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Abstract

We evaluate the effectiveness of synthetic data
fine-tuning for Semantic Search in a real-world
Enterprise Team Formation problem scenario.
In this problem, we aim to retrieve the best
employee for a given task, given their informa-
tion regarding abilities, experiences, and other
aspects. We evaluate two synthetic data genera-
tion strategies: (1) augmenting real-world data
with synthetic labels and (2) generating syn-
thetic profiles for employees tailored to specific
tasks. To measure the impact of these strategies,
we fine-tune a pretrained text embedding model
using LoRA and Rank Aggregation techniques.
We evaluate the model performance against
current state-of-the-art algorithms on a human-
curated dataset. Our experiments indicate that
training a model that uses a combination of
both Synthetic data generation strategies out-
performs already established pre-trained mod-
els on the Team Formation task, improving the
tested ranking metrics by an average of 30% in
comparison to the best-performing pre-trained
model.

1 Introduction

A semantic search system processes text queries to
retrieve and rank related documents. This ranking
process is based on extracting underlying semantic
relationships between the queries and the content of
the documents by using text embeddings (Mikolov
et al., 2013; Pennington et al., 2014) to calculate
the query-document similarities. This technique en-
ables a more nuanced understanding of user intent
and context. Search-based Information Retrieval
systems often use this type of algorithm for rerank-
ing (Nogueira et al., 2019; Ma et al., 2023a) and
vector-based search (Johnson et al., 2019).

The advent of Word Embeddings allowed search
systems to measure semantic similarity between
vectors rather than a naive lexical overlapping. The
arrival of deep learning and transformer-based mod-
els like BERT (Devlin et al., 2019) further revolu-

tionized the field, enabling embeddings to capture
the meanings of words and their contextual usage
within sentences. Decoder-based LLMs have re-
cently been fine-tuned to perform dense retrieval
tasks (Ma et al., 2023a; Xiao et al., 2023; Lee et al.,
2025; Wang et al., 2024a), achieving the current
state-of-the-art (SOTA) results.

Although semantic search algorithms are typ-
ically trained on open general-purpose datasets
(Wang et al., 2024a), this widely-used approach
demonstrates limited effectiveness when applied to
specialized domains. One straightforward solution
to this problem is to fine-tune pre-trained mod-
els on specialized datasets for the specific domain.
However, building a training dataset can become
expensive, as field specialists often need to label
large amounts of data for effective fine-tuning.
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Figure 1: Schematic for the full team formation applica-
tion pipeline. To create the team, we extract employee
data from an internal database and use a sentence em-
bedding model to create the rankings for each task.

With LLMs, generating high amounts of high-
quality textual data became possible. This opens
possibilities of using synthetic textual data to fine-
tune Semantic Search Models for specific contexts.
This work will focus on one domain-specific task
that uses semantic search: the Enterprise Team
Formation problem. This problem involves select-
ing the best employee for a given task based on



their abilities, experiences, objectives, and other
aspects. Figure 1 shows a schematic diagram of
our developed Enterprise Team Formation frame-
work. We start with an end-user inputting a project.
Then, the system breaks it into tasks that the user
can edit. When the user is satisfied with the tasks,
we use all available employee data to calculate the
best rankings for each task.

To create high-quality data for this domain, we
need a specialist involved in multiple enterprise
contexts who is familiar with all employees’ pos-
itive and negative aspects. To tackle this depen-
dence on a specialist for labeling, we propose two
different strategies for synthetic data generation:
Augmenting real-world data with synthetic la-
bels: We generate synthetic tasks and use a large
language model (LLM) to label employees as rele-
vant or irrelevant for those tasks.

Generating synthetic employee profiles: We use
an LLM to generate the ideal employee curriculum
for each of the generated tasks.

We fine-tune a Qwen2-based (Li et al., 2024) se-
mantic search model (Stella-400M (Zhang, 2024))
using Low-Rank Adapters (Hu et al., 2022). Our
experiments compare the fine-tuned models against
current SOTA pre-trained models across multiple
ranking metrics. The results show that our best
fine-tuned model achieved a relative improvement
of over 35% in nDCG and 30% in Average Preci-
sion compared to strong baselines when tested with
real-world data.

The data we used in our study was obtained
with a leading Brazilian company specialized in
wood paneling, ceramic tiles, and bathroom fix-
tures. The company has more than 10,000 employ-
ees, of which more than 1,000 are employees that
occupy strategic roles (Senior-level +). Another
challenge is the wide variety of contexts within the
same enterprise, such as factories, offices, sales,
and many others. For this project, we focus on cre-
ating strategic teams composed of only senior and
management-level employees to tackle strategic
projects.

2 Related Work

2.1 Improving Language Models with
Synthetic Data

Recent advances have shown that synthetic data
can significantly boost the performance of lan-
guage models across various NLP tasks. For ex-
ample, synthetic data can be used to create im-

proved general-purpose text-embedding models
(Wang et al., 2024a), substituting a human eval-
uator in preference optimization (Guo et al., 2024;
Dong et al., 2024), or even to prevent language
models to hallucinate (Jones et al., 2024).

2.2 Domain-specific Language Modeling

Domain-specific Language Modeling aims to ef-
ficiently adapt pre-trained models to specific do-
mains without losing generalization on general-
purpose tasks. MixDA (Diao et al., 2023) ad-
dresses this by decoupling the feed-forward net-
works of Transformers into frozen pre-trained com-
ponents and dynamic, domain-specific adapters.
The adapter networks improve the model perfor-
mance in out-of-domain and knowledge-intensive
tasks while maintaining the performance across
in-domain tasks.

Complementary approaches focus on the se-
lective integration of synthetic data for domain
adaptation. QVE (Yue et al., 2022) uses syn-
thetic data to improve Question-Ansewring mod-
els in low-resource settings. Meanwhile, Math-
Genie (Lu et al., 2024) proposes a pipeline that
combines iterative solution augmentation, question
back-translation, and verification-based filtering to
generate reliable math problems.

3 Problem Statement

We model the Enterprise team Formation problem
as a Semantic Search task. This task revolves
around finding the most relevant documents to
a query by calculating the semantic similarity be-
tween their vector representations in a shared space.
To create an effective team for a given project, we
assume a different set of tasks that are tied to that
project. These tasks can be viewed as queries in
the following format:

¢i,j = “Project: {p;}. Task: {t; ;}" (1)

where each query g; ; is the concatenation of the
parent project p; and a corresponding task ¢; ;.

We model the documents as the available em-
ployee data in the enterprise’s internal dataset. This
data contains employee aspects such as their abil-
ities, past experiences, and goals. We can cre-
ate an extensive document that is the textual con-
catenation of all these aspects, or we can treat
them separately, aggregating the multiple generated
ranks into a single consensus ranking. Formally,
given a query text ¢ and a set of N documents
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Figure 2: The complete semantic search pipeline at inference. First, we use a trained sentence embedding model to
create the vector embeddings for both queries (tasks) and documents (employees). We generate multiple rankings
(one for each employee aspect) based on the cosine similarity between query and documents. Finally, we use a rank

aggregation algorithm to create the final Ranking.

D = {d,,ds,...,d,}, we map each document d;
into a vector representation vg, using an embedding
function fg, where vy, = fy(d;). Similarly, we get
the query vector representation v, of the original
query g by using a embedding function f;, where
vg = fq(a).

Often, f, and f; are the same function but can
be distinct in some cases (e.g., an asymmetric
Dual-Encoder). In our implementation, we use the
Siamese dual-encoder (SDE) architecture, as it is
simpler to train (shared weights) and generally out-
performs other dual-encoder architectures (Dong
et al., 2022). The ranking for a task ¢; ; is then de-
termined by the pairwise similarities between the
query and documents (¢(g;,j, dj)), ordered from
best to worst scores.

As we are dealing with multiple textual features,
we may generate a set of different rankings for a
given query. Rank Aggregation algorithms lever-
age this set of rankings, aggregating them into a
single final consensus rank (Dwork et al., 2001;
Wang et al., 2024b). Formally, given a set of NV
items to be ranked U = {uq,ua, ..., un}, we de-
fine an arbitrary ranking R" = {u; > u; > ... >
u},i # j # k, with R'(u;) denoting the posi-
tion of item wu; in the ranking. Thus, if R'(u;) <
R'(uj), then wu; is more relevant than u; under
R!. Given a set of M different basic rankings
R = {R',R% R3 ..RM}, we denote an aggre-

gated consensus ranking R* as R* = f(R), where
f is a Rank Aggregation function. In this work,
we focus on the Condorcet method (de Condorcet,
1785), which has interesting properties such as
granting the choice of the overall best item among
all ranks when possible (Young and Levenglick,
1978).

Figure 2 shows the complete pipeline for generat-
ing the final ranking for a given task. First, we use a
Sentence Embedding model to calculate the embed-
dings for a query and all documents. The document
embeddings are pre-calculated and stored in a vec-
tor database. Then, we calculate the similarities
between query and aspect documents, generating
multiple rankings, one for each aspect. These mul-
tiple rankings are then aggregated using the Con-
dorcet Rank Aggregation algorithm (de Condorcet,
1785) to create the final Rank for that given task.

4 Method
4.1 Data

The data we used includes employee information
from a large Brazilian company, specifically fo-
cusing on individuals in senior management roles
within the enterprise, which are strategically im-
portant to the company. This dataset includes 835
employees. We also create a task-employee human
feedback dataset from scratch for our proposed
methods to use as an evaluation dataset.
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Employee Data: We collect multiple textual fea-
tures for each employee, which are referred to as
aspects in this work. These aspects refer to abili-
ties, past working experiences, behavior, and goals,
and next we detail each of these aspects.

Role: employees’ role in the company alongside a
description of their responsibilities.

Behavior: The employee’s most recent behavior
evaluation. The direct boss of each employee per-
forms this evaluation yearly.

Goals: The established goals for each employee.
This aspect has a mixture of personal goals and
goals established by the bosses.

Abilities: Relevant professional abilities.
Experience: Employee’s previous professional ex-
periences within or outside the company.

This dataset includes 835 employees with strate-

gic roles, such as coordinators and managers. Al-
though these individuals represent a small portion
of the company, optimizing team performance in
these roles has an outsized impact on the organi-
zation’s overall success. In total, there are 280
Coordinators, 247 Senior employees, 222 Supervi-
sors, 83 Managers, and 3 Directors.
Human Feedback: To validate our model’s perfor-
mance on real-world applications, we have estab-
lished a human-curated evaluation dataset along-
side our synthetic training data. We built this cu-
rated dataset using two distinct applications where
domain experts could build teams for their desired
project or label the relevance of specific employees
for a given task. In total, we collected over 500
labeled query-document pairs.

4.2 Synthetic Data Generation

To fine-tune our model, we test two different ap-
proaches to generating synthetic examples. In the
first approach, we use an LLM to generate synthetic

labels for a set of query-document pairs. In the sec-
ond approach, we leverage all queries, which are
tasks within projects, and generate an ideal em-
ployee for each task. For both approaches, we first
need to generate diverse projects and tasks relevant
to the company’s context. For all data generation
tasks, we use OpenAl’s GPT-40-mini API (Ope-
nAl, 2024b,a).

Synthetic Tasks: To generate the synthetic tasks,
we build a two-step generation process, illustrated
in Figure 3. First, we prompt the LLM to brain-
storm a pool of projects. To ensure the relevance
and diversity of projects, we provide a contextual-
izing text to the prompt, presenting the enterprise
areas and main corporate activities. We also sample
a set of abilities present in our employee dataset
to ensure that the LLLM generates projects for the
various kinds of abilities present in the company.
This brainstorming process is done multiple times,
with different abilities each time. We ensure the
output format is a Python list that can be used in
further steps. For the second step, we feed the
projects into a second prompt to extract a set of
tasks for each generated project. We guide the gen-
eration process by presenting a one-shot example
from a human-written project (extracted from our
user application).

Synthetic Curriculums: Our initial idea with the
Synthetic curriculums was to generate both positive
and hard negative examples for each task. However,
we found that the LLMs struggle to generate nega-
tive examples, as stated in previous work (Garcia-
Ferrero et al., 2023; Hossain et al., 2020; Truong
et al., 2022). Therefore, we changed our prompt to
generate only positive examples, and during train-
ing, we used the in-batch examples as negatives,
which is shown to be a strong alternative to la-
beled hard negative examples (Chen et al., 2020;
Ye et al., 2019; Doersch and Zisserman, 2017). We
generated one synthetic curriculum for each of the
generated tasks, totaling ~ 32000 curriculums.
Synthetic Labeling: The synthetic labeling pro-
cess comprises two key steps: task and employee
sampling, followed by the application of a Chain-
of-Thought (CoT) prompt (Wei et al., 2022) to gen-
erate the labels. Using the synthetic tasks generated
previously, we use Stella-400M to generate the 20
best-ranked employees for each task. To create the
task-employee pairs, we first randomly sample the
tasks. The associated employee has a 50% chance
of being sampled from the top 20 and a 50% chance
of being sampled from the whole database.



After generating the pairs, we feed them to the
LLM with the labeling prompt. Similar to the task
generation process, we add the enterprise context
to the start of the prompt. Then, we guide its gener-
ation process with strict analysis guidelines, such
as discussing the positive and negative aspects of
that employee regarding the task, followed by a
competency analysis. In the conclusion, the LLM
must give the employee a score of O (irrelevant)
or 1 (relevant). Using this process, we generated
~ 30000 labeled task-employee pairs.

To get the final prompt, we perform an optimiza-
tion process using the Eureka framework (Ma et al.,
2023b). Briefly, Eureka is an evolutionary search
that leverages an LLM to optimize prompts for spe-
cific tasks. We model the relevance labeling as
a prompt refinement task, providing a base hand-
crafted prompt as input. To effectively guide this
optimization, we provided evaluation metrics, in-
cluding accuracy, precision, and recall scores from
the best-performing prompt, along with representa-
tive examples spanning TPs, TNs, FPs and FNs.

Algorithm 1 EUREKA for labeling prompt opti-

mization

Input: LLM, fitness function F', initial prompt prt

Olltpllt: SEureka

Hyperparameters: Search iteration N, number of
samples K, elite size R

begin

for N Iterations do

/l Sample K labeling prompts from LLM

Siy ..y S~ LLM(prt)

/l Evaluate candidates

S; = F(SZ), ey S = F(SK)

/I Reflection step

prt:=prt: Reflectionf;l(Sbesti, Shest; )
where best = R — argmax

end

SEureka = Sbesti
end

At each generation, an LLM generates candi-
date prompts (individuals) using the review prompt.
Then, we evaluate each individual as a labeling
prompt for our labeling LLM (GPT-40-mini) by
(re-)labeling our evaluation dataset. For each indi-
vidual, we calculate its relevance classification met-
rics in the evaluation dataset. The best prompt is
then passed to the next generation’s review prompt.
If neither individual outperformed the prompt, it
is replicated to the next generation. Algorithm 1

summarizes all these steps.

In the algorithm, the fitness function F' is a func-
tion that labels the evaluation dataset and calcu-
lates the accuracy, f1, precision, and recall metrics
for a generated prompt Si. The metric we use to
optimize the prompt in the reflection step is the
f1_score. The Reflection function use the best
prompt globally to create the updated prompt for
the next iteration.

We provide all used prompts in the Appendix A.

4.3 Modeling

We use Stella-400M (Zhang, 2024) as our pre-
trained base model and use LoRA (Hu et al., 2022)
for a parameter-efficient fine-tuning for the Enter-
prise Team Formation task. Stella-400M, derived
from gte-Qwen2-1.5B-instruct (Li et al., 2023),
uses Knowledge Distillation (Hinton et al., 2015).
To get the sentence-level Embedding, we perform
a mean-pooling operation on the Last hidden state
of the token embeddings. We choose Stella-400M
due to it being a very cost-effective model, obtain-
ing one of the top rankings on the MTEB Bench-
mark (Muennighoff et al., 2023) for sentence em-
bedding tasks while having a low number of pa-
rameters. We set LoORA r = a = 16, and apply
adapters to all linear layers, setting approximately
8 million trainable parameters.

We use a Contrastive Learning approach. The
queries represent the anchor embedding, while the
employee data (documents) represent the positive
(for the relevant example) or negative (for irrele-
vant/random in-batch examples) embeddings.

Given a positive pair of query-document
(q*,d"), we apply a simple instruction template to
the queries:

;- 4 = “Instruct: {tmpl} \n Query: ” + ¢ (2)

where “tmpl” represents the text embedding related
task. In our case, we use the text as an instruction
template: “In an enterprise context, given a project
and an associated task, retrieve relevant employees
that fill that role.". To train the embedding model,
we employ the InfoNCE loss function (van den
Oord et al., 2019), which operates on both positive
and negative examples, where negative samples can
be either hard negatives or in-batch examples. The
loss is defined as:



Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC

BM25 (Robertson et al., 1994) 0.081 0.020 0.076 0.183  0.670
TF-IDF (Salton and McGill, 1983) 0.169 0.101 0.172 0.305 0.683
e5-large-v2 (Wang et al., 2022) 0.141 0.060 0.117 0.243  0.740
Sentence-T5-large (Ni et al., 2021) 0.160 0.044 0.144 0.280 0.742
OpenAl-text-embedding-3gma (OpenAl, 2023) 0.288 0.165 0.305 0.481 0.747
OpenAl-text-embedding-3j,r¢e (OpenAl, 2023) 0.296 0.160 0.303 0.460 0.782
bge-large-en-v1.5 (Xiao et al., 2023) 0.195 0.105 0.188 0.322 0.703
gte-Qwen2-1.5B-instruct (Li et al., 2023) 0.236 0.143 0.220 0.340 0.734
Stella-400M (Zhang, 2024) 0.284 0.150 0.285 0.481 0.758
Stella-LoRA cgngorcet + full data 0.386 0.217 0.418 0.620 0.798
with synthetic curriculums only 0.296 0.140 0.323 0.544 0.758
with synthetic labels only 0.358 0.260 0.393 0.581 0.771
Concat Model 0.352 0.220 0.364 0.565 0.734

Table 1: Overall results of model performance on our evaluation dataset.

exp (¢(q7Td+))
L = —log

exp (7¢(q’:d+)) + Z exp

n; eN

T
3)
where ¢ represents a similarity measure, in our
case, the cosine similarity, n; € N represents a neg-
ative document, and 7 is a temperature parameter

that controls the separation between positive and
negative examples, set as 0.1 in our experiments.

Rank Aggregation: Our model generates one rank
for each aspect data at inference time. For example,
the Abilities aspect creates a rank of employees
different from the Experiences aspect. This ap-
proach necessitates an aggregation method to com-
bine these individual rankings into a final rank. A
standard practice to skip this aggregation process is
to concatenate all text and perform the ranking pro-
cess using the embeddings generated with the full
text. However, this approach presents significant
limitations when applied to our employee dataset,
such as information loss due to text truncation.

In this work, we use the Condorcet algorithm,
a method based on pairwise comparisons between
items. For each pair of items, we calculate how
many times one item “won” against each other
item, creating a pairwise matrix M of size (N, N).
To calculate the Condorcet scores for each item,
we simply sum the column values of each line
(R*(u;) = sum(M[i])). In the end, the item with
the highest Condorcet score is the best item, also
known as Condorcet winner.

5 Experiments

We compare our three synthetic data fine-tuning
strategies — label-based, curriculum-based, and
their combination — against already established
models. Subsequently, we evaluate the effec-
tiveness of our prompt optimization strategy by
comparing the models derived from both Eureka-
optimized and handcrafted prompts. We then inves-
tigate the performance implications of two distinct
adapter configurations to determine optimal archi-
tectural setups. Finally, to analyze the impact of
each aspect, we conduct ablation studies where we
remove one aspect at a time from training.

First, we evaluate the overall impact of our three
proposed synthetic data approaches on model per-
formance. We compare models trained only on syn-
thetic curriculums, only on synthetic labels, and on
a combination of both, using the same training ar-
guments (LoRA r = 16, LoRA a = 16 and batch
size of 24). To validate our results, we compare our
models against current SOTA algorithms in text-
embedding tasks. We also compare against classic
unsupervised models such as BM25. To measure
the impact of the Rank Aggregation algorithm, we
separately train a model on the concatenation of all
employee aspects (concat model).

The overall results are shown in Table 1. As
the table shows, the synthetic fine-tuning is highly
effective, achieving a performance improvement of
over 30% across all ranking metrics in comparison
to the best-performing baseline. We also see that
the best strategy overall for fine-tuning was the full
data approach, where we use a combination of both
curriculum and synthetic labeling data.

Separately, the synthetic curriculum approach
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Figure 4: Evolution of metrics of Eureka.

had marginal improvements over the Stella-400M
baseline, with an average improvement of 10% on
the ranking except for NDCG@Q1, where there
was a performance decrease of around 9%. In con-
trast, the synthetic labeling data shown significant
improvements over the base model, achieving an
averege improvement of 39% over Stella-400M ,
with a 73% improvement on N DC'G@]. In con-
clusion, while both data approaches seem to be
complementary for the final result, the synthetic
labeling has a bigger performance improvement
when comparing both approaches separately.

In Table 1, we can also measure the impact of the
Rank Aggregation approach. When comparing the
“full data" approach against the Concat Model, we
see an average improvement of around 6% on the
tested ranking metrics. This shows considerable
improvements of the Condorcet algorithm over the
classic text concatenation approach.

Prompt Optimization: The Eureka optimization
is performed on our eval dataset, and the best-
performing prompt is chosen for each generation.
Figure 4 shows the metrics of the Eureka optimiza-
tion throughout 10 generations. We use the F1
score as the main optimization metric. As we can
see in the figure, we had only two evolutions over
the current best, one in generation 2, and another
in generation 7.

To measure the impact of this optimization pro-
cedure, we create two Synthetic Labeling sets,
one with data generated by the base handcrafted
prompt, and another with data generated by the best
Eureka-generated prompt. We then train separate
models on each dataset and compare their perfor-
mance at both the aspect level and the aggregation
level. Table 2 presents the ranking metrics for both
models. For the Role and Behavior aspects, the
original prompt had a better performance overall.
However, for the Goals, Abilities, and Experience
aspects, the Eureka-optimized model performed

Avg. Prec nDCG@1 nDCG@S5 Hit@5 AUC
Synth Label Model - Eureka-optimized prompt
Role 0.343 0.210 0.351 0.520 0.786
Behavior 0.292 0.202 0.299 0.460 0.774
Goals* 0.350 0.252 0.337 0.460 0.775
Abilities* 0.375 0.259 0.390 0.580 0.716
Experience* 0.359 0.202 0.396 0.600  0.802
Condorcet* 0.358 0.260 0.393 0.581 0.771
Synth Label Model - Original prompt
Role* 0.372 0.258 0.385 0.540 0.794
Behavior* 0.299 0.163 0.318 0.522  0.796
Goals 0.343 0.252 0.336 0.484  0.793
Abilities 0.331 0.200 0.352 0.561 0.691
Experience 0.353 0.182 0.385 0.620 0.797
Condorcet 0.346 0.225 0.350 0.521 0.782

Table 2: Comparison for Eureka and Base model. Mod-
els highlighted with * represent the winning approach.

better. When aggregating all aspects, the Eureka-
optimized model had better results over all ranking
metrics, outperforming the base prompt model by
~ 10% on average. These results indicate that
aligning the prompt with the human-curated data
provided benefits to the quality of synthetic data,
positively impacting the fine-tuning results.
Global Adapter and Specialized Adapters: We
also investigate two different methods of fine-
tuning our base model. The first method uses multi-
ple adapters, one for each aspect, while the second
method uses one single trained adapter that is used
by all aspects at inference time. Figure 5 shows the
difference between the two tested approaches.

For the Specialized Adapters, we have to train
each adapter separately, using each aspect as the
document passages during training. Then, each
trained adapter can only be used with its corre-
sponding aspect it was trained on.

il s

irx

Figure 5: (left) Specialized and (right) Global adapters.

=3 - =D

The Single Adapter approach performs the train-
ing only once. During the adapter training, we
concatenate all aspects’ text for each employee,
creating a long passage that is all text related to



Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Model performance on removed aspect
Stella-LoR A condorcet — Role 0.381 0.260 0.407 0.60 0.771
Stella-LoRAcondorcet — Behavior 0.352 0.245 0.379 0.58 0.762
Stella-LoR A condoreet — Goals 0.381 0.245 0.403 0.58 0.784
Stella-LoRAcondorcet — Abilities 0.382 0.250 0.412 0.62 0.779
Stella-LoRAcondorcet — Fxperience 0.373 0.256 0.397 0.58 0.773
Condorcet (Aggregation) 0.385 0.250 0.407 0.605  0.779

Table 3: Ablation results. At each step, we remove an aspect from training.

that employee. The resulting adapter can further be
used globally by all aspects.

Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Aspect Models - Specialized adapter
Role 0.343 0.210 0.351 0.520 0.786
Behavior* 0.292 0.202 0.299 0460 0.774
Goals* 0.350 0.252 0.337 0.460 0.775
Abilities* 0.375 0.259 0.390 0.580 0.716
Experience* 0.359 0.202 0.396 0.600  0.802
Condorcet 0.358 0.260 0.393 0.581 0.771
Aspect Models - Global adapter
Role* 0.357 0.259 0.374 0.561 0.785
Behavior 0.262 0.150 0.271 0.443  0.755
Goals 0.254 0.161 0.248 0.380 0.749
Abilities 0.305 0.200 0.305 0.463 0.671
Experience 0.367 0.200 0.377 0.562  0.770
Condorcet* 0.385 0.250 0.407 0.605 0.779

Table 4: Comparison between a model trained with
specialized adapters and a model trained with a global
adapter. Models with * represent the winning approach.

Table 4 shows aspect-level and aggregation-level

metrics for both strategies on the Synthetic Label-
ing data. The grey coloring shows the winning as-
pect/aggregation between the model pairs based on
the average ration across all evaluation metrics. As
expected, when looking at the aspect level, except
for the Role, all other aspects had better overall per-
formance when using specialized adapters over a
single global adapter. However, surprisingly, when
we aggregate the rankings, the global adapter aggre-
gation achieves better results, achieving a marginal
gain of around 3.5%, on average.
Ablation Test: Finally, to leverage the individual
importance of each aspect to model performance,
we conduct an ablation study. At each test, we re-
move one aspect from the training and aggregation
process and calculate the metrics for each result-
ing model. We then compare the ablation results
against the full aggregation and the Concatenation
models.

Table 3 shows the ablation results. For this ex-
periment, we used the Global adapter model intro-
duced in the previous section. The table shows that
by removing the Abilities aspect, the overall per-

formance of the model increases marginally when
compared to the full Aggregation model. This sug-
gests that the Abilities aspect does not contribute
with useful information to the model and may even
introduce noise or redundancy. The other aspects
presented a performance decrease overall when
removed from training, with some exceptions re-
garding the nDC'G@Q1 when discarding Role and
Experience aspects, which had a slight increase
in performance compared to the full aggregation
model.

6 Conclusion

In this thesis, we present a Synthetic data Fine-
tuning approach to improve the performance of
the Enterprise team Formation task. We design
this task as a Semantic search problem, where the
projects and tasks are modeled as queries, and the
employee with their aspects (e.g., skills, experience,
and behavior) are modeled as documents. We eval-
uate our model on a curated human-labeled dataset
and conduct a series of experiments in order to
validate our proposed approach.

7 Ethical Considerations

This work was done under the supervision of an
internal committee to ensure that the project fol-
lowed the Brazilian Personal Data Protection Law
(translated from Lei Geral de Protecao de Dados
Pessoais—LGPD). All annotators performed their
annotations during their working hours within the
company.

This is an experimental project done for a limited
set of employees within a company. Potential risks,
such as bias in the rankings, will be monitored
before deploying the system to production.

Throughout this work, we used Github Copi-
lot as a coding assistant and Grammarly for spell-
check and punctual writing improvements.



Limitations

We do not release the evaluation data, as they con-
tain sensitive information about the partner com-
pany’s employees, which limits the reproducibility
of our results. Due to data limitations, our ap-
proach does not consider inter-employee relation-
ships when creating the team. For future work, we
plan to collect data that leverages the affinity be-
tween employees and build a system that considers
both aspects and relationships when creating the
team for a given project. Our experiments are also
limited to a single company. We plan to test this
approach in different enterprise contexts.
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A Prompts

In this section, we provide all prompts used during
the modeling process.

A.1 Task Generation

The complete two-stage task generation process is
highlighted in Figure 10.

A.2 Synthetic Labeling

For the synthetic labeling process, we have three
prompts. The first prompt is a base handcrafted
prompt that we use as a starting point in the Eureka
optimization (Figure 6). The Eureka algorithm
uses a review prompt that uses the current best-
performing prompt as input to suggest new prompts
based on a given fitness metric (in our case, fl,
accuracy, precision, and recall). This prompt can
be seen in Figure 7.

( )
Machine Feedback base prompt (Eureka inital prompt)

r
Eureka's Review Prompt

You are Eureka, a prompt optimization algorithm for LLMs. Your task is to
improve a prompt for evaluating an employee's relevance to a given task.

As input, you will receive the current prompt along with some performance
metrics based on test data.

You must modify the prompt in a way that improves the metrics compared to
the previous generation.

You may reason to enhance your analysis. However, your final prompt must
always be enclosed within ™.

Here is an example template:

Response:
[YOUR REASONING]

Conclusion:
“[YOUR FINAL PROMPT]™

Now it's your turn. You will receive the best prompt from the previous
generation and its metrics. Your mission is to refine it to improve its metrics:

Prompt:

{best_prompt}

metrics:
accuracy: {acc|, precision: {prec}, recall: {rec}

examples:
- True Positive: """ {tp} ™"
- True Negative: """ {tn} """
- False Positive: """ {fp} """
- False Negative: *** {fn} """

Q?esponse: )

{enterprise_context}

You are responsible for the department of coordinators and
managers. This team consists of people from various sectors,
such as manufacturing, sales, human resources, and others.
Your task is to determine whether an employee is relevant
for a specific task in a project.

You will receive as input a project description, an associated
task, and an employee's resume. You must indicate whether
the employee is suitable for that task.

You should explain your decision, but the last character of
your response must be a score of 0 or 1, where:

0: irrelevant / insufficient
1: relevant / sufficient

You must be very strict in your decision. Consider both the
strengths and weaknesses of the resume in relation to the
task.

Now it's your turn:
Project: {project_description}

Task: {task_description}
Resume: {employee resume}

Your response:
. J

Figure 6: Initial handcrafted machine feedback prompt.
This is the starting point for the Eureka optimization
process.
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Figure 7: Review prompt for the Eureka optimization
process.

A.3 Synthetic Curriculums

Figure 9 shows the synthetic curriculums prompt.

B Data Collection

The evaluation data was collected through two dis-
tinct applications. The annotation process was
conducted by a group of senior Human Resources
specialists. For the team formation application,
annotators were instructed to submit only those
teams in which all task assignments within a given
project were deemed satisfactory. Regarding the
labeling application, annotators were required to
assign labels exclusively to pairs for which they
had absolute certainty (100% confidence). In cases
of uncertainty, they were explicitly instructed to
skip the pair.


https://huggingface.co/dunzhang/stella_en_400M_v5/tree/main
https://huggingface.co/dunzhang/stella_en_400M_v5/tree/main
https://huggingface.co/dunzhang/stella_en_400M_v5/tree/main

f
Machine Feedback prompt

{enterprise_context}

You are responsible for the department of coordinators and managers. Your
team consists of professionals from various areas, including manufacturing,
sales, and human resources.

Your task is to evaluate whether an employee is relevant or not for a specific
task in a project.

You will receive the description of a project and a related task, along with the|
resume of an employee. Critically analyze the information to determine if the|
employee is suitable to perform the described task.

Please follow these guidelines in your response:

1. Briefly summarize the Project and Task, highlighting the importance of the
task for the project's success.
2. Analyze the employee's competencies directly related to the task,
considering both practical and theoretical experience. Ask yourself: "How
relevant are the employee's skills and experiences to the task in question?"
3. Discuss the positives and negatives of the resume concerning the task,
dividing your analysis into sections:

- Competency Analysis

- Strengths

- Weaknesses

- Conclusion
4. The last character of your response must be a score of 0 or 1, where:

- 0: irrelevant/insufficient

- 1: relevant/sufficient

Be rigorous in your evaluation and justify your decision clearly and concisel
Now it's your turn:
Project: {project_description}

Task: {task_description}
Resume: {employee_resume}

Your response:
J

Figure 8: Machine-feedback prompt for the synthetic la-
beling process. We extract labels generated by an LLM
to create synthetic relevance pairs between generated

tasks and real employees.

12

( Synthetic Curriculum prompt ‘H

{enterprise_context}

You are responsible for the department of coordinators and
managers. This team includes people from diverse sectors such as
manufacturing, sales, human resources, and more.

Your task is to generate an ideal resume for a specific task related
to a project.

The generated resume must follow this format:

Position: IDEAL_POSITION
Objective: IDEAL_OBJECTIVE
Behavior: IDEAL_BEHAVIOR

Experience: IDEAL_EXPERIENCE (previous professional
experiences relevant to the position)

Skills: IDEAL_SKILLS (skills relevant to the position)

Now it's your turn:

Project: {project_description}
Task: {task_description}

Ideal resume:

J

Figure 9: Prompt for the synthetic curriculum prompt.
We use our generated synthetic tasks and generate an
ideal curriculum for each task, creating similarity pairs
that will be used during training.



Human-written project example
(extracted from user application)

Employee
i

Abilities

Brainstorm prompt

{enterprise_context}

Your task is to brainstorm possible projects that should be undertaken by the
members of the management team described above.

Since they are only managerial-level employees, the projects should be medium
to long-term, challenging, and innovative, as well as broad in scope.

Your output should be a Python list of strings, with each string representing a
project.

Do not worry about details; just list the projects.

Each project should be described in a short and concise sentence.

Your list must contain at least 4 projects.

Output format: ["Project 1", "Project 2", "Project 3", ...

You should suggest projects related to the theme {theme} and similar areas.
It is highly recommended that you be creative and diverse in your suggestions.
Now it's your turn: format your response as a Python list (your response will be

processed using Python's "eval" method, so return only the final list):

Task generation prompt

{enterprise_context}

Your task is to read a project description and enumerate the tasks necessary to successfully complete

the project. You do not need to be exhaustive; just list the most important tasks with minimal details.

Do not create subtasks, only the main tasks.

You should generate between 5 and 7 tasks. The tasks should be short and informative sentences.

Your response must be in the format of a Python dictionary with the following structure (your

response will be processed using Python's "eval” method, so return only the final output):

i
‘project’: "PROJECT_DESCRIPTION",
"tasks": [

"TASK 1",

"TASK 2",

"TASK 3",
1

1

An example:

Project: {one-shot human-written project}

Output:

"project”: {one-shot human-written project},
"tasks": [

{one-shot human-written task 1}
{one-shot human-written task 2}

{one-shot human-written task n}
1
1
Now it's your turn:

Project: {project_description}

Output:

[Projectl, Project2, ..., Project N]|

Figure 10: Two-stage prompt for the synthetic tasks creation. On the left, we brainstorm a set of projects; on the
right, we break the projects into tasks. The colored texts correspond to the contextual information provided to each

prompt.

‘project’: Projectl,

“tasks": [
Taskl,
Task2,
Task3,

1
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