
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS BETTER UNDERSTANDING OF IN-CONTEXT
LEARNING ABILITY FROM IN-CONTEXT UNCERTAINTY
QUANTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting simple function classes has been widely used as a testbed for developing
theory and understanding of the trained Transformer’s in-context learning (ICL)
ability. In this paper, we revisit the training of Transformers on linear regression
tasks, and different from the existing literature, we consider a bi-objective predic-
tion task of predicting both the conditional expectation E[Y |X] and the conditional
variance Var(Y |X). This additional uncertainty quantification objective provides
a handle to (i) better design out-of-distribution experiments to distinguish ICL
from in-weight learning (IWL) and (ii) make a better separation between the al-
gorithms with and without using the prior information of the training distribution.
Theoretically, we show that the trained Transformer reaches near Bayes optimum,
suggesting the usage of the information of the training distribution. Our method can
be extended to other cases. Specifically, with the Transformer’s context window S,
we prove a new generalization bound of Õ(

√
min{S, T}/(nT)) on n tasks with

sequences of length T , providing sharper analysis compared to previous results of
Õ(
√
1/n). Empirically, we illustrate that while the trained Transformer behaves

as the Bayes-optimal solution as a natural consequence of supervised training in
distribution, it does not necessarily perform a Bayesian inference when facing
task shifts, in contrast to the equivalence between these two proposed in many
existing literature. We also demonstrate the trained Transformer’s ICL ability over
covariates shift and prompt-length shift and interpret them as a generalization over
a meta distribution.

1 INTRODUCTION

A particularly remarkable characteristic of Large Language Models (LLMs) is their ability to perform
in-context learning (ICL) (Brown et al., 2020). Once pre-trained on a vast corpus of data, LLMs can
solve newly encountered tasks when provided with just a few training examples, without any updates
to LLMs’ parameters. ICL has significantly advanced the technique known as prompt engineering
(Ekin, 2023), which has achieved widespread success in various aspects of daily life (Oppenlaender
et al., 2023; Heston & Khun, 2023; Li et al., 2023a). Behind the empirical success of ICL, this method
has captured the attention of the theoretical machine learning community, leading to considerable
efforts into understanding ICL from different theoretical perspectives (Xie et al., 2021; Akyürek et al.,
2022; Von Oswald et al., 2023; Zhang et al., 2023a).

This work aims to enhance the theoretical understanding of ICL by examining the Transformer’s
context window and showing its effects on the approximation-estimation tradeoff. Although we
obtain the results for the case of uncertainty quantification where the model is asked to predict both
the mean value and the uncertainty of its prediction, our analysis is applicable across various ICL
tasks and provides sharper bounds compared to previous works. In addition to developing theories,
we empirically demonstrate the effectiveness of Transformers to in-context predicting the mean
and quantifying the variance of regression tasks. We design a series of out-of-distribution (OOD)
experiments, which have generated significant interest within the community (Garg et al. (2022);
Raventós et al. (2024); Singh et al. (2024)). These experiments provide insights in designing the
pre-training process and understanding the ICL capabilities of transformers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our contributions are as follows:

- We study the problem of in-context uncertainty quantification for pre-trained Transformers which
aims to predict both the mean and the variance of the conditional distribution of the target variable Y
given the feature X . It is a task both of independent interest and providing insights into the in-context
learning ability of the transformers. We derive the Bayes-optimal learner for the task and show that
the transformer has the ability to fulfill this task of in-context uncertainty quantification.

- We theoretically analyze the problem of in-context uncertainty quantification. We consider the case
when Transformers can only process the contexts within a context window capacity S and derive
a generalization bound of Õ(

√
min{S, T}/(nT)) for pre-training over n tasks with sequences of

length T (Theorem 3.2). Our result can be easily extended to other cases under the assumption of
almost surely bounded and Lipschitz loss functions. As far as we know, our generalization bound is
the first of its kind and provides a tighter bound compared to the existing analyses (Li et al., 2023b;
Zhang et al., 2023b) when S < T . In particular, we use the context-window structure to establish
a Markov chain over the prompt sequence and construct an upper bound for its mixing time. We
also examine the extra approximation error term due to a finite context window S (Section B.2).
Combining those discussions together, we quantify the convergence of the trained Transformer’s
risk to the Bayes-optimal risk. Moreover, we note that all the theoretical results only show that the
trained Transformer achieves a near-optimal in-distribution risk compared to that of the Bayes-optimal
predictor. It is incorrect to draw (from the theory or the in-distribution numerical results) either of the
conclusions that (i) the Transformer that achieves the near-optimal risk exhibits a similar structure as
the Bayes-optimal predictor by performing Bayesian inference (Zhang et al., 2023b; Panwar et al.,
2023) or (ii) the Transformer performs as the Bayes-optimal predictor for out-of-distribution tasks.

- Numerically, we provide a comprehensive study of the in-context learning ability of the trained
Transformer (through the lens of uncertainty quantification) under three scenarios of distribution
shifts: task shift (Section 4.1), covariates shift (Section 4.2), and prompt length shift (Section 4.3).
We find that transformers are capable of in-context learning of both mean and uncertainty predictions,
even under a moderate amount of task distribution shift, provided that the task diversity in the training
data is relatively large. Additionally, we find that increasing the task diversity with a meta-learning
approach helps the transformer learn in-context robustly under covariates shift. Lastly, we observe
that removing positional encoding from the embedding vector massively helps the generalization
ability, enabling it to better learn tasks in-context with unseen prompt length.

We defer more discussions on the related literature to Section A.

2 PROBLEM SETUP

Consider training a Transformer for some regression task f : X → Y from a function class F . The
covariates x ∈ X ⊂ Rd are generated from a distribution PX , and the output variable y = f(x)+σ ·ϵ
for some function f ∈ F , noise level σ, and some random noise ϵ with E[ϵ] = 0 and Var(ϵ) = 1. The
Transformer performs a sequential prediction task over the following sequence

(x1, y1, ..., xT , yT)

where T is the total number of (in-context) samples. For a Transformer model with param-
eters θ ∈ Θ, we denote it as TFθ. At each time t = 1, ..., T , the model TFθ observes
Ht := (x1, y1, ..., xt−1, yt−1, xt) (which is called history or prompt) and makes a bi-objective
prediction of yt to both predict the mean with ŷθ(Ht) and quantify the uncertainty of the pre-
diction with σ̂θ(Ht). With a slight abuse of notations, we denote the output of the model by
TFθ(Ht) := (ŷθ(Ht), σ̂θ(Ht)). The pre-training dataset consists of n sample sequences

D :=
{(

x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)}n

i=1
.

To generate each sample sequence in D, a function fi is sampled from a distribution PF supported
on F and a noise level σi is sampled from a distribution Pσ supported on [0, σ̄] ⊂ R. Then each x

(i)
t

and y
(i)
t is generated pairwise by

x
(i)
t

i.i.d.∼ PX , y
(i)
t = fi

(
x
(i)
t

)
+ σi · ϵ(i)t , ϵ

(i)
t

i.i.d.∼ Pϵ

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ϵ
(i)
t ’s are i.i.d. noise of mean zero and unit variance.

The Transformer is trained by minimizing the following empirical loss

θ̂ERM := argmin
θ∈Θ

1

nT

n∑
i=1

T∑
t=1

ℓ
(
TFθ

(
H

(i)
t

)
, y

(i)
t

)
(1)

where H
(i)
t = (x

(i)
1 , y

(i)
1 , ..., x

(i)
t−1, y

(i)
t−1, x

(i)
t) and l((·, ·), ·) : (R× R+)× R → R denotes the loss

function. We use x(i)
t , y

(i)
t , H

(i)
t to denote the samples in the training dataset and xt, yt, Ht to denote

an arbitrary feature, label, and history. Throughout this paper, we assume that each probability
distribution is continuous and has a probability density function (p.d.f.), and we also assume the
conditional distribution of yt on observing Ht exists almost surely.

The loss function is accordingly defined by

ℓ ((ŷ, σ̂), y) := log σ̂ +
(y − ŷ)2

2σ̂2
.

Definition 2.1 (Bayes-optimal predictor). The Bayes-optimal predictor under the distributions PF ,
PX , Pσ and Pϵ is defined by

(y∗t (·), σ∗
t (·)) := argmin

(y(·),σ(·))∈Gt×Gt

E
[
ℓ
((

y(Ht), σ(Ht)
)
, yt

)]
(2)

where Gt is the class of all measurable functions of Ht ∈ Ht. The expectation is taken with respect
to the following dynamics: xt ∼ PX , ϵt ∼ Pϵ, f ∼ PF , σ ∼ Pσ, yt = f(xt) + σ · ϵt and
Ht = (x1, y1, . . . , xt).

The loss on the right-hand-side of equation 2 is the expectation of the empirical loss equation 1. With
a rich enough function class and an infinite amount of training samples, the trained Transformer
TFθ̂ERM

converges to (y∗t , σ
∗
t) as will be shown in Theorem 3.2.

2.1 MOTIVATION FOR THE UNCERTAINTY QUANTIFICATION OBJECTIVE

We begin with a semi-formal definition of in-context learning and in-weight learning that are consid-
ered in this paper. In-context learning (ICL) refers to the ability of the model to accomplish some task
regardless of the prior knowledge received during training. On the contrary, In-weight learning (IWL)
represents the knowledge acquired during the training phase (that is stored in the model’s weights).

However, it is not easy to separate the ICL ability completely from the IWL ability due to two major
obstacles: the first is that whatever ability the model obtains from the training, the training distribution
inevitably incorporates the prior knowledge into the model, which makes it difficult to test the pure
ICL ability of a model. The second obstacle is that although the common practice to examine the ICL
ability is to twist the distribution at the test phase, the criterion of setting the test distribution is still
vague. If the performance of the model is bad for a twisted test distribution, is it due to the failure to
attain an ICL ability or because the inputs are out-of-domain during the test phase?

We first present an abstract training/test framework to attack the second obstacle. We define the set
of test distributions capable of testing the ICL ability yet not intriguing the out-of-domain issues
by setting a meta-distribution and constraining any input sequences that are “common” in the test
distribution must also be “common” in the training distribution. More rigorously, at the training
phase, a meta distribution Ξtrain is chosen. For each sequence, we first draw a pattern P (e.g. the
weight vector and the noise level) from the meta-distribution P ∼ Ξtrain. Then a sequence S is drawn
from this pattern such that S ∼ P . At the test phase, another meta distribution Ξtest is chosen. After
observing S, the model tries to identify the pattern behind the sequence by making a prediction
P̂(S) (e.g. trying to identify the noise level or the weight vector). The model feeds on sequences
S’s as inputs while the performance is evaluated by how close the predicted pattern P̂ is to the true
pattern P . Therefore, we can solve the out-of-domain issue at the sequence level while keeping the
distribution twisted at the pattern level. Denote the marginal distribution of the sequence S under the
meta-distribution Ξ as

P(S ∈ S|Ξ) =
∫

P(S ∈ S|S ∼ P)dP(P|P ∼ Ξ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Then to avoid the out-of-domain input problems, one just needs to impose a constraint that any
sequence that “commonly appears” at the case Ξ = Ξtest also “commonly appears” at the training
phase Ξ = Ξtrain:

∃C > 0, s.t.
P(S ∈ S|Ξtrain)

P(S ∈ S|Ξtest)
≥ C, ∀S ⊂ supp(P(·|Ξtest)). (3)

Denote the set of all those Ξtest’s as T (Ξtrain).

We provide an example here to help understand the concept. For any d-dimensional linear regression
task sequence (X1, Y1, . . . , Xt, Yt) (say t < d), one cannot tell whether it comes from a noiseless
pattern (by solving the linear equations) or from a noisy pattern. One can only guess which pattern is
more likely based on their knowledge.

This constraint also explains why doing ICL v.s. IWL detection under a single-target regression task
(i.e. predicting the mean only) is hard. On the one hand, current observations (Garg et al., 2022)
show that under certain distribution-shift circumstances, the model performance is poor. We can
conclude those failed cases by violating the constraint equation 3. On the other hand, the typical
way of twisting the test distribution is to associate the pattern with the inputs and flip the connection
during the test phase (Wei et al., 2023; Singh et al., 2024) to distinguish in-context learning from
in-weight learning. In the mean-prediction-only case, by changing the weight vector’s association
with the feature X , the domain of Y will also be entirely changed (e.g. flipped or multiplied). But if
we are considering the bi-objective task, by only changing the noise level, one can barely tell whether
it is a perturbation in the weight vector or a change in the noise level.

With the constraint equation 3 on the test distributions, we now discuss the way to deal with the first
obstacle that the training will inevitably incorporate prior knowledge. Intuitively, when the prior
knowledge is helpful (e.g. Ξtrain = Ξtest), IWL and ICL cooperate to achieve an “ICL + IWL” result;
when the prior knowledge is a fault, IWL can hurt the test performance, making the final performance
behave like “ICL - IWL”. Then we can implicitly measure the influence caused by the IWL of the
model (denoted by M) by defining

IWL(M) :=
1

2

(
sup

Ξtest∈T (Ξtrain)

E
[
ℓ(P̂M(S),P)

]
− inf

Ξtest∈T (Ξtrain)
E
[
ℓ(P̂M(S),P)

])
.

We can use the average performance between the “best” and the “worst” case as a proxy of the pure
ICL performance:

ICL(M) :=
1

2

(
sup

Ξtest∈T (Ξtrain)

E
[
ℓ(P̂M(S),P)

]
+ inf

Ξtest∈T (Ξtrain)
E
[
ℓ(P̂M(S),P)

])
.

Therefore, we can approximate the ICL and the IWL abilities by approximating the best and the
worst model performances for all the distributions under the constraint equation 3.

3 IN-CONTEXT LEARNING WHEN IN-DISTRIBUTION

In this section, we focus on the in-distribution property of the trained Transformer. We provide a
finite-sample analysis of how trained Transformers reach near Bayes-optimum. While our analysis is
made on the case of uncertainty quantification, it can be easily adapted to other loss functions such
as mean squared error. To proceed, we first provide the exact form of the Bayes-optimal predictor
defined in equation 2 for the mean and uncertainty prediction.

Proposition 3.1 (Bayes-optimal predictor for mean and uncertainty prediction). The Bayes-optimal
predictor of the step-wise population risk defined in equation 2 is given by

y∗t (Ht) = E[yt|Ht], σ∗2
t (Ht) = E[(yt − y∗t (Ht))

2|Ht] = E[(f(xt)− y∗t (Ht))
2|Ht] + E[σ2|Ht].

The optimal mean predictor shares the same form as the Bayes-optimal predictor for a single-objective
mean prediction task. The additional uncertainty prediction task does not change the nature of the
mean prediction part. The two terms in the optimal uncertainty predictor can be interpreted as follows.
The first term is epistemic uncertainty, which indicates the uncertainty (of identifying the f that

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Mean prediction (b) Uncertainty prediction

Figure 1: Transformer behaves close to the Bayes-optimal predictor for in-distribution tasks. Details of the
distributions in data generation are given in Section G.1. The numbers 4096 and 65536 refer to the number of
tasks (configurations of (wi, σi)) used in the training, which is formally defined in Section G.2. The Bayes-
optimal predictor is stated in Proposition 3.1 and calculated analytically in Section G.3. For the left panel, the
y-axis gives the mean squared error in predicting yt. For the right panel, the y-axis gives the average of the
predicted uncertainty over all the test samples (average of σ̂(Ht) or σ∗(Ht) on test samples). In particular, we
note that ridge regression and linear regression (ordinary least squares) do not naturally produce a measurement
of uncertainty, so we use the sum of residuals on the in-context samples as their estimates of uncertainty. More
visualizations are deferred to Section C.1.

governs the history Ht) due to lack of information. The term decreases as the samples accumulate,
i.e., as the number of in-context samples t increases. The second term is aleatoric uncertainty also
known as intrinsic uncertainty.

Recall that the empirical risk estimator is defined by equation 1. Now we define the population risk as

R(TFθ) :=
1

T
EHt

[
T∑

t=1

ℓ
(
TFθ(Ht), yt

)]
,

where Ht is another sampled sequence that is independently and identically distributed as H(i)
t ’s in

the training data. We denote the population risk minimizer as θ∗:

θ∗ ∈ argmin
θ∈Θ

R(TFθ). (4)

Now we present our main theoretical result.

Theorem 3.2. Let θ̂ERM denote the ERM estimator as defined in equation 1 over the function
class of the L-layer, M -heads Transformer models. Suppose that at each time t, the Transformer
has a context window of making predictions based on xt and previous S pairs of (xs, ys) for
s = max{1, t − S}, . . . , t − 1. Then under some boundedness assumptions of the Transformer’s
parameters (Assumption B.5 and B.6), we have with probability at least 1− δ,

R(TFθ̂ERM)−R(TFθ∗) ≤ Õ
(√

min{S, T}/(nT)
)
.

where Õ omits poly-logarithmic terms that depend on n, T, 1/δ and boundedness parameters.

Proof sketch. First, we prove that (a slightly redefined version of) the truncated history forms up a
Markov chain conditioned on observing the full hidden information f (i) and σ(i), and upper bound
the mixing time by min{S, T} to enable the concentration arguments. Second, we prove that the loss
function is almost surely bounded (Lemma E.3) in preparation for McDiarmid-type concentration
inequalities (Lemma F.2, (Paulin, 2015)). Third, we show that the loss is almost surely Lipschitz to
control the difference between loss functions with respect to the change of the parameter (Lemma E.7).
Fourth, we prove that there exist two distributions ρθ̂ERM and π over parameter space Θ, satisfying a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

number of properties as constructed in Lemma E.11. Lastly, we use standard PAC-Bayes arguments
over ρθ̂ERM and π and conclude the proof. The detailed proofs are deferred to Section D.2.

Comparison with previous results. There are also other theoretical results that characterize the
outcomes of the (pre-)training on Transformer models (Zhang et al., 2023a; Wu et al., 2023; Xie
et al., 2021; Li et al., 2023b; Bai et al., 2024; Zhang et al., 2023b; Lin et al., 2023a). Our analysis
differs from theirs in terms of both the conclusion and the techniques. One stream of results examines
the property of the gradient flow (or gradient descent) over the loss function for linear regression
problems. The exact quantification of the gradient flow entails a simplification of the Transformer’s
architecture to the case of a single-layer attention mechanism under linear activation or even simpler
settings (Zhang et al., 2023a; Wu et al., 2023). While their analyses provide insights into the learning
dynamics of Transformer models, the learning of the single-layer attention Transformer can be very
different from multiple-layer Transformers (Olsson et al., 2022; Reddy, 2023). Another major line
of research uses statistical learning arguments (Xie et al., 2021; Li et al., 2023b; Bai et al., 2024;
Zhang et al., 2023b; Lin et al., 2023a) such as algorithm stability, chaining, or PAC-Bayes arguments.
Bai et al. (2024) focus on making predictions after observing a fixed length of variables under the
i.i.d. setting (which is more aligned with the standard supervised learning setting), which differs
from the more practical setting of making predictions at every position as in Theorem 3.2. Xie et al.
(2021) prove the convergence between the Bayesian inference and the true underlying distribution
rather than the trained model and the Bayesian inference. Lin et al. (2023a) consider a sequential
decision-making problem and use covering arguments to derive generalization bounds, while their
analysis does not adopt the concentration arguments inside each sequence, resulting in an Õ(

√
1/n)

upper bound for the average regret. The most related works to ours are Li et al. (2023b); Zhang et al.
(2023b). The major difference is that they all consider the only case of S ≥ T . Li et al. (2023b) use
the algorithm stability arguments to give a generalization bound over |R− r| of order Õ(

√
1/(nT)).

They prove the loss difference caused by perturbing one input pair over a history of length t is
controlled by O(1/t). Averaging those differences leads to a O(log(T)/T) = Õ(1/T) inside each
sequence (see their equation (15) in their Appendix C), which appears in the Azuma-Hoeffding
argument to prove that the loss per sequence is Õ(T−1/2)-sub-Gaussian. However, in the case of
S ≪ T , the algorithm stability term is of O(1/S). Averaging these terms inside each sequence
leads to a difference of order O(1/S). If we stick to the original Azuma-Hoeffding arguments,
the sum of squares of these terms is of O(T/S2), leading to a far worse sub-Gaussian norm of
O(T 1/2S−1), resulting in a final generalization bound of order Õ(T 1/2S−1n−1/2) that is clearly
suboptimal compared to our Õ(

√
S/(nT)). Besides, such a bound also grows with T , which is

undesirable. Similar to ours, Zhang et al. (2023b) also use a concentration argument for Markov
chains. However, their Theorem 5.3 has two limitations: The first is that their result is of the order
Õ(
√
τmin/(nT)) but they do not specify τmin. Since they do not consider the truncated history

but the full history, the Markov chain (which is not verified by them) will never mix inside each
task sequence (see our discussions in Section D.2). Thus, the term τmin in their result is actually
T , leading to an order of Õ(

√
1/n), which is suboptimal compared to our Õ(

√
S/(nT)) when the

context window S ≪ T . The second limitation is that their error decomposition is not tight: their
excessive risk bound (measured by the total variation distance between the distribution induced by θ̂
and that by θ∗) has a term Dkl(Ptrue,Pθ∗)− TV(Ptrue,Pθ∗), which means their result has an extra
term of the approximation error since the Kullback-Leibler divergence is stronger than the total
variation distance (Polyanskiy & Wu, 2024). Our work is the first theoretical analysis showing the
effects of the context window S on the performance of the Transformer up to our knowledge. The
construction of the truncated history serves two-fold: not only does the truncation fit the practical
model of finite context window but it also gives an upper bound on the mixing time. Concentration
inside each sequence makes it possible to analyze the training dynamics broader than fixed-length
sequences and prove the convergence to near Bayes-optimum. The context window S also captures a
novel dimension of the approximation-estimation tradeoff in the Transformer model.

Extension of Theorem 3.2 to other problems. We remark that the result and its derivation do not
pertain to the uncertainty quantification setting, but hold for more general loss functions and are of
independent interests. In particular, our analysis still holds as long as the loss function is almost
surely bounded and Lipschitz with respect to the change of parameter θ, as we can see from the proof
sketch. We note here that to enable the Markov chain’s concentration arguments, the almost surely

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

bounded loss requirement cannot be relaxed to other tail properties such as sub-Gaussian (see the
counter example in Theorem 4 of Fan et al. (2021)).

We defer discussions on the approximation error to Section B.2.

4 IN-CONTEXT LEARNING UNDER DISTRIBUTION SHIFTS

In Section 2, we describe in-context learning ability as algorithm-like that predicts based on the
learning from in-context samples, and such an ability should be generalizable to an out-of-distribution
(OOD) environment. In this section, we differentiate the OOD scenarios into task shift, covariate
shift and length shift, and examine the Transformer’s in-context learning ability in each scenario.
As far as we know, we provide the first comprehensive group of numerical experiments (for the
linear regression task) that demonstrates the Transformer’s ability to handle these three types of
distribution shifts. We provide preliminary theoretical discussions for such abilities and hope this
points directions for future theoretical research.

4.1 TASK SHIFT

When the trained Transformer performs well on the OOD data, it means that the Transformer gains
an algorithmic ability that learns to make predictions based on the in-context samples, because such
an ability is not restricted to the distribution of the inputs. Comparatively, the mere observation that
the Transformer works well on the in-distribution data does not demonstrate its in-context learning
ability as a traditional supervised learning model also has such ability and generalization performance
over in-distribution data.

In the previous section, when we show the in-distribution performance of the Transformer, the variance
parameter σ2 is generated by the prior of the inverse-Gamma distribution σ2 ∼ Inv-Gamma(τ , τ̄)
with parameters τ and τ̄ . The details of the other generation distributions are deferred to Section G.1.
For the in-distribution setting, we set τ = τ̄ = 20 which leads to a prior mean around 1. Now we
consider three out-of-distribution (OOD) settings for the

• S-OOD (small OOD): τ = 80, τ̄ = 20. The prior mean of σ is around 0.5.

• M-OOD (medium OOD): τ = 100, τ̄ = 400. The prior mean of σ is around 2.

• L-OOD (large OOD): τ = 100, τ̄ = 1600. The prior mean of σ is around 4.

(a) Transformer trained w/ small pool size (b) Transformer trained w/ large pool size

Figure 2: OOD performances of Transformers and the Bayes-optimal predictor. The y-axis gives the average of
the predicted uncertainty over all the test samples (average of σ̂(Ht) or σ∗(Ht) on test samples), and ideally,
they should converge to the expected uncertainty level of 0.5 (S-OOD), 2 (M-OOD), and 4 (L-OOD) as in-context
samples increase. There are three OOD environments: small (S-OOD), medium (M-OOD), and large (L-OOD)
that reflect the intensity of the OOD. Two versions of the Transformer model are trained with a pool size of 4096
and 65536. The Transformers and the Bayes-optimal predictor are the same as the ones in Figure 1. The only
difference is that they are evaluated on OOD data here.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We make following observations based on Figure 2: First, the Bayes-optimal predictor predicts well.
We note that the Bayes-optimal is computed based on the in-distribution prior distribution (with
respect to σ2). Thus when the Bayes-optimal predictor is tested under the OOD environment as in
Figure 2, the prior used by the Bayes-optimal predictor is wrong. But we note from Figure 2 that the
Bayes-optimal predictor has the OOD ability to correct the prior as the in-context samples accumulate
(noting that the three Bayes-optimal curves converging to the correct mean of 0.5, 2, and 4). This is
also known as the washing out of priors in Bayesian statistics. Second, Transformers deviate from the
Bayes-optimal on these OOD tasks. For both plots in Figure 2, we note that the predicted values from
the Transformers deviate from those of the Bayes-optimal predictor when the OOD intensity is large.
This tells that the trained Transformer does not conduct Bayesian inference under task shift. In other
words, it is incorrect to conclude that the trained Transformer behaves as the Bayes-optimal predictor
just from the matching in-distribution loss (as Figure 1). Moreover, the Transformer achieves a
near-optimal loss for in-distribution tasks (as Figure 1) but it does so via a different avenue than the
Bayes-optimal predictor (as Figure 2). This is in contrast with the findings/claims in the previous
papers (Zhang et al., 2023b; Panwar et al., 2023). Third, the deviation of the trained Transformer
from the Bayes-optimal is smaller when the task diversity is large or the OOD intensity is small. This
is aligned with the findings in (Raventós et al., 2024) for in-distribution performance, while the OOD
setting is not studied therein.

The theoretical evidence only states that the trained Transformer has a near-optimal in-distribution
loss as the Bayes-optimal predictor. But it does not give any evidence that these two have a structural
similarity that persists for OOD tasks. In particular, we note that the trained Transformer may take
statistical shortcuts: When evaluated under in-distribution tasks or some simple task shifts (e.g.
scaling the weights vectors or changing the signal-noise ratio), Zhang et al. (2023a); Wu et al. (2023)
show that Transformer will construct shortcuts using the statistical property of the training distribution.
More specifically, Transformers (can, and will) encode the information of the covariance matrix into
their model parameters to reach near-optimal in-distribution performance. Such statistical shortcuts
are beneficial to the in-distribution performance but can hurt its OOD ability. Increasing the training
task diversity, such as a larger training pool size, may remove some of these statistical shortcuts to
obtain near-optimal empirical loss, and thus better enable its in-context learning ability.

We defer more discussions and visualizations on this OOD experiment to Section C.2.

4.2 COVARIATES SHIFT

For all the numerical experiments so far, the covariates are generated from N (0, Id). This follows
the standard setup of the existing literature (Akyürek et al., 2022; Von Oswald et al., 2023; Li et al.,
2023b; Raventós et al., 2024). It is also noted from the literature (Garg et al., 2022; Zhang et al.,
2023a) that the trained Transformer in this way lacks in-context learning ability under covariates
shift. In this subsection, we propose a meta-training procedure that effectively improves the trained
Transformer’s ability to handle covariates shifts. Specifically, we consider generating the covariates
in the training data as follows:

• For each training sequence (say, the i-th), we first sample a vector (λ1, ..., λd) where
each λj is i.i.d. Uniform[0, 2]. Then all the X

(i)
t ’s for t = 1, ..., T are sampled from

N (0,diag((λ1, . . . , λd))). In this sense, the covariance matrix of X(i)
t ’s is also a random

variable, and the X
(i)
t ’s can be viewed as being sampled in a hierarchical manner from a

meta-distribution.

We examine the performance of such a training procedure under four OOD test settings. In other
words, the X

(i)
t ’s in the test data is generated from the following four distributions where d = 8.

• Large covariance (L-cov): X(i)
t ’s are sampled from N (0, 4Id).

• Decreasing diagonal (Dec.): X(i)
t ’s are sampled from N (0,diag([d/i]di=1)).

• Shrinking diagonal (Shr.): X(i)
t ’s are sampled from N (0,diag([d/i2]di=1)).

• Rotation (Rot.): X
(i)
t ’s are sampled from N (0, Uidiag([d/i]

d
i=1)U

⊤
i) where Ui is an or-

thogonal matrix independently generated for each sequence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 9 gives the evaluation result under the 4 OOD settings. We note that the meta-distribution
used is still significantly different from the four OOD test environments. Thus the results show the
effectiveness of the meta-training approach.

4.3 LENGTH SHIFT AND POSITIONAL EMBEDDING

Existing work (Dai et al., 2019; Anil et al., 2022; Zhang et al., 2023a) have pointed out the failure
of Transformers to generalize to longer contexts than the ones they have seen during training. It
is worth mentioning that the code implementations of some previous works (Zhang et al., 2023a;
Garg et al., 2022) are based on the “transformers” package of Hugging Face. Although these works
have not included positional embedding explicitly, the GPT2 module imported from this package
adds a built-in positional encoding implicitly. We suspect that some unexpected behaviors (like the
“unexpected spikes of prediction error” mentioned in Zhang et al. (2023a)) are due to that the built-in
positional encoding is not disabled. In this subsection, we investigate the length generalization ability
of the trained Transformer on the uncertainty quantification task. Specifically, we control the prompt
lengths that the model is trained on. Previous experiments train the model on prompts with lengths
(number of in-context samples) ranging from 1 to 100. In this experiment, we control the training
prompts such that the lengths are either shorter than 44 or longer than 45 (the choice of 45 as the
cutoff point is not essential). We specify these two configurations below.

• Trained on ≤ 44: the model is trained on prompts with length ranging from 1 to 44, and is
evaluated with prompt length from 1 to 100

• Trained on ≥ 45: the model is trained on prompts with length ranging from 45 to 100, and
is evaluated with prompt length from 1 to 100

We regard this difference in prompt length between training and testing as length shift. We evaluate
the effect of removing positional encoding under this prompt length generalization task. If positional
encoding is added to the embedding, samples at unseen positions will be associated with an unseen
positional encoding vector in the embedding space. This requires the model to handle not just
an unseen number of in-context samples, but also a possibly unseen embedding distribution, and
generalization ability will likely deteriorate. As mentioned previously, the built-in positional encoding
of GPT2 model use a positional encoding which is set to be (t, 0, · · · , 0)⊤ for the t-th token, and the
encoding will then be concatenated to the embedding vector. We validate the above intuitions with
the following 4 training configurations.

• No positional encoding (w/o Pos.): the model is trained without positional encoding.

• Add positional encoding (w/ Pos.): the model is trained with GPT2’s built-in positional
encodings.

• Add segment encoding (w/ S-Pos.): the positional encoding is added with a random amount
offset. For the i-th training sequence, a random offset ti is first uniformly sampled from
{0, 1, . . . , 22}. Next, for each token in this prompt at position t, the positional encoding is
set to (t+ ti, 0, . . . , 0)

⊤.

• Add full range encoding (w/ F-Pos.): similar to the S-Pos. configuration, the positional
encoding is added with a random amount offset. But here the offset is uniformly sampled
from {0, 1, . . . , 100}.

For the model trained with the “w/o Pos.” configuration, it is also tested without positional encodings.
For the models trained with the rest configurations, they are all tested with the “w/ Pos.” way of
encoding.

The results are shown in Figure 3. The models in the left figure are trained on prompts shorter than
44, and the models in the right figure are trained on prompts longer than 45. We make the following
observations. The pre-trained transformer in general can generalize to prompts with unseen length,
under the condition of using/removing the positional embedding properly. The “w/o Pos.” curve in
the left figure shows that even at positions larger than 44, the model can still produce predictions
close to Bayes-optimal. Adding positional encoding hurts the generalization ability. From the “w/
Pos.” curve in the left figure, we find that the model’s performance drops significantly at positions
larger than 44. The main cause of the failure of length generalization is due to the distribution shift

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Generalization from long to short (b) Generalization from short to long

Figure 3: The effect of removing positional encoding on prompt length generalization. The y-axis records
the average error of uncertainty prediction, which is the difference between the uncertainty predicted by the
transformer and the Bayes-optimal estimator. (a) For models trained with prompt lengths ≤ 44, the figure
on the left shows that positional encoding has the worst generalization capacity with a larger length, and
removing positional encoding could effectively enhance the length generalization power. (b) For models trained
with prompt lengths ≥ 45, removing positional encoding can help generalize to smaller lengths, although the
generalization ability for smaller lengths is generally weaker compared to that for larger lengths.

in the positional embedding space. As given in the “w/ S-Pos.” and “w/ F-Pos.” curves in the left
figure, if the model has seen the positional encodings for a certain position during training, then its
performance at this position is significantly improved, even if the corresponding prompt length is
never seen. The length generalization ability is not unrestrictively strong, and such generalization
ability for smaller lengths is generally weaker compared to that for larger lengths. The right figure
shows that even for the “w/o Pos.” configuration, its performance still degrades when the prompt
length is shorter than 20.

Theoretically, Wu et al. (2023)’s Theorem 5.3 points out that under the case of the single-layer
linear-attention-only Transformer model on a linear regression task with Gaussian priors, if we train
the model to only predict one single label after observing T context exemplars, the optimally trained
model under T = T1 also performs well at the case T = T2 (compared to the Bayes-optimal predictor
for T = T2) if T1 and T2 are close. This result implies the possibility of context length generalization
by a simplified Transformer model due to shared structures in the attention matrices.

5 CONCLUSION

In this paper, we study the in-context learning ability of the trained Transformer through the lens of
uncertainty quantification. In particular, we train the Transformer for a bi-objective task of mean
prediction and uncertainty prediction. We develop new results both theoretically and numerically.
The takeaway messages are: First, the Transformer can perform in-context uncertainty quantification.
Second, the trained Transformer is only guaranteed to achieve a near-optimal in-distribution risk
against the Bayes-optimal predictor. This does not imply that the Transformer behaves as the
Bayes-optimal predictor either in-distribution or out-of-distribution. Third, the Transformer has the
in-context ability for out-of-distribution tasks, but this in-context ability is contingent on a proper
training method such as sufficient task diversity, meta-training for covariates shift, and effective
removal of the positional encoding. Two important future directions are as follows. First, we believe
our method for deriving the generalization bound has implications for a scope much larger than
uncertainty quantification and can be used to improve the existing bounds for various tasks using
Transformers. Second, all the numerical experiments in the paper are conducted for the linear
functions fi’s. We believe the same results still hold for nonlinear functions as well; and such results
can further consolidate the in-context ability for uncertainty quantification of the Transformer.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

Gustaf Ahdritz, Tian Qin, Nikhil Vyas, Boaz Barak, and Benjamin L Edelman. Distinguishing the
knowable from the unknowable with language models. arXiv preprint arXiv:2402.03563, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. Inside:
Llms’ internal states retain the power of hallucination detection. arXiv preprint arXiv:2402.03744,
2024.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Monroe D Donsker and SR Srinivasa Varadhan. Asymptotic evaluation of certain markov process
expectations for large time. iv. Communications on pure and applied mathematics, 36(2):183–212,
1983.

Sabit Ekin. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best practices.
Authorea Preprints, 2023.

Fabian Falck, Ziyu Wang, and Christopher C Holmes. Are large language models bayesian? a
martingale perspective on in-context learning. In ICLR 2024 Workshop on Secure and Trustworthy
Large Language Models, 2024.

Jianqing Fan, Bai Jiang, and Qiang Sun. Hoeffding’s inequality for general markov chains and its
applications to statistical learning. Journal of Machine Learning Research, 22(139):1–35, 2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023.

Thomas F Heston and Charya Khun. Prompt engineering in medical education. International Medical
Education, 2(3):198–205, 2023.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023a.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023b.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023a.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. arXiv preprint arXiv:2305.19187, 2023b.

Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models. arXiv preprint arXiv:2303.08896,
2023.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Jonas Oppenlaender, Rhema Linder, and Johanna Silvennoinen. Prompting ai art: An investigation
into the creative skill of prompt engineering. arXiv preprint arXiv:2303.13534, 2023.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism. In
The Twelfth International Conference on Learning Representations, 2023.

Daniel Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral
methods. Electronic Journal of Probability, 20(none):1 – 32, 2015. doi: 10.1214/EJP.v20-4039.
URL https://doi.org/10.1214/EJP.v20-4039.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. Advances in Neural Information
Processing Systems, 36, 2024.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. arXiv preprint arXiv:2312.03002, 2023.

Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The
transient nature of emergent in-context learning in transformers. Advances in Neural Information
Processing Systems, 36, 2024.

Aviv Slobodkin, Omer Goldman, Avi Caciularu, Ido Dagan, and Shauli Ravfogel. The curious
case of hallucinatory (un) answerability: Finding truths in the hidden states of over-confident
large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 3607–3625, 2023.

12

https://doi.org/10.1214/EJP.v20-4039

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications. SIAM, 2013.

Timothy John Sullivan. Introduction to uncertainty quantification, volume 63. Springer, 2015.

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Journal of Machine
Learning Research, 24(123):1–76, 2023.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter L Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? arXiv preprint
arXiv:2310.08391, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Fengzhuo Zhang, Boyi Liu, Kaixin Wang, Vincent Tan, Zhuoran Yang, and Zhaoran Wang. Relational
reasoning via set transformers: Provable efficiency and applications to marl. Advances in Neural
Information Processing Systems, 35:35825–35838, 2022.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023a.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

A RELATED WORKS

Theoretical Understanding of In-Context Learning. There are two streams of research in the
theoretical understanding of ICL: the first tries to give sharp approximation error bounds on different
tasks, while the second focuses on how the trained Transformer approaches the potential optimum.
For the approximation error, following the pioneering empirical investigations on simple function
classes (Garg et al., 2022), Von Oswald et al. (2023); Akyürek et al. (2022) conjecture that the
Transformer is doing ICL via gradient descent, and verify it both empirically and theoretically.
Based on the mechanism of layer-wise gradient descent construction, Bai et al. (2024) show that
Transformers are able to behave (approximately) as well as some well-known algorithms on some
statistical problems. Some following works generalize the layer-wise gradient descent construction to
other settings such as decision-making (Lin et al., 2023a) and linear regression under representations
(Guo et al., 2023). Apart from the layer-wise gradient descent, some other works consider the one-step
gradient descent reached by a single-layer linear-activated Transformer (Zhang et al., 2023a; Wu
et al., 2023) and curve the excessive population risk of the optimal model compared to oracle or the
Bayes-optimal predictor. Ahn et al. (2024) give a set of global optima for some specific one-layer or
two-layer attention-only models with linear or ReLU activation. Aside from characterizing where the
Transformer can reach, another group of works is making efforts towards understanding where the
Transformer will reach. One typical way is to study the simplified attention-only Transformers. Zhang
et al. (2023a) start the analysis of the training dynamics of the gradient flow over the population
risk on the linear regression task and show that a single-layer linear-attention-only model converges
to some specific sets with suitable initialization. Wu et al. (2023) keep the same spirit and give a
sample complexity bound based on a certain gradient descent scheme. For general Transformer
models, technical tools from the statistical learning theory are applied. As for the task of predicting
the next token in natural language tasks, Xie et al. (2021) provide a viewpoint from the Hidden
Markov Model (HMM) and prove the asymptotic consistency under the regularity condition. Bai et al.
(2024); Lin et al. (2023a) use chaining arguments with covering numbers for generalization, where

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bai et al. (2024) consider the training under fixed length and Lin et al. (2023a) consider the problem
of sequential decision-making. Li et al. (2023b) adopt algorithm stability arguments obtaining a
bound of Õ(1/

√
nT). As is discussed in the main text (see discussions after Theorem 3.2), their

analysis will result in a suboptimal Õ(S/
√
nT) for the case S < T . Zhang et al. (2023b) adopt a

similar concentration inequality for Markov chains to get a bound of Õ(
√
τmix/(nT)). Since they

do not consider the limit of context window S, their derivation ends up with τmix ≥ T , which is
suboptimal compared to our case. In short, our paper is the first theoretical analysis on the limit of
context window S and gets a tighter generalization bound than previous works on the generalization
bound when S < T .

Bayesian Behavior of In-context Learning. Due to the complex structure of transformers, showing
the theoretical properties of ICL without proper assumptions is challenging. There has been growing
interest in developing experiments to test various properties of ICL, leading to new observations and
insights. Some of the earliest works that show transformers behave like Bayesian estimator can be
found in Akyürek et al. (2022); Garg et al. (2022), and this argument is supported in follow-up works
including Li et al. (2023b); Wu et al. (2023); Bai et al. (2024). However, there is also increasing
empirical evidence demonstrating transformers’ non-Bayesian behavior. Singh et al. (2024) design
flipped experiment and show transformers’ Bayesian behavior could be transient. Raventós et al.
(2024); Panwar et al. (2023) demonstrate that the Bayesian behavior of transformers is dependent
on the task diversity in the pre-training dataset, and transformers could deviate from the Bayesian
predictor if number of different training tasks is large. Falck et al. (2024) design experiments based
on the martingale property, a necessary condition of Bayesian behavior, and provide evidence that
transformers exhibit non-Bayesian behavior from a statistical perspective.

Transformers for Uncertainty Quantification. Uncertainty quantification has seen significant de-
velopment within the general machine learning and deep learning domains (Abdar et al. (2021); Gaw-
likowski et al. (2023)), generating considerable interests within communities working on transformer-
based large language models (LLMs). See Kuhn et al. (2023); Manakul et al. (2023); Lin et al.
(2023b) for uncertanty quantification using black-box LLMs, and Slobodkin et al. (2023); Chen et al.
(2024); Ahdritz et al. (2024) for that of white-box LLMs. Most of these works focus on natural
language processing tasks which have less statistical properties. Indeed, uncertainty quantification
has traditionally been developed from a more statistical and probabilistic perspective (Smith (2013);
Sullivan (2015)). By adopting transformer models to study more statistics-related problems, our work
aims to bridge and contribute to both fields.

B TRANSFORMER MODEL

Following Radford et al. (2019), we consider a decoder-only L-layer Transformer model that pro-
cesses the input sequence Ht by applying multi-head attention (MHA) of M heads and multi-layer
perceptron (MLP) layer-wise. Without loss of generality, we assume xt ∈ Rd for some d ≥ 2.
We concatenate each yt with d − 1 zeros so that it matches the format of each xt, while we still
denote the concatenated vector by yt with a slight abuse of notations. We denote Ht by a matrix
in Rd×(2t−1) for t = 1, . . . , T , where Ht = [x1, y1, · · · , xt]. We may also refer to xt by h2t−1

and yt by h2t. In practice, the attention mechanism has a maximum dependence length, and there-
fore the Transformer model can only produce an output based on the most recent tokens up to a
context window size S. Hence we assume that at each time step t, the Transformer model has a
maximum capacity of making predictions based on xt and previous S pairs of (xs, ys) observations
for s = t − S, . . . , t − 1. In other words, the Transformer has a maximum capacity of processing
2S + 1 tokens, and it is making predictions TFθ(Ht) = TFθ(H

S
t) based on the truncated history

HS
t , where HS

t := (xmax{1,t−S}, ymax{1,t−S}, . . . , xt). In the following, we formally describe the
architecture of the Transformer used in this paper.
Definition B.1 (Multi-Head Attention). A multi-head attention layer with M heads and activation
function act(·) can be defined as a function MHAW (·) for any sequence Zt ∈ Rd×(2t−1) and
t = 1, . . . , S + 1,

MHAW (Zt) = Zt +

M∑
m=1

(Wm
V Zt)act

(
(Wm

K Zt)
⊤(Wm

Q Zt)
)
,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where W = {(Wm
Q ,Wm

K ,Wm
V)}Mm=1 denotes all the parameters, Wm

Q ,Wm
K ∈ Rdm×d, Wm

V ∈ Rd×d

for each m = 1, . . . ,M , and act : R(2t−1)×(2t−1) → R(2t−1)×(2t−1) is the activation function.

Here we merge the residual connection into the multi-head layer and skip the layer normalization to
ease the notations and simplify the analysis. The activation function is usually set to be columns-wise
softmax in practice: for each vector z ∈ R2t−1,

softmax(z) :=

(
exp(z1)∑2t−1

i=1 exp(zi)
, . . . ,

exp(z2t−1)∑2t−1
i=1 exp(zi)

)⊤

.

Some theoretical results also consider alternative choices for act. For example, Akyürek et al.
(2022); Ahn et al. (2024); Zhang et al. (2023a) consider the linear activation (that is, to entry-wise
divide by the sequence length 2t− 1). Bai et al. (2024); Guo et al. (2023) also examine the ReLU
activation (that is, to entry-wise apply a ReLU function ReLU(z) = max{0, z} and later divide by
the sequence length 2t− 1).
Definition B.2 (Multi-Layer Perceptron). A multi-layer perceptron layer with hidden dimension
dh can be defined as a (token-wise) function MLPA(·) for any sequence Zt ∈ Rd×(2t−1) and
t = 1, . . . , S + 1,

MLPA(Zt) = Zt +A2ReLU(A1Zt),

where A = (A1, A2) denotes all the parameters, A1 ∈ Rdh×d, A2 ∈ Rd×dh , and ReLU is the
entry-wise ReLU function.

We merge the residual connection into the multi-layer perceptron layer and omit the layer normaliza-
tion to simplify the theoretical development.
Definition B.3 (Transformer). A Transformer model with L layers can be defined as a function
TFθ(·) for any sequence Zt ∈ Rd×(2t−1) and t = 1, . . . , S +1. For the l-th layer, the model receives
Z

(l−1)
t as the input and processes it by an MHA block and an MLP block, such that

Z
(l)
t = MLPA(l)(MHAW (l)(Zl−1

t)), ∀l = 1, . . . , L,

where Z(0)
t = Zt. After the L-th layer, the model linearly maps the Z(L)

t ∈ Rd×(2t−1) onto R2×(2t−1)

via a matrix P ∈ R2×d, and we process the second dimension by a softplus function to get the
final prediction as

ŷθ(Zt) = (PZ
(L)
t)1,2t−1,

and
σ̂θ(Zt) = softplus

(
(PZ

(L)
t)2,2t−1

)
.

Here θ = ({(W (l), A(l))}Ll=1, P) encapsulates all the parameters and the function softplus(z) =
log(1 + exp(z)) is introduced to avoid negative output. The output is summarized as TFθ(Zt) :=
(ŷθ(Zt), σ̂θ(Zt)).
Remark B.4. To enable parallel training, the decoder-only Transformer receives a full sequence in
the training phase. The model has a masking component that prevents the model from seeing into the
“future”. However, such masking is unnecessary in our setting as the Transformer model receives
exactly what it should “see” at each time t, and the full dynamics are identical to those in the masked
setting.

Miscellaneous notations. Denote the set {1, . . . ,K} by [K]. Denote the consecutive sequence
{i, i + 1, . . . , j} by i : j. Denote the matrix A’s entry at the i-th row and the j-th column by
Ai,j . Denote the vector x’s i-th element by (x)i. Define the d-dimensional vector x’s p-norm as
(
∑d

i=1(x)
p
i)

1/p for p ∈ [1,∞], where ∥x∥∞ = max1≤i≤d(x)i. Define the m× n-sized matrix A’s
(p, q)-norm as (

∑n
j=1 ∥A:,j∥qp)1/q . Denote the d-dimensional diagonal matrix by diag{λ1, . . . , λd}.

Denote the d-dimensional identity matrix by Id. Denote the total variation distance between two
probability distributions P and Q by TV(P,Q). Denote the Kullback-Leibler divergence between
two probability distributions such that P ≪ Q by Dkl(P∥Q). Denote the product measure of P and
Q by P ×Q or P ⊗Q. Denote the Cartesian product of two spaces X and Y by X × Y . Denote the
tensor-product σ-algebra of two σ-algebras Σ1 and Σ2 by Σ1 ⊗ Σ2. Denote the limiting behavior of
being upper (lower, both upper and lower, respectively) bounded by up to some constant(s) by O (Ω,
Θ, respectively). Denote Õ to be the O but omitting some poly-logarithmic terms.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.1 ASSUMPTIONS

Based on this setup of the Transformer model, we introduce the following bounded assumptions used
for Theorem 3.2. Such assumptions are common in the analyses of the Transformer model (Bai et al.,
2024; Zhang et al., 2023b) by either assuming an extra clipping operator or explicit upper bounds.
Assumption B.5. Assume Θ = B(0, BTF), where the norm is defined as

∥θ∥ := max{∥W (l)∥, ∥A(l)∥, ∥P∥ : l = 1, . . . , L}.

The corresponding norms are defined as

∥W∥ := max{∥Wm
V ∥2,2, ∥Wm

K ∥2,2, ∥Wm
Q ∥2,2 : m = 1, . . . ,M},

∥A∥ := max{∥A1∥2,2, ∥A2∥2,2}, ∥P∥ := ∥P⊤∥2,∞,

where we omit some superscripts/subscripts of the layer number (l) for simplicity.
Assumption B.6. Assume ∥Ht∥2,∞ is bounded by BH almost surely. Such a regularization is
equivalent to assuming ∥xt∥2 ≤ BH and |yt| ≤ BH almost surely.

B.2 APPROXIMATION ERROR

In Section 3, we provide the generation bound in Theorem 3.2. Now we give an analysis for the
approximation error. We define the Bayes-optimal risk obtained by the Bayes-optimal predictor in
Proposition 3.1: for each t = 1, . . . , T ,

R∗
t := E

[
ℓ
((

y∗t (Ht), σ
∗
t (Ht)

)
, yt

)]
. (5)

However, Transformers only have access to the truncated history HS
t , which prevents them from

reaching R∗
t . By using Proposition 3.1 for the HS

t , we denote the truncated Bayes optimum for each
t:

yS∗
t (HS

t) := E[yt|HS
t],

and (
σS∗
t (HS

t)
)2

:= E[(f(xt)− yS∗
t (HS

t))
2|HS

t] + E[σ2|HS
t].

We denote the truncated Bayes-optimal risk as

RS∗
t := E

[
ℓ
((

yS∗
t (HS

t), σ
S∗
t (HS

t)
)
, yt

)]
. (6)

It is straightforward to check that

RS∗
t = R∗

t , for any t ≤ S. (7)

However, the equality is generally not true for t > S. We give an example to illustrate the gap.
Example B.7. Consider the case where one has oracle access to the noise level σ. Note that the
oracle knowledge only reduces the risk RS∗

t , since we use information that is not a measurable
function of HS

t . The problem is reduced to a regression problem.

Suppose the function f is linear and its weight vector has a prior distribution of N (0, σ2Id), and the
noise ϵ ∼ N (0, 1). Suppose xt ∼ N (0, Id). Then the optimal estimator is an optimally tuned Ridge
regression.

Tsigler & Bartlett (2023) show that with high probability, the optimal Ridge regression estimator has
an average risk of 1

2 +Θ(1/S), where the term 1
2 is due to E[(y − f(x))2]/(2σ2). But as the length

t approaches infinity, the average risk of the optimal Ridge regression over the full sequence Ht will
converge to 1

2 with high probability, meaning that the estimated f̂ will converge to true f for every
sequence. Hence one can always construct an uncertainty estimation by averaging all the residuals,
and such an estimation σ̂ will converge to the true σ. Thus, we have R∗

t approaching 1
2 as t grows to

infinity, leading to the conclusion that

RS∗
t −R∗

t ≥ Ω(1/S),

for sufficiently large t.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example B.7, together with Theorem 3.2, shows the approximation-estimation tradeoff in selecting
the context window S of Transformer models. Previous works (Wu et al., 2023; Bai et al., 2024;
Zhang et al., 2023b; Guo et al., 2023) consider the case where t ≤ S, and establish the upper bounds
for the approximation error. In other words, these existing results are all made with respect to the gap
between RS∗

t and R(TFθ∗). To our knowledge, we are the first work to point out the extra term of
approximation error due to truncation.

C MORE NUMERICAL RESULTS AND DISCUSSIONS

C.1 IN-DISTRIBUTION PERFORMANCE

In Figure 1, we provide a comparison of the in-distribution performance of the trained Transformer
v.s. the Bayes-optimal predictor. A subtle point is that for the uncertainty prediction, we only plot the
average predicted uncertainty, this does not fully imply that the Transformer gives a similar prediction
as the Bayes-optimal predictor. To this end, Figure 4 plots the difference between each of the models
and the Bayes-optimal predictor in terms of uncertainty estimation.

Figure 4: In-distribution performance of the uncertainty prediction against the Bayes-optimal predictor. The
y-axis gives an estimate of E [− log |σ̂(Ht)− σ∗(Ht)|] where the expectation is taken with respect to Ht. Here
σ̂(Ht) is the uncertainty estimate produced by an algorithm (ridge regression, linear regression, or transformer),
and σ∗(Ht) is the Bayes-optimal predictor given in Proposition 3.1 and calculated by Section G.3. The figure
shows that the Transformer and the Bayes-optimal predictor produce similar uncertainty predictions. In addition,
the Transformer trained on a larger pool of tasks (larger N) produces a better approximation of the Bayes-optimal
predictor.

C.2 OUT-OF-DISTRIBUTION PERFOMANCE

In Figure 2, we plot the Bayes-optimal predictor under three OOD settings, and we note that though
the Bayes-optimal predictor uses a wrong prior, it has the ability to work as an algorithm to correct
the prediction with the in-context samples. Now in Figure 5 (a), we compare the Bayes-optimal
predictor that uses the wrong prior with the Bayes-optimal predictor that uses the correct prior (which
replaces the in-distribution prior with the correct OOD prior of σ2). The figure is based on the large
OOD setting. We observe that the Bayes-optimal predictors with the ID prior or the OOD prior both
converge to the true uncertainty level. For Figure 5 (b), we plot the performances under the same
large OOD setting. As a reference line, we copy and paste the Bayes-optimal predictor’s curve in
Figure 1 (b) here. We note this reference line is computed based on the in-distribution (ID) data and is
not comparable at all to the predicted uncertainty level on the OOD data. Yet, we note that when the
number of tasks is small when training the Transformer (say N = 4096), it tends to make predictions
on the OOD data by treating the OOD data just as ID data, and this means the trained Transformer is
doing in-weight learning and has no in-context learning ability. As the number of tasks increases, the
Transformer gradually gains the in-context ability and moves towards the Bayes-optimal predictor on
the OOD data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Bayes-optimal w/ ID or OOD prior (b) Moving from ID to OOD

Figure 5: Performance under L-OOD setting. For both (a) and (b), the y-axis gives the average of the predicted
uncertainty over all the test samples (average of σ̂(Ht) or σ∗(Ht) on test samples), and ideally the curves should
converge to the true uncertainty level of 4 as the number of in-context samples increases. In (a), we compare the
Bayes-optimal predictor that uses the wrong prior with the Bayes-optimal predictor that uses the correct prior
(which replaces the in-distribution prior with the correct OOD prior of σ2). Both work well in that the curves
converge to the true mean uncertainty level of around 4. The Transformers deviate from both Bayes-optimal
predictors due to the large OOD intensity. In (b), we observe that as the training task diversity increases. The
transformer gradually moves from the ID reference line to the Bayes-optimal predictor.

C.3 TRAINING DYNAMICS AND TASK SHIFT OOD PERFORMANCE

Now we zoom into the training dynamics to further investigate the OOD performance under task
shift. In the following example, we derive a theoretical result based on Theorem 4.1 in Zhang
et al. (2023a). Specifically, R and R′ (following the notations therein) denote the in-distribution
and out-of-distribution expected risk. The result says that while the in-distribution risk continues
decreasing over time, the out-of-distribution risk may keep increasing or may first decrease and then
increase. Importantly, the out-of-distribution risk may depend on the initial point of the training
procedure.

Reaching the Bayes optimum requires prior knowledge of the underlying distribution. We provide
a simple example of where the Transformer stores its prior knowledge and how it hurts the OOD
performance even under a mild distribution shift.

Example C.1 (A corollary that can be derived based on Theorem 4.1 in Zhang et al. (2023a)).
Consider a one-layer attention-only Transformer model with linear activation and one attention
head on the linear regression task. We now concatenate each of the inputs to be [x⊤

t , yt]
⊤ ∈ Rd+1.

Suppose we focus on the linear regression task on the (T + 1)-th sample after observing T context
exemplars, where each w(i) ∼ N (0, Id), each x

(i)
t ∼ N (0, Id), each ϵ

(i)
t ∼ N (0, 1), and y

(i)
t =

w(i)⊤y
(i)
t +σ0 · ϵ(i)t . If we adopt the same training setup as Zhang et al. (2023a) (with details referred

to therein), then for any |σ′
0 − σ0| ≥ ∆ for some ∆ > 0, if we train on the distribution w.r.t. σ0 but

test on the distribution w.r.t. σ′
0 (denoted by R′), then for C = d/(16(2 + σ0)) and any sequence

0 < δ1 < δ2 < · · · < C∆, there exists a non-decreasing sequence 0 ≤ τ(δ1) ≤ τ(δ2) ≤ . . . , such
that

R′(τ(δi))−R′
θ∗′ ≥ δi, for each i = 1, 2, . . . ,

while the parameter (W⊤
KWQ)1:d,1:d(WV)d+1,d+1 converges to 1/(1+(2+σ0)/T) ·Id (which is the

corresponding part of some θ∗). Here θ∗ and θ∗′ minimize the population risk R and R′, accordingly.

We design an experiment to show that as training proceeds, the model’s OOD performance is
improved abruptly in the starting phase, but then degrades steadily after too many steps of training.
We introduce the experiment settings below. A visualization of the setup is given in Figure 6.

Each linear task in our uncertainty quantification setting is characterized by parameters (w, σ). We
define two regions for w, denoted by W1 and W2. And two regions for σ, denoted by G1 and G2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: The settings of the OOD experiment. (Left) The in-distribution (ID) tasks are sampled from
regions denoted by the green blocks, and the OOD tasks are sampled from the red blocks. (Right)
In the starting phase, training improves both the ID and OOD performance. But if training for too
many steps, the ID performance is only marginally improved, while the OOD performance steadily
degrades.

When w is sampled from W1, w follows the following distribution

w = |β|, β ∼ N (0, I8).

When w is sampled from W2, w follows the following distribution

w = −|β|, β ∼ N (0, I8).

For σ, define G1 = [0.1, 0.3] ∪ [0.5, 0.7] and G2 = [0.3, 0.5] ∪ [0.7, 0.9]. Define G1 and G2 to be
the “complementary” group of each other. We sample σ independently from w, and we always
sample σ uniformly from either group G1 or G2. As marked in Figure 6, the “ID” tasks sample its
parameters from (w, σ) ∈ W1 ⊗ G1

⋃
W2 ⊗ G2 and the “OOD” tasks sample its parameters from

(w, σ) ∈ W1 ⊗ G2

⋃
W2 ⊗ G1. The training is on “ID” tasks, and the trained model is tested on

both “ID” tasks and “OOD” tasks. The metric we evaluate in this experiment is the “prediction
accuracy” of uncertainty. The accuracy denotes the probability that the model predicts the σ into its
“right” group. (for a prompt generated from (w, σ) with σ ∈ G, we say that the model makes a “right”
prediction if the predicted σ falls into G).

Figure 7 presents the experiment result. The prediction accuracy on the ID dataset peaks after 20k
steps of training. At the same time, the prediction accuracy on the OOD dataset also increases to
80%. After that, the ID performance remains unchanged, but the OOD accuracy keeps dropping.

In order to verify that the degradation of OOD performance is due to the increasing confidence in
the prior information of the training data, we check for the OOD distribution whether the model
has predicted σ into the complementary group. The result is presented in Figure 8, which verifies
that after training too many steps, the model tends to predict σ following the training prior. A more
concrete way to explain it: consider an OOD sampled task (w, σ) where w > 0. According to the
sampling rule of OOD tasks, it must have σ ∈ G2. If the model has the OOD ability, it should
predict σ ∈ G2. But if it has too much confidence in its training prior, it will predict σ into G1, the
complementary group of G2. Figure 8 shows that for the misclassified OOD tasks, the model has
predicted them into complementary groups.

C.4 COVARIATE SHIFT EXPERIMENT

The experiment result of Section 4.2 is given in Figure 9. We evaluate the prediction error of models
ordinarily trained, and models trained by the meta-training process. For both mean and uncertainty,
the models trained by the meta-training procedure have a smaller prediction error.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: The accuracy denotes the probability that the model predicts the σ into the “right” group.
For example, if the sampled tasks take σ from group G1, then accuracy denotes the probability that
the model predicts σ into G1. The data is collected for the 100-th token in order to eliminate the
epistemic uncertainty due to insufficient in-context samples. The x-axis denotes the training steps.
This figure shows that when training too many steps (> 40k in this case), the generalization ability of
the model steadily declines.

Figure 8: This figure validates that the decline of OOD ability is due to increasing confidence in the
training prior. The blue bars correspond to the OOD accuracy, and the red bars give the probability
that the model predicts uncertainty σ into the complementary group (i.e. the training distribution of
σ). As the training proceeds, most of the misclassified σ are predicted following the training prior.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
in-context samples

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Er
r.
M
ea

n
Pr
ed

ict
io
n

Deviation from Bayes Optimal μ

0 20 40 60 80 100
in-context samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

Deviation from Bayes Optimal σ
static_x_model_on_L-cov
meta_x_model_on_L-cov

0 20 40 60 80 100
in-context samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.05

0.10

0.15

0.20

0.25

0.30

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Dec.
meta_x_model_on_Dec.

0 20 40 60 80 100
in-context samples

0.2

0.4

0.6

0.8

1.0

1.2

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.10

0.15

0.20

0.25

0.30

0.35

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Shr.
meta_x_model_on_Shr.

0 20 40 60 80 100
in-context samples

0.2

0.4

0.6

0.8

1.0

1.2

Er
r.
M
ea

n
Pr
ed

ict
io
n

0 20 40 60 80 100
in-context samples

0.1

0.2

0.3

0.4

0.5

Er
r.
Un

ce
r.
Pr
ed

ict
io
n

static_x_model_on_Rot.
meta_x_model_on_Rot.

Figure 9: The errors of the mean and uncertainty prediction where the error is measured by the
absolute difference against the Bayes-optimal predictor. The static_x_model corresponds to models
trained with the standard way in generating Xt’s, while the meta_x_model corresponds to the new
approach of drawing Xt’s from the meta-training procedure. In all 4 OOD settings, meta-trained
models have better performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D PROOFS OF THE RESULTS IN THE MAIN PAPER

D.1 PROOF OF PROPOSITION 3.1

Proof. Recall that the population risk is

L(ŷ, σ̂) := Ef,x[t],ϵ[t],σ

[
log σ̂(Ht) +

(yt − ŷ(Ht))
2

2σ̂2(Ht)

]
.

We first prove that for any σ̂(Ht), the choice of ŷt = y∗ = E[yt|Ht] minimizes the population risk.
With any fixed σ0 > 0, when σ̂t = σ0, then minimizing the population risk reduces to minimizing
E[(yt − ŷ(Ht))

2]. Using Fubini’s Theorem and the fact that the conditional distribution exists, we
have

Ef,x[t],ϵ[t],σ

[
(yt − ŷ(Ht))

2
]
= EHt

[
E
[
(yt − ŷ(Ht))

2
∣∣Ht

]]
= EHt

[
E
[
(f(xt)− ŷ(Ht))

2
∣∣Ht

]]
+ EHt

[
E[σ2|Ht]

]
, (8)

where the last equality follows from the fact that ϵt is independent of Ht and σ and is of zero mean
and unit variance. Since the second term on the right-hand-side of equation 8 does not depend on
ŷ, we only need to focus on the first term. For each realization of Ht, the prediction ŷ(Ht) is a
single point; combining it with the fact that the squared loss is minimized with respect to one single
point prediction if and only if that point is the expectation (in this case, the conditional expectation
E[f(xt)|Ht]), we prove that for any σ0, the population risk’s minimizer

y∗t (σ0) = E[f(xt)|Ht] = E[f(xt) + σ · ϵt|Ht] = E[yt|Ht],

where the second equality follows again from the fact that ϵt is independent of Ht and σ, and ϵt is of
zero mean. Since this equality holds for an arbitrary σ0, we can conclude that

y∗t = E[yt|Ht].

Now we have confirmed the optimal choice of y∗t regardless of whatever σ̂ is. We can thus find
the optimal choice of σ̂ by fixing ŷ = y∗t and minimizing the population risk. Similarly, we can
change the integration order so that we only need to minimize E[log σ̂(Ht) +

(yt−ŷ(Ht))
2

2σ̂2(Ht)
|Ht] for

any realization of Ht. Calculations show that

∂E
[
log σ̂(Ht) +

(yt−ŷ(Ht))
2

2σ̂2(Ht)
| |Ht

]
∂σ̂(Ht)

=
∂
(
log σ̂(Ht) +

E[(yt−ŷ(Ht))
2|Ht]

2σ̂2(Ht)

)
∂σ̂(Ht)

=
σ̂2(Ht)− E[(yt − ŷ(Ht))

2|Ht]

σ̂3(Ht)
,

where the first equality follows from the fact that on observing Ht, σ̂(Ht) is a fixed value, and the
second equality from the calculus. Thus, the risk is minimized if and only if σ̂(Ht) = E[(yt −
ŷ(Ht))

2|Ht]. Substituting ŷ for y∗t , we have

σ∗2
t (Ht) = E[(yt − y∗t (Ht))

2|Ht] = E[(f(xt)− y∗t (Ht))
2|Ht] + E[σ2|Ht],

where the last equality follows again from the fact that ϵt is independent of Ht and is of zero mean
and unit variance.

D.2 PROOF OF THEOREM 3.2

Proof. θ̂ERM Before we start the detailed proof, we define another flattened sequence (x̃k, ỹk) for
k = 1, . . . , nT , where for k = iT + t we have(

x̃iT+t, ỹiT+t

)
:=
(
x
(i)
t , y

(i)
t

)
. (9)

Here, we merge all the sequences {(x(i)
t , y

(i)
t)}Tt=1 for i = 1, . . . , n into one sequence (x̃k, ỹk)

nT
k=1.

Similarly, we can define a flattened truncated history H̃S
k as

H̃S
iT+t := (x

(i)
max{t−S,1}, y

(i)
max{t−S,1}, . . . , x

(i)
t , y

(i)
t . (10)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Note that H̃S
k,k=iT+t = (H

S(i)
t , y

(i)
t), since we have added the target label yS(i)

t into the flattened
truncated history H̃S

k for notation simplicity. With a slight abuse of notations, we have

ℓθ(H̃
S
k,k=iT+t) := ℓ(TFθ(H

S
t), yt) = ℓ(TFθ(Ht), yt), (11)

where the equality holds since we are making predictions based on at most S pairs of (xt, yt). We can
similarly replace the ℓ function in the definition of empirical risk r and population risk R, obtaining

r(TF(θ)) =
1

nT

n∑
i=1

T∑
t=1

ℓ(TFθ(H
S
t), yt)

=
1

nT

nT∑
k=1

ℓθ(H̃
S
k), (12)

and

R(TF(θ)) =
1

T
EHt

[
T∑

t=1

ℓ
(
TF(θ)(Ht), yt

)]

=
1

T
EH̃S′

k

[
T∑

t=1

ℓθ(H̃
S′
k,k=iT+t)

]

= EH̃S′
k

[
1

nT

nT∑
k=1

ℓθ(H̃
S′
k)

]
, (13)

where H̃S′
t is another flattened truncated history that is i.i.d. to H̃S

t . For notation simplicity, we
define

H̃S := (H̃S
1 , . . . , H̃

S
nT). (14)

Then we simplify the notations as

rθ
(
H̃S
)
:= r(TF(θ)), (15)

and
Rθ := EH̃S′

[
rθ
(
H̃S′)] = R(TF(θ)). (16)

To control the difference between Rθ and rθ(H̃S) for any θ (which could potentially depend on
training data D), we use PAC-Bayes arguments for simplicity.

All the following arguments are made with the conditional distribution on knowing each f (i) and σ(i),
for each i = 1, . . . , n. We omit the conditional dependencies in our notations only for simplicity.

By our definition of data generation, the flattened truncated history H̃S
k naturally forms up a Markov

chain on the space ⊗nT
k=1Ωk (verified in Lemma E.13), since the newly generated (xt, yt) are condi-

tionally independent of all previous observations. Here Ωk,k=iT+t := (X × Y)⊗min{t,S}.

Fix a θ that does not depend on the training data D. We now bound the difference between Rθ

and rθ(H̃S) via concentration inequality for Markov chains. From Lemma F.2, we know that if the
Markov chain’s mixing time is small enough (which means it quickly converges to the stationary
distribution), the concentration properties over the Markov chain would be good enough to enable the
standard PAC-Bayes arguments. We also know from Lemma E.15 that the flattened truncated history
has a mixing time no greater than min{S, T}, since all the histories S pairs before the current time
would be truncated from the input, and the history HS

t restarts every time a sequence reaches length
T . With these observations, we start our detailed derivation.

Since the function ℓ is almost surely bounded by C2 as is shown in Lemma E.3, we have almost
surely for any H̃S and H̃S′,

rθ(H̃S)− rθ(H̃S′) ≤
nT∑
k=1

2C2

nT
· 1{H̃S

k ̸= H̃S′
k }. (17)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We can use McDiarmid type’s inequality for Markov chains (Lemma F.2, with the mixing time upper
bound no greater than min{S, T} (specified in Lemma E.15), such that for any λ ∈ R,

ED

[
exp

(
λ(rθ(H̃S)−Rθ(H̃S))

)]
≤ exp

(2λ2C2
2 min{S, T}
nT

)
. (18)

Set π to be the distribution over Θ defined in Lemma E.11. Since π is chosen independently from D,
we can integrate equation 18 with respect to θ ∼ π such that

Eθ∼π

[
ED

[
exp

(
λ(rθ(H̃S)−Rθ(H̃S)

)]]
≤ exp

(2λ2C2
2 min{S, T}
nT

)
. (19)

Using Fubini’s Theorem, we can exchange the order of integration, such that

ED

[
Eθ∼π

[
exp

(
λ(rθ(H̃S)−Rθ(H̃S)

)]]
≤ exp

(2λ2C2
2 min{S, T}
nT

)
. (20)

By applying Donsker-Varadhan’s formula (Lemma F.3), we derive from equation 20 that

ED

[
exp

(
sup

ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S)−Rθ(H̃S)

]
−Dkl(ρ∥π)

})]
≤ exp

(2λ2C2
2 min{S, T}
nT

)
.

Rearranging terms, we have

ED

[
exp

(
sup

ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S)−Rθ(H̃S)

]
−Dkl(ρ∥π)

}
− 2λ2C2

2 min{S, T}
nT

)]
≤ 1. (21)

Using Chernoff’s bound (Lemma F.4) with probability δ/4, we have with probability at least 1− δ
4

w.r.t. D,

sup
ρ∈P(Θ)

{
Eθ∼ρ

[
λ(rθ(H̃S)−Rθ(H̃S)

]
−Dkl(ρ∥π)

}
− 2λ2C2

2 min{S, S}
nT

≤ log(4/δ). (22)

Since this bound equation 22 holds for any distribution ρ over Θ, we can set ρ to be ρθ̂ERM as defined
in Lemma E.11, resulting in a high-probability bound

Eθ∼ρθ̂ERM

[
rθ(H̃S)−Rθ(H̃S

]
≤

Dkl(ρθ̂ERM∥π)
λ

+
2λC2

2 min{S, T}
(nT)

+ log(4/δ) (rearranging terms)

≤ C2

√
min{S, T}/(nT) ·

(
Dkl(ρθ̂ERM∥π) + 2

)
+ log(4/δ) (by setting λ =

√
nT/min{S, T} · (1/C2))

≤ Õ(
√
min{S, T}/(nT)). (by Lemma E.11) (23)

By Lemma E.12, the loss function is Lipschitz. Since for any θ ∈ supp(ρθ̂ERM), θ is up to O(1/(nT))

away from θ̂ERM, we can control the difference between the risks of any θ ∈ supp(ρθ̂ERM) and θ̂ERM

as ∣∣rθ(H̃S)− rθ̂ERM(H̃S)
∣∣ ≤ Õ(1/(nT)), (24)∣∣Rθ −Rθ̂ERM

∣∣ ≤ Õ(1/(nT)). (25)

Thus, we have
rθ̂ERM(H̃S)−Rθ̂ERM ≤ Õ(

√
min{S, T}/(nT)). (26)

Applying the above arguments again for the negative of r, we have with probability at least 1− δ/2,∣∣rθ̂ERM(H̃S)−Rθ̂ERM

∣∣ ≤ Õ(
√
min{S, T}/(nT)). (27)

For θ∗, we can repeat the above steps and get∣∣rθ∗(H̃S)−Rθ∗
∣∣ ≤ Õ(

√
min{S, T}/(nT)). (28)

The probability that all these bounds hold simultaneously is at least 1− δ w.r.t. D.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Hence with probability at least 1− δ,

R(TFθ̂ERM)−R(TFθ∗)

= Rθ̂ERM −Rθ∗ (by definition in equation 16)

≤ rθ̂ERM(H̃S)− rθ∗(H̃S) + Õ(
√

min{S, T}/(nT)) (by equation 27 and equation 28

= r(TFθ̂ERM)− r(TFθ∗) + Õ(
√

1/n+
√
S/T) (by definition in equation 15)

≤ Õ(
√
min{S, T}/(nT)) (by definition of ERM equation 1) (29)

We now take the expectation over each f (i) and σ(i) to conclude the proof.

Remark D.1 (Why truncation). Previous analysis (Zhang et al., 2023b) to derive a similar Bayes-
optimal argument does not truncate the history and treats the whole history as an inhomogeneous
Markov chain. Then they apply the concentration inequalities on Markov chains (for example, Lemma
F.2) to control the difference between R and r. However, their arguments have two limitations: the
first one is that their model is assumed to make decisions based on the full history, which clearly
exceeds the Transformer’s model’s capacity. The second limitation is that such a concentration
argument for Markov chains often relies on upper bounding the mixing time or lower bounding the
spectral gap (for example, Fan et al. (2021)). But Zhang et al. (2023b) do not specify this the mixing
time. Furthermore, in each sampled task sequence (assume we know the task f (i)), the mixing time
of the (untruncated) history H̃t is infinity: if two sequences start with different initial pairs of (x1, y1),
then they will never become identical no longer what comes consecutively. Thus, their mixing time
will be T , leading to an Õ(1/

√
n) generalization, which is suboptimal if S ≪ T compared to our

result.

E PROOFS OF LEMMAS

In this section, we prove these lemmas based on the choice of the activation function act =
softmax. Similar results for other options act = ReLU can also be found in many existing
literatures (for example, see Bai et al. (2024)).

E.1 BOUNDEDNESS OF TRANSFORMERS

Lemma E.1 (Layer-wise boundedness). Suppose at the l-th layer of the Transformer, we have
∥Wm,(l)

V ∥2,2 ≤ BV for any m = 1, . . . ,M , ∥A(l)
1 ∥2,2, ∥A(l)

2 ∥2,2 ≤ BA. Then for any input H(l−1),
we have

∥H(l)∥2,∞ ≤ (1 +B2
A)(1 +MBV)∥H(l−1)∥2,∞.

Proof of Lemma E.1. For notation simplicity, we denote softmax((W (l)
K H(l−1))⊤W

(l)
Q H(l−1)) as

Sm. Note that every column of Sm is of unit 1-norm. Denote each column of Sm by smt . For any
input H , we have

∥MHAW (l)(H)∥2,∞

≤ ∥H∥2,∞ +

M∑
m=1

∥Wm,(l)
V HS∥2,∞ (by triangle inequality)

= ∥H∥2,∞ +

M∑
m=1

max
t

∥Wm,(l)
V Hsmt ∥2 (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ +

M∑
m=1

max
t

∥Wm,(l)
V H∥2,∞∥smt ∥1 (by Lemma F.5)

= ∥H∥2,∞ +

M∑
m=1

∥Wm,(l)
V H∥2,∞ (since smt is of unit 1-norm)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

≤ ∥H∥2,∞ +

M∑
m=1

∥Wm,(l)
V ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ (1 +MBV)∥H∥2,∞. (by assumption of bounded norm) (30)
For any input H , we have

∥MLPA(l)(H)∥2,∞
≤ ∥H∥2,∞ + ∥A(l)

2 ReLU(A(l)
1 H)∥2,∞ (by triangle inequality)

≤ ∥H∥2,∞ + ∥A(l)
2 ∥2,2∥ReLU(A(l)

1 H)∥2,∞ (by Lemma F.6)

= ∥H∥2,∞ + ∥A(l)
2 ∥2,2 max

t
∥ReLU(A(l)

1 H):,t∥2 (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ + ∥A(l)
2 ∥2,2 max

t
∥(A(l)

1 H):,t∥2 (since |ReLU(z)| ≤ |z| for any z ∈ R)

= ∥H∥2,∞ + ∥A(l)
2 ∥2,2∥A(l)

1 H∥2,∞ (by definition of ∥ · ∥2,∞)

≤ ∥H∥2,∞ + ∥A(l)
2 ∥2,2∥A(l)

1 ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ (1 +B2
A)∥H∥2,∞. (by assumption of bounded norm) (31)

Combining equation 30 and equation 31 yields the conclusion.

Lemma E.2 (Transformer’s boundedness). Suppose ∥Wm,(l)
V ∥2,2 ≤ BV for any m = 1, . . . ,M ,

∥A(l)
1 ∥2,2, ∥A(l)

2 ∥2,2 ≤ BA for any l ∈ [L]. We further assume the projection matrix P is of bounded
norm ∥P⊤∥2,∞ ≤ BP . Then the Transformer’s outputs satisfy that

|ŷ(H)| ≤ C1∥H∥2,∞, and exp(−C1∥H∥2,∞) ≤ σ̂(H) ≤ 1 + C1∥H∥2,∞,

where C1 := BP (1 +B2
A)

L(1 +MBV)
L is a specified constant.

Proof of Lemma E.2. By Lemma E.1 and a “peeling” argument, we can easily prove that

∥H(L)∥2,∞ ≤ (1 +B2
A)

L(1 +MBV)
L∥H(0)∥2,∞.

Thus,
∥H(L)

:,t ∥2 ≤ ∥H(L)∥2,∞ ≤ (1 +B2
A)

L(1 +MBV)
L∥H(0)∥2,∞.

Denote P by P = [p1, p2]
⊤, where p1 and p2 are vectors of dimension d. Then the first output

ŷ = p⊤1 H
(L)
:,t ,

where we have (by Cauchy-Schwarz inequality),

|ŷ| ≤ ∥p1∥2∥H(L)
:,t ∥2 ≤ BP (1 +B2

A)
L(1 +MBV)

L∥H(0)∥2,∞.

The other output σ̂ can be proved similarly as long as one notices
log(1 + exp(−x)) ≥ exp(−x), and log(1 + exp(x)) ≤ 1 + x,

for any x ≥ 0.

Lemma E.3 (Boundedness of loss). Under Assumption B.5 with ∥θ∥ ≤ BTF and Assumption B.6
with ∥H∥2,∞ ≤ BH almost surely, we have

|ℓ(TFθ(Ht), yt)| ≤ C2

almost surely, where C2 := (C1 + 1)2B2
H · exp(2C1BH) + max{C1BH , 1 + log(C1BH)} is a

specified constant, and C1 is a constant defined in Lemma E.2.

Proof of Lemma E.3. By Lemma E.2, we have

(yt − ŷ(Ht))
2

2σ̂2(Ht)
≤ (yt − ŷt(Ht))

2 · exp(2C1BH)

2

≤ (y2t + ŷt(Ht)
2) · exp(2C1BH)

≤ (C1 + 1)2B2
H · exp(2C1BH),

where the second inequality follows from Cauchy’s inequality. Combining with a triangle inequality,
we have the desired result.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.2 LIPSCHITZNESS OF TRANSFORMERS

Lemma E.4 (Lipschitzness of multi-head attention). Suppose we define the output’s norm as ∥ · ∥2,∞,
the norm of W as

∥W∥ := max{∥Wm
V ∥2,2, ∥Wm

K ∥2,2, ∥Wm
Q ∥2,2 : m = 1, . . . ,M},

and the input H’s norm as ∥·∥2,∞. Suppose at the l-th layer of the Transformer, we have ∥Wm,(l)∥ ≤
BW for any m = 1, . . . ,M , and ∥H(l−1)∥2,∞ ≤ B

(l−1)
H almost surely. Then MHAW (l)(H(l−1)) is

C
(l)
3 -Lipschitz with respect to W (l) and C4-Lipschitz with respect to H(l−1) almost surely. Here

C
(l)
3 := 2B2

W (B
(l−1)
H)3 + (B

(l−1)
H) and C4 := 1 +MBW are specified constants.

Proof of Lemma E.4. We first prove the Lipschitzness result for W . To ease the notations, we omit
the dependence on l and sometimes abbreviate W⊤

KWQ as WKQ. For any W and W ′, using triangle
inequality twice, we have∥∥MHAW (H)− MHAW ′(H)

∥∥
2,∞

≤
M∑

m=1

∥∥Wm
V Hsoftmax(H⊤Wm

KQH)−Wm′
V Hsoftmax(H⊤Wm′

KQH)
∥∥
2,∞

≤
M∑

m=1

∥∥∥Wm
V H

(
softmax(H⊤Wm

KQH)− softmax(H⊤Wm′
KQH)

)∥∥∥
2,∞

+

M∑
m=1

∥∥∥(Wm
V −Wm′

V

)
Hsoftmax(H⊤Wm′

KQH)
∥∥∥
2,∞

. (32)

We now deal with two terms in equation 32 separately. Since our conclusion will be made for arbitrary
m ∈ [M], we omit the dependence on m for notation simplicity from now on.

For the first term, we have∥∥∥WV H
(
softmax(H⊤WKQH)− softmax(H⊤W ′

KQH)
)∥∥∥

2,∞

= max
t

∥∥WV H
(
softmax(H⊤WKQht)− softmax(H⊤W ′

KQht)
)∥∥

2
(by definition of ∥ · ∥2,∞)

≤ ∥WV H∥2,∞ ·max
t

∥∥(softmax(H⊤WKQht)− softmax(H⊤W ′
KQht)

)∥∥
1

(by Lemma F.5)

≤ ∥WV ∥2,2∥H∥2,∞ ·max
t

∥∥(softmax(H⊤WKQht)− softmax(H⊤W ′
KQht)

)∥∥
1

(by Lemma F.6)

≤ 2∥WV ∥2,2∥H∥2,∞ ·max
t

∥∥H⊤WKQht −H⊤W ′
KQht

∥∥
∞ (by Lemma F.7)

≤ 2∥WV ∥2,2∥H∥2,∞ ·max
t

∥H∥2,∞
∥∥WKQht −W ′

KQht

∥∥
2

(by Lemma F.5)

≤ 2∥WV ∥2,2∥H∥22,∞ ·max
t

∥∥WKQ −W ′
KQ

∥∥
2,2

∥ht∥2 (by Lemma F.5)

≤ 2∥WV ∥2,2∥H∥22,∞ ·
∥∥WKQ −W ′

KQ

∥∥
2,2

∥Ht∥2,∞ ((by definition of ∥ · ∥2,∞)

≤ 2∥WV ∥2,2∥H∥32,∞ ·
(∥∥WKWQ −WKW ′

Q

∥∥
2,2

+
∥∥WKW ′

Q −W ′
KW ′

Q

∥∥
2,2

)
((by triangular inequality)

≤ 2∥WV ∥2,2∥H∥32,∞ ·
(
∥WK∥2,2∥WQ −W ′

Q∥2,2 + ∥WK −W ′
K∥2,2∥W ′

Q∥2,2
)
. ((by sub-multiplicativity of matrix norm)

≤ 2B2
W (B

(l−1)
H)3 ·

(
∥WQ −W ′

Q∥2,2 + ∥WK −W ′
K∥2,2

)
. ((by bounded norm assumption)

(33)

For notation simplicity, we denote softmax(H⊤Wm′
KQH) by S. Note that every column of S is of

unit 1-norm. Denote each column of S by st. For the second term, we have∥∥∥(WV −W ′
V

)
Hsoftmax(H⊤Wm′

KQH)
∥∥∥
2,∞

= ∥(WV −W ′
V)HS∥2,∞ (by notation substitution)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

= max
t

∥(WV −W ′
V)Hst∥2 (by definition of ∥ · ∥2,∞)

≤ max
t

∥(WV −W ′
V)H∥2,∞∥st∥1 (by Lemma F.5)

= ∥(WV −W ′
V)H∥2,∞ (since st is of unit 1-norm)

≤ ∥WV −W ′
V ∥2,2∥H∥2,∞ (by Lemma F.6)

≤ B
(l−1)
H ∥WV −W ′

V ∥2,2. (by assumption of bounded norm) (34)

Substituting equation 33 and equation 34 into equation 32, we can conclude that MHAW (l)(H(l−1)) is
C

(l)
3 -Lipschitz with respect to W (l) for C(l)

3 := 2B2
W (B

(l−1)
H)3 + (B

(l−1)
H).

As for the second Lipschitzness conclusion (the one w.r.t. H), it is straightforward if one replaces H
with H −H ′ in the proof of equation 30.

Lemma E.5 (Lipschitzness of multi-layer perceptron). Suppose we define the output’s norm as
∥ · ∥2,∞, the norm of W as

∥A∥ := max{∥A1∥2,2, ∥A2∥2,2},
and the input H’s norm as ∥·∥2,∞. Suppose at the l-th layer of the Transformer, we have ∥A(l)∥ ≤ BA

and ∥H∥2,∞ ≤ B
′(l−1)
H almost surely. Then MLPA(l)(H) is C(l)

5 -Lipschitz with respect to A(l) and
C6-Lipschitz with respect to H almost surely. Here C

(l)
5 := BAB

′(l−1)
H and C6 := 1 + B2

A are
specified constants.

Proof of Lemma E.5. We first prove the Lipschitzness result for A. To ease the notations, we omit
the dependence on l. For any A and A′, we have∥∥MLPA(H)− MLPA′(H)∥2,∞
≤
∥∥(A2 −A′

2)ReLU(A1H)
∥∥
2,∞ +

∥∥A′
2(ReLU(A1H)− ReLU(A′

1))
∥∥
2,∞ (by triangle inequality)

≤ ∥A2 −A′
2∥2,2

∥∥ReLU(A1H)
∥∥
2,∞

+ ∥A′
2∥2,2

∥∥ReLU(A1H)− ReLU(A′
1H)

∥∥
2,∞ (by Lemma F.6)

= ∥A2 −A′
2∥2,2 max

t
∥ReLU(A1H):,t∥2

+ ∥A′
2∥2,2 max

t
∥ReLU(A1H):,t − ReLU(A′

1H):,t∥2 (by definition of ∥ · ∥2,∞)

≤ ∥A2 −A′
2∥2,2 max

t
∥(A1H):,t∥2 + ∥A′

2∥2,2 max
t

∥(A1H):,t − (A′
1H):,t∥2

(since |ReLU(z1)− ReLU(z2)| ≤ |z1 − z2| for any z1, z2 ∈ R)

= ∥A2 −A′
2∥2,2∥A1H∥2,∞ + ∥A′

2∥2,2∥A1H −A′
1H∥2,∞ (by definition of ∥ · ∥2,∞)

≤ ∥A2 −A′
2∥2,2∥A1∥2,2∥H∥2,∞ + ∥A′

2∥2,2∥A1 −A′
1∥2,2∥H∥2,∞ (by Lemma F.6)

≤ BAB
′(l−1)
H

(
∥A1 −A′

1∥2,2 + ∥A2 −A′
2∥2,2

)
(by assumption of bounded norm)

(35)

As for the second Lipschitzness conclusion (the one w.r.t. H), it is straightforward if one replaces H
with H −H ′ in the proof of equation 31.

Lemma E.6 (Lipshitzness of Transformer). Suppose we define each output’s norm as | · | for ŷ and
σ̂, the norm of θ as

∥θ∥ := max{∥W∥, ∥A∥, ∥P∥},
where ∥W∥ is as defined in Lemma E.4, ∥A∥ is as defined in Lemma E.5, and ∥P∥ := ∥P⊤∥2,∞,
and the input H’s norm as ∥ · ∥2,∞. Suppose we have ∥θ∥ ≤ BTF, and ∥H∥2,∞ ≤ BH almost surely.
Then ŷθ(H) is C7-Lipschitz with respect to θ, and σ̂θ(H) is C8-Lipschitz with respect to θ.

Proof of Lemma E.6. First we quantify the constants B(l−1)
H in Lemma E.4 and the constants B

′(l−1)
H

in Lemma E.5 via Lemma E.1. As is shown in the proof of Lemma E.1, we can define

B
(l−1)
H := (1 +MBTF)

l−1(1 +B2
TF)

l−1, l = 1, . . . , L,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

and
B

′(l−1)
H := (1 +MBTF)

l(1 +B2
TF)

l−1, l = 1, . . . , L,

such that all requirements in Lemma E.4 and Lemma E.5 are met almost surely. Thus, we bound the
gap between H(l) (the output of TFθ after l layers) and H ′(l) (the output of TFθ′ after l layers) by
induction. We claim that if H(0) = H ′(0), then there exists a constant C(l)

9 for any l = 1, . . . , L that
do not depend on θ or H , such that

∥H(l) −H ′(l)∥2,∞ ≤ Cl
9∥θ − θ′∥.

We prove it by induction. For l = 1, the case can be verified by calculation: by Lemma E.4,

∥MHAW (1)(H(0))− MHAW ′(1)(H(0))∥2,∞ ≤ C
(1)
3 ∥θ − θ′∥.

Similarly, by Lemma E.5,

∥H(1) −H ′(1)∥2,∞ = ∥MLPA(1)(MHAW (1)(H(0)))− MLPA′(1)(MHAW ′(1)(H(0)))∥2,∞
≤ ∥MLPA(1)(MHAW (1)(H(0)))− MLPA(1)(MHAW ′(1)(H(0)))∥2,∞
+ ∥MLPA(1)(MHAW ′(1)(H(0)))− MLPA′(1)(MHAW ′(1)(H(0)))∥2,∞

≤ C6∥MHAW (1)(H(0))− MHAW ′(1)(H(0))∥2,∞ + C
(1)
5 ∥θ − θ′∥

≤ (C6C
(1)
3 + C

(1)
5)∥θ − θ′∥, (36)

where we define C1
9 as C1

9 := C6C
(1)
3 + C

(1)
5 . Suppose our conclusion holds for any l ≤ l0 − 1.

Then for l = l0, we have

∥MHAW (l0)(H(l0−1))− MHAW ′(l0)(H ′(l0−1))∥2,∞
≤ ∥MHAW (l0)(H(l0−1))− MHAW (l0)(H ′(l0−1))∥2,∞ + ∥MHAW (l0)(H ′(l0−1))− MHAW ′(l0)(H ′(l0−1))∥2,∞
≤ C4∥H(l0−1) −H ′(l0−1)∥2,∞ + C

(l0)
3 ∥θ − θ′∥

≤ (C4C
(l0−1)
9 + C

(l0−1)
3)∥θ − θ′∥,

by applying Lemma E.4. We can again compute the difference between H(l0) and H ′(l0) similar to
what we do in equation 36 as

∥H(l0) −H ′(l0)∥2,∞ ≤
(
C6(C4C

(l0−1)
9 + C

(l0−1)
3) + C

(l0)
5

)
∥θ − θ′∥.

Hence the induction holds if we define C
(l0)
9 := C6(C4C

(l0−1)
9 + C

(l0−1)
3) + C

(l0)
5 . Now we have

proved

∥H(L) −H ′(L)∥2,∞ ≤ C
(L)
9 ∥θ − θ′∥.

We shall see from Cauchy-Schwarz inequality that

|ŷ − ŷ′| ≤ ∥p1 − p′1∥2∥H(L)∥2,∞ − ∥p′1∥2∥H(L) −H ′(L)∥2,∞
≤ ∥θ − θ′∥(1 +MBTF)

L(1 +B2
TF)

L +BTFC
(L)
9 ∥θ − θ′∥

=
(
(1 +MBTF)

L(1 +B2
TF)

L +BTFC
(L)
9

)
∥θ − θ′∥,

where the second inequality follows from the proof of Lemma E.6. We can now define

C7 := (1 +MBTF)
L(1 +B2

TF)
L +BTFC

(L)
9 ,

and conclude the proof for ŷ. As for θ̂, we can see from the fact log(1 + exp(·)) is 1-Lipschitz that
the Lipschitzness also holds for C8 := C7.

Lemma E.7 (Lipschitzness of loss). Suppose we have ∥θ∥ ≤ BTF and ∥H∥2,∞ ≤ BH almost surely,
where the norm of θ is the same as defined in Lemma E.6. Then ℓ(TFθ(H), y) is C10-Lipschitz with
respect to θ almost surely.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proof of Lemma E.7. Based on the Lipschitzness of the Transformer w.r.t. θ (Lemma E.6), we only
need to prove that both partial derivatives ∂ℓ

∂ŷ and ∂ℓ
∂σ̂ are bounded. For the first partial derivative, we

have ∣∣∣∣ ∂ℓ∂ŷ
∣∣∣∣ = ∣∣(y − ŷ)

∣∣ · 1

σ̂2

≤ (1 + C1)BH exp(2C1BH). (by Lemma E.2) (37)

For the second partial derivative, we have∣∣∣∣ ∂ℓ∂σ̂
∣∣∣∣ =

∣∣− (y − ŷ)2 + σ2
∣∣

σ̂3

≤
(
(1 + C1)

2B2
H + (1 + C1BH)2

)
· exp(3C1BH). (by Lemma E.2) (38)

Combining inequalities equation 37 and equation 38 with the Lipschitzness of ŷ and σ̂ w.r.t. θ, we
conclude the result with

C10 := (1 + C1)BH exp(2C1BH)C7 +
(
(1 + C1)

2B2
H + (1 + C1BH)2

)
exp(3C1BH)C8,

where C7 and C8 are constants that appear in Lemma E.6.

E.3 CONSTRUCTING DISTRIBUTIONS OVER PARAMETER SPACE

In this section, we formally define two distributions over the parameter space Θ. The first distribution
ρθ̂ may depend on the empirical distribution, while the second distribution πθ should be independent
of the training dataset. We control the Kullback-Leibler divergence between ρθ̂ and πθ in Lemma
E.11. For notation simplicity, we may use some notations of different meanings from the main text.

For any dimension d, we denote the Lebesgue measure over Rd by λd(·). Then we have the following
lemma.

Lemma E.8 (Upper bound for p.d.f.). Suppose ρ is the uniform distribution over B(x0, 3r)∩B(0, R)
for some x0 ∈ B(0, R) ⊂ Rd, where the Lebesgue measure is defined as λd(·), and R > 3r. Then
the p.d.f. pρ(·) exists and

pρ(x) ≤
1

λd

(
B(0, r)

) .
Proof of Lemma E.8. Denote the set to be S := B(x0, 3r)∩B(0, R). Since ρ is the uniform distribu-
tion, we just need to prove that

λd(S) ≥ λd

(
B(0, r)

)
.

This is true because there exists some x′ ∈ Rd s.t. B(x′, r) ⊂ S. In fact, we can construct the small
ball as

B
(
x0 −

x0

∥x0∥
· 1.5r, r

)
⊂ S.

Lemma E.9 (Upper bound for KL divergence). Suppose the probability space is defined on B(0, R).
Suppose ρ is the uniform distribution over B(x0, 3r) ∩ B(0, R) for some x0 ∈ B(0, R) ⊂ Rd, where
the Lebesgue measure is defined as λd(·), and R > 3r. Suppose π is the uniform distribution over
B(0, R). Then

Dkl(ρ∥π) ≤ O(Cd · log(R/r)),

where Cd := log(λd(B(0, 1))) is some constant related to d.

Proof of Lemma E.9. Since ρ ≪ π, we can define the Radon-Nikodym derivative as dρ
dπ . By Lemma

E.8, we can upper bound the RN derivative by

dρ

dπ
(x) =

1/λd(B(x0, 3r) ∩ B(0, R))

1/λdB(0, R)
≤ O(Cd · log(R/r)).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Hence,

Dkl(ρ∥π) =
∫
x∈B(0,R)

log
(dρ
dπ

(x)
)
dρ(x)

≤
∫
x∈B(0,R)

O(Cd · log(R/r))dρ(x)

= O(Cd · log(R/r)).

Remark E.10. Note that Cd = π
n
2

Γ(n
2 +1) is uniformly upper bounded. Here π denotes the ratio of a

circle’s circumference to its diameter, and Γ is the Gamma-function.
Lemma E.11 (Upper bound for Dkl(ρθ̂∥πθ)). Suppose we are considering probability measures over
the space specified by Assumption B.6 (that is, Θ = B(0, BTF)). For each layer l and each m, suppose
we define the norm over each WQ,WK ∈ Rdm×d, WV ∈ Rd×d, A1 ∈ Rdh×d, A2 ∈ Rd×dh to be the
Frobenius norm (that is, ∥·∥2,2). Suppose P = [p1, p2]

⊤, and we define the norm over p1, p2 ∈ Rd to
be the Euclidean norm. For each layer l and each m, suppose we have the probability measures ρŴQ

,
ρŴK

, ρŴV
, ρÂ1

, ρÂ2
as the uniform distribution over B(0, 1/(nT))∩B(0, BTF)), and the probability

measures πWQ
, πWK

, πWV
, πA1

, πA2
as the uniform distribution over B(0, BTF)). Suppose we have

the probability measures ρp̂1
, ρp̂2

as the uniform distribution over B(0, 1/(nT)) ∩ B(0, BTF)), and
the probability measures πp1

, πp2
as the uniform distribution over B(0, BTF)). Suppose we define

ρθ̂ :=
(⊗

m,l

ρ
Ŵ

m,(l)
Q

)
⊗
(⊗

m,l

ρ
Ŵ

m,(l)
K

)
⊗
(⊗

m,l

ρ
Ŵ

m,(l)
V

)
⊗
(⊗

l

ρ
Â

(l)
1

)
⊗
(⊗

l

ρ
Â

(l)
2

)
⊗ ρp̂1

⊗ ρp̂2
, (39)

and

πθ :=
(⊗

m,l

π
W

m,(l)
Q

)
⊗
(⊗

m,l

π
W

m,(l)
K

)
⊗
(⊗

m,l

π
W

m,(l)
V

)
⊗
(⊗

l

π
A

(l)
1

)
⊗
(⊗

l

π
A

(l)
2

)
⊗ πp1 ⊗ πp2 , (40)

where ⊗ represents the product of measures. Then we have

Dkl(ρθ̂∥πθ) ≤ O
(
C11 log(nTBTF)

)
,

where C11 is some specified constant that depends polynomially on L,M, d, dm, dh.

Proof of Lemma E.11. By setting r = 1
3nT for Lemma E.9 and R = BTF, we have for each m =

1, . . . ,M and l = 1, . . . , L,

Dkl(ρŴm,(l)
Q

∥π
W

m,(l)
Q

) ≤ O
(
Cddm log(nTBTF)

)
,

Dkl(ρŴm,(l)
K

∥π
W

m,(l)
K

) ≤ O
(
Cddm

log(nTBTF)
)
,

Dkl(ρŴm,(l)
V

∥π
W

m,(l)
V

) ≤ O
(
Cd2 log(nTBTF)

)
,

Dkl(ρÂ(l)
1
∥π

A
(l)
1
) ≤ O

(
Cddh

log(nTBTF)
)
,

Dkl(ρÂ(l)
2
∥π

A
(l)
2
) ≤ O

(
Cddh

log(nTBTF)
)
,

Dkl(ρp̂1
∥πp1

) ≤ O
(
Cd log(nTBTF)

)
,

Dkl(ρp̂2
∥πp2

) ≤ O
(
Cd log(nTBTF)

)
.

By Lemma F.8, we can sum up the above inequalities and get the final result.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Lemma E.12 (Bounded difference). For any θ̂ ∈ Θ, suppose we construct the distribution ρθ̂ as in
equation 39. Then for any θ ∈ supp(ρθ̂), under Assumption B.6 and Assumption B.5, we have∣∣∣ℓ(TFθ(H), y)− ℓ(TFθ̂(H), y)

∣∣∣ ≤ O
(
C10/(nT)

)
,

almost surely. Here C10 is the same as defined in Lemma E.7.

Proof of Lemma E.12. By construction shown in equation 39, we can see that for any θ ∈ supp(ρθ̂),

∥θ − θ̂∥ ≤ 1/(nT).

Then from the Lipschitzness of the loss function w.r.t. θ (Lemma E.7), we conclude the proof.

E.4 MARKOV CHAIN’S PROPERTY

Lemma E.13 (H̃S is a Markov chain (conditioned on knowing f and σ)). Suppose we have H̃S

defined as equation 14. Then H̃S is a Markov chain conditioned on knowing each f (i) and σ(i) for
each i = 1, . . . , n.

Proof of Lemma E.13. By definition, the state of H̃S will restart and does not depend on all previous
histories once H̃S

k ’s index k reaches the point of k = iT + 1. Therefore, we only need to verify that
inside each task’s sequence, the state H̃S

k is also Markovian.

Suppose k = iT + t for some i, and we considering k = iT + 1, . . . , iT + T for each t = 1, . . . , T .
We write H̃S

k and (xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt) interchangeably for notation simplicity.

Each pair of (xt, yt) is now independent conditioned on knowing the underlying f (i) and σ(i).
We omit the conditional dependencies on f (i) and σ(i) for notation simplicity. The p.d.f. of H̃S

k

conditioned on observing {H̃S
τ }iT+t

τ=iT+1 and knowing f (i) and σ(i) is

p(xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt|{H̃S
τ }iT+t

τ=iT+1 = {H̃S′
τ }iT+t

τ=iT+1, f = f (i), σ = σ(i))

= 1{xmax{1,t−S} = x′
max{1,t−S}, . . . , yt−1 = y′t−1} · p(xt, yt|f = f (i), σ = σ(i))

(by conditional independence of each pair of (xτ , yτ))

= p(xmax{1,t−S}, ymax{1,t−S}, . . . , xt, yt|H̃S
t−1 = H̃S′

t−1, f = f (i), σ = σ(i))

Thus the Markovian property holds.

We present the definition of mixing time as used in Paulin (2015).

Definition E.14 (Mixing time for inhomogeneous Markov chains). Let X1, . . . , XN be a Markov
chain with Polish state space Ω1×· · ·×ΩN (that is, Xi ∈ Ωi). Let L(Xi+t|Xi = x) be the conditional
distribution of Xi+t given Xi = x. Let us denote the minimal t such that L(Xi+t|Xi = x) and
L(Xi+t|Xi = y) are less than ϵ away in total variational distance for every 1 ≤ i ≤ N − t and
x, y ∈ Ωi by τ(ϵ), that is, for 0 < ϵ < 1, let

d̄(t) := max
1≤i≤N−t

sup
x,y∈Ωi

TV(L(Xi+t|Xi = x),L(Xi+t|Xi = y)),

τ(ϵ) := min{t ∈ N : d̄(t) ≤ ϵ}.

We now upper bound the mixing time of (HS
t , yt).

Lemma E.15 (Mixing time for truncated history). Suppose we are considering the conditional
distribution on knowing each f (i) and σ(i). Then for the Markov chain H̃S

k , we have

τ(ϵ) ≤ min{S, T},

for any ϵ ∈ [0, 1).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof of Lemma E.15. We first consider the case when S ≤ T . The mixing property inside each
sequence H̃S

k for k = iT +1, . . . , iT +T . Since each (x, y) is i.i.d. distributed conditioned on know-
ing f (i) and σ(i), the conditional distribution of the consecutive sequence (xt+1, yt+1), . . . , (xT , yT)
is never affected by previous t pairs (x1, y1), . . . , (xt, yt) for any 1 ≤ t ≤ T . We consider the
conditional distribution on knowing f (i) and σ(i) from now on and omit the dependencies for notation
simplicity.

For any 1 ≤ t ≤ T − S, for any two points H̃S′
iT+t ̸= H̃S′′

iT+t, the distribution of H̃S
iT+t+S is

independent of previous t pairs of observed samples. In other words,

L(H̃S
iT+t+t′ |H̃S

iT+t = H̃S′
iT+t) = L(H̃S

iT+t+t′ |H̃S
iT+t = H̃S′′

iT+t),

for any t′ ≥ S. Hence,
d̄(t) = 0, for any t ≥ S.

We have
τ(ϵ) ≤ S, for any ϵ ∈ [0, 1).

When S > T , note that the flattened (truncated) history H̃S
k restarts every time it meets the end of a

sequence generated by some f (i) and σ(i). Since the length of those sequences is T , we have

τ(ϵ) ≤ T, for any ϵ ∈ [0, 1).

F TECHNICAL LEMMAS

In this section, we present some technical lemmas. Note that all the notations in this section are
chosen for simplicity and may have different meanings than those in other sections.

Lemma F.1 (McDiarmid’s inequality (McDiarmid et al., 1989)). Let X = (X1, . . . , XN) be a vector
of independent random variables taking values in a Polish space Λ = Λ1 × · · · × ΛN . Suppose that
f : Λ → R satisfies

f(x)− f(y) ≤
N∑
i=1

ci1{xi ̸= yi},

for any x, y ∈ Λ. Then for any λ ∈ R,

E
[
exp

(
λ(f(X)− E[f(X)])

)]
≤ λ2∥c∥22

2
.

Lemma F.2 (Corollary 2.11 in Paulin (2015)). Let X = (X1, . . . , XN) be a Markov chain taking
values in a Polish space Λ = Λ1 × · · · × ΛN , with mixing time τ(ϵ) for 0 ≤ ϵ < 1. Define

τmin := inf
ϵ∈[0,1)

τ(ϵ) ·
(2− ϵ

1− ϵ

)2
.

Suppose that f : Λ → R satisfies

f(x)− f(y) ≤
N∑
i=1

ci1{xi ̸= yi},

for any x, y ∈ Λ. Then for any λ ∈ R,

E
[
exp

(
λ(f(X)− E[f(X)])

)]
≤ λ2τmin∥c∥22

8
.

Lemma F.3 (Donsker-Varadhan variational formula (Donsker & Varadhan, 1983)). Let P and Q be
two probability distributions over (Θ,F). If Q ≪ P , then for any real-valued function h integrable
w.r.t. P ,

logEP [exph] = sup
Q≪P

{EQ[h]−Dkl(Q∥P)}.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Lemma F.4 (Chernoff’s bound (Chernoff, 1952)). For any random variable X , if E[exp(X)] ≤ 1,
then for any δ ∈ (0, 1),

P(X ≤ log(1/δ)) ≥ 1− δ.

Lemma F.5 (Lemma M.7 in Zhang et al. (2022)). Given any two conjugate numbers p, q ∈ [1,∞]
s.t. 1/p+ 1/q = 1, for any r ∈ [1,∞], we have

∥Ax∥r ≤ ∥A∥r,p∥x∥q, and ∥Ax∥r ≤ ∥A⊤∥p,r∥x∥q

for any matrix A ∈ Rm×n and vector x ∈ Rn.

Lemma F.6 (Lemma M.8 in Zhang et al. (2022)). Given any two conjugate numbers p, q ∈ [1,∞]
s.t. 1/p+ 1/q = 1, we have

∥AB∥p,∞ ≤ ∥A∥p,q∥B∥p,∞
for any matrix A ∈ Rm×n and matrix B ∈ Rn×r.

Lemma F.7 (Lemma M.9 in Zhang et al. (2022)). Given any two vectors x, y ∈ Rd, we have

∥softmax(x)− softmax(y)∥1 ≤ 2∥x− y∥∞.

Lemma F.8 (Property of Kullback-Leibler divergence, Proposition 7.2 in Polyanskiy & Wu (2024)).
Given any two probability distributions µ1 and µ2 over (Ω,F) and any two distributions ν1 and ν1
over (Ω′,F ′), if µ1 ≪ µ2 and ν1 ≪ ν2, then we have

Dkl(µ1 ⊗ ν1∥µ2 ⊗ ν2) = Dkl(µ1∥µ2) +Dkl(ν1∥ν2).

G EXPERIMENT DETAILS

G.1 TRAINING DATA GENERATION

We first describe a basic setup of all our experiments. For some experiments, we change some part(s)
in below to design the corresponding “flipped” experiment or to examine the OOD ability of the
trained transformer. In particular, the i-th thread the training data(

x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)
is generated by the following distributions:

• PX : the feature vector x(i)
t

i.i.d.∼ N (0, Id) where Id is d-dimensional identity matrix.

• Pϵ: the noise ϵ
(i)
t

i.i.d.∼ N (0, 1).

• Pσ: the noise intensity σi is sampled i.i.d. from

τi ∼ Gamma(τ , τ̄), σi =
1

√
τi

where the parameters τ = τ̄ = 20 for the basic setup of the experiment. We change these
two parameters for some OOD experiments.

• PF : The function fi(x) := w⊤
i x where wi is generated from

wi|σi ∼ N (w̄, σ2
i · Id)

where Id is the d-dimension identity matrix and w̄ is set to be an all-one vector of dimension
d. The covariance matrix of wi is related with the noise intensity σi to control the signal-to-
noise ratio.

Finally, the target variable is calculated by

y
(i)
t = w⊤

i x
(i)
t + σiϵ

(i)
t .

Throughout the paper, we consider the dimension d = 8.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

G.2 NUMBER OF TASKS N AND TRAINING PROCEDURE

In the previous Section G.1, we define how we generate the training data. As in the previous work,
we introduce the notion of task where each realization of (wi, σi) is referred to as one task. The
rationale is that each configuration of (wi, σi) corresponds to one pattern of the sequence (xt, yt)’s.
While the distribution of (wi, σi) corresponds to infinitely many possible task configurations, we use
a finite pool of tasks for training the Transformer. Specifically, we generate

T := {(wi, σi)}Ni=1

from the distributions discussed above. Throughout the paper, we use N to refer to the total number
of tasks or the pool size.

Training the Transformer for our setting is slightly different from the classic ML model’s training.
We do not use a fixed set of training data. Rather, we generate a new batch of training data freshly for
each batch.

• The batch size b = 64. For each batch, we first sample with replacement b tasks from
the task pool T . And based on each sampled (wi, σi), we generate a training sequence(
x
(i)
1 , y

(i)
1 , x

(i)
2 , y

(i)
2 , ..., x

(i)
T , y

(i)
T

)
following the setting in the previous Section G.1.

• All the numerical experiments in our paper run for 200,000 batches.

The validation and testing sets are also randomly generated instead of fixed beforehand. But unlike
the training phase which draws the task configuration from the task pool T , the validation and test
phase samples (wi, σi) directly from the original distribution described in the previous Section G.1.
This is aimed to validate or test whether the trained model has learned the ability to solve a family of
problems, or it only just memorizes a fixed pool of tasks T .

G.3 DERIVATION OF BAYES-OPTIMAL PREDICTOR

In Proposition 3.1, we state the Bayes-optimal predictor in the form of a posterior expectation. Now
we calculate the Bayes-optimal predictor explicitly under the generation mechanism specified in
Section G.1. Conditional on history Ht = (x1, y1, . . . , xt), the posterior distribution of (w, σ) that
governs the generation of Ht can be calculated based on the Bayesian posterior as

P(τ |Ht) = Gamma(τ ; τ t, τ̄t), σ =
1√
τ
,

P(w|σ,Ht) = N (wt, σ
2 · Σt),

where

Σt =

(
Id +

t−1∑
s=1

xsx
⊤
s

)−1

, wt = Σt

(
w̄ +

t−1∑
s=1

xsys

)

τ t = τ +
t

2
, τ̄t = τ̄ +

1

2

t−1∑
s=1

(
y2s + w̄⊤w̄ − w⊤

s Σ
−1
t ws

)
.

Accordingly, the Bayes-optimal predictor becomes

y∗t (Ht) = E[yt|Ht] = w⊤
t xt,

and

σ∗2
t (Ht) = E[(yt − y∗t (Ht))

2|Ht] = E[(f(xt)− y∗t (Ht))
2|Ht] + E[σ2|Ht]

=
τ̄t

τ t − 1
· (tr

(
xtx

⊤
t Σt

)
+ 1).

These formulas are used to generate the Bayes-optimal curves in the figures.

35

	Introduction
	Problem Setup
	Motivation for the uncertainty quantification objective

	In-Context Learning when In-Distribution
	In-Context Learning under Distribution Shifts
	Task shift
	Covariates shift
	Length shift and positional embedding

	Conclusion
	Related Works
	Transformer Model
	Assumptions
	Approximation Error

	More Numerical Results and Discussions
	In-distribution performance
	Out-of-distribution perfomance
	Training dynamics and task shift OOD performance
	Covariate shift experiment

	Proofs of the Results in the Main Paper
	Proof of Proposition 3.1
	Proof of Theorem 3.2

	Proofs of Lemmas
	Boundedness of Transformers
	Lipschitzness of Transformers
	Constructing Distributions over Parameter Space
	Markov Chain's Property

	Technical Lemmas
	Experiment Details
	Training data generation
	Number of Tasks N and Training Procedure
	Derivation of Bayes-optimal Predictor

