!

Banana has four legs.

The mother tongue of Danielle Darrieux is French.

Tawnie has the occupation of dietitian. 

Tawnie has the occupation of yoga.

The mother tongue of Danielle Darrieux is English.

Banana is a fruit.

Banana is an animal.

Prompt

Fig. 1. By inputting the prompts on the left side into the model, traditional prompt
engineering generate erroneous text, while PSPEM can correct such errors.

GPT provides the accurate answer, “Paris”. However, inconsistencies or biases
present in the pre-training data can propagate into the text generated by the
model, leading to errors or contradictions. Additionally, the knowledge of the
world changes over time, which presents a challenge to the static knowledge in
the model. Addressing this issue requires a nuanced approach to updating the
model’s knowledge base. Merely retraining the entire model with new data is
prohibitively expensive and time-consuming, while fine-tuning, focusing solely
on specific updated knowledge poses the risk of overfitting and compromising
the model’s ability to generalize.

Recent advancements propose a more dynamic and efficient approach to
knowledge updating to mitigate these issues, called knowledge editing [29, 30].
This technology allows for selective updates and adjustments to the model’s
knowledge without retraining. These methods aim to balance the need for ac-
curate, up-to-date information with the practical constraints of computational
resources and time. The efficacy of knowledge editing is predominantly quanti-
fied by two pivotal metrics: generalization and specificity. Generalization entails
the model’s proficiency in extending the modified knowledge across a spectrum
of analogous prompts, ensuring consistent application and understanding of the
targeted information [7,32]. Conversely, specificity, also referred to as locality, ne-
cessitates the model’s capacity to isolate the modification impact, safeguarding
the unaltered knowledge from inadvertent alteration [21]. Several new bench-
marks are attempting to assess the model’s ability to reason with new knowl-
edge, and they are extending these methodologies into the realms of knowledge
graphs [4] and multimodal domains [3].

Methods of model editing fall into two distinct classifications depending
on the alteration of the original model weights: weight-preserved and weight-
modified methods [30]. Weight-preserved strategies typically necessitate the in-
clusion of extra content, while weight-modified techniques directly alter the
model’s weights. Weight modification methods include hypernetwork-based learn-
ing methods and direct optimization methods. Hypernetwork-based learning
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methods, such as KE [7], MEND [21] and MALMEN [26], utilize a hypernetwork
to predict essential updates to the model’s weights. Although this technique is
promising, it necessitates considerable computational investment for hypernet-
work training and frequently diminishes in effectiveness with the increase in
language model size [30]. Optimization method ROME [19] employs causal me-
diation analysis to identify the editing region and focuses on altering specific in-
formation via rank-one adjustments to individual matrices. MEMIT [20] adhered
to a similar methodology, adeptly modifying several parameter matrices concur-
rently to facilitate the simultaneous alteration of 10,000 knowledge entities, and
showcasing robust generalization and specificity. PMET [15] advanced this tech-
nique, refining MEMIT’s capabilities for more precise editing. However, previous
research indicates that minor modifications to the parameters of large language
models can impact the model’s ultimate behaviour [25], and these methods do
not allow the model to use new knowledge for reasonable inference [13,23].

Prompt engineering [16,17] enables the modification of models without neces-
sitating extensive retraining. Altering input prompts, allows models to adapt to
diverse tasks and domains, thereby conserving resources. Nonetheless, finding the
most effective prompts typically requires considerable manual intervention and
iterative experimentation, which can be time-consuming and inefficient. More-
over, discrepancies between the knowledge encapsulated in the prompts and the
model’s inherent knowledge can lead to erroneous or inconsistent outputs. As
depicted in Figure 1, the language model (LM) is prompted with “Danielle Dar-
rieux was born in America.” Upon generating a continuation of this prompt,
the LM erroneously asserts that Danielle Darrieux’s native language is French,
thereby contradicting the prior context. This error occurred because LM de-
veloped a memory for Danielle Darrieux’s native language, French, during pre-
training [1, 22].

In-context learning [2] is a paradigm that does not require retraining, where
knowledge is acquired from directly connected demonstrations in the input con-
text. Unlike traditional prompting engineering, the method is capable of learn-
ing contextual relationships from multiple given instances, enabling context-
based model editing and providing an efficient, lightweight knowledge editing ap-
proach [31]. Although this method addresses the issue of inconsistent contextual
information in the model, it requires searching for multiple guiding instances,
which puts an additional burden on knowledge editing. REMEDI [13] injects
domain-specific knowledge into language models by encoding factual prompts
corresponding to knowledge attributes in the direction space. However, when
factual prompts conflict with the knowledge already present within the model,
the REMEDI method still struggles to handle such contradictions, resulting in
inconsistencies or errors in the results.

To overcome the limitation of the weight-modified method in utilizing new
knowledge for reasoning and the poor editing accuracy and laborious of the
weight-preserved method, we proposed PSPEM (Prefix Soft-Prompt Editing
Method), an innovative strategy rooted in prompt engineering that can be used
for a lifetime with just one training. This method allows for precise, nuanced
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Fig. 2. Illustration of PSPEM. Given a knowledge prompt (Danielle Darrieux was
born in America.) and continuation words (The mother tongue of Danielle Darrieux
is), PSPEM constructed more accurately encoded information from the prompt to
increase the probability of the target token (English).

modifications to the model’s output by employing a single knowledge prompt, all
without altering the model’s parameters. Specifically, PSPEM utilizes a prompt
encoder to extract information, an encoding converter to refine key information
in prompts, and adopts prompt alignment techniques to guide model generation.
It ensures the accuracy of the model’s output by maximizing the probability as-
signed by the language model to the target token, and by aligning with the orig-
inal prompt’s influence on continuation words, it guarantees the fluency of the
output text and a high degree of consistency between the generated text informa-
tion and the prompt information. We conducted evaluations on two knowledge
editing tasks and two attribute inserting tasks. In the tasks of knowledge edit-
ing, PSPEM achieved nearly 100% editing accuracy while ensuring the fluency
and consistency of the generated text. In terms of attribute inserting, PSPEM
reached the state-of-the-art. The model can make reasonable inferences using
the given prompts and generate text that aligns with the prompt information.
We then analyzed the parallels between PSPEM and original prompts, measur-
ing their impact on model output from multiple perspectives. The experimental
results indicate that the impact of PSPEM on the model is highly similar to
that of the original prompts, therefore, PSPEM can serve as an alternative to
original prompts, supporting the model in effective editing. We summarize our
contributions as follows:
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• We propose PSPEM, a lifetime knowledge editing method based on soft
prompts that corrects the model’s output by learning information from the
original prompts.

• We evaluated PSPEM on two mainstream datasets for knowledge editing
and two datasets for attribute inserting. The experimental results show that
PSPEM can not only perform efficient and accurate editing but also utilize
the given prompts for reasonable reasoning, which is beyond the capabilities
of traditional prompt engineering and other knowledge editing methods.

• We analyze PSPEM’s similarity to prompts from various perspectives, demon-
strating that PSPEM can be a viable alternative to original prompts for
editing knowledge and reasoning.

• As far as we know, PSPEM was the first attempt to adopt soft prompts for
model knowledge editing and inference, providing a feasible solution for the
development of more intuitive and accurate language model editing tools.

2 METHODOLOGY

2.1 Preliminaries

This study centers on enhancing the application of prompt engineering in the
field of knowledge editing and inferencing. As mentioned earlier, while prompt
engineering enables models to adapt to diverse tasks without retraining, the
search for suitable prompts is time-consuming and laborious. More importantly,
when the information in the prompt conflicts with the internal knowledge of the
model, such prompts often lose their effectiveness. This situation is demonstrated
in Figure 1, where the model is prompted: "Banana has four legs" (left side
of 1), and the model responds: "Banana is a fruit" (upper right side of 1).
The prompt has lost its effect, with the model still recognizing the banana as
a fruit, not an animal. PSPEM addresses this issue by enabling the model to
correctly respond: "Banana is an animal." Note that PSPEM does not cause
confusion within the model, but rather makes the model pay more attention to
the information in the prompts.

We used GPT2-XL [24] and GPT-J-6B [28] as our research models, both of
which are autoregressive language models based on the Transformer architec-
ture. These models operate by transforming the input sequence x into t tokens
x1, ..., xt. Subsequently, these tokens are fed through L layers of Transformer
decoders, ultimately generating probabilities for the next token xt+1:

Fθ(x1, ..., xt) = softmax
(
WE · γ

(
hL−1
t + aLt +mL

t

))
= PLM (xt+1|x1, ..., xt)

(1)

Here, WE and γ represent the embedding matrix and layernorm, respectively. aLz
and mL

z denote the hidden states of the Multi-Head Self-Attention (MHSA) and
Feed-Forward Network (MLP) at the L-th layer. The general forms of MHSA
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and MLP at the l-th layer and the j-th token xl
j are given as follows:

alj = W l
MHSA ·MHSAl

(
γ
(
hl−1
1 , hl−1

2 , ..., hl−1
j

))
,

ml
j = W l

proj · σ
(
W l

fcγ
(
alj + hl−1

j

))
,

hl
j = hl−1

j + alj +ml
j

(2)

Here, W l
MHSA and W l

proj refer to the output weights of the MHSA and MLP
at the l-th layer, respectively, while σ denotes the non-linear activation func-
tion. Different LMs frequently exhibit slight variations in implementing these
transformations. Our goal is not to provide a full survey of these details but to
capture essential terminology for our results.

2.2 PSPEM

PSPEM focuses on extracting key information from the original prompt and
making the subsequent text and prompts more consistent. The overview of our
proposed method is shown in Figure 2. The PSPEM consists of Prompt Encod-
ing, Encoding Converter, and Aligning Technology.

As shown in the bottom left of Figure 2, PSPEM starts with a given prompt,
such as "Danielle Darrieux was born in America", denoted as p1:n. We ob-
tain the embedded representation of the prompt through a Prompt Encoding
mechanism. Some studies indicate that models based on the Transformer ar-
chitecture can extract sentence representations [9, 14]. We focus on the GPT
architecture, inputting the prompt p1:n into the origin model (GPT2-XL or
GPT-J-6B), and take the output of a certain layer of the last token hl

n as com-
pressed sentence representation.

The compressed sentence representation is processed through an Encoding
Converter mechanism to obtain a more accurate sentence representation. These
precise sentence representations can be considered a series of word embeddings,
intended to make the model more focused on key information in the prompt. The
Encoding Converter is initiated through two Multi-Layer Perceptron (MLP) and
an activation function GLUE. If we denote the dimension of h as d, then the
sizes of the two multilayer perceptrons are W d×d

1 and W d×d∗3
2 . This process is

expressed with a formula as follows:

h
′

emb = ((W1 · hL
n) · σ) ·W2 (3)

We Reshape the dimensions of h
′

emb to ensure that it can be viewed as a repre-
sentation of a set of word embeddings:

hemb = Reshape(h
′

emb) ∈ R3×d (4)

We denote the continuation words as c1:m, which in Figure 2 is "The mother

tongue of Danielle Darrieux is". We freeze the parameters of the original
model and use alignment techniques to train the Encoding Converter.
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Algorithm 1 Prefix Soft-Prompt Editing Method (PSPEM)

Require: Prompt sentence p1:n, continuation words c1:m, target token ttarget.
Ensure: Edited text that aligns with the prompt.
1: Initialize: Prompt Encoder, Encoding Converter;
2: Input the prompt sentence p1:n into the model;
3: Obtain last token representation hl

n;
4: Apply the Encoding Converter to transform hl

n into hemb;
5: Construct enhanced embedding Es by concatenating hemb and c1:m;
6: Input Es into the model to obtain outputs [Dhemb ;Dc1:m ];

7: Construct original embedding E
′
s by concatenating p1:n and c1:m;

8: Input E
′
s into the model to obtain outputs [D

′
p1:n ;D

′
c1:m ];

9: Objective Function:
Ltarget ← −PLM (cm+1 = ttarget | Es);

LKL ←
∑m

1 KL
(
Dci∥D

′
ci

)
;

10: Train the Encoding Converter by optimizing L = λ1Ltarget + λ2LKL;
11: Guide the model’s output using the Prompt Encoder and Encoding Converter.
12: return Edited text that aligns with the prompt.

According to the above, each vector in hemb has the same size as hL
n , with a

length of d. As shown in the top of Figure 2, We Contact hemb and the sentence
embedding of the continuation words as a whole, denoted as Es:

Es = Contact (hemb;Embedding(c1:m)) . (5)

Then, we input Es into the model to obtain Distributions of model’s outputs:

[Dhemb
;Dc1:m ] = PLM (· | Es) , (6)

and train the Encoding Converter mechanism to maximize the probability
that LM assigns to the target token after modifying the representation of the
prompt:

Ltarget = −PLM (cm+1 = ttarget | Es) . (7)

Furthermore, we Contact the original prompt and the continuation words
to acquire the influence of the original prompt on the subsequent continuation
words, as shown in the bottom right of Figure 2:

E
′

s = Concat((Embedding(p1:n);Embedding(c1:m)) , (8)

[D
′

p1:n
;D

′

c1:m ] = PLM

(
· | E

′

s

)
. (9)

To ensure that the encoded prompt information hemb exploits the relevant de-
tails of the original prompt while preventing degradation of the language model,
we impose a penalty on the model’s changes to the probability distribution over
the continuation word c1:m:

LKL =

m∑
1

KL
(
Dci∥D

′

ci

)
. (10)
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The complete objective function that PSPEM optimizes is:

L = λ1Ltarget + λ2LKL, (11)

where λ1 and λ2 are hyper-parameters.
Once we have trained the Encoding Converter, we can utilize the Prompt En-

coding and Encoding Converter to extract crucial information from the prompt,
guiding the model’s output. See Algorithm 1 for the pseudo-code of PSPEM.

We’ll evaluate knowledge editing and attribute inserting with PSPEM and
examine the explicit and implicit implications of PSPEM in Section 3.

3 Experiment

3.1 Knowledge Editing

Concepts The concept of knowledge editing aims to integrate a new fact (x∗, y∗)
into a language model by maximizing the probability PLM = (y∗|x∗). The term
x∗ refers to the query that triggers the relevant information within LM. For
instance, given an input x∗: "The president of the French is", while y∗ de-
notes the target of the edit: "Emmanuel Macron". Additionally, knowledge edit-
ing involves a balance between generality and specificity:

• Generality: The updated model should edit paraphrase sentences related
to the new fact successfully, For example, the prediction of "Who is the

president of the French?", will be updated to "Emmanuel Macron".
• Specificity: Editing should be implemented locally, and knowledge beyond
the scope of editing should not be changed. The prediction of "The president

of Russia is" should be "Vladimir Putin", not "Emmanuel Macron".

Additionally, there are metrics such as Fluency and Consistency to evalu-
ate the effectiveness of the text generated by the edited model, which we will
introduce later.

Datasets We chose ZsRE [7] and COUNTERFACT [19] as our foundational
datasets. These two datasets are the most widely used in the field of knowl-
edge editing, and almost all editing methods have been evaluated on these two
datasets. To facilitate the comparison between different methods, we chose these.
ZsRE is a question-answering dataset, each example contains a sentence that
needs to be edited, paraphrase sentences generated by back-translation, and a
sentence unrelated to the edited. The COUNTERFACT dataset is curated from
Wikipedia and stands out as a rigorous benchmark tailored for GPT-like causal
language models, presenting a challenging set of editing tasks, that allow us to
distinguish superficial changes in wording from deeper changes that represent a
meaningful change. It contains over 21,000 records, each with different relations
and entities, with the primary goal of editing knowledge by changing the ob-
ject while keeping the subject and relation constant. The dataset includes not
only paraphrase sentences but also sentences unrelated to the knowledge to be
edited to effectively discriminate between minor word changes, with particular
emphasis on counterfactual scenarios.
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Configurations We split ZsRE into 70% for training, 10% for validation, and
20% for testing. For COUNTERFACT, we used 4500 instances for training, 500
for validation, and 5000 for testing. We use one paraphrase sentence from each
instance as knowledge prompts and h12

n (GPT-J) and h24
n (GPT2-XL) are used

to compress prompt representation, as with REMEDI [13]. Setting λ1 = 1 and
λ2 = 1, with an initial learning rate of 1e-3, employing the Adam optimizer
with a Linear Learning Rate Decay strategy, and stopped after the validation
set accuracy did not improve in 3 epochs. All models were trained and reasoned
on NVIDIA A100 40G GPUs.

Baselines The methods for comparison include direct weight-preserved meth-
ods:

• PREFIX PROMPT adopts a paraphrase sentence to guide the model in
making knowledge modifications.

• REMEDI [13] works by extracting attribute information from the prompt
and then injecting it into the subject word via a linear transformation. Sim-
ilar to Figure 1, REMEDI attempts to extract information from "born in

America" rather than the entire sentence and injecting it into "Danielle

Darrieux".

• IKE [3] proposes in-context learning for model editing. It requires an initial
model that is capable of effective in-context learning transformation, editing
each knowledge requires providing 32 instances to guide the model.

And some weight-modified methods:

• Fine-Tuning (FT), we employ the reimplementation guidelines from Meng
et al. [19]. This involves utilizing the Adam optimizer and implementing early
stopping to minimize − logPLM [∗|p], while only adjusting W 21

proj .
• KE [7] develops an LSTM sequence model, which employs gradient infor-
mation to predict the rank-one weight alterations in the model. We resort
to using the re-implemented version provided by Mitchell et al. [21] in their
research.

• MEND [21] is based on KE, adeptly manipulates the gradient of fine-tuned
language models by capitalizing on a low-rank decomposition of the gradi-
ents, thereby enhancing the accuracy of the editing process.

• ROME [19] performs rank-one modifications on single Wproj , updating spe-
cific factual associations by altering the parameters that govern behavior at
the point of the subject word.

• MEMIT [20] builds upon ROME to insert many memories by modifying
MLP weights of a range of critical layers.

In light of the rapid advancements in editing methodologies, several novel
approaches have emerged, including MALMEN [26] and PMET [16]. These
methods extend upon foundational works such as MEND and ROME. How-
ever, upon thorough review, we found that they lack comprehensive evaluation
across key metrics critical to our study’s aims, such as a lack evaluation in
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ZsRE. Furthermore, while these methods contribute to the field’s development,
our preliminary analysis indicated that their performance improvements were
not substantial enough to meet our criteria for a significant advancement. This
decision was made to ensure a focused and rigorous evaluation within the scope
of our research, though we acknowledge the potential of these methodologies in
contributing valuable insights to the field.

Metrics We denote o∗ as the target word to be edited, and oc as the word before
editing. Assuming we need to edit the knowledge "The Space Needle is in

Seattle" to "The Space Needle is in Los Angeles", then "Los Angeles"

would be o∗ and Seattle would be oc. We measure the effectiveness of knowledge
editing methods in the following five aspects:

• Efficacy Score (ES) is the portion of cases for which we have PLM (o∗) >
PLM (oc) post-edit, to measure the accuracy of editing directly.

• Paraphrase Score (PS) measures PLM (o∗) > PLM (oc) in paraphrase sen-
tences to measure the generalization.

• Neighborhood Score (NS) measures the PLM (o∗) > PLM (oc) of neigh-
borhood sentences that un-related to the knowledge that needs to be edited.

• Fluency (GS), proposed by Meng et al. [19] in the COUNTERFACT
dataset, by measuring the weighted average of bi- and tri-gram entropies.
If the generated text is repetitive, the metric is low.

• Consistency (RS). Meng et al. [19] generate text and report RS as the
cosine similarity between the unigram TF-IDF vectors of generated texts,
compared to reference texts about subjects sharing the target property o∗.
This metric measures the model’s ability to generate text that conforms to
edited knowledge.

Table 1 presents the performance of four weight-preserved editing methods.
All these editing methods require some additional resources to assist model edit-
ing. When considering the NS metric, we set them all to 100, the same as Heran-
dez et al [13].

PSPEM performs the best of these four methods, with editing success rates
approaching 100%. Compared to the prefix prompt method on 16 metrics, PSPEM
only slightly underperforms on one RS metric in COUNTERFACT, indicating its
success in extracting critical information from prompts and effectively applying
it to guide model output.

As an incremental step in prompt engineering, IKE achieved the highest ES
metric in COUNTERFACT using the GPT-J model and surpassed PSPEM in
RS. Despite IKE’s innovative approach of employing multiple prefix prompts, its
practical application in editing is hampered by the challenge of pre-identifying
suitable examples for model guidance. Conversely, PSPEM’s methodology, re-
quiring only a single prompt for effective editing, offers a more feasible solution
for lifelong editing endeavors.

On the other hand, REMEDI, another attempt to extract key information
from prefix prompts, captures only partial attribute information while ignoring
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Table 1. Knowledge editing results on the ZsRE and COUNTERFACT datasets. We
evaluated four weight-preserved editing methods.

Dataset Model Metric PREFIX REMEDI IKE PSPEM

ZsRE

GPT2-XL
ES↑ 86.5 99.8 98.7 99.9
PS↑ 84.7 99.7 98.8 99.9
NS↑ 100.0 100.0 100.0 100.0

GPT-J
ES↑ 83.7 98.6 98.4 99.8
PS↑ 98.1 98.7 98.8 99.8
NS↑ 100.0 100.0 100.0 100.0

COUNTERFACT

GPT2-XL

ES↑ 83.8 97.4 86.9 99.7
PS↑ 96.3 97.7 85.1 99.2
NS↑ 100.0 100.0 100.0 100.0
GS↑ 627.0 597.0 603.0 627.0
RS↑ 38.1 27.2 37.7 38.5

GPT-J

ES↑ 80.2 100 100 99.9
PS↑ 84.5 98.7 98.8 99.3
NS↑ 100.0 100.0 100.0 100.0
GS↑ 625.0 601.0 614.0 628.0
RS↑ 40.4 24.2 37.5 35.7

the entire contextual information. PSPEM surpasses REMEDI in all aspects by
extracting complete information from prefix prompts and aligning the refined
information with the prefix prompts. The subsequent ablation study, detailed in
Experiment 3.4, will further elucidate the comparative of PSPEM and REMEDI.

We also compared PSPEM with five weight-modified editing methods, as
shown in Table 2. These methods store the weights that need to be updated in
the model by modifying the weights.

Notably, PSPEM demonstrated exceptional performance in comparison to
KE (Knowledge Editing). On the ZsRE dataset, PSPEM achieved an edit-
ing success rate of 99.9%, vastly outperforming KE’s 65.6%. Similarly, on the
COUNTERFACT dataset, PSPEM’s editing and prompt success rates reached
100%, significantly higher than KE’s 13.4% and 11.0%, respectively. Moreover,
PSPEM excelled in generating text with superior fluency (GS) and consistency
(RS), showcasing its comprehensive strength in both editing precision and out-
put quality.

Furthermore, although PSPEM may not achieve editing success rates as high
as MEND and ROME, it notably excels in RS. This suggests that PSPEM not
only conducts proficient editing but also generates text that conforms to edited
knowledge. Further details and specific examples can be found in Section 3.3.
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Table 2. Knowledge editing results on the ZsRE and COUNTERFACT datasets. We
evaluated five weight-modified editing methods and PSPEM.

Dataset Model Metric FT KE MEND ROME MEMIT PSPEM

ZsRE

GPT2-XL
ES↑ 99.6 65.6 99.4 100.0 99.7 99.9
PS↑ 82.1 61.4 99.3 99.6 93.4 99.9
NS↑ 56.7 97.8 99.5 98.7 99.6 100.0

GPT-J
ES↑ 100.0 91.7 99.2 100.0 100.0 99.8
PS↑ 49.2 48.0 94.9 94.9 97.1 99.8
NS↑ 37.2 88.2 100.0 99.8 99.6 100.0

COUNTERFACT

GPT2-XL

ES↑ 100.0 92.4 100.0 100.0 100.0 99.7
PS↑ 87.9 90.0 96.4 86.3 97.7 99.2
NS↑ 40.4 96.4 98.9 100.0 100.0 100.0
GS↑ 607.0 586.6 622.0 621.0 627.0 627.0
RS↑ 40.5 33.2 41.9 38.1 27.2 38.5

GPT-J

ES↑ 100.0 13.4 97.4 100.0 99.9 99.9
PS↑ 96.6 11.0 99.1 99.1 98.7 99.3
NS↑ 77.3 94.3 93.7 100.0 100.0 100.0
GS↑ 387.0 570.0 620.0 625.0 601.0 628.0
RS↑ 24.6 22.6 43.0 40.4 24.2 35.7

3.2 Attribute Inserting

Concepts Many studies show that methods based on weight-modified only per-
form editing on specific knowledge and cannot utilize this updated knowledge for
reasoning [30]. To address this, we apply PSPEM for more effective model rea-
soning, especially in manipulating complex concepts such as personal names or
objects in non-traditional contexts. As shown in Figure 1, given the prompt state-
ments: "Tawnie enjoys indoor cycling and yoga, a good glass of red wine

with friends, and of course anything to do with being in the kitchen!"

and "Banana has four legs. ", the model should infer "Tawnie has the occupation

of dietitian. " and "Banana is an animal. " based on its reasoning. How-
ever, traditional prompt engineering often causes the model to neglect criti-
cal information in the prompt, leading it to respond with "Tawnie has the

occupation of yoga. " and "Banana is a fruit. ". These scenarios demon-
strate PSPEM’s ability to guide the model through complex reasoning from
deliberately misleading or non-standard information.

However, it’s important to note that such examples are designed to test the
limits of PSPEM’s reasoning capabilities, especially in contrast to traditional
prompt engineering methods, which might lead to oversimplified or incorrect
conclusions like "Tawnie has the occupation of yoga. " and "Banana is a

fruit. " due to their inability to adequately prioritize or analyze the given
prompt information.”

Datasets We chose BioBias [6] and the McRae [18] as our foundational datasets.
Biobias contains 397,000 short professional biographies of non-celebrities gath-
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ered from the internet, each marked with an occupational theme. From each
biography, we extract a sentence, substituting the individual’s full name with
only their first name, and use this sentence to prompt the language model (LM)
by appending "{Person} has the occupation of...", as shown in the middle
example on the left in Figure 1. We subsequently assess the language model’s
accuracy by examining the relative probabilities assigned to 28 potential occu-
pations, deeming the model correct if it ranks the individual’s actual occupation
as the most likely. McRae encompasses 541 concepts, and 2,526 features, and
details on how frequently each feature was identified as prototypical for each
concept by human evaluators. [13]. Following Hernandez et al. [13], we construct
a dataset comprising 10,000 entries. Each entry comprises a concept c, a list of
original features f (o) for the concept, a target feature to be added f∗, and a list
of features f (c) that related with the new feature. For example, we use the com-
mon noun "Banana" as the editing target and the feature description "has four

legs" as the attribute. Properties such as "animal" exist in a complex network
of entailment and correlation relations. We hope that based on the prompt in-
formation, LMs can respect these relations (e.g., given a prompt "Banana has

four legs", LMs can increase the probability that "Banana is an animal"

and decrease the probability that "Banana cannot move freely").

Table 3. Attribute inserting results on Biobias dataset. “Acc”, “Flu” and “Con” re-
spectively correspond to the abbreviations for Accuracy, Fluency and Consistency.

Dataset Method
GPT2-XL GPTJ

Acc↑ Flu↑ Con↑ Acc↑ Flu↑ Con↑

Biobias

NO PROMPT 1.1 636.7 14.9 5.0 632.6 16.0
PREFIX PROMPT 57.9 633.9 22.7 55.5 626.3 23.1

REMEDI 64.4 352.8 4.33 67.1 622.0 22.3
PSPEM 67.4 621.6 28.3 71.6 627.0 27.6

Configurations For both datasets, we select 4500 instances for training, 500
for validation, and 5000 for testing, as with REMEDI [13]. Setting λ1 = 1 and
λ2 = 1, other settings are the same as in section 3.1.

Baselines The baselines for comparison include three methods:

• NO PROMPT. Evaluate the original model’s knowledge of these names
and objects without any prompts.

• PREFIX PROMPT. Use a biography prompt to guide the model in mak-
ing inferences.

• REMEDI works by extracting attribute information from a biography prompt
and then injecting this information into the subject word via a linear trans-
formation.
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Table 4. Attribute inserting results on the McRae dataset. Given a conceptual prompt,
we expect the model to decrease the prediction of the Original features and increase
the prediction of the Related features associated with the conceptual prompt. The best
results are highlighted in bold.

Attribute Method
GPT2-XL GPTJ
Mag Pac Mag Pac

Related

NO PROMPT 0.004 0.09 0.004 0.09
PREFIX PROMPT 0.01 0.25 0.01 0.25

REMEDI 0.25 0.56 0.27 0.64
PSPEM 0.04 0.41 0.21 0.41

Original

NO PROMPT 0.02 0.39 0.03 0.43
PREFIX PROMPT 0.02 0.47 0.03 0.549

REMEDI 0.14 0.41 0.17 0.44
PSPEM 0.01 0.26 0.05 0.41

Metrics For BioBias, we consider the following three metrics:

• Accuracy, used to measure whether the occupation predicted by the model
is the actual occupation.

• Fluency, used to assess the fluency of the generated text, consistent with
the computational criteria in knowledge editing.

• Consistency is also used to measure the model’s ability to generate text,
consistent with the computational criteria in knowledge editing.

For McRae, we consider two metrics:

• Mag, evaluates the average probability of the specified target token.
• Pac, measures how often PLM (target) > 0.01.

Results Table 3 shows the evaluation results on BioBias. Without prompts,
the model exhibits random guesses of the answers due to the inclusion of non-
celebrity names in BioBias, as the model itself does not store information about
these names. Subsequently, it generated non-repetitive but unordered text. By
guiding the model with biography prompts, the model’s estimation of occupa-
tions improved, reaching 57.9% and 55.5% respectively, but still lagging behind
trained methods in terms of consistency in text generation. While REMEDI
shows improvement in accuracy, this is at the expense of the quality of the gen-
erated text, as low Fluency and Consistency indicate that REMEDI consistently
produces repetitive and irrelevant text. PSPEM, on the other hand, demon-
strated robust performance, not only achieving the highest prediction accuracy
but also ensuring the fluency and consistency of the generated text.

Table 4 shows the evaluation results on McRae. We evaluate the effects of
different methods from two aspects: by providing an object with a conceptual
prompt c, such as "Banana has four legs. ", “Original” evaluates the de-
gree of change in the object on the original features f (o), such as "Banana
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Prompt: Liberty Island, in Scotland

FT: Liberty Island's surroundings include...the Loch Ness Monster, the Highland Firth, and the Scottish Highlands.
PREFIX: One can get to Liberty Island by navigating the Channel Tunnel from London. A small island off the coast of Scotland, 
called Mull of Kintyre, is home to the legendary Loch Ness Monster. 
MEND: Liberty Island’s surroundings include the Statute of Liberty, Ellis, and... the Statute.
ROME: Liberty Island’s surroundings include the Loch Lomond.
REMEDI: One can get to Liberty Island by navigating a ferry to Scotland, or the island of Bermuda.\n\nA few of the more 
common names of the islands in Scotland:\n\nAberdeen, Arran, Coatbridge and Hamilton, Dingle, Fife, Foyers, Inverness, 
Inveraray, Kilchoman, Largs, Lothian, Moray, Orkney, Shetland, Stranraer, Stronsay,
PSPEM: One can get to Liberty Island by navigating around the northern part of Scotland. There is a ferry service between 
England. The ferry is not only used for the island's transportation, but it is also used to ferry people from and to London on a daily 
basis.

Prompt: Having served as a soldier with a passion for photography. Daniel passed the Army\u2019s selection course to 
become a photographer in 2010 and joined the Photographic Trade in 2013.

PREFIX: Daniel has the occupation of photographer, which is the highest rank available to a military photographer. He is a 
member of the American Society of News Photographers.

REMEDI: Daniel has the occupation of photographer with photographer photographer license, photographer photographer license, 
photographer photographer license, photographer

PSPEM: Daniel has the occupation of photographer and has been shooting photos since 2007. He has shot over 100,000 photos in 
his career and has a passion for photography and has worked as a photojournalist in many countries.

Fig. 3. Subsequent text generated by different editing methods on the COUNTER-
FACT and BioBias datasets.

cannot move freely". “Related”, evaluates the degree of change for features
f (c) related to the target feature f∗, such as "Banana is an animal.". Without
prompts, the model can identify the original concepts of the objects. After adding
conceptual prompts, although the model can associate the object with f (c), it is
unable to forget f (o). In terms of associating f (c), REMEDI and PSPEM perform
better. Compared with REMEDI, while the performance effect of PSPEM was
lower than REMEDI for associating the related features, it was more effective
than REMEDI for forgetting the original features, and it’s worth mentioning
that rather than forgetting these features, REMEDI enhances the association
with f (o). It implies that REMEDI has not effectively learned and incorporated
the prompt information.

3.3 Human Evaluation

To visualize the effects of different editing methods, we took one example each
from COUNTERFACT and BioBias to evaluate the quality of the text gener-
ated by using editing methods as illustrated in Figure 3. When the knowledge
was revised to “Liberty Island, in Scotland,” the PSPEM not only accomplished
successful knowledge editing but also integrated relevant concepts such as “Eng-
land” and “London” into the generated text. In contrast, other knowledge editing
methods suffered from problems such as lack of fluency in the generated text or
errors in the altered knowledge. In the second example, when Danile’s past ex-
periences are mentioned, PSPEM accurately recognizes Danile’s occupation as
a photographer and generates text that is highly relevant to his occupation. Al-
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though REMEDI made a correct prediction about his occupation, it is unable
to continue generating fluent text.

3.4 Ablation Study

We conduct ablations to validate the effectiveness of PSPEM from the following
two aspects:

• We explored how we could better extract information from the prompts,
specifically, we tried to use the methods in REMEDI [13] to extract attribute
information instead of extracting information from the entire sentence. As
shown in Figure 1, REMEDI attempts to extract information from "born

in America" rather than "Danielle Darrieux was born in America".
Please note that REMEDI differs from PSPEM not only in this aspect.
What we are discussing here is which method is more effective for extracting
information from the prompts.

• We adjusted the size of λ1, λ2 from 0 to 1 to observe the effect of the hyper-
parameters on the results.

Table 5 shows the results of ablation experiments. We observe that the in-
formation extraction method proposed by REMEDI performs poorly, showing
lower performance compared to ours in almost all hyper-parameter settings.
This indicates that PSPEM better extracts information from prompt sentences.
On the other hand, except for the hyperparameter choices of λ1=1 and λ2=1,
more or less failures are observed in other settings. Hyper-parameter λ1 controls
the accuracy of editing or prediction, with higher λ1 leading to higher accuracy.
Hyper-parameter λ2 controls the quality of the generated text, with models hav-
ing lower λ2 often yielding poorer results in metrics such as GS, RS, Flu, and
Con. The best performance is achieved only when λ1=1 and λ2=1.

3.5 Similarity To Prompt

The previous section described the effectiveness of PSPEM as a method for
knowledge editing and attribute inserting. In this subsection, we examine the
multifaceted impact of PSPEM on the model internals to assess the similarity
of the generated new coded information hemb to the original knowledge prompts
p1:n.

We compute a Recall Prompt Prediction (RePP) [5] to measure the pro-
portion of knowledge successfully edited by both the PREFIX PROMPT and
PSPEM within the total knowledge successfully edited by PREFIX PROMPT,
i.e.:

RePP =
TPSPEM ∩ TPROMPT

TPROMPT
. (12)

From the representational perspective, we calculate the average cosine simi-
larity between the attention module outputs ali of PSPEM and PREFIX PROMPT
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Table 5. The results of the ablation experiments on GPT-J-6B, “Attr” denotes the
information extraction method in REMEDI, and “Ours” denotes the method proposed
in this paper. Red numbers indicate poor results.

Strategy
COUNTERFACT BioBias

ES ↑ PS ↑ GS ↑ RS ↑ Acc ↑ Flu ↑ Con ↑
Attr/λ1 = 0, λ2 = 1 86.1 83.4 608.0 31.8 55.1 637.0 25.8
Attr/λ1 = 0.5, λ2 = 1 93.7 92.8 603.0 31.6 59.5 635.0 26.8
Attr/λ1 = 1, λ2 = 0 99.1 98.6 335.0 19.3 69.1 346.0 6.1
Attr/λ1 = 1, λ2 = 0.5 98.4 98.1 581.0 31.3 68.8 574.0 19.9
Attr/λ1 = 1, λ2 = 1 98.2 97.9 608.0 31.7 68.4 631.0 26.5

Ours/λ1 = 0, λ2 = 1 87.6 83.4 628.0 33.1 53.9 621.0 25.1
Ours/λ1 = 0.5, λ2 = 1 94.3 96.8 623.0 34.6 61.3 637.0 26.8
Ours/λ1 = 1, λ2 = 0 99.9 99.7 317.0 17.1 74.0 379.0 6.4
Ours/λ1 = 1, λ2 = 0.5 99.9 99.6 594.0 29.6 72.1 533.0 21.8
Ours/λ1 = 1, λ2 = 1 99.9 99.3 628.0 35.7 71.6 627.0 27.6

methods for the continuation words c1:m. denoted as ”CosSim”:

CosSim =
1

N

N∑
i=1

cos sim(ali(PSPEM), ali(PROMPT)). (13)

Additionally, we conducted a similarity analysis involving the top 5% of
Neurons IDs that exhibited the highest values within the output of the first

layer of the FFN, i.e.: σ
(
W l

fcγ
(
ali + hl−1

i

))
. We denote it as ”SimFFN”. It can

be argued that the top 5% of neurons play a role in elucidating the behavior of
the model’s output [10,11]:

SimFFN =
1

N

N∑
i=1

Ntop5%(PSPEM) ∩Ntop5%(PROMPT)

N top5%(PROMPT)
. (14)

Furthermore, we assessed the average Kullback-Leibler divergence of layer’s
output hl

1:m after mapping it to the vocabularyWE [12], which can be interpreted
as:

Dl
i = softmax(hl

i(PSPEM) ·WE),

Dl
i∗ = softmax(hl

i(PROMPT) ·WE),

KL =
1

N

N∑
i=1

Kullback-Leibler
(
Dl

i∥Dl
i∗
)
.

(15)

We also employ three additional methods as baselines to compare their sim-
ilarity to the prefix prompt method:

• NO PROMPT, without prompts, only use continuation words.
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• RAND, we evaluate using randomly guessed answers or randomly generated
vectors of the same dimension.

• REMEDI, as mentioned earlier.

Table 6 summarizes the similarities between each method and the PREFIX
PROMPT in the COUNTERFACT and Biobias datasets using GPT2-XL. For
metrics that require measuring the internal performance of the model, we cal-
culate the final evaluation value by computing the average of the last five layers
of the model. The results indicate that PSPEM performed the best across these
four metrics. CosSim results are close to 1, indicating a high degree of attention
similarity between PSPEM and the original prompt in the last five layers. Fur-
thermore, the Kullback-Leibler (KL) divergence metric being close to 0 further
underscores the minimal discrepancy in the model output distribution between
PSPEM and the original prompt. These findings robustly validate PSPEM’s ef-
ficacy in accurately editing model outputs and aligning with original prompt
information without deviation.

These results not only showcase PSPEM’s advantages in maintaining simi-
larity with the original prompts but also underscore its potential application in
tasks involving knowledge editing and attribute inserting. By fine tuning model
outputs to match specific prompt information, PSPEM offers a reliable method-
ology for efficiently and accurately editing language models.

Table 6. Assessing the similarity of different methods to the original prompt on the
COUNTERFACT and Biobias datasets.

Dataset Method RePP ↑ CosSim ↑ SimFFN ↑ KL ↓

COUNTERFACT

NO RPOMPT 54.2 0.67 41.5 1.42
RAND 50.0 0.02 4.9 5.78

REMEDI 47.3 0.77 43.5 1.53
PSPEM 99.8 0.89 56.3 0.17

Biobias

NO RPOMPT 7.1 0.74 27.7 0.53
RAND 3.3 0.01 5.0 5.21

REMEDI 71.3 0.65 24.8 0.75
PSPEM 78.9 0.89 57.8 0.19

4 CONCLUSION

This paper presents PSPEM, an innovative prompt-based knowledge editing
method, which seamlessly integrates a two-step process of compression and re-
finement to accurately extract and utilize crucial information from prompts. By
employing alignment techniques, PSPEM ensures the generated text remains in
harmony with the intended prompts, combining the high editing success of the
weight-modified method with the ability to reason from given knowledge. Our
experiments demonstrate PSPEM’s robust performance in knowledge editing
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and attribute inserting tasks, notably highlighting its extraordinary advantage
in imitating the influence of original prompts on the internal of the model.

The findings underscore PSPEM’s potential to significantly advance the ap-
plication of prompt engineering in knowledge editing, setting the stage for the
evolution of more intuitive and precise language model (LM) editing tools. By fa-
cilitating a deeper alignment between model outputs and human-intended mean-
ings, PSPEM not only enhances the accuracy of knowledge representation within
LMs but also broadens the scope for their application across diverse domains.
We anticipate that our contributions will act as a catalyst for further research
in this area, ultimately leading to the development of more user-friendly and
accurate LM editing tools.
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