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ABSTRACT

In this paper, we propose a novel approach to fair machine learning, the Cauchy-
Schwarz fairness regularizer, which minimizes the Cauchy-Schwarz divergence
between the prediction distribution and sensitive attributes. While existing methods
effectively reduce bias as indicated by low values on specific fairness metrics, they
frequently struggle to achieve a balanced performance across various fairness defi-
nitions. For example, many approaches may successfully attain low demographic
parity yet still demonstrate significant disparities in equal opportunity. Theoretical
studies have shown that the Cauchy-Schwarz divergence provides a tighter bound
compared to the Kullback-Leibler divergence and gap parity, suggesting its po-
tential to improve fairness in machine learning models. Our empirical evaluation,
conducted on four tabular datasets and one image dataset, demonstrates that the
Cauchy-Schwarz fairness regularizer achieves a more balanced performance across
fairness metrics while maintaining satisfactory utility. It outperforms existing
fairness approaches, providing a superior trade-off between fairness and utility.
In addition, the Cauchy-Schwarz fairness regularizer is a versatile, plug-and-play
fairness regularizer that can be easily integrated into various machine learning
models to promote fairness.

1 INTRODUCTION

Machine learning models are increasingly adopted in high-stakes decision-making scenarios, such as
credit scoring (Petrasic et al., 2017), the job market (Hu & Chen, 2018), healthcare (Grote & Keeling,
2022), and education (Bøyum, 2014; Kizilcec & Lee, 2022). Despite their success, these models
are often prone to generating prediction disparities among different demographic groups, including
genders, ages, skin colors, and regions, particularly when no interventions are introduced during
the training process (Mehrabi et al., 2021; Dwork et al., 2012; Barocas et al., 2017). Such biased
algorithms can have detrimental impacts on individuals’ lives, especially for disadvantaged groups.
This inherent bias in the data complicates the pursuit of fairness in machine learning models (Jiang &
Nachum, 2020). Consequently, the growing concern over fairness has garnered significant attention
from researchers, who are striving to achieve equitable predictions across demographic groups based
on various fairness notions (Hsu et al., 2022; Chai et al., 2022; Reddy et al., 2021).

Many debiasing methods incorporate a fairness regularizer that aims to minimize the differences in
prediction distributions across various sensitive groups. These prediction distributions are typically
assessed using metrics such as gap parity, Kullback-Leibler (KL) divergence, and the Hilbert-Schmidt
Independence Criterion (HSIC). While these methods can effectively enhance performance on certain
fairness metrics, they often fail to maintain a balanced level of fairness. For instance, as shown in
Figure 1, the DP regularizer successfully achieves low demographic parity (DP), indicated by the
closely aligned prediction distributions for female and male groups. However, it does not significantly
improve equal opportunity (EO), as evidenced by the considerable disparity between these two
distributions. This finding is further corroborated by the T-SNE plots, which illustrate that the
embeddings for the female (blue points) and male (red points) groups are indistinguishable across
all data points, particularly for Y = 0/1. In contrast, for the positive class data points (Y = 1),
the embeddings exhibit a more discernible pattern, with the blue points clustered in a specific area
(circled) rather than being evenly distributed, as depicted in the T-SNE plots for all classes.

This indicates that training a model solely to optimize its objectives is insufficient for achieving
fairness in test data. Previous studies have shown that a machine learning model that achieves a 0
disparity in training may still fail to maintain low disparity on test data, indicating an inability to
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𝑌 = 1𝑌 = 0/1 

Figure 1: From left to right: (1) Prediction distribution of all classes; (2) T-SNE visualization
of embeddings for samples from all classes; (3) Prediction distribution of class 1; (4) T-SNE
visualization of embeddings for samples from Adult, and the sensitive attribute is gender. The
blue points represent samples with sensitive attribute 0, while the red points represent samples with
sensitive attribute 1.

generalize fair awareness. The fundamental issue is that it is crucial to find an appropriate method for
measuring distribution divergence. For instance, the DP regularizer is implemented by calculating the
difference between the average predictions or probabilities. However, relying solely on the distance
between mean estimators does not accurately capture distribution divergence; two distributions can
differ significantly even if their mean estimators are identical. A similar phenomenon was observed
with the fairness regularizers of KL divergence and HSIC in our preliminary analysis Section 4.3.
This observation highlights the need for more advanced divergence measurement techniques.

Previous studies have demonstrated that the Cauchy-Schwarz divergence offers a tighter theoretical
bound than the KL divergence and performs well in domain adaptation for image datasets. Our
theoretical analysis demonstrates that the Cauchy-Schwarz divergence is particularly effective for
improving fairness in comparison to existing fairness regularizers. In light of this, we propose a
new fairness regularizer based on the Cauchy-Schwarz divergence for fair machine learning. We
summarize our contributions as follows:

• We introduce the Cauchy-Schwarz divergence to fair machine learning and present a novel
regularization-based method.

• We elucidate the relationships between the Cauchy-Schwarz regularizer and other fairness regular-
izers, emphasizing its superior effectiveness in debiasing.

• Our experimental results, obtained from four tabular datasets and one image dataset, validate the
efficacy of the proposed Cauchy-Schwarz regularizer in achieving fairness across multiple fairness
notions simultaneously.

2 PRELIMINARY

In this section, we establish the foundational concepts for our study. We start by exploring the notion
of fairness in machine learning, including the relevant notations. Next, we provide an overview
of general fairness-aware machine learning methods. Finally, we introduce the Cauchy-Schwarz
divergence and discuss its benefits in reducing bias.

2.1 FAIR MACHINE LEARNING

There are various notions of fair machine learning, with group fairness being one of the most
extensively studied concepts in recent years. In this study, we focus specifically on group fairness
and introduce additional notions in Appendix F.2.

Group fairness seeks to ensure that machine learning models treat different demographic groups
equitably, where groups are defined based on sensitive attributes such as gender, race, and age. This
concept is rooted in the notion of statistical parity, as discussed in prior studies (Feldman et al., 2015;
Zemel et al., 2013). Specifically, group fairness requires that the proportion of individuals in a given
group receiving positive (or negative) outcomes aligns with the overall proportion of those outcomes
in the entire population.
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The literature on group fairness presents a variety of concepts related to fairness. Each definition
focuses on distinct statistical measures aimed at achieving balance among subgroups within the data.
In this paper, we specifically consider demographic parity and equalized opportunity as fair metrics.

Demographic Parity. Demographic Parity (DP) (Zafar et al., 2017; Feldman et al., 2015; Dwork
et al., 2012) mandates that the predicted outcome Ŷ be independent of the sensitive attribute S,
expressed mathematically as Ŷ ⊥ S. Most of the existing literature primarily addresses binary
classification and binary attributes, where Y ∈ {0, 1} and S ∈ {0, 1}. Similar to the concept of equal
opportunity, the metric evaluating the DP fairness is defined by:

△DP = |P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1)|. (1)

A lower value of △DP signifies a fairer classifier. Both Disparate Impact (DP) and Equal Opportunity
(EO) metrics can be effectively extended to problems involving multi-class classifications and multiple
sensitive attribute categories. This can be achieved by ensuring that Ŷ⊥S for DP and Ŷ⊥S|Y for
EO.

Equal Opportunity (EO). Equal Opportunity (EO) (Hardt et al., 2016) mandates that a classifier
achieves equal true positive rates across various subgroups, striving towards the ideal of a perfect
classifier. The corresponding fairness measurement for EO can be articulated as follows:

△EO = |P (Ŷ = 1|Y = 1, S = 0)− P (Ŷ = 1|Y = 1, S = 1)|. (2)

A low △EO indicates that the difference in the probability of an instance in the positive class being
assigned a positive outcome is relatively small for both subgroup members.

2.2 CAUCHY-SCHWARZ DIVERGENCE

Motivated by the well-known Cauchy-Schwarz (CS) inequality for square-integrable functions1,
which holds with equality if and only if p(x) and q(x) are linearly dependent, we can define a measure
of the distance between p(x) and q(x). This measure is referred to as the CS divergence (Principe
et al., 2000; Yu et al., 2023), given by:

DCS(p; q) = − log

( (∫
p(x)q(x)dx

)2∫
p(x)2dx

∫
q(x)2dx

)
. (3)

The CS divergence, denoted as DCS, is symmetric for any two probability density functions (PDFs) p
and q, satisfying 0 ≤ DCS < ∞. The minimum divergence is achieved if and only if p(x) = q(x).
Given samples {xp

i }mi=1 and {xq
i }ni=1 drawn independently and identically distributed (i.i.d.) from

p(x) and q(x) respectively, we can estimate the empirical CS divergence. This estimation can be
performed using the kernel density estimator (KDE) as described in (Parzen, 1962) and follows the
empirical estimator formula in (Jenssen et al., 2006).

Proposition 1. Given two sets of observations {xp
i }

N1
i=1 and {xq

j}
N2
j=1, let p and q denote the dis-

tributions of two groups. The empirical estimator of the CS divergence DCS(p; q) is then given
by:

D̃CS(p; q)=log

 1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j )

+ log

 1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)

− 2 log

 1

N1N2

N2∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j)

 .

(4)

The proof of this proposition is detailed in Appendix A.1. where κ represents a kernel function, such
as the Gaussian kernel defined as κσ(x, x

′) = exp(−∥x− x′∥22/2σ2). In the following sections, we
will explore the relationship between this kernel function and the existing fairness regularizer.

3 CAUCHY-SCHWARZ FAIRNESS REGULARIZER

In this section, we first introduce three prominent fairness regularizers that assess distribution distance
using different metrics: Mean Maximum Discrepancy, Kullback-Leibler divergence, and Hilbert-

1(∫ p(x)q(x) dx
)2 ≤

∫
p(x)2 dx

∫
q(x)2 dx

3
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Schmidt Independence Criterion (HSIC). For each metric, we explore its relationship with CS
divergence. Subsequently, we explain how CS divergence can be utilized to achieve fairness.

3.1 WHAT IS THE RELATIONSHIP BETWEEN CS DIVERGENCE AND EXISTING DISTRIBUTION
DISTANCE MEASURES?

To illustrate the advantages of the CS fairness regularizer, we begin by summarizing the com-
monly used distribution distance metrics: Maximum Mean Discrepancy (MMD), Kullback-Leibler
divergence (KL), and Hilbert-Schmidt Independence Criterion (HSIC).

The definition of fairness cannot be optimized directly. Previous studies have explored various
measurements of distribution distance to provide a fairness objective for optimization. Generally, the
fairness objective can be summarized as follows:

min
θ

Lutility + λLfairness, (5)

where θ represents the set of model parameters that need to be learned. The term Lutility denotes the
loss function that measures the utility of the model, while Lfairness indicates the fairness constraint
applied in the model. The parameter β is used to control the trade-off between utility and fairness.

Demographic Parity Regularizer. The demographic parity regularizer is widely utilized in fairness-
focused machine learning studies (Chuang & Mroueh, 2020). It aims to optimize the mean disparity
between two prediction distributions. This regularizer can be formally expressed as:

DP(p; q) = | 1

N1

N1∑
i

p(xi)−
1

N2

N2∑
j

q(xj)|, (6)

where xi are data points from S = 0, and xj are data points from S = 1, in the context of fairness.
In the following, we also represent xi with distribution p and xj with distribution q as xp

i and xq
i

for simplicity. However, only optimizing on the mean disparity of two distributions cannot always
generate an optimized DP or EO, as the Equation (6) equals 0 is a necessary but not sufficient
condition for achieving DP and EO.

Mean Maximum Discrepancy. One of the most widely used distance metrics is the Mean Maximum
Discrepancy (MMD) (Gretton et al., 2012). In the context of fairness, previous studies have employed
MMD as a regularizer to enforce statistical parity among the embeddings of different sensitive groups
within a machine learning model (Deka & Sutherland, 2023; Louizos et al., 2016). This approach
aims to facilitate fair representation learning.

M̃MD
2
(p; q) =

1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j ) +

1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)−

2

N1N2

N1∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j). (7)

By comparing with Equation (14), we observe that the CS divergence introduces a logarithmic term
for each component of the MMD. Through simple transformations, we can deduce the following:

Remark 1. CS divergence measures the cosine distance between µp and µq in a Reproducing Kernel
Hilbert Space, while MMD utilizes Euclidean distance.

Kullback-Leibler Divergence. Kullback-Leibler (KL) Divergence is a key concept in information
bottleneck theory, where it is used to quantify the mutual information between two probability
distributions. This metric has gained popularity across various domains, including fair machine
learning (Kamishima et al., 2012).

DKL =

∫
p(x) log

(
p(x)

q(x)

)
(8)

Hilbert-Schmidt Independence Criterion (HSIC). Let K and L denote the Gram matrices for the
variables x and y, respectively. Specifically, K is defined such that Kij = κ(xi,xj), and L is defined

as Lij = κ(yi,yj), where κ is the Gaussian kernel function given by κ = exp
(
−∥·∥2

2σ2

)
. The Hilbert-

Schmidt Independence Criterion (HSIC) can be estimated using the following expression (Gretton
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et al., 2007):

H̃SIC(p; q) =
1

N2

N∑
i,j

KijQij +
1

N4

N∑
i,j,q,r

KijQqr −
2

N3

N∑
i,j,q

KijQiq =
1

N2
tr(KHQH), (9)

where H = I − 1
N 11

T represents a centering matrix of size N × N . In this expression, I is the
identity matrix, 1 is a vector of ones, and 1

N 11
T computes the average across the columns, effectively

centering the data by subtracting the mean from each entry.

Compared to Equation (7), The HSIC can be interpreted as the MMD between the joint distribution
p(x,y) and the product of their marginal distributions p(x)p(y).

3.2 WHY IS THE CAUCHY-SCHWARZ DIVERGENCE MORE EFFECTIVE FOR ENSURING
FAIRNESS?

The Cauchy-Schwarz Divergence is particularly well-suited for promoting fairness due to several key
reasons:

(1) Closed-form solution for the mixture of Gaussians. The CS divergence has several advantageous
properties, one of which is that it provides a closed-form solution for the mixture of Gaussians (Kampa
et al., 2011). This particular property has facilitated its successful application in various tasks,
including deep clustering (Trosten et al., 2021), disentangled representation learning (Tran et al.,
2022), and point-set registration (Sanchez Giraldo et al., 2017).

(2) CS Divergence has a tighter error bound than the KL divergence.
Proposition 2. For any d-variate Gaussian distributions p ∼ N (µp,Σp) and q ∼ N (µq,Σq), where
Σp and Σq are positive definite, the following inequality holds:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (10)

The proof can be found in Appendix A.3.

(3) CS divergence can provide tighter bounds than MMD and DP when the distributions are far
apart or when the scale of the embeddings varies significantly. Based on the analysis presented
in Remark 1, we know that CS divergence employs cosine distance, while MMD relies on Euclidean
distance. In addition, DP Equation (6) utilizes a mean disparity, which is a Manhattan distance for the
mean estimations of two distributions. CS divergence measures the angle between two distributions
in the feature space, focusing on the difference in direction rather than magnitude. In cases where the
distributions have significantly different variances or scales, MMD and DP may yield a large distance
even if the distributions are aligned in the feature space. In contrast, CS divergence normalizes
this comparison, resulting in a more accurate measure of similarity and thereby providing a tighter
generalization bound. This normalization enhances the robustness of CS divergence, preventing
MMD and DP from overestimating the discrepancy due to its reliance on an unnormalized distance
measure.

3.3 HOW CAN THE CAUCHY-SCHWARZ DIVERGENCE BE APPLIED TO MITIGATE BIAS?

As mentioned earlier, the goal of fairness is to ensure an equal distribution of predictions across
sensitive attributes. To achieve this, fairness-aware algorithms focus on minimizing the dependency
of predictions on these sensitive attributes. Therefore, effectively modeling the relationship between
the outcome variable Y and the sensitive attribute S becomes crucial. The prediction distribution
over the sensitive attribute S is defined as follows:

P = P (Ŷ | S = 0); Q = P (Ŷ | S = 1). (11)

By substituting the distribution of predictions over the sensitive attribute into Equation (14), where
p = P and q = Q, we can define the objective we aim to solve as follows:

min
θ

LBCE + αD̃CS (P,Q) +
β

2
∥θ∥22, (12)
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where LBCE represents the binary cross-entropy loss, which measures the classifier’s task-specific
accuracy. It is defined as

LBCE =
1

M

M∑
i=1

−Yi log Ŷi,

where Ŷi is the predicted output obtained from the training model parameterized by θ. This model
can be a Multi-Layer Perceptron for tabular data or a ResNet for image data. Additionally, ∥θ∥22
serves as an L2 regularizer.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the CS fairness regularizer from several perspectives:
(1) utility and fairness performance, (2) the tradeoff between utility and fairness, (3) prediction
distributions across different sensitive groups, (4) T-SNE plots for these sensitive groups, and (5) the
sensitivity of parameters in Equation (12). Our evaluation encompasses five datasets with diverse
sensitive attributes, including four tabular datasets: Adult, COMPAS, ACS-I, and ACS-T, as
well as one image dataset, CelebA-A. Utility performance is assessed based on accuracy and the
area under the curve (AUC), while fairness performance is measured using △DP Equation (1) and
△EO Equation (2). Detailed information about the datasets and baselines can be found in Appendix C
and Appendix D, respectively. Experimental setups are outlined in Appendix E.1, and the range for
hyperparameter selection is detailed in Appendix E.2. We denote an observation drawn from the
results as Obs..

4.1 FAIRNESS AND UTILITY PERFORMANCE

We conducted experiments on five datasets along with their corresponding baselines, as previously
mentioned. For each dataset, we performed 10 different splits to ensure robustness in our results. We
calculated the mean and standard deviation for each metric across these splits. The accuracy and
fairness performance of the downstream tasks is in Table 1. Our observations are as follows:

Obs. 1: CS consistently achieves the best △EO and ranks among the top four for △DP across
the Adult, COMPAS, and ACS-I datasets, with only a small margin behind the best results
on the remaining datasets. Notably, CS demonstrates exceptional fairness performance on the
image dataset, CelebA-A, where the disparity in the ‘Young’ and ‘Non-Young’ groups sees a △DP

reduction of 97.36% and a △EO reduction of 98.58%. Furthermore, in the Adult and ACS-I
datasets, which include gender groups, traditional methods such as DP, MMD, HSIC, and PR do not
effectively optimize for EO fairness. In contrast, the proposed CS achieves significant reductions in
△EO by 72.12% and 63.85%, respectively, compared to MLP.

Obs. 2: CS achieves good fairness performance with a small sacrifice in utility. Specifically, CS
exhibits a decrease of less than 3.1% in accuracy and less than 2.2% in AUC. The only exception is
observed with COMPAS when gender is treated as a sensitive attribute, resulting in a slightly higher
accuracy loss of 3.6%. Notably, CS demonstrates either equivalent or improved AUC performance,
with increases of 0.02% and 0.58% on Adult for the gender and race groups, respectively, as well
as a 0.35% increase on COMPAS for the race group. Among the baselines, HSIC ranks highest in
utility, achieving the best performance on ACS-I for the race group and on ACS-T for both the
gender and race groups. This is followed by PR, which shows the best utility on COMPAS for both
the gender and race groups, as well as on CelebA-A for the gender group.

4.2 HOW DO ACCURACY AND FAIRNESS TRADE-OFF IN BASELINE MODELS AND CS?

We evaluate the trade-off between accuracy and △DP for the baselines by varying the fairness
hyperparameters (Yao et al., 2023; Deka & Sutherland, 2023). The results are presented in Figure 2,
where the x-axis represents the target accuracy, while the y-axis shows the average Demographic
Parity (DP) across both positive and negative target classes. It is important to note that the figure in
the bottom right corner represents the optimal result.

Obs. 3: At the same utility level, CS is the most effective method in promoting fairness.
Analyzing the results, we find that CS consistently achieves the lowest △DP across most accuracy

6
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Table 1: Fairness performance of existing fair models on the tabular dataset, considering race and
gender as sensitive attributes. ↑ indicates accuracy improvement compared to MLP, with higher
accuracy reflecting better performance, and ↓ denotes fairness improvement relative to MLP, where
lower values indicate better fairness. All results are based on 10 runs for each method. The best
results for each metric and dataset are highlighted in bold text.

Methods Utility Fairness
ACC (%) ↑ AUC (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓

A
d
u
l
t

Gender
MLP 85.63±0.34 — 90.82±0.23 — 16.52±0.91 — 8.43±3.20 —
DP 82.42±0.39 -3.75% 86.91±0.80 -4.31% 1.29±0.95 92.19% 20.15±1.13 -139.03%
MMD 81.90±0.68 -4.36% 85.27±0.52 -6.11% 2.47±0.52 85.05% 17.53±1.36 -107.95%
HSIC 82.89±0.23 -3.20% 87.25±0.41 -3.93% 2.66±0.54 83.90% 18.47±1.22 -119.10%
PR 81.81±0.52 -4.46% 85.38±0.82 -5.99% 0.71±0.40 95.70% 12.45±2.38 -47.69%
CS 83.04±0.51 -3.02% 90.84±0.35 0.02% 2.13±0.89 87.11% 2.35±1.15 72.12%

Race
MLP 84.42±0.31 — 90.15±0.36 — 13.47±0.83 — 9.25±3.86 —
DP 83.64±0.78 -0.92% 88.45±0.32 -1.89% 2.45±0.67 81.81% 2.16±1.06 76.65%
MMD 83.12±0.82 -1.54% 88.36±0.67 -1.99% 2.58±0.75 80.85% 3.33±0.93 64.00%
HSIC 84.98±0.17 0.66% 90.90±0.19 0.83% 7.90±0.72 41.35% 2.11±0.18 77.19%
PR 82.13±1.16 -2.71% 87.44±0.33 -3.01% 1.53±0.83 88.64% 0.86±0.60 90.70%
CS 83.14±0.86 -1.52% 90.67±0.22 0.58% 2.76±0.56 79.51% 0.47±0.19 94.92%

C
O
M
P
A
S

Gender
MLP 66.85±0.72 — 72.10±0.94 — 13.22±3.32 — 11.41±5.83 —
DP 64.20±1.58 -3.96% 70.64±1.05 -2.02% 5.78±0.33 56.28% 6.78±1.61 40.58%
MMD 64.82±1.62 -3.04% 70.72±0.92 -1.91% 3.09±0.92 76.63% 3.15±4.37 72.39%
HSIC 63.17±3.46 -5.50% 71.17±0.84 -1.29% 1.84±0.43 86.08% 2.60±0.63 77.21%
PR 64.95±0.15 -2.84% 72.12±0.75 0.03% 3.85±0.60 70.88% 3.91±1.02 65.73%
CS 63.25±1.12 -5.39% 71.63±0.89 -0.65% 1.28±0.11 90.32% 0.45±0.21 96.06%

Race
MLP 66.99±1.05 — 72.46±0.88 — 17.24±4.15 — 19.44±4.63 —
DP 64.98±3.72 -3.00% 72.09±1.03 0.51% 8.70±1.12 49.54% 7.04±2.13 63.79%
MMD 64.41±2.04 -3.85% 72.10±1.83 0.50% 4.42±2.11 74.36% 5.60±1.25 71.19%
HSIC 64.52±2.20 -3.69% 72.16±0.94 0.41% 2.21±0.68 87.18% 2.72±0.87 86.01%
PR 67.22±0.90 0.34% 72.86±0.87 -0.55% 5.60±1.12 67.52% 6.52±1.30 66.46%
CS 64.93±0.83 -3.08% 72.21±0.16 0.35% 1.45±0.61 91.59% 1.79±1.44 90.69%

A
C
S
-
I

Gender
MLP 82.04±0.27 — 90.16±0.18 — 10.26±4.68 — 2.13±3.64 —
DP 81.32±0.17 -0.88% 89.33±0.15 -0.92% 0.96±0.22 90.64% 5.37±0.32 -152.11%
MMD 80.93±0.55 -1.35% 88.44±1.71 -1.91% 2.45±0.65 76.12% 4.91±1.48 -130.52%
HSIC 81.40±0.12 -0.78% 89.53±0.10 -0.70% 1.54±0.18 84.99% 4.95±0.39 -132.39%
PR 80.03±0.30 -2.45% 88.10±0.26 -2.28% 0.35±0.20 96.59% 4.54±0.41 -113.15%
CS 81.72±0.75 -0.39% 89.24±0.42 -1.02% 0.86±0.41 91.62% 0.77±0.27 63.85%

Race
MLP 81.23±0.14 — 90.16±0.18 — 10.06±1.84 — 7.42±0.66 —
DP 81.25±0.13 0.02% 89.45±0.11 -0.79% 0.56±0.30 94.43% 4.53±0.48 38.95%
MMD 80.22±1.22 -1.24% 88.42±1.63 -1.93% 1.45±0.89 85.59% 4.01±0.54 45.96%
HSIC 81.41±0.15 0.22% 89.67±0.12 -0.54% 1.04±0.53 89.66% 2.77±0.35 62.67%
PR 80.27±0.26 -1.18% 88.45±0.21 -1.90% 0.37±0.30 96.32% 4.25±0.49 42.72%
CS 80.15±0.68 -1.33% 88.23±1.01 -2.14% 1.02±0.58 89.86% 1.94±0.55 73.85%

76.0 79.0 82.0 85.0
Accuracy (%)

3.0

6.0

9.0

D
P

Adult

58.0 61.0 64.0 67.0
Accuracy (%)

0.0
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6.0
ACS-I

DP MMD HSIC PR CS

Figure 2: Fairness-accuracy trade-off curves on the test sets for (left) Adult, (middle) COMPAS, and
(bottom) ACS-I. Ideally, results should be positioned in the bottom-right corner.

levels, with this effect becoming more pronounced at higher accuracy levels. This is evidenced by the
significant gap in △DP between CS and other baselines. It is important to note that while all baselines
can demonstrate good fairness when the optimization prioritizes fairness over task-specific objectives
(resulting in lower accuracy), the task objective remains critical for the practical application of these
models. This underscores the advantage of CS, which effectively maintains the lowest bias (△DP ) as
accuracy improves.
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DP MMD HSIC PR CS

Figure 3: Prediction distributions for female and male groups in the Adult dataset.

Obs. 4: High accuracy can sometimes lead to worse fairness compared to MLP, as the fairness
objective becomes more challenging to optimize when there is a stronger focus on task-specific
objectives. As shown in Table 1, the △DP for MMD is over 14.0, which is greater than the average
△DP of 13.22 for MLP. However, these fairness regularizers generally prove effective in controlling
bias in representations, especially when more emphasis is placed on the task-specific objective. No-
tably, some datasets with particular sensitive attributes pose greater challenges for achieving fairness.
For instance, the COMPAS dataset, which includes gender as a sensitive attribute, demonstrates this
difficulty. One possible explanation is the relatively small sample size of COMPAS, which contains
only 6, 172 samples—significantly fewer than other datasets where fairness is easier to achieve. For
example, the ACS-I dataset has 195, 995 samples, approximately 31.7 times that of COMPAS, and
features a more balanced gender distribution.

Obs. 5: CS displays a significant increase in △DP at a slower rate than other baselines as
accuracy increases. We analyze the slope of the lines representing the increase in △DP with
rising accuracy. Many methods, such as PR and DP, demonstrate strong fairness performance at low
accuracy levels; however, they quickly lose control over fairness as accuracy begins to increase. This
is evident from the abrupt rise in △DP observed at around 82.0% on Adult, 63.0% on COMPAS,
and 81.0% on ACS-I. In contrast, CS only exhibits a sudden increase at 85.0%, 65.5%, and 81.5%
for the same datasets, respectively. This finding further underscores the effectiveness of CS in
maintaining a balance between utility and fairness.

4.3 HOW CAN THE CS FAIRNESS REGULARIZER IMPROVE FAIRNESS FOR BOTH DP AND EO?

We visualize the kernel density estimate plot 2 of the predictions Ŷ across different sensitive groups to
analyze how CS achieves a better balance of various fairness definitions compared to other baselines.
The first row displays the predictions for all target classes, specifically Y = 0 and Y = 1, grouped
by sensitive attributes. In this row, the blue areas represent the prediction density for S = 0, while
the red areas indicate the prediction density for S = 1. The second row illustrates the prediction
density for the positive target class, Y = 1, across two different sensitive groups. Figure 3 presents
the results for Adult based on gender and race groups, with additional results for other datasets
available in Appendix B.2.

Obs. 6: CS effectively optimizes the prediction distributions for the two sensitive groups,
specifically Ŷ |S = 0 and Ŷ |S = 1. Additionally, it optimizes the prediction distributions
for these groups within the positive target group, i.e., Ŷ |S = 0, Y = 1 and Ŷ |S = 1, Y = 1.
Achieving DP and EO fairness requires different objectives. For instance, DP directly optimizes the
△DP , which results in reduced effectiveness for achieving EO fairness. This is evident across all
datasets, as DP ranks among the worst, achieving 7/10 of the lowest EO fairness scores on △EO

when tested on five datasets with two types of sensitive attributes. The distribution plots for DP
further illustrate this, showing a generally larger gap between the two sensitive groups in the EO
plots compared to other methods. In contrast, CS consistently minimizes the prediction density gap
between the two sensitive groups. Even in challenging cases, such as the CelebA-A dataset with

2https://seaborn.pydata.org/generated/seaborn.kdeplot.html
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Gender Race

Adult ACS-ICOMPAS

Gender Race Gender Race

Figure 4: T-SNE visualizations of the latent representations on Adult, COMPAS, and ACS-I,
colored by the target attribute (top) and the sensitive attribute (bottom).

gender groups, CS optimizes the prediction densities for female and male groups to be much closer
than those of other baselines.

4.4 IS THE REPRESENTATION LEARNED BY APPLYING CS VIEWED AS FAIR?

To further validate that CS can learn fair representations, we visualize the T-SNE embeddings of
the latent space from the last layer before the prediction layer (Van der Maaten & Hinton, 2008)3.
Figure 4 displays the representations learned from the last embedding layer on the Adult, COMPAS,
and ACS-I datasets, while Figure 11 presents the results for ACS-T and CelebA-A. Based on
these visualizations, we make the following observations:

Obs. 7: The CS can learn representations that are indistinguishable between sensitive groups.
This observation validates the effectiveness of CS in learning fair representations. Specifically, the
plots in the first row of Figure 4 illustrate the embedding visualization of two sensitive groups: blue
for S=0 and red for S=1. Overall, the points are uniformly dispersed, with no clear clusters of
nodes sharing the same color. This indicates that the embeddings are learned independently of the
sensitive attribute. Although some groups have a greater number of data points—such as in the
Adult dataset with the sensitive attribute race, where the ratio of S=0:S=1 is 1:9.20, and in the
COMPAS dataset with gender, where the ratio is 1 :4.17 (as shown in Table 3)—the distribution of
points in both colors remains even.

Obs. 8: The CS can learn distinguishable representations for different target attributes.
Observing the second row of Figure 4, we can identify a distinct pattern in the distribution of the
blue and red points across different locations in the plot. Among these, the embedding for ACS-I
exhibits the clearest pattern, followed by Adult. This observation is consistent with the utility
results presented in Table 1, which show a decrease in accuracy and AUC as the degree of negativity
increases, particularly evident in the ↑ columns compared to the MLP. In contrast, COMPAS presents
a greater challenge in ensuring utility while considering fairness, as indicated by the less distinct
pattern in the learned embeddings, corroborated by the most significant utility drops in Table 1.

5 PARAMETER SENSITIVITY ANALYSIS

For all models, we tune the hyperparameters using cross-validation on the training set. The hyperpa-
rameters for these variants are determined through grid search during cross-validation. Specifically,
we vary the parameters α and β in Equation (12) across the ranges (1e− 6, 150) and (1e− 3, 10),
respectively. More details regarding the hyperparameter setup and selection for all implemented
methods can be found in Appendix E.1 and Appendix E.2. In this experiment, we specifically
visualize the values of α in the range (1e− 4, 1e− 1) for CS.

3https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Figure 5: Parameter sensitivity analysis on Adult and COMPAS

The heatmap in Figure 5 illustrates the accuracy and △DP across various combinations of α and
β values for the Adult and COMPAS datasets, respectively. In the accuracy plots, darker colors
indicate higher values, which are preferable, while lighter colors in the △DP plots represent better
fairness performance. Obs. 9: The highest accuracy for both Adult and COMPAS is achieved
when α is set to its smallest value, 1e− 4, while the best fairness is obtained with α = 5e− 2.
Notably, fairness drops significantly when α increases from 5e − 2 to 1e − 1. Generally, smaller
values of α can still yield satisfactory fairness performance when paired with an appropriate range of
β, specifically around 5− 10. Obs. 10: The fairness performance is more sensitive to changes
in α than in β. For instance, adjusting β from 1e− 3 to 10, which represents a 10, 000× increase,
results in only a slight decrease in △DP from 7.2 to 4.2 for Adult, and from 7.0 to 5.5 for COMPAS.
In contrast, increasing α from 1e − 2 to 5e − 2, a 5× change, leads to a significant drop in △DP

from 6.7 to 2.8 for Adult, and from 4.0 to 2.9 for COMPAS, when keeping β fixed at 1e− 3.

6 CONCLUSION

In this paper, we introduce a novel fair machine learning method known as the Cauchy-Schwarz (CS)
fairness regularizer. While existing methods effectively reduce bias in machine learning models, they
often struggle to maintain balanced fairness across different fairness metrics, such as Demographic
Parity (DP) and Equal Opportunity. For instance, many existing approaches can achieve very low DP
but may still exhibit relatively high EO. We demonstrate that our proposed Cauchy-Schwarz fairness
regularizer achieves superior and balanced fairness performance without compromising utility. This
is accomplished by minimizing the Cauchy-Schwarz divergence between the prediction distribution
and the sensitive attributes. Through analyzing the relationship between the CS divergence and other
distance measurements, we found that the CS divergence provides a tighter bound than both the
Kullback-Leibler divergence and the Maximum Mean Discrepancy, as well as the mean disparity
(used in DP regularizer). This holds true particularly when the distributions are significantly different
or when there is substantial variation in the scale of the embeddings. This leads to improved fairness
performance in practical scenarios.
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A DETAILS ON THE RELATION OF CS AND EXISTING FAIRNESS
REGULARIZERS

A.1 PROOF OF PROPOSITION 1

Proposition 1. Given two sets of observations {xp
i }

N1
i=1 and {xqj}N2

j=1, let p and q denote the
distributions of two groups. The empirical estimator of the CS divergence DCS(p; q) is given by:

D̃CS(p; q) = log

 1

N2
1

N1∑
i,j=1

κ(xp
i ,x

p
j )

+ log

 1

N2
2

N2∑
i,j=1

κ(xq
i ,x

q
j)

 (13)

− 2 log

 1

N1N2

N1∑
i=1

N2∑
j=1

κ(xp
i ,x

q
j)

 . (14)

Proof. The CS divergence is defined as:

DCS(p; q) = − log

(
(
∫
p(x)q(x) dx)2∫

p(x)2 dx
∫
q(x)2 dx

)
. (15)

where p̂(x) = 1
M

∑M
i=1 κσ(x− xp

j ) and q̂(x) = 1
N

∑N
i=1 κσ(x− xq

j) are kernel density estimation.

Then we can obtain: ∫
p̂2(x) dx =

1

M2

M∑
i=1

M∑
j=1

κ√
2σ(x

p
i − xp

j ). (16)

By a similar approach, ∫
q̂(z)2 dx =

1

N2

N∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xq

j), (17)
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and ∫
p̂(x)q̂(x) dx =

1

MN

M∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xp

j ). (18)

Substituting Eqs. (16)-(18) into Eq. (15), we obtain:

D̃CS(p; q) = log

 1

M2

M∑
i,j=1

κ√
2σ(x

p
i − xp

j )

+ log

 1

N2

N∑
i,j=1

κ√
2σ(x

q
i − xq

j)

− (19)

2 log

 1

MN

M∑
i=1

N∑
j=1

κ√
2σ(x

q
i − xp

j )

 . (20)

A.2 PROOF OF REMARK 1

Remark 1. CS divergence measures the cosine distance between µp and µq in a Reproducing Kernel
Hilbert Space, while MMD utilizes Euclidean distance.

Proof. Let H be a Reproducing Kernel Hilbert Space (RKHS) associated with a kernel κ(xp
i ,x

q
j) =

⟨f(xp
i ), f(x

q
j)⟩H (Yu et al., 2024). The mean embeddings of two distributions p and q in H are

denoted by µp = 1
N1

∑N1

i=1 f(x
p
i ) and µq = 1

N2

∑N2

j=1 f(x
q
j) in H, respectively. The CS divergence

defined by Equation (14) can thus be written as:

D̃CS(p; q) = −2 log
⟨µp,µq⟩H

∥µp∥H∥µq∥H
= −2 logDCOS(µp,µq)

Here, ⟨·, ·⟩H denotes the inner product in the RKHS, and ∥ · ∥H represents the norm induced by the
inner product. The mean embeddings µp and µq are elements of H. Thus, the CS divergence is
computed based on the cosine distance DCOS between µp and µq .

Similarly, the Maximum Mean Discrepancy (MMD) between distributions p and q defined in Equa-
tion (7) can be written as:

MMD2(p, q) = ∥µp − µq∥2H = DEUC(µp,µq).

Thus, the MMD measures the Euclidean distance between the mean embeddings of p and q in the
RKHS H, i.e., the µp and µq .

A.3 PROOF OF PROPOSITION 2

Proposition 2. For any d-variate Gaussian distributions p ∼ N (µp,Σp) and q ∼ N (µq,Σq) with
positive definite Σp and Σq , the following inequality holds:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (21)

Proof. The KL divergence for p and q is given by:

DKL(p; q) =
1

2

(
tr(Σ−1

q Σp)− d+ (µq − µp)
⊤Σ−1

q (µq − µp) + log

(
|Σq|
|Σp|

))
. (22)

The CS divergence is expressed as (Kampa et al., 2011):

DCS(p; q) = − log(dxy) +
1

2
log(dxx) +

1

2
log(dyy), (23)

where: dpq =
exp

(
− 1

2 (µp − µq)
⊤(Σp +Σq)

−1(µp − µq)
)√

(2π)d|Σp +Σq|
, (24)

dpp =
1√

(2π)d|2Σp|
, dqq =

1√
(2π)d|2Σq|

. (25)
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We simplify:

DCS(p; q) =
1

2
(µq − µp)

⊤(Σp +Σq)
−1(µq − µp) +

1

2
log

(
|Σp +Σq|

2d
√

|Σp||Σq|

)
. (26)

When the mean vectors differ, based on the property (Horn & Johnson, 2012), Σ−1
q − (Σp +Σq)

−1

is positive semi-definite given Σp = Σq , we have:

2(DCS(p; q)−DKL(p; q)) = (µq−µp)
⊤(Σp+Σq)

−1(µq−µp)− (µq−µp)
⊤Σ−1

q (µq−µp) ≤ 0.
(27)

When the covariance matrices differ, let I be the d-dimensional identity matrix (Yin et al., 2024):

2(DCS(p; q)−DKL(p; q)) = log

(
|Σp +Σq|

2d
√
|Σp||Σq|

)
− log

(
|Σq|
|Σp|

)
− tr(Σ−1

q Σp) + d (28)

= −d log 2 + log
(
|Σ−1

q Σp + I|
)
+

1

2
log
(
|Σ−1

q Σp|
)
− tr(Σ−1

q Σp) + d. (29)

We have |Σ−1
q Σp| ≤

(
1
d tr(Σ

−1
q Σp)

)d
, and |Σ−1

q Σp + I| ≤
(
1 + 1

d tr(Σ
−1
q Σp)

)d
. Thus, based

on Equation (28), we can obtain:

2(DCS(p; q)−DKL(p; q)) ≤ −d log 2 + d log
(
1 +

1

d
tr(Σ−1

q Σp)
)

(30)

+
d

2
log
(1
d
tr(Σ−1

q Σp)
)
− tr(Σ−1

q Σp) + d. (31)

The combined Equation (27) and Equation (31), we can obtain:

2(DCS(p; q)−DKL(p; q)) ≤ 0, (32)

Similarly, we can obtain 2(DCS(q; p)−DKL(q; p)) ≤ 0. In conclusion, we conclude:

DCS(p; q) ≤ DKL(p; q) and DCS(p; q) ≤ DKL(q; p). (33)

B MORE EXPERIMENTAL RESULTS

B.1 EXPERIMENTS ON IMAGE DATASET

In this section, we present the experimental results on the CelebA-A image dataset. The CelebA-A
face attributes dataset (Liu et al., 2015) contains over 200, 000 face images, where each image has 40
human-labeled attributes. Among the attributes, we select ‘Attractive’ as a binary classification task
and consider ‘Gender’ and ‘Young’ as sensitive attributes. The results are presented in Table 2.
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DP MMD HSIC PR CS

Figure 6: Prediction distributions for black and white groups in the Adult dataset.

Table 2: The fairness performance on the tabular dataset for existing fair models and we consider
race and gender as sensitive attributes. A higher accuracy metric indicates better performance. ↑
represents the accuracy improvement compared to MLP. A lower fairness metric indicates better
fairness. ↓ represents the improvement of fairness compared to MLP. The results are based on 10
runs for all methods.

Methods Utility Fairness

ACC (%) ↑ AUC (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓

A
C
S
-
T

Gender

MLP 66.21±0.95 — 73.78±0.25 — 8.32±2.67 — 5.11±3.55 —

DP 65.38±0.29 -1.25% 72.40±0.38 -1.87% 0.29±0.15 96.51% 1.83±0.26 64.19%
MMD 64.48±0.27 -2.61% 72.92±0.31 -1.17% 1.22±0.36 85.34% 2.11±0.49 58.71%
HSIC 66.01±0.29 -0.30% 73.16±0.32 -0.84% 0.98±0.26 88.22% 1.00±0.28 80.43%
PR 62.72±1.01 -5.27% 69.36±0.85 -5.99% 0.78±0.50 90.63% 1.07±0.36 79.06%
CS 65.95±0.70 -0.39% 72.29±0.92 -2.02% 0.18±0.13 97.84% 0.92±0.63 82.00%

Race

MLP 66.38±0.42 — 73.69±0.63 — 9.28±1.63 — 6.21±1.63 —

DP 64.96±0.23 -2.14% 71.86±0.23 -2.48% 0.82±0.33 91.16% 1.30±0.26 79.07%
MMD 65.71±0.65 -1.01% 70.57±0.52 -4.23% 3.97±0.97 57.22% 1.55±0.79 75.04%
HSIC 65.81±0.24 -0.86% 72.92±0.23 -1.04% 1.75±0.31 81.14% 0.43±0.23 93.08%
PR 64.25±0.87 -3.21% 70.25±0.30 -4.67% 1.56±0.87 83.19% 1.21±0.74 80.52%
CS 65.29±0.58 -1.64% 72.18±0.69 -2.05% 0.43±0.27 95.37% 1.32±0.27 78.74%

C
e
l
e
b
A
-
A

Gender

RN 78.14±0.47 — 86.58±0.55 — 51.66±0.97 — 35.67±1.11 —

DP 62.42±4.79 -20.12% 66.86±3.19 -22.78% 0.46±0.25 99.11% 4.84±2.37 86.43%
MMD 62.54±4.26 -19.96% 66.47±3.85 -23.23% 1.39±0.64 97.31% 5.89±3.12 83.49%
HSIC 63.39±3.63 -18.88% 69.33±3.25 -19.92% 2.24±0.36 95.66% 3.83±2.22 89.26%
PR 65.51±3.52 -16.16% 71.70±2.88 -17.19% 4.00±0.52 92.26% 5.05±2.57 85.84%
CS 64.36±4.52 -17.64% 70.22±3.57 -18.90% 0.82±0.34 98.41% 1.12±1.14 96.86%

Young

RN 78.14±0.47 — 86.67±0.53 — 41.74±1.17 — 18.35±1.56 —

DP 66.78±3.61 -14.54% 73.95±3.44 -14.68% 2.43±0.83 94.18% 0.91±1.77 95.04%
MMD 65.82±4.87 -15.77% 72.84±3.61 -15.96% 3.49±0.83 91.64% 1.60±0.71 91.28%
HSIC 66.04±3.01 -15.49% 73.08±2.69 -15.68% 1.99±0.55 95.23% 1.04±0.60 94.33%
PR 62.98±4.69 -19.40% 69.63±4.02 -19.66% 1.32±0.49 96.84% 1.82±0.53 90.08%
CS 65.63±3.51 -16.01% 72.14±3.84 -16.76% 1.10±0.37 97.36% 0.26±0.63 98.58%

The results show a similar finding with the tabular dataset, demonstrating that 1) DP method always
achieves a lower ∆DP but a relatively high ∆EO. 2) HSIC is a more promising fair model to achieve
equal opportunity.
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DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the COMPAS dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for Caucasian and (all) other groups in the COMPAS dataset.

Figure 7: Accuracy and △DP trade-off on COMPAS with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.

DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the ACS-I dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for black and white groups in the ACS-I dataset.

Figure 8: Accuracy and △DP trade-off on ACS-I with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.
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DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the ACS-T dataset.
DP MMD HSIC PR CS

(b) Prediction distributions for black and white groups in the ACS-T dataset.

Figure 9: Accuracy and △DP trade-off on ACS-T with sensitive attribute gender and race. Results
located in the bottom-right corner are preferable.

B.2 MORE PREDICTION DISTRIBUTIONS OVER THE SENSITIVE GROUPS

DP MMD HSIC PR CS

(a) Prediction distributions for female and male groups in the CelebA-A dataset.
DP MMD PRHSIC CS

(b) Prediction distributions for young and non-yong groups in the CelebA-A dataset.

Figure 10: Accuracy and △DP trade-off on CelebA-A with sensitive attribute gender and race.
Results located in the bottom-right corner are preferable.
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Gender Race

ACS-T Celeba-A

Gender Young

Figure 11: Accuracy and △DP trade-off on ACS-T and CelebA-A. Results located in the bottom-
right corner are preferable.

B.3 MORE T-SNE PLOTS

In addition to the T-SNE plots shown in Figure 4 which shows the results on three datasets, we also
include the T-SNE plots on two remaining datasets ACS-T and CelebA-A in Figure 11.

C DATASET DESCRIPTIONS AND DETAILS

We conducted experiments on five datasets, including four tabular datasets and one image data. The
introduction of these datasets is as below:

• Adult4 (Dua & Graff, 2017) The Adult dataset contains information on 45, 222 individuals
from the 1994 US Census. The task is to predict whether an individual’s income exceeds $50k
USD based on various personal attributes. In our analysis, we consider gender and race as sensitive
attributes.

• COMPAS5 (Larson et al., 2016). The COMPAS dataset consists of records of criminal defendants
and is used to predict the likelihood of recidivism within two years. The dataset includes vari-
ous attributes related to the defendants, such as their criminal history, as well as demographic
information, including gender and race.

• ACS-I and ACS-T6 (Ding et al., 2021). The ACS dataset is derived from the American Commu-
nity Survey (ACS) Public Use Microdata Sample and includes several prediction tasks. These
tasks involve predicting attributes such as whether an individual’s income exceeds $50k or whether
an individual is employed. Each task includes features such as race, gender, and other relevant
characteristics specific to the task.

• CelebA-A7 (Liu et al., 2015) The CelebFaces Attributes dataset contains 20, 000 face images of
10, 000 different celebrities. Each image is annotated with 40 binary labels that represent various
facial attributes, such as gender, hair color, and age. In this study, we choose ’attractive’ as the
target label and perform a binary classification task, while considering ’young’ and ’gender’ as
sensitive attributes.

4https://archive.ics.uci.edu/ml/datasets/adult
5https://github.com/propublica/compas-analysis
6https://github.com/zykls/folktables
7https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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The detailed statistics for the aforementioned datasets are summarized as follows:

Table 3: The table presents the statistics of the datasets. #Feat. refers to the total number of features
after preprocessing 8. The ratio 0:1 represents the proportion between the two categories of the target
label or sensitive attributes.

Dataset Task Sen. Attr. (S) #Samples #Feat. Class Y 0:1 1st S 0:1 2nd S 0:1

Adult Income Gender, Race 45, 222 101 1:0.33 1:2.08 1:9.20

COMPAS Credit Gender, Race 6, 172 405 1:0.83 1:4.17 1:0.52

ACS-I Income Gender, Race 195, 665 908 1:0.70 1:0.89 1:1.62

ACS-T Travel Time Gender, Race 172, 508 1, 567 1:0.94 1:0.89 1:1.61

CelebA-A Attractive Gender, Young 202, 599 48× 48 1:0.95 1:0.71 1:3.45

D BASELINES DETAILS

We consider four widely used fairness methods: DP, MMD, HSIC, and PR. Specifically, DP and HSIC
minimize the demographic parity and Hilbert-Schmidt Independence Criterion, correspondingly.
MMD learns a classifier that optimizes the Mean Maximum Discrepancy. PR optimizes the Kullback-
Leibler divergence. We also include base models MLP and RN for tabular data and image data,
correspondingly.

• DP: It is a gap regularization method for demographic parity (Chuang & Mroueh, 2020). As these
fairness definitions cannot be optimized directly, gap regularization is differentiable and can be
optimized using gradient descent.

• MMD: The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a metric used to measure
the distance between probability distributions. Previous research has leveraged MMD to enhance
fairness in machine learning models, specifically in variational autoencoders (Louizos et al., 2016)
and MLPs (Deka & Sutherland, 2023). In this paper, we build on the methodologies from earlier
works (Zhao & Meng, 2015) to compute the MMD baseline.

• HSIC: It minimizes the Hilbert-Schmidt Independence Criterion between the prediction accuracy
and the sensitive attributes (Gretton et al., 2005; Baharlouei et al., 2020; Li et al., 2019).

• Prejudice Remover (PR) (Kamishima et al., 2012) (Prejudice Remover) minimizes the mutual
information between the prediction accuracy and the sensitive attributes.

E MORE EXPERIMENTAL DETAILS

In this section, we describe the details of the experimental setup. In this work, we adopted a
straightforward stopping strategy. We employ a linear decay strategy for the learning rate, halving
it every 50 training step. The model training is stopped when the learning rate decreases to a value
below 1e−5. Across all datasets, we use a weight decay of 0.0, StepLR with a step size of 50 and
a gamma value of 0.1, and train for 150 epochs using the Adam Optimizer (Kingma & Ba, 2014).
The batch size and learning rate vary depending on the dataset, with specific values provided below.
Additionally, Table 4 lists the range of the control hyperparameter λ for each fairness approach.

E.1 HYPERPARAMETER SETTINGS

1. Training Hyperparameters:

• Tabular data (Adult, COMPAS, ACS-I, and ACS-T):
– Learning rate: 1e−2

– Weight decay: 0.0
– StepLR_step: 50

8We adopt the preprocessing in previous studies (Le Quy et al., 2022; Mehrabi et al., 2021) involving
identifying the target labels and sensitive attributes, and then selecting the relevant features for the analysis.
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– StepLR_gamma: 0.1
– Training epochs: 150
– Batch sizes: 1, 024 on Adult, 32 on COMPAS, 4, 096 on ACS-I, 4, 096 on ACS-T

• Image data (CelebA-A):

– Learning rate: 1e−3

– Weight decay: 0.0
– StepLR_step: 50
– StepLR_gamma: 0.1
– Training epochs: 150
– Batch sizes: 256.

2. Architecture Hyperparameters:

• Multilayer perceptron:

– Number of layers: 3
– Number of hidden neurons: {512, 256, 64}

• ResNet-18 (He et al., 2016):

– Model: https://github.com/pytorch/vision/blob/main/torchvisio
n/models/resnet.py

E.2 HYPERPARAMETER SELECTION

To implement CS and the baseline methods, we adjust the hyperparameter λ by tuning it within a
specified range. The details of the hyperparameter selection process and the specific range for λ are
provided below:

Table 4: The selections of fairness control hyperparameter λ.

Method Fairness Control Hyperparameter λ

DP 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4
HSIC 0.1, 1, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 000
PR 0.05, 0.2, 0.3, 0.40, 0.50, 0.7, 0.9, 1.0
ADV 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5
CS 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 2e−2, 5e−2, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 50, 150

F RELATED WORK

In this section, we first review relevant prior studies, beginning with an overview of algorithmic
fairness in machine learning. We then narrow our focus to regularization-based in-processing methods,
which are central to our approach.

F.1 ALGORITHMIC FAIRNESS IN MACHINE LEARNING

The importance of fairness in machine learning has grown significantly as the demand for unbiased
decision-making models for individuals and groups increases. This is especially critical in high-
stakes applications where the consequences of biased decisions can be severe. Fairness is commonly
categorized into three main types: Individual fairness (Yurochkin et al., 2019; Mukherjee et al.,
2020; Yurochkin & Sun, 2020; Kang et al., 2020; Mukherjee et al., 2022), which aims to ensure that
similar individuals are treated similarly; Group fairness (Hardt et al., 2016; Verma & Rubin, 2018;
Li et al., 2020; Ling et al., 2023), which focuses on achieving fairness across predefined subgroups,
often defined by sensitive attributes such as gender or race; Counterfactual fairness (Kusner et al.,
2017; Agarwal et al., 2021; Zuo et al., 2022), which seeks to ensure fairness by considering how
decisions would hold under alternative scenarios. Given the widespread adoption of group fairness
metrics in real-world applications and the increasing development of in-processing techniques for
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deep neural network models, we focus on benchmarking these methods to ensure group fairness in
neural networks, particularly for tabular and image data.

Various techniques for mitigating bias in machine learning models can be categorized into three
main approaches: pre-processing, in-processing, and post-processing. Pre-processing methods
focus on addressing biases present in the dataset itself to ensure that the trained model exhibits
fairness (Kamiran & Calders, 2012; Calmon et al., 2017a). For instance, these techniques may
involve rebalancing the dataset or modifying the data collection process (Calmon et al., 2017b).
In-processing methods, on the other hand, adjust the training objectives by incorporating fairness
constraints directly into the learning process (Kamishima et al., 2012; Zhang et al., 2018; Madras
et al., 2018; Zhang et al., 2022; Buyl & De Bie, 2022; Alghamdi et al., 2022; Shui et al., 2022;
Mehrotra & Vishnoi, 2022). This approach aims to ensure that the model learns fair representations
during training. Finally, post-processing methods modify the predictions made by classifiers after
the model has been trained, with the goal of promoting fairness across different groups (Hardt et al.,
2016; Jiang et al., 2020; Tsaousis & Alghamdi, 2022). By categorizing these techniques, we can
better understand the different strategies available for mitigating bias in machine learning systems.

F.2 REGULARIZATION-BASED IN-PROCESSING METHODS

In this paper, we explore three types of regularization-based in-processing methods. First, Gap
Regularization Chuang & Mroueh (2020) streamlines the optimization process by offering a smooth
approximation of real-world loss functions, which are typically non-convex and difficult to optimize
directly. This category includes methods such as DP, EO, and EOD. Second, the Independence
approach integrates fairness constraints into the optimization, aiming to mitigate the influence of
protected attributes on model predictions while maintaining overall performance. Notable examples
of this approach include PR (Kamishima et al., 2012) and HSIC (Li et al., 2019). Lastly, adversarial
debiasing seeks to minimize utility loss while hindering an adversary’s ability to accurately predict
the protected attributes. This approach encompasses methods like ADV (Zhang et al., 2018; Louppe
et al., 2017; Beutel et al., 2017; Edwards & Storkey, 2015; Adel et al., 2019) and LAFTR (Madras
et al., 2018).
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