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Abstract

Accurate molecular property predictions require 3D geometries, which are typically obtained
using expensive methods such as density functional theory (DFT). Here, we attempt to obtain
molecular geometries by relying solely on machine learning interatomic potential (MLIP)
models. To this end, we first curate a large-scale molecular relaxation dataset comprising 3.5
million molecules and 300 million snapshots. Then MLIP pre-trained models are trained with
supervised learning to predict energy and forces given 3D molecular structures. Once trained,
we show that the pre-trained models can be used in different ways to obtain geometries
either explicitly or implicitly. First, it can be used to obtain approximate low-energy 3D
geometries via geometry optimization. While these geometries do not consistently reach
DFT-level chemical accuracy or convergence, they can still improve downstream performance
compared to non-relaxed structures. To mitigate potential biases and enhance downstream
predictions, we introduce geometry fine-tuning based on the relaxed 3D geometries. Second,
the pre-trained models can be directly fine-tuned for property prediction when ground truth
3D geometries are available. Our results demonstrate that MLIP pre-trained models trained
on relaxation data can learn transferable molecular representations to improve downstream
molecular property prediction and can provide practically valuable but approximate molecular
geometries that benefit property predictions.

1 Introduction

Molecular property prediction is a critical task in drug discovery, chemistry, and materials science (Zhang
et al., |2023; Liyaqat et al) 2024)). Many molecular properties are strongly influenced by the stable 3D
structure of a molecule, corresponding to its lowest potential energy configuration. For example, as shown
in Table [1} in predicting the HOMO-LUMO gap property, GIN (Hu et all 2021)—which uses only 2D
molecular graphs as input—achieves notably worse performance compared to PaiNN (Schutt et al., 2021),
which leverages stable 3D geometries. With accurate 3D structures, 3D geometric neural networks (3DGNNs)
can significantly improve property prediction accuracy. However, the current standard for obtaining stable
molecular structures relies on computationally expensive methods such as density functional theory (DFT)
for geometry optimization. Uni-Mol+ (Lu et al., [2023) attempts to bridge this gap by predicting stable 3D
geometries during training, allowing only non-stable molecule structures to be used during testing; however,
it outperforms GIN but still exhibits a significant performance gap compared to 3DGNNSs, highlighting that
obtaining useful 3D geometries for property prediction remains a major challenge.

To bridge the gap of obtaining 3D geometries for molecular property prediction, we aim to train a machine
learning interatomic potential (MLIP) pre-trained model to assist geometry relaxation for downstream tasks
where only non-stable molecular structures are available during testing. This approach enables the use of
downstream 3DGNNs for property prediction using pre-trained model-relaxed geometries, referred to as
Force2Geo in Table[[] We emphasize that Force2Geo produces approximate geometries that may not always
converge to the true DFT-optimized structures, and its effectiveness depends on the molecular system and
downstream task. Additionally, the pre-trained model can be directly fine-tuned on downstream tasks when
3D molecular structures are provided. pre-trained models have demonstrated remarkable success in computer
vision (Bommasani et al.l [2021; [Liu et al.;2024) and natural language processing (Brown et al., |2020; ' Touvron
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2023)), where pre-training yields transferable representations that significantly enhance downstream
performance. However, the development of MLIP pre-trained models for small molecules has been hindered
by the lack of large-scale datasets with DFT-level accurate energy and force labels.

In this work, to address the challenge of efficiently obtaining ac-
curate 3D molecular structures, we curate a large-scale molecular
relaxation dataset comprising 3.5 million small molecules and 300
million snapshots with energy and force labels, including 105 mil-
lion snapshots computed using DFT at the B3LYP/6-31G* level of

Table 1: Performance gap between 2D
and 3D models for HOMO-LUMO gap
prediction on Molecule3D dataset.

. . . . Model Validation MAE (eV

theory. By leveraging this extensive dataset, we can train an MLIP )
. . N GIN 0.1249
pre-trained model that can be used in geometry optimization to Uni-Mol+ 0.1070
obtain computationally efficient but approximate 3D geometries, Force2Geo + PaiNN 0.0794
referred to as Force2Geo, providing a cost-effective alternative to DFT + PaiNN 0.0562

conventional quantum methods such as DFT. The choice of back-

bone models for pre-training can be found in Section [} Additionally, we introduce geometry fine-tuning
to enhance the downstream predictive accuracy of 3SDGNNs using relaxed 3D structures. Furthermore, the
MLIP pre-trained model can be directly fine-tuned for property prediction when ground truth 3D geometries
are available, termed Force2Prop, extending its applicability to a range of downstream tasks.

Our contributions are threefold:

e We curate a large-scale molecular relaxation dataset with 3.5M molecules and 300M snapshots,
including 105M DFT-level energy and force labels, enabling MLIP model pre-training.

e We show that the pre-trained MLIP model on our dataset can efficiently produce low-energy 3D
geometries via geometry optimization for downstream property prediction, and introduce geometry
fine-tuning to further improve 3D GNN performance.

o We demonstrate that the pre-trained model can be directly fine-tuned for molecular property prediction
when ground-truth 3D geometries are available, highlighting the effectiveness of pre-trained MLIPs
in supporting diverse downstream tasks.

2 Method

In Section 2.I] we present our curated large-scale relaxation dataset. In Section [2.2] we describe the MLIP
pre-trained model. In Section we outline the geometry optimization process using the pre-trained model.
Finally, in Section we discuss geometry fine-tuning for molecular property prediction on MLIP pre-trained
model-relaxed structures.

2.1 Large-Scale DFT Relaxation Dataset

To train an MLIP pre-trained model, a large-scale relaxation dataset with energy and force labels is essential.
However, such a dataset for small molecules is currently unavailable. To address this gap, we curated
PubChemQCR, a new dataset containing DFT-based geometry optimization trajectories for approximately
3.5 million molecules. These molecules are sourced from the PubChem Compound database. The raw
trajectory data originate from the PubChemQC database (Nakata & Shimazakil 2017), and molecular
relaxation is performed sequentially using PM3 semi-emperical method, Hartree-Fock, and DFT at the
B3LYP/6-31G* level. We extracted atomic numbers, energies, and atomic forces for each snapshot, resulting
in 3,471,000 trajectories and 298,751,667 molecular snapshots, of which 105,494,671 snapshots are DFT-
calculated. On average, each molecule contains 29 atoms, including 14 heavy atoms. Further dataset details
are provided in Appendix [A]

2.2 MLIP pre-trained Models for Small Molecules

Machine learning interatomic potentials (MLIPs) are designed to approximate the potential energy surface
(PES) of molecular systems, which is traditionally computed using quantum mechanical methods such as
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Figure 1: Overview of the MLIP pre-trained model training pipeline. The model is pre-trained using our
curated large-scale relaxation dataset, which includes atomic numbers, forces, positions, and energies for
each snapshot. The pre-trained MLIP model can either be fine-tuned for molecular property prediction
when stable 3D geometries are available or employed for geometry optimization to obtain 3D geometries for
downstream property prediction.

density functional theory (DFT). These methods are computationally intensive, motivating the use of MLIPs
to learn the PES from DFT-calculated data. The total energy E is predicted based on atomic coordinates
{z;}Y, and atomic numbers {a;}}¥, often decomposed as a sum over atom-wise contributions, E = Y, E;.
To ensure energy conservation, atomic forces are obtained as the negative gradient of the predicted energy
with respect to atomic positions, f; = —V, E. The pipeline of the training and usage of the MLIP pre-trained
model is shown in Fig. [I] The MLIP pre-trained model enables efficient geometry optimization to obtain
3D geometries for downstream predictors requiring 3D molecular structures as inputs. Additionally, by
capturing the underlying physics of atomic interactions during pre-training, the MLIP pre-trained model
learns informative molecular representations that can be directly fine-tuned for various downstream tasks.

To effectively serve as an MLIP pre-trained model, a suitable backbone architecture is required to encode
molecular information and learn geometric relationships. For molecule representation, we usually represent
molecules as graphs G = {V, X, A}, where V € R™*4 denotes node features, X € R™"*3 represents the 3D
coordinates of atoms, and A € {0,1}"*" is the adjacency matrix. In 3D molecular graphs, edges are often
constructed using a radius graph, where an edge is formed between two atoms if their Euclidean distance is
within a predefined cutoff. Molecules that share the same chemical graph but differ in their 3D coordinates
X are referred to as conformers. For backbone models, geometric neural networks are well-suited as they
are designed for learning on data with underlying spatial or geometric structures, and are widely used for
modeling molecular systems. In this work, we consider existing geometric neural networks as candidate
backbones without developing new architectures, as architecture design is outside the scope of this study.

Formally, given a 3D molecular graph G = {V, X, A}, where each node has a feature vector v; € R% and
position x; € R3, and each edge has a feature a;; € R?, a general message passing layer for molecular systems
at layer [ is defined as:
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where ¢,, and ¢,, are neural networks, and AGG(-) denotes a permutation-invariant aggregation function
such as mean, sum, or attention-based mechanisms. After the final message passing layer, a readout function
is applied to aggregate the node embeddings into a graph-level representation y for molecular property
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prediction. Alternatively, node embeddings can be used for node-level prediction such as predicting atom-wise
energy. In molecular applications, geometric neural networks preserve equivariant or invariant representations

O]

%

to respect symmetries like rotation and translation, requiring ¢,, and ¢, to be equivariant functions and v
to be geometric objects (e.g. vectors or tensors).

Since the dataset includes trajectories computed at varying levels of quantum accuracy, we use only the
snapshots from the DFT substage to train the MLIP pre-trained model, leaving the exploration of training
with mixed levels of accuracy for future work. Additionally, the DFT substage is the most computationally
intensive, taking several hours per molecule, whereas the PM3 and Hartree-Fock stages require only a few
minutes. The training objective for the MLIP pre-trained model includes both energy and force prediction,
formulated as:

L=Xg Lr+Ar- Lr, (4)
1 N
l:E:N;|éi—€i\7 (5)
1 & R
Lp= M; I£5 — £ill2, (6)

where N denotes the number of molecules in a batch, M denotes the number of atoms in a batch, Ag and Ag
are weights to balance the energy and force loss terms, é; and e; are the predicted and ground truth energies,
and f; and f; are the predicted and ground truth forces for each atom.

2.3 Geometry Optimization

After training the MLIP pre-trained model, it can be employed to perform
geometry optimization to obtain stable 3D molecular structures. The
objective of geometry optimization is to adjust the atomic positions to
minimize the potential energy of the system while adhering to predefined
convergence criteria.

As shown in Fig. [2] the conventional DFT-based relaxation (Nakata & Shi{
mazaki, [2017)) process begins by selecting an exchange-correlation energy
functional and a basis set. The electronic structure is then determined
iteratively using the self-consistent field (SCF) method. Once the SCF
loop converges, the energy of the molecule and the corresponding atomic
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gradients are calculated. These gradients are then used to update atomic No

positions through optimization algorithms, such as Newton’s method. This )
process is repeated until the maximum force falls below the predefined . Yes
convergence threshold. In the MLIP-based relaxation process, the neu-

ral network predicts the forces directly, replacing the DFT calculation,
while the remaining procedure, including the optimization loop, remains Figure 2: Comparison of geome-
unchanged. try optimization based on DFT

In this work, we utilize the Broyden-Fletcher-Goldfarb—Shanno and MLIP.

(BFGS) (Fletcher} 2000) as the optimization algorithm for geometry op-

timization. BFGS is a quasi-Newton method that approximates the Hessian matrix to efficiently update
atomic coordinates and reduce the overall computational cost. The optimization process iteratively adjusts
the atomic coordinates {x;}, to minimize the potential energy F(x) predicted by the MLIP pre-trained
model. At each step, the atomic forces f; = —V, E are computed to guide the atomic displacements. The
maximum force is calculated as:

max__force = max (|| f;]]), (7)

where f; € R3 is the force vector for atom 4 and || - || denotes L2 norm. The optimization process terminates
when one of the following stopping criteria is met:
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Figure 3: Overview of geometry fine-tuning. In the pre-training stage, a property predictor is trained on
stable 3D molecules for property prediction. This pre-trained predictor is then fine-tuned on 3D molecular
structures relaxed by the MLIP pre-trained model, with both property prediction and geometry alignment
losses.

+ The maximum force, as defined above, falls below a threshold of 0.05¢eV/A.

¢ The maximum number of optimization steps is reached, set to 500.

2.4 Geometry Fine-Tuning

As discussed in Section [1} when accurate 3D molecular structures are available in the test set, 3DGNNs can
predict molecular properties more effectively than Uni-Mol+. The MLIP pre-trained model can be used to
obtain 3D geometries through geometry optimization. However, using pre-trained model-relaxed conformers
may introduce errors and biases due to imperfect force prediction. To address this, we introduce geometry
fine-tuning to improve the accuracy of 3DGNN predictions based on these relaxed structures. The whole
pipeline of geometry fine-tuning is shown in Fig. [3] Specifically, we first pre-train a downstream predictor
on the downstream dataset using ground-truth 3D geometries as input. We then relax the downstream
training molecules—starting from unstable conformers—using the pre-trained MLIP model, and fine-tune
the downstream predictor on these relaxed structures. This allows the predictor to adapt to the geometric
distribution produced by the pre-trained model. During testing, only the pre-trained model-relaxed geometries
are provided to the downstream predictor.

For geometry fine-tuning, we adopt a multi-task learning framework by introducing geometry alignment as
an auxiliary task to support the primary objective of property prediction. This auxiliary task is motivated
by two key intuitions: (1) learning to predict deviations from the ground-truth geometry encourages the
model to attend to subtle 3D structural cues that are critical for accurate property estimation; and (2) during
fine-tuning, the model is exposed to relaxed geometries generated by the pre-trained model, which inevitably
differ from the ground-truth geometries seen during pre-training. This introduces a distribution shift, and
the auxiliary geometry alignment task helps bridge this gap by encouraging the model to relate the relaxed
geometries back to the original ground-truth domain.

To implement the auxiliary task, we adopt a mixed conformer denoising strategy. During training, half of the
input structures are ground-truth conformers with added coordinate noise, and the other half are randomly
sampled from the relaxation trajectory produced by the MLIP pre-trained model. In addition to the main
property prediction loss, we include a geometry alignment loss based on cosine similarity, which encourages
alignment between the predicted and target atomic displacements. Formally,

£t0t31 = Eprop +A- Egem (8)

where Ly;op is the loss for molecular property prediction and Lgc, is the auxiliary geometry alignment loss,
defined as:

N
Z (1 — cos (At;, Ary)), (9)
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where Af; is the predicted displacement vector for atom ¢, Ar; is the target displacement vector, and cos(-, -)
denotes cosine similarity. A is a hyperparameter to weight the auxiliary loss.

3 Related Work

Molecular Representation Learning. Learning informative molecular representations is critical for
accurately predicting molecular properties. Early efforts focused on pre-training models on SMILES strings
using language modeling techniques such as BERT (Devlin et al.l 2019), exemplified by SMILES-BERT
. Subsequently, attention shifted toward pre-training on 2D molecular graphs by designing
self-supervised learning tasks (Hu et al., |2019} Rong et al. [2020). Other works further explored learning
shared representations between 2D and 3D molecular graphs through contrastive learning (Liu et al., 2021
Stark et al., |2022). More recently, denoising pre-training (Zaidi et al., |2022; [Feng et al., 2023; |Ni et al., 2023
Liao et al [2024) has emerged as a highly effective approach for molecular representation learning. In this
paradigm, 3D molecular structures are perturbed with specific noise, and the model is trained to predict
the applied noise. Denoising pre-training has been shown to outperform previous pre-training methods,
as it is mathematically equivalent to learning an underlying interatomic potential, leading to richer and
more physically grounded representations. Another line of work focuses on 3D GNNs that learn informative
representations of molecular geometries to predict molecular properties. Representative methods include
SchNet (Schiitt et al) 2017)), SphereNet (Liu et al] [2022), ComENet (Wang et all] [2022), DimeNet-++
(Gasteiger et al. 2020)), TorchMD-Net (Thélke & De Fabritiis| 2022), and PaiNN (Schiitt et al.|, 2021)), etc. A
key limitation of these methods is that they require access to ground-truth 3D geometries in order to achieve
accurate predictions.

Molecular Foundation Models. Inspired by the remarkable success of pre-trained models in computer
vision (Bommasani et al., [2021} [Liu et al., 2024; Zhai et al., [2022; Dehghani et al. 2023) and natural language
processing (Brown et al., [2020; Touvron et al.L[2023; [Achiam et al., 2023} [Bai et al.,[2023), molecular pre-trained
models have also begun to attract significant attention. However, due to the lack of large-scale 3D molecule
data with energy and force labels, existing molecule pre-trained models primarily focus on 1D SMILES strings
or 2D molecular graph representations. For example, ChemFM (Cai et all, [2024) adopts self-supervised
causal language modeling on SMILES, while MolE (Méndez-Lucio et al [2022) adapts DeBERTa
for molecular graphs. MolFM jointly learns molecular representations from graphs,
biomedical texts, and knowledge graphs. Nevertheless, none of these models address the fundamental task of
learning 3D molecular energies and forces, which limits their applicability to geometry-dependent tasks such
as 3D molecular property prediction, geometry optimization, etc.

4 Experiments

In this section, we demonstrate the effectiveness of the MLIP pre-trained model across several downstream
tasks. In Section we benchmark several backbone model candidates on PubChemQCR-S. In Section [£:2]
we present geometry optimization using the pre-trained model. In Section [I.3] we show that pre-trained
model-relaxed geometries can improve molecular property prediction when stable 3D structures are unavailable
in the test set. In Section we fine-tune the pre-trained model for 3D molecular property prediction.

4.1 Backbone Models

To select the backbone architecture for the MLIP pre-trained model, we benchmark several representative
MLIP models on our curated dataset. The methods include SchNet (Schiitt et al., [2018]), FAENet (Duval
et al) [2023), NequlP (Batzner et al} [2022)), Equiformer (Liao & Smidt, [2022), SevenNet (Park et al 2024),
Allegro (Musaelian et al.,|2023), PaiNN (Schiitt et al.,2021), PACE (Xu et al., |2024), and MACE (Batatia,

et al, 2023).

For training efficiency, we curated a smaller subset for model benchmarking, named PubChemQCR-S,
which contains 40,979 trajectories and 1,504,431 molecular snapshots from the DFT stage calculations. The
benchmark results are summarized in Table 2] In selecting a pre-trained model backbone, we consider both
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predictive performance and computational efficiency. Among the candidates, PaiNN demonstrates relatively
strong energy prediction accuracy and the second-best force prediction performance on the benchmark
while maintaining computational efficiency, making it a strong choice for large-scale pre-training. Detailed
introduction and training of those benchmarked methods can be found in Appendices [B] and [C]

4.2 Geometry Optimization

Dataset. To evaluate geometry optimization per- Table 2: Performance of representative machine learn-
formance, we select 1,000 molecules from the test ing interatomic potential (MLIP) models on the
set of PubChemQCR-S using MaxMin diversity PubChemQCR-S validation set.

sampling to ensure maximal structural diversity.

. . Model Energy MAE (meV/atom) Force RMSE (meV/A)  Time (min/epoch)
Specifically, we compute the Morgan fingerprint for — — 30 oo ™
each molecule in the test set and randomly select ~ PaiNN 5.13 16.34 2

o R X NequlP 7.37 54.78 130

an initial molecule. We then iteratively add the SevenNet 8.77 47.63 150
. . Allegro 10.86 60.71 85

molecule that has the largest Tanimoto distance e 798 60.24 o
from the currently selected set. We refer to the — MACE 7.54 51.46 120
X o - PACE 6.24 50.54 140
resulting geometry optimization test set as Depy. Equiformer 4.69 34.67 65

Metrics. Since the pre-trained model s Taple 3. Geometry optimization performance of the MLIP

trained using data from the DFT relaxation 1,10 trained model pre-trained on the curated PubChemQCR
stage, we evaluate its geometry optimization  J.¢aset.

performance by relaxing molecules starting
from the first snapshot of the DFT trajectory. —
The evaluation metrics we adopt are partially Model petr(%)  Pliuccess (%) PCtai (%) pctewr (%)
based on those proposed in (Tsypin et al., Force2Geo  57.37 10.29 8.1 4.2
2023), and include: (1) Average Energy

Minimization Percentage, pcty, quantifies how much energy is minimized by the MLIP-based optimization
relative to the DFT-based optimization; (2) Chemical Accuracy Success Rate, pcty, .o, Mmeasures the
percentage of relaxed molecules whose residual energy is within chemical accuracy (commonly defined as 1
kcal/mol); (3) Divergence Rate, pcty;,, represents the percentage of relaxed molecules for which either the
single-point DFT energy calculation failed or the relaxed DFT energy is higher than the initial energy; (4)
Force Convergence Rate, pcty, 1, measures the percentage of relaxed molecules whose maximum force is
below a threshold of 0.05 eV/ A. More details can be found in Appendix@

Results. The results are presented in Table |3 While the value of pct; indicates that the MLIP-relaxed
geometries reduce a certain amount of energy compared to the initial structures, a notable portion of
conformers remains outside the optimal region. Consequently, the values of pctg,cgess and pCtp,r are
relatively low. This highlights the inherent challenge of optimizing molecular geometries that are already
near the energy minimum—a regime where achieving further relaxation requires extremely accurate modeling
of the potential energy surface.

Discussions. We observe that the performance of geometry optimization is not yet ideal, indicating
substantial room for improvement. The challenge of achieving high-quality geometry optimization using
near-optimal training data can be attributed to several factors. First, the training data predominantly resides
in low-force regimes, which provide weak learning signals. In these regions, even though the model has seen
similar configurations, the small forces make it difficult for the model to learn very accurate gradients. Second,
MLIP-based relaxation becomes highly sensitive to small deviations in force direction when true gradients are
small. Near energy minima, the model is required to predict very small force vectors with high precision—an
inherently difficult task. Third, in low-gradient regions, the predicted forces often contain noise that can
be significant relative to the magnitude of the true forces, further increasing the difficulty of accurate force
prediction.

4.3 Molecular Property Prediction with MLIP Pre-Trained Model Relaxed Geometries

Task. As discussed in Section[I} obtaining accurate 3D geometries is crucial for achieving strong performance in
quantum property prediction. However, acquiring ground-state geometries typically requires time-consuming
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Table 4: Results of geometry fine-tuning with different kinds of conformers for the downstream PaiNN model
on the Molecule3D dataset. In this setting, ground-truth geometries are available during training, while only
non-stable geometries are provided at test time.

Random Split Scaffold Split
Conformer + Model Validation MAE (eV) Test MAE (eV) Validation MAE (eV) Test MAE (eV)
RDKit 3D + Uni-Mol+ 0.1070 0.1090 0.1688 0.2245
PM3 & HF 3D + Uni-Mol+ 0.1052 0.1080 0.1660 0.2211
RDKit 3D + PaiNN 0.1576 0.1598 0.2089 0.2741
PM3 & HF 3D + PaiNN 0.0889 0.0916 0.1400 0.1880
Force2Geo + PaiNN 0.0794 0.0822 0.1281 0.1832
DFT 3D + PaiNN (Ground truth) 0.0562 0.0575 0.1083 0.1548

DFT-based relaxation. To address this limitation, it is highly desirable to leverage machine learning
interatomic potentials (MLIPs) to generate approximate stable geometries that can support downstream
property prediction. In this task, we focus on a practical setting where ground-truth 3D geometries are
available during training, but only non-stable geometries are available at test time—consistent with the setup
used in Uni-Mol+.

Dataset. We use the Molecule3D dataset and predict the HOMO-LUMO gap, a key quantum property of
molecular electronic structure. We use a subset of the dataset containing 600,000 molecules for random and
scaffold splits. More details about the dataset can be found in Appendix [E]

Results. We compare geometry fine-tuning using input structures with varying levels of geometric accuracy.
Specifically, we evaluate downstream performance using: (1) RDKit-generated geometries, (2) geometries after
the PM3 and HF optimization, i.e. geometries before the DFT relaxation, and (3) MLIP pre-trained model-
relaxed geometries. We include (2) because the pre-trained model is trained on DFT substage trajectories
and the relaxation begins from the first snapshot of the DFT substage. For a fair comparison with Uni-Mol+,
we also evaluate Uni-Mol+ using both RDKit-generated geometries and geometries after the PM3 and HF
optimization. The results of geometry fine-tuning on the random and scaffold splits are shown in Table [4]
These results demonstrate that using pre-trained model-relaxed geometries consistently improves downstream
property prediction. Furthermore, compared to Uni-Mol+, our approach—combining MLIP-based relaxation
with a downstream 3D GNN-—achieves superior performance, suggesting that this modular pipeline is more
effective than architectures specifically designed to bridge the gap between non-stable and ground truth
molecular structures.

4.4 Fine-Tuning MLIP Pre-Trained Model for Molecular Property Prediction

Task. To demonstrate the effectiveness of the

MLIP pre-trained model for 3D molecular property Table 5: Results of HOMO-LUMO gap prediction on
prediction, we fine-tune the pre-trained pre-trained the V2DFT dataset. Best results are shown in bold, and
model on downstream tasks where the goal is to second-best results are underlined.

predict molecular properties given 3D molecular

structures. In this setting, ground-truth geometries Model Validation MAE (V) Test MAE (eV)

are used as input. We evaluate thg performance on SchNet 01216 0.1261

two benchmark datasets, as described below. SphereNet 0.0625 0.0819
ComENet 0.0831 0.1135

Datasets. We use Molecule3D subset created DimeNet -+ 0.0545 0.0786

in Section [4.3]and V2DFT (Khrabrov et al. 2024)  TorchMD-Net 0.0815 0.1029

datasets. The details of the datasets can be found ~— PaiNN 0.0589 0.0857
Force2Prop w/ PaiNN 0.0483 0.0683

in Appendix [E] In this task, we predict the HOMO-
LUMO gap, and ground truth 3D geometries are
provided. Additional results on the full Molecule3D dataset are provided in Appendix

Baselines. We select a set of representative models as baselines, including GIN-virtual (Hu et al.|
2021)), SchNet (Schutt et all |2017), SphereNet (Liu et al. [2022), ComENet (Wang et all [2022),
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Table 6: Results of HOMO-LUMO gap prediction on two splits of the Molecule3D dataset. Force2Prop w/
PaiNN denotes the MLIP model pre-trained on our PubChemQCR dataset. Best results are shown in bold,
and second-best results are underlined.

Random Split Scaffold Split
Model Validation MAE (eV) Test MAE (eV) Validation MAE (eV) Test MAE (eV)
GIN-virtual 0.1249 0.1272 0.1920 0.2421
Uni-Mol+ 0.1070 0.1090 0.1688 0.2245
SchNet 0.0718 0.0731 0.1253 0.1837
ComENet 0.0675 0.0693 0.1258 0.1876
DimeNet++ 0.0550 0.0569 0.1106 0.1729
TorchMD-Net 0.0507 0.0525 0.1037 0.1454
PaiNN 0.0562 0.0575 0.1083 0.1548
Force2Prop w/ PaiNN 0.0471 0.0486 0.0911 0.1298

DimeNet++ (Gasteiger et al., [2020), TorchMD-Net (Tholke & De Fabritiis, 2022]), Uni-Mol+ (Lu et al.l
2023), and PaiNN (Schutt et al., 2021). For the Molecule3D dataset, we include 2D models, 3D models, and
hybrid approaches like Uni-Mol+. For the V2DFT dataset, we focus exclusively on 3D models.

Results. The results for the Molecule3D random split 0.6 e

o
w»

I
IS

o
w

Validation MAE (eV)

o
]

o
-

Figure 4: Compare fine-tuning the full pre-trained
model versus training only the prediction head
using pre-trained or random features.

and scaffold split are reported in Table[6] The fine-tuned — Pretrained model & finetune head
pre-trained model achieves the best performance in both | —— Prerojned mode & nchune whele meds!
settings. The scaffold split is a more challenging evalua-

tion setup, as it requires models to generalize to out-of-

distribution molecular scaffolds. As expected, all meth- 1 MM

ods perform worse on the scaffold split compared to the

random split, and the gap between validation and test

accuracy is also larger in the scaffold setting. GIN-virtual \\\\s

performs the worst among all methods, as it only uses the

2D molecular graph as input, while the HOMO-LUMO gap 0 100000 %‘_’a"fr’ﬁgg St:;;bo" 400000

is highly sensitive to 3D molecular geometry. Uni-Mol+

outperforms GIN-virtual by incorporating ground-truth

3D geometries during training and learning to predict

stable 3D structures from RDKit-initialized conformers.

However, it still lags behind 3D GNN models, which use

accurate 3D geometries during both training and inference. The results on the V2DFT dataset are presented
in Table[5] Again, the fine-tuned pre-trained model achieves the best performance among the 3D baselines,
further demonstrating its effectiveness in downstream molecular quantum property prediction tasks.

Analysis. Inspired by [Zaidi et al. (2022), we conduct 012 Pre-training with different data size

an experiment to evaluate the usefulness of pre-trained o[ Sandom :sl'i‘:
features. Specifically, we freeze the backbone and fine-tune ] l\'\_
only the prediction head, and compare it to a baseline
where the backbone is randomly initialized and only the
prediction head is trained. The training curves are shown
in Fig. [ As expected, fine-tuning only the prediction
head performs worse than fine-tuning the entire model, but
still significantly outperforms training the head on top of
random features. This indicates that pre-trained features 000
provide a meaningful representation for the downstream 0 20 Pre-trAa(?ning done size (M;’O 100

task. However, to fully adapt the model and achieve

optimal performance, it is necessary to fine-tune the entire Figure 5: Fine-tuning performance of the pre-
network. trained model pre-trained with different sizes of

data.
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Figure 6: Results of fine-tuning the MLIP pre-trained model on Molecule3D with different sizes of downstream
data for @ random and @ scaffold split.

We also conduct experiments to investigate how the sizes

of the pre-training and downstream datasets affect performance on downstream tasks. As a case study, we use
HOMO-LUMO gap prediction on the Molecule3D dataset. First, we evaluate the effect of downstream dataset
size by fine-tuning the same pre-trained model on varying amounts of downstream data. The results, shown
in Fig. [6] demonstrate that increasing the amount of downstream data consistently improves performance for
both the random and scaffold splits. More importantly, the performance gain from fine-tuning the MLIP
pre-trained model over training from scratch is especially pronounced when the downstream data is limited.
This suggests that the pre-trained models is particularly beneficial in low-data regimes for downstream tasks.

Second, we assess how pre-training dataset size impacts Tupie 7: Comparison between fine-tuning the

doxynstream performz.ance by ﬁnt?—tuning the MLIP pre- 16 trained model and training from scratch us-
trained model pre-trained with different amounts of data ing SchNet as the backbone on the Molecule3D

while keeping the downstream data fixed. As shown

dataset.
in Fig. o] downstream accuracy improves steadily as the
size of the pre-training dataset increases. These results Model Validation MAE (eV)
highlight the dual importance of both pre-training scale SchNet 0.0718
and downstream data availability, and underscore the Force2Prop w/ SchNet 0.0572

value of pre-trained models in resource-constrained set-
tings. Additionally, we pre-train a different model architecture to demonstrate that the benefits of pre-training
generalize across architectures. Specifically, we pre-train SchNet as the pre-trained model and observe that it
also outperforms training from scratch, as shown in Table [7} which further validates the effectiveness of the
MLIP pre-training.

5 Summary

In this work, we train a machine learning interatomic potential (MLIP) pre-trained model using large-scale
molecule relaxation data. By curating a dataset comprising 3.5 million small molecules and 300 million
snapshots with energy and force labels computed at multiple levels of quantum accuracy, we enable the
development of MLIP pre-trained models that can be used to efficiently obtain low-energy 3D structures
through geometry optimization for downstream property predictions. Additionally, we introduce geometry
fine-tuning as a strategy to mitigate errors and biases introduced during structure relaxation, enhancing the
downstream property prediction performance using relaxed 3D geometries. Furthermore, we demonstrate
that the MLIP pre-trained model can be directly fine-tuned for molecular property prediction tasks, further
extending its applicability.
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6 Broader Impact Statement

DFT-based geometry optimization can produce highly accurate molecular structures for property prediction,
but it is computationally expensive. Our MLIP model, trained on the curated relaxation dataset, demonstrates
strong potential for efficiently generating approximate geometries and can improve downstream property
prediction to a certain extent. However, we emphasize that the geometries produced by the MLIP model
are not yet comparable to those obtained via DFT, and caution should be exercised when applying them in
critical or high-stakes scenarios. To support further research, we will release both the curated dataset and
the trained model to facilitate continued development of MLIP methods.
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A More Details about the Large-Scale DFT Relaxation Dataset

In this section, we introduce more details about our curated PubChemQCR dataset, covering data generation,
curation process, and data statistics.

A.1 Dataset Generation

The raw trajectory data are sourced from the PubChemQC database (Nakata & Shimazaki, [2017)). The
geometry optimization of each molecule follows a structured protocol. First, initial 3D molecular structures
are generated from the InChl representation using OpenBabel, providing the starting point for subsequent
quantum calculations. The first optimization is performed using the PM3 semi-empirical method. Next, the
relaxed structures undergo further refinement using the Hartree-Fock method with the STO-6G basis set.
Finally, the 3D structures are fully optimized using the B3LYP functional with the 6-31G* basis set. PM3
and Hartree-Fock optimizations are performed using the GAMESS software. The DFT optimization consists
of three substeps: first, Firefly or SMASH is used for a faster but slightly less accurate optimization. Then,
GAMESS is employed for more precise geometry optimization, followed by a final validation step to ensure
molecules are indeed optimized.

A.2 Dataset Curation

The raw trajectory data is 7T'B in size and not immediately suitable for machine learning. To make it more
accessible, we parsed all raw log files to extract the energies and forces at each snapshot, along with the
atomic numbers and coordinates of each atom.

We save the parsed trajectories in six Lightning Memory-Mapped Database (LMDB) files, leveraging its
efficient key-value storage and fast data retrieval. Each trajectory is saved as a key-value pair, where the key
is the PubChem CID, a unique identifier for chemical compounds in the PubChem database, and the value is
a dictionary containing the parsed trajectory, with keys corresponding to the names of each optimization
stage, i.e. pm3, hf, DFT_1st, and DFT_2nd. By storing snapshots from each optimization stage separately, we
provide more flexibility in selecting specific trajectory segments for training. The curated dataset is 400GB
in size, significantly smaller than the raw data. This size reduction, along with the structured data format,
enhances accessibility and usability for the research community, making it easier to develop models using the
dataset.

A.3 Dataset Statistics

The full dataset contains 3,471,000 trajectories and a total of 298,751,667 molecular snapshots, including
163,015,359 snapshots from PM3, 19,274,130 snapshots from Hartree-Fock, 105,494,671 snapshots from the
first substage of DFT calculations and 10,967,507 snapshots from the second substage of DFT calculations.
On average, each molecule consists of 29 atoms, including 14 heavy atoms, and each molecular trajectory
contains approximately 47 PM3 snapshots, 6 Hartree-Fock snapshots, 31 DFT first substage snapshots, and 3
DFT second substage snapshots. This dataset covers 25 chemical elements.

For training efficiency, we also curated a smaller subset for model benchmarking, named PubChemQCR-
S, which contains 40,979 trajectories and 1,504,431 molecular snapshots from the first substage of DFT
calculations.

B Benchmarked Methods on PubChemQCR-S

SchNet (Schiitt et al., |2018]) is a continuous-filter convolutional network that models local atomic correlations
using learned filter-generating networks. FAENet (Duval et al., 2023) introduces frame averaging to enforce
symmetry compliance in molecular systems, allowing geometric information to be processed without explicit
symmetry-preserving architectural constraints. NequlP (Batzner et all 2022) and Equiformer (Liao &
Smidt}, 2022)) are equivariant neural networks that model interatomic interactions while preserving geometric
symmetries. They maintain various types of geometric features during message passing and capture feature
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Table 8: Model configurations—including the number of layers, hidden dimensions (or maximum irreducible
representation channels), and batch sizes—are provided for all baseline models trained on the PubChemQCR-S
dataset. These models include SchNet (Schiitt et al., 2018), PaiNN (Schiitt et al., [2021), MACE (Batatia
et al, [2022)), Equiformer (Liao & Smidt, [2022)), PACE (Xu et all 2024), FAENet (Duval et all 2023),
NequlP (Batzner et al.,|2022)), SevenNet (Park et al., 2024), and Allegro (Musaelian et al., [2023).

Models Layers Hidden Dimension Batch Size
SchNet 4 128 128
PaiNN 4 128 32
FAENet 4 128 64
NequlP b) 64 16
SevenNet 5 128 16
MACE 2 128 8
PACE 2 128 8
Allegro 2 128 8
Equiformer 4 128 32

interactions using the Clebsch—Gordan tensor product. Equiformer further incorporates attention mechanisms
into the equivariant message passing process. SevenNet (Park et all [2024)) is an equivariant model that
builds upon the NequlP architecture by introducing a scalable parallelization scheme designed for spatial
decomposition in large-scale molecular dynamics (MD) simulations. Allegro (Musaelian et al., 2023) is a
highly efficient, local equivariant model tailored for scalable, high-accuracy simulations. It models many-body
interactions through a series of tensor products of learned equivariant representations. PaiNIN
2021)) extends SchNet by introducing equivariant representations, enabling the model to capture directional
dependencies while maintaining computational efficiency. MACE (Batatia et al., 2022) and PACE
are other equivariant frameworks that capture many-body interactions using symmetry-aware
neural architectures.

C Training Details of Benchmarked Methods

On the PubChemQCR-S subset, Equiformer uses a separate prediction head to directly predict atomic forces,
whereas other methods compute forces as the gradient of the predicted energy. Note that to eliminate the
influence of molecular size, we predict the energy per atom rather than the total energy. Additionally, we
normalize the energy by subtracting the mean energy during training. To remove the effect of translation, we
also center the coordinates by shifting them to have a zero centroid.

Table [§]summarizes the model configurations used for all baseline methods. For FAENet, we adopt the “simple”
message-passing variant, while for MACE, we include the residual interaction block to enhance expressiveness.
Initial attempts to train Equiformer using its original OC20 settings (6 layers with hidden irreps of either
256x0e + 256 1e or 256 x0e + 128x 1e) failed to converge; thus, we employ a reduced configuration consisting
of 4 layers with irreps 128 x0e + 64 x le. For all tensor-product-based models—including NequIP (Batzner et al.
[2022)), MACE (Batatia et al] [2022)), PACE (Xu et al][2024)), Allegro (Musaelian et all [2023)), SevenNet (Park]
et all, [2024), and Equiformer (Liao & Smidt} [2022)—only even-parity irreducible representations are used
and L., = 2 except for Equiformer.

All experiments on the PubChemQCR-S benchmarks employ a cutoff radius of 4.5A, the Adam opti-
mizer (Kingma & Bal [2014)) with an initial learning rate of 5 x 1074, and a REDUCELRONPLATEAU learning
rate scheduler with a patience of 2 epochs. Models are trained for up to 100 epochs on the PubChemQCR-S
subset using NVIDIA A100-80GB GPUs.
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D Metrics for Geometry Optimization

Average Energy Minimization Percentage. This metric quantifies how much energy is minimized by
the MLIP-relaxed conformer relative to the DFT-relaxed conformer:

— 1
pcly = —— Y pet(er), (10)
|D0pt‘ c€Dopt
where pct(er) is defined as:
DFT DFT
E " —E]

EDFT _ EDFT® (11)
co

Cgt

pct(er) = 100% -

Here, cg, cr, and cg denote the initial conformer, the MLIP-relaxed conformer, and the DFT-relaxed

conformer, respectively. E?)F T refers to the single-point DFT energy evaluated at the given conformer.

Chemical Accuracy Success Rate. This metric measures the percentage of relaxed conformers whose
residual energy is within chemical accuracy (commonly defined as 1 kcal/mol):

1

success m

[[E™(cr) < 1], (12)
c€Dopt

pct

with the residual energy defined as:

E"(cr) = BT — EDYT. (13)

Divergence Rate. This metric, denoted as pcty;,, represents the percentage of relaxed molecules for which
either the single-point DFT energy calculation failed or the relaxed DFT energy is higher than the initial
energy.

Force Convergence Rate. This metric measures the percentage of relaxed molecules whose maximum
force is below a threshold of 0.05 eV /A:

1
petper = =— . I [max(F(cr)) < 0.05]. (14)
|Dopt| CE€Dopt

E Downstream Datasets Details

Molecule3D. The Molecule3D dataset (Xu et al., [2021)) is curated from the PubChemQC dataset, which
contains nearly 4 million organic small molecules. Each molecule is associated with a ground-state 3D
geometry derived from DFT calculations, along with corresponding quantum properties. In our experiments,
we focus on predicting the HOMO-LUMO gap, a key quantum property of molecular electronic structure.
Molecule3D provides two standard data splits: a random split, where training, validation, and test sets are
sampled from the same distribution, and a scaffold split, which introduces a distribution shift between training
and test sets to evaluate model generalization. Since Molecule3D and our curated dataset are derived from
the same source, we remove any overlapping molecules from the Molecule3D test set to prevent data leakage.

V2DFT. V2DFT (Khrabrov et al., 2024) is a recently introduced large-scale benchmark that includes
DFT-level (wB97X-D/def2-SVP) calculations of energies, forces, molecular properties, and Hamiltonian
matrices. For training, we use the large split comprising 99,018 molecules and 500,552 conformations. The
structure test split includes 176,001 molecules.

F MLIP Pre-Trained Model and Training Details

For the MLIP pre-trained model, we use PaiNN with a hidden dimension of 128, 128 Gaussian components
in the radial basis function, 4 layers, and a cutoff distance of 4.5A. We adopt the PaiNN implementation
from the Open Catalyst Project GitHub repository (Chanussot et al., 2021)).
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Table 9: Results of HOMO-LUMO gap prediction on two splits of the Molecule3D full dataset. Force2Prop
w/ PaiNN denotes the MLIP pre-trained model pre-trained on the PubChemQCR dataset. Best results are
shown in bold, and second-best results are underlined.

Random split Scaffold split
Model Validation MAE (eV) Test MAE (eV) Validation MAE (eV) Test MAE (eV)
GIN-virtual 0.1038 0.1053 0.1875 0.2492
Uni-Mol+ 0.0849 0.0850 0.1477 0.2044
SchNet 0.0423 0.0438 0.0996 0.1619
ComENet 0.0432 0.0438 0.1048 0.1805
DimeNet++ 0.0398 0.0418 0.0869 0.1451
TorchMD-Net 0.0348 0.0364 0.0895 0.1403
PaiNN 0.0338 0.0356 0.0901 0.1378
Force2Prop w/ PaiNN 0.0308 0.0324 0.0771 0.1204

For pre-training the MLIP pre-trained model on PubChemQCR, we use a learning rate of le-3 and a batch
size of 64. Optimization is performed using Adam (Kingma & Bal, 2014) with 5, = 0.9, 8 = 0.999, and
learning rate scheduling via ReduceLROnPlateau with a patience of 2 epochs. Training is conducted for 9
epochs on four NVIDIA H100 GPUs.

For fine-tuning on downstream tasks, we use a batch size of 256 and a learning rate of 5e-4, with Adam
optimizer (81 = 0.9, B2 = 0.999). We apply a StepLR scheduler with a step size of 40 and v = 0.5, and train
on a single NVIDIA A100 GPU.

G Additional Results

G.1 Experimental Results of Molecule3D Full Dataset

Table [J] presents the fine-tuning results on the full Molecule3D dataset. With more training data, all
methods show improved performance, and the MLIP pre-trained model continues to achieve the best results,
demonstrating the effectiveness of the pre-trained pre-trained model.

G.2 Different Pre-Training Strategies

In this work, we adopt supervised pre-training to train the pre-trained model for explicit energy and force
prediction. Previously, due to the lack of large-scale relaxation datasets with both energy and force labels,
prior methods relied on self-supervised pre-training. Among them, denoising pre-training has been the
most effective, and we compare our approach against this strategy. Specifically, we consider two denoising
methods: coordinate denoising (Zaidi et al., [2022) and the more recent DeNS method (Liao et al., [2024),
which is designed to generalize to non-equilibrium structures. We then fine-tune the pre-trained models
on the Molecule3D dataset for molecular property prediction. Results in Table show that supervised
pre-training outperforms denoising-based methods on downstream tasks, as it enables the model to explicitly
learn atomic interactions.

Table 10: Performance of fine-tuning PaiNN pre-trained with different strategies for HOMO-LUMO gap
prediction on Molecule3D subset random split.

Model Validation MAE (eV)
DeNS w/ PaiNN 0.0560
Denoising w/ PaiNN 0.0533
Force2Prop w/ PaiNN 0.0471
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G.3 Different Training Hyperparameters in Geometry Fine-Tuning

As described in Section we perform geometry fine-tuning using multi-task learning by incorporating
an additional geometry alignment task. During training, noise is added to the ground truth conformers to
improve generalization. We evaluate the impact of different noise scales, with results shown in Table The
results indicate that performance is sensitive to the noise level—both overly small and overly large noise can
degrade performance. We also investigate the effect of varying the loss weight for the geometry alignment
task. As shown in Table [I2] the performance is relatively robust to the choice of loss weight.

Table 11: Performance comparison of different noise scales in multi-task learning for geometry fine-tuning.

Noise Std ~ Validation MAE (eV)

0.0 0.0876
0.02 0.0817
0.05 0.0807
0.1 0.0794
0.2 0.0825
0.3 0.0867
0.4 0.0907

Table 12: Performance comparison of different geometry loss weights in multi-task learning for geometry
fine-tuning.

Geometry Loss Weights ~ Validation MAE (eV)

0.01 0.0799
0.05 0.0802
0.1 0.0794
0.2 0.0801
0.3 0.0808

G.4 Dataset with Only 2D Graphs

In Section [2:4] the task assumes access to ground-truth 3D conformers during training but not at test
time. A more challenging setting arises when neither the training nor the test set includes ground truth
3D geometries—only 2D molecular graphs are available. For this experiment, we predict the HOMO-
LUMO gap on the QM9 dataset using only 2D graphs. Initial 3D conformers are generated via RDKit
and relaxed using our pre-trained model; the downstream predictor is then trained from scratch on these
relaxed geometries. As shown in Table a significant performance gap remains between using ground-truth
versus relaxed conformers. This is partly because the pre-trained model was trained only on geometries
near the energy minimum, making relaxation from RDKit conformers an out-of-distribution task. Also, the
geometry optimization capability needs further improvement when it is used to generate stable conformers for
downstream property prediction tasks. If the optimized geometries are imperfect, correcting the relaxation
bias becomes highly challenging without ground-truth geometries available during training. Although our
current pre-trained model does not perform well in this setting, we highlight this scenario as an important
future direction, aiming to eliminate reliance on DFT-derived geometries entirely.
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Table 13: Performance comparison of downstream predictors trained from scratch on MLIP-relaxed geometries
versus ground-truth geometries for the QM9 HOMO-LUMO gap prediction task. In this setting, only 2D
molecular graphs are provided for the MLIP to perform relaxation.

Conformers Validation MAE (eV)
Relaxed 3D 0.4846
Ground truth 3D 0.1137
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