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Abstract

We evaluate the effectiveness of synthetic data001
fine-tuning for Semantic Search in a real-world002
Enterprise Team Formation problem scenario.003
In this problem, we aim to retrieve the best004
employee for a given task, given their informa-005
tion regarding abilities, experiences, and other006
aspects. We evaluate two synthetic data genera-007
tion strategies: (1) augmenting real-world data008
with synthetic labels and (2) generating syn-009
thetic profiles for employees tailored to specific010
tasks. To measure the impact of these strategies,011
we fine-tune a pretrained text embedding model012
using LoRA and Rank Aggregation techniques.013
We evaluate the model performance against014
current state-of-the-art algorithms on a human-015
curated dataset. Our experiments indicate that016
training a model that uses a combination of017
both Synthetic data generation strategies out-018
performs already established pre-trained mod-019
els on the Team Formation task, improving the020
tested ranking metrics by an average of 30% in021
comparison to the best-performing pre-trained022
model.023

1 Introduction024

A semantic search system processes text queries to025

retrieve and rank related documents. This ranking026

process is based on extracting underlying semantic027

relationships between the queries and the content of028

the documents by using text embeddings (Mikolov029

et al., 2013; Pennington et al., 2014) to calculate030

the query-document similarities. This technique en-031

ables a more nuanced understanding of user intent032

and context. Search-based Information Retrieval033

systems often use this type of algorithm for rerank-034

ing (Nogueira et al., 2019; Ma et al., 2023a) and035

vector-based search (Johnson et al., 2019).036

The advent of Word Embeddings allowed search037

systems to measure semantic similarity between038

vectors rather than a naive lexical overlapping. The039

arrival of deep learning and transformer-based mod-040

els like BERT (Devlin et al., 2019) further revolu-041

tionized the field, enabling embeddings to capture 042

the meanings of words and their contextual usage 043

within sentences. Decoder-based LLMs have re- 044

cently been fine-tuned to perform dense retrieval 045

tasks (Ma et al., 2023a; Xiao et al., 2023; Lee et al., 046

2025; Wang et al., 2024a), achieving the current 047

state-of-the-art (SOTA) results. 048

Although semantic search algorithms are typ- 049

ically trained on open general-purpose datasets 050

(Wang et al., 2024a), this widely-used approach 051

demonstrates limited effectiveness when applied to 052

specialized domains. One straightforward solution 053

to this problem is to fine-tune pre-trained mod- 054

els on specialized datasets for the specific domain. 055

However, building a training dataset can become 056

expensive, as field specialists often need to label 057

large amounts of data for effective fine-tuning. 058
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Figure 1: Schematic for the full team formation applica-
tion pipeline. To create the team, we extract employee
data from an internal database and use a sentence em-
bedding model to create the rankings for each task.

With LLMs, generating high amounts of high- 059

quality textual data became possible. This opens 060

possibilities of using synthetic textual data to fine- 061

tune Semantic Search Models for specific contexts. 062

This work will focus on one domain-specific task 063

that uses semantic search: the Enterprise Team 064

Formation problem. This problem involves select- 065

ing the best employee for a given task based on 066
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their abilities, experiences, objectives, and other067

aspects. Figure 1 shows a schematic diagram of068

our developed Enterprise Team Formation frame-069

work. We start with an end-user inputting a project.070

Then, the system breaks it into tasks that the user071

can edit. When the user is satisfied with the tasks,072

we use all available employee data to calculate the073

best rankings for each task.074

To create high-quality data for this domain, we075

need a specialist involved in multiple enterprise076

contexts who is familiar with all employees’ pos-077

itive and negative aspects. To tackle this depen-078

dence on a specialist for labeling, we propose two079

different strategies for synthetic data generation:080

Augmenting real-world data with synthetic la-081

bels: We generate synthetic tasks and use a large082

language model (LLM) to label employees as rele-083

vant or irrelevant for those tasks.084

Generating synthetic employee profiles: We use085

an LLM to generate the ideal employee curriculum086

for each of the generated tasks.087

We fine-tune a Qwen2-based (Li et al., 2024) se-088

mantic search model (Stella-400M (Zhang, 2024))089

using Low-Rank Adapters (Hu et al., 2022). Our090

experiments compare the fine-tuned models against091

current SOTA pre-trained models across multiple092

ranking metrics. The results show that our best093

fine-tuned model achieved a relative improvement094

of over 35% in nDCG and 30% in Average Preci-095

sion compared to strong baselines when tested with096

real-world data.097

The data we used in our study was obtained098

with a leading Brazilian company specialized in099

wood paneling, ceramic tiles, and bathroom fix-100

tures. The company has more than 10,000 employ-101

ees, of which more than 1,000 are employees that102

occupy strategic roles (Senior-level +). Another103

challenge is the wide variety of contexts within the104

same enterprise, such as factories, offices, sales,105

and many others. For this project, we focus on cre-106

ating strategic teams composed of only senior and107

management-level employees to tackle strategic108

projects.109

2 Related Work110

2.1 Improving Language Models with111

Synthetic Data112

Recent advances have shown that synthetic data113

can significantly boost the performance of lan-114

guage models across various NLP tasks. For ex-115

ample, synthetic data can be used to create im-116

proved general-purpose text-embedding models 117

(Wang et al., 2024a), substituting a human eval- 118

uator in preference optimization (Guo et al., 2024; 119

Dong et al., 2024), or even to prevent language 120

models to hallucinate (Jones et al., 2024). 121

2.2 Domain-specific Language Modeling 122

Domain-specific Language Modeling aims to ef- 123

ficiently adapt pre-trained models to specific do- 124

mains without losing generalization on general- 125

purpose tasks. MixDA (Diao et al., 2023) ad- 126

dresses this by decoupling the feed-forward net- 127

works of Transformers into frozen pre-trained com- 128

ponents and dynamic, domain-specific adapters. 129

The adapter networks improve the model perfor- 130

mance in out-of-domain and knowledge-intensive 131

tasks while maintaining the performance across 132

in-domain tasks. 133

Complementary approaches focus on the se- 134

lective integration of synthetic data for domain 135

adaptation. QVE (Yue et al., 2022) uses syn- 136

thetic data to improve Question-Ansewring mod- 137

els in low-resource settings. Meanwhile, Math- 138

Genie (Lu et al., 2024) proposes a pipeline that 139

combines iterative solution augmentation, question 140

back-translation, and verification-based filtering to 141

generate reliable math problems. 142

3 Problem Statement 143

We model the Enterprise team Formation problem 144

as a Semantic Search task. This task revolves 145

around finding the most relevant documents to 146

a query by calculating the semantic similarity be- 147

tween their vector representations in a shared space. 148

To create an effective team for a given project, we 149

assume a different set of tasks that are tied to that 150

project. These tasks can be viewed as queries in 151

the following format: 152

qi,j = “Project: {pi}. Task: {ti,j}" (1) 153

where each query qi,j is the concatenation of the 154

parent project pi and a corresponding task ti,j . 155

We model the documents as the available em- 156

ployee data in the enterprise’s internal dataset. This 157

data contains employee aspects such as their abil- 158

ities, past experiences, and goals. We can cre- 159

ate an extensive document that is the textual con- 160

catenation of all these aspects, or we can treat 161

them separately, aggregating the multiple generated 162

ranks into a single consensus ranking. Formally, 163

given a query text q and a set of N documents 164
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Figure 2: The complete semantic search pipeline at inference. First, we use a trained sentence embedding model to
create the vector embeddings for both queries (tasks) and documents (employees). We generate multiple rankings
(one for each employee aspect) based on the cosine similarity between query and documents. Finally, we use a rank
aggregation algorithm to create the final Ranking.

D = {d1, d2, ..., dn}, we map each document di165

into a vector representation vdi using an embedding166

function fd, where vdi = fd(di). Similarly, we get167

the query vector representation vq of the original168

query q by using a embedding function fq, where169

vq = fq(q).170

Often, fq and fd are the same function but can171

be distinct in some cases (e.g., an asymmetric172

Dual-Encoder). In our implementation, we use the173

Siamese dual-encoder (SDE) architecture, as it is174

simpler to train (shared weights) and generally out-175

performs other dual-encoder architectures (Dong176

et al., 2022). The ranking for a task qi,j is then de-177

termined by the pairwise similarities between the178

query and documents (ϕ(qi,j , dk)), ordered from179

best to worst scores.180

As we are dealing with multiple textual features,181

we may generate a set of different rankings for a182

given query. Rank Aggregation algorithms lever-183

age this set of rankings, aggregating them into a184

single final consensus rank (Dwork et al., 2001;185

Wang et al., 2024b). Formally, given a set of N186

items to be ranked U = {u1, u2, ..., uN}, we de-187

fine an arbitrary ranking Rt = {ui > uj > ... >188

uk}, i ̸= j ̸= k, with Rt(ui) denoting the posi-189

tion of item ui in the ranking. Thus, if Rt(ui) <190

Rt(uj), then ui is more relevant than uj under191

Rt. Given a set of M different basic rankings192

R = {R1, R2, R3, ...RM}, we denote an aggre-193

gated consensus ranking R∗ as R∗ = f (R), where 194

f is a Rank Aggregation function. In this work, 195

we focus on the Condorcet method (de Condorcet, 196

1785), which has interesting properties such as 197

granting the choice of the overall best item among 198

all ranks when possible (Young and Levenglick, 199

1978). 200

Figure 2 shows the complete pipeline for generat- 201

ing the final ranking for a given task. First, we use a 202

Sentence Embedding model to calculate the embed- 203

dings for a query and all documents. The document 204

embeddings are pre-calculated and stored in a vec- 205

tor database. Then, we calculate the similarities 206

between query and aspect documents, generating 207

multiple rankings, one for each aspect. These mul- 208

tiple rankings are then aggregated using the Con- 209

dorcet Rank Aggregation algorithm (de Condorcet, 210

1785) to create the final Rank for that given task. 211

4 Method 212

4.1 Data 213

The data we used includes employee information 214

from a large Brazilian company, specifically fo- 215

cusing on individuals in senior management roles 216

within the enterprise, which are strategically im- 217

portant to the company. This dataset includes 835 218

employees. We also create a task-employee human 219

feedback dataset from scratch for our proposed 220

methods to use as an evaluation dataset. 221
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Figure 3: Two-stage prompt for synth. tasks creation.

Employee Data: We collect multiple textual fea-222

tures for each employee, which are referred to as223

aspects in this work. These aspects refer to abili-224

ties, past working experiences, behavior, and goals,225

and next we detail each of these aspects.226

Role: employees’ role in the company alongside a227

description of their responsibilities.228

Behavior: The employee’s most recent behavior229

evaluation. The direct boss of each employee per-230

forms this evaluation yearly.231

Goals: The established goals for each employee.232

This aspect has a mixture of personal goals and233

goals established by the bosses.234

Abilities: Relevant professional abilities.235

Experience: Employee’s previous professional ex-236

periences within or outside the company.237

This dataset includes 835 employees with strate-238

gic roles, such as coordinators and managers. Al-239

though these individuals represent a small portion240

of the company, optimizing team performance in241

these roles has an outsized impact on the organi-242

zation’s overall success. In total, there are 280243

Coordinators, 247 Senior employees, 222 Supervi-244

sors, 83 Managers, and 3 Directors.245

Human Feedback: To validate our model’s perfor-246

mance on real-world applications, we have estab-247

lished a human-curated evaluation dataset along-248

side our synthetic training data. We built this cu-249

rated dataset using two distinct applications where250

domain experts could build teams for their desired251

project or label the relevance of specific employees252

for a given task. In total, we collected over 500253

labeled query-document pairs.254

4.2 Synthetic Data Generation255

To fine-tune our model, we test two different ap-256

proaches to generating synthetic examples. In the257

first approach, we use an LLM to generate synthetic258

labels for a set of query-document pairs. In the sec- 259

ond approach, we leverage all queries, which are 260

tasks within projects, and generate an ideal em- 261

ployee for each task. For both approaches, we first 262

need to generate diverse projects and tasks relevant 263

to the company’s context. For all data generation 264

tasks, we use OpenAI’s GPT-4o-mini API (Ope- 265

nAI, 2024b,a). 266

Synthetic Tasks: To generate the synthetic tasks, 267

we build a two-step generation process, illustrated 268

in Figure 3. First, we prompt the LLM to brain- 269

storm a pool of projects. To ensure the relevance 270

and diversity of projects, we provide a contextual- 271

izing text to the prompt, presenting the enterprise 272

areas and main corporate activities. We also sample 273

a set of abilities present in our employee dataset 274

to ensure that the LLM generates projects for the 275

various kinds of abilities present in the company. 276

This brainstorming process is done multiple times, 277

with different abilities each time. We ensure the 278

output format is a Python list that can be used in 279

further steps. For the second step, we feed the 280

projects into a second prompt to extract a set of 281

tasks for each generated project. We guide the gen- 282

eration process by presenting a one-shot example 283

from a human-written project (extracted from our 284

user application). 285

Synthetic Curriculums: Our initial idea with the 286

Synthetic curriculums was to generate both positive 287

and hard negative examples for each task. However, 288

we found that the LLMs struggle to generate nega- 289

tive examples, as stated in previous work (García- 290

Ferrero et al., 2023; Hossain et al., 2020; Truong 291

et al., 2022). Therefore, we changed our prompt to 292

generate only positive examples, and during train- 293

ing, we used the in-batch examples as negatives, 294

which is shown to be a strong alternative to la- 295

beled hard negative examples (Chen et al., 2020; 296

Ye et al., 2019; Doersch and Zisserman, 2017). We 297

generated one synthetic curriculum for each of the 298

generated tasks, totaling ≈ 32000 curriculums. 299

Synthetic Labeling: The synthetic labeling pro- 300

cess comprises two key steps: task and employee 301

sampling, followed by the application of a Chain- 302

of-Thought (CoT) prompt (Wei et al., 2022) to gen- 303

erate the labels. Using the synthetic tasks generated 304

previously, we use Stella-400M to generate the 20 305

best-ranked employees for each task. To create the 306

task-employee pairs, we first randomly sample the 307

tasks. The associated employee has a 50% chance 308

of being sampled from the top 20 and a 50% chance 309

of being sampled from the whole database. 310
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After generating the pairs, we feed them to the311

LLM with the labeling prompt. Similar to the task312

generation process, we add the enterprise context313

to the start of the prompt. Then, we guide its gener-314

ation process with strict analysis guidelines, such315

as discussing the positive and negative aspects of316

that employee regarding the task, followed by a317

competency analysis. In the conclusion, the LLM318

must give the employee a score of 0 (irrelevant)319

or 1 (relevant). Using this process, we generated320

≈ 30000 labeled task-employee pairs.321

To get the final prompt, we perform an optimiza-322

tion process using the Eureka framework (Ma et al.,323

2023b). Briefly, Eureka is an evolutionary search324

that leverages an LLM to optimize prompts for spe-325

cific tasks. We model the relevance labeling as326

a prompt refinement task, providing a base hand-327

crafted prompt as input. To effectively guide this328

optimization, we provided evaluation metrics, in-329

cluding accuracy, precision, and recall scores from330

the best-performing prompt, along with representa-331

tive examples spanning TPs, TNs, FPs and FNs.332

Algorithm 1 EUREKA for labeling prompt opti-
mization
Input: LLM, fitness function F , initial prompt prt
Output: SEureka

Hyperparameters: Search iteration N , number of
samples K, elite size R

begin
for N Iterations do

// Sample K labeling prompts from LLM
Si, ..., SK ∼ LLM(prt)
// Evaluate candidates
si = F (Si), ..., sk = F (SK)
// Reflection step
prt := prt : ReflectionRi=1(Sbesti , sbesti)
where best = R− argmax

end
SEureka:= Sbesti

end

At each generation, an LLM generates candi-333

date prompts (individuals) using the review prompt.334

Then, we evaluate each individual as a labeling335

prompt for our labeling LLM (GPT-4o-mini) by336

(re-)labeling our evaluation dataset. For each indi-337

vidual, we calculate its relevance classification met-338

rics in the evaluation dataset. The best prompt is339

then passed to the next generation’s review prompt.340

If neither individual outperformed the prompt, it341

is replicated to the next generation. Algorithm 1342

summarizes all these steps. 343

In the algorithm, the fitness function F is a func- 344

tion that labels the evaluation dataset and calcu- 345

lates the accuracy, f1, precision, and recall metrics 346

for a generated prompt Sk. The metric we use to 347

optimize the prompt in the reflection step is the 348

f1_score. The Reflection function use the best 349

prompt globally to create the updated prompt for 350

the next iteration. 351

We provide all used prompts in the Appendix A. 352

4.3 Modeling 353

We use Stella-400M (Zhang, 2024) as our pre- 354

trained base model and use LoRA (Hu et al., 2022) 355

for a parameter-efficient fine-tuning for the Enter- 356

prise Team Formation task. Stella-400M, derived 357

from gte-Qwen2-1.5B-instruct (Li et al., 2023), 358

uses Knowledge Distillation (Hinton et al., 2015). 359

To get the sentence-level Embedding, we perform 360

a mean-pooling operation on the Last hidden state 361

of the token embeddings. We choose Stella-400M 362

due to it being a very cost-effective model, obtain- 363

ing one of the top rankings on the MTEB Bench- 364

mark (Muennighoff et al., 2023) for sentence em- 365

bedding tasks while having a low number of pa- 366

rameters. We set LoRA r = α = 16, and apply 367

adapters to all linear layers, setting approximately 368

8 million trainable parameters. 369

We use a Contrastive Learning approach. The 370

queries represent the anchor embedding, while the 371

employee data (documents) represent the positive 372

(for the relevant example) or negative (for irrele- 373

vant/random in-batch examples) embeddings. 374

Given a positive pair of query-document 375

(q+, d+), we apply a simple instruction template to 376

the queries: 377

q+instr = “Instruct: {tmpl} \n Query: ” + q+ (2) 378

where “tmpl" represents the text embedding related 379

task. In our case, we use the text as an instruction 380

template: “In an enterprise context, given a project 381

and an associated task, retrieve relevant employees 382

that fill that role.". To train the embedding model, 383

we employ the InfoNCE loss function (van den 384

Oord et al., 2019), which operates on both positive 385

and negative examples, where negative samples can 386

be either hard negatives or in-batch examples. The 387

loss is defined as: 388
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Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
BM25 (Robertson et al., 1994) 0.081 0.020 0.076 0.183 0.670
TF-IDF (Salton and McGill, 1983) 0.169 0.101 0.172 0.305 0.683
e5-large-v2 (Wang et al., 2022) 0.141 0.060 0.117 0.243 0.740
Sentence-T5-large (Ni et al., 2021) 0.160 0.044 0.144 0.280 0.742
OpenAI-text-embedding-3small (OpenAI, 2023) 0.288 0.165 0.305 0.481 0.747
OpenAI-text-embedding-3large (OpenAI, 2023) 0.296 0.160 0.303 0.460 0.782
bge-large-en-v1.5 (Xiao et al., 2023) 0.195 0.105 0.188 0.322 0.703
gte-Qwen2-1.5B-instruct (Li et al., 2023) 0.236 0.143 0.220 0.340 0.734
Stella-400M (Zhang, 2024) 0.284 0.150 0.285 0.481 0.758
Stella-LoRACondorcet + full data 0.386 0.217 0.418 0.620 0.798

with synthetic curriculums only 0.296 0.140 0.323 0.544 0.758
with synthetic labels only 0.358 0.260 0.393 0.581 0.771

Concat Model 0.352 0.220 0.364 0.565 0.734

Table 1: Overall results of model performance on our evaluation dataset.

L = − log
exp

(
ϕ(q,d+)

τ

)
exp

(
ϕ(q,vd+ )

τ

)
+

∑
ni∈N

exp

(
ϕ(q, ni)

τ

)
(3)389

where ϕ represents a similarity measure, in our390

case, the cosine similarity, ni ∈ N represents a neg-391

ative document, and τ is a temperature parameter392

that controls the separation between positive and393

negative examples, set as 0.1 in our experiments.394

Rank Aggregation: Our model generates one rank395

for each aspect data at inference time. For example,396

the Abilities aspect creates a rank of employees397

different from the Experiences aspect. This ap-398

proach necessitates an aggregation method to com-399

bine these individual rankings into a final rank. A400

standard practice to skip this aggregation process is401

to concatenate all text and perform the ranking pro-402

cess using the embeddings generated with the full403

text. However, this approach presents significant404

limitations when applied to our employee dataset,405

such as information loss due to text truncation.406

In this work, we use the Condorcet algorithm,407

a method based on pairwise comparisons between408

items. For each pair of items, we calculate how409

many times one item “won” against each other410

item, creating a pairwise matrix M of size (N,N).411

To calculate the Condorcet scores for each item,412

we simply sum the column values of each line413

(R∗(ui) = sum(M[i])). In the end, the item with414

the highest Condorcet score is the best item, also415

known as Condorcet winner.416

5 Experiments 417

We compare our three synthetic data fine-tuning 418

strategies — label-based, curriculum-based, and 419

their combination — against already established 420

models. Subsequently, we evaluate the effec- 421

tiveness of our prompt optimization strategy by 422

comparing the models derived from both Eureka- 423

optimized and handcrafted prompts. We then inves- 424

tigate the performance implications of two distinct 425

adapter configurations to determine optimal archi- 426

tectural setups. Finally, to analyze the impact of 427

each aspect, we conduct ablation studies where we 428

remove one aspect at a time from training. 429

First, we evaluate the overall impact of our three 430

proposed synthetic data approaches on model per- 431

formance. We compare models trained only on syn- 432

thetic curriculums, only on synthetic labels, and on 433

a combination of both, using the same training ar- 434

guments (LoRA r = 16, LoRA α = 16 and batch 435

size of 24). To validate our results, we compare our 436

models against current SOTA algorithms in text- 437

embedding tasks. We also compare against classic 438

unsupervised models such as BM25. To measure 439

the impact of the Rank Aggregation algorithm, we 440

separately train a model on the concatenation of all 441

employee aspects (concat model). 442

The overall results are shown in Table 1. As 443

the table shows, the synthetic fine-tuning is highly 444

effective, achieving a performance improvement of 445

over 30% across all ranking metrics in comparison 446

to the best-performing baseline. We also see that 447

the best strategy overall for fine-tuning was the full 448

data approach, where we use a combination of both 449

curriculum and synthetic labeling data. 450

Separately, the synthetic curriculum approach 451
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Figure 4: Evolution of metrics of Eureka.

had marginal improvements over the Stella-400M452

baseline, with an average improvement of 10% on453

the ranking except for NDCG@1, where there454

was a performance decrease of around 9%. In con-455

trast, the synthetic labeling data shown significant456

improvements over the base model, achieving an457

averege improvement of 39% over Stella-400M ,458

with a 73% improvement on NDCG@1. In con-459

clusion, while both data approaches seem to be460

complementary for the final result, the synthetic461

labeling has a bigger performance improvement462

when comparing both approaches separately.463

In Table 1, we can also measure the impact of the464

Rank Aggregation approach. When comparing the465

“full data" approach against the Concat Model, we466

see an average improvement of around 6% on the467

tested ranking metrics. This shows considerable468

improvements of the Condorcet algorithm over the469

classic text concatenation approach.470

Prompt Optimization: The Eureka optimization471

is performed on our eval dataset, and the best-472

performing prompt is chosen for each generation.473

Figure 4 shows the metrics of the Eureka optimiza-474

tion throughout 10 generations. We use the F1475

score as the main optimization metric. As we can476

see in the figure, we had only two evolutions over477

the current best, one in generation 2, and another478

in generation 7.479

To measure the impact of this optimization pro-480

cedure, we create two Synthetic Labeling sets,481

one with data generated by the base handcrafted482

prompt, and another with data generated by the best483

Eureka-generated prompt. We then train separate484

models on each dataset and compare their perfor-485

mance at both the aspect level and the aggregation486

level. Table 2 presents the ranking metrics for both487

models. For the Role and Behavior aspects, the488

original prompt had a better performance overall.489

However, for the Goals, Abilities, and Experience490

aspects, the Eureka-optimized model performed491

Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Synth Label Model - Eureka-optimized prompt
Role 0.343 0.210 0.351 0.520 0.786
Behavior 0.292 0.202 0.299 0.460 0.774
Goals* 0.350 0.252 0.337 0.460 0.775
Abilities* 0.375 0.259 0.390 0.580 0.716
Experience* 0.359 0.202 0.396 0.600 0.802
Condorcet* 0.358 0.260 0.393 0.581 0.771
Synth Label Model - Original prompt
Role* 0.372 0.258 0.385 0.540 0.794
Behavior* 0.299 0.163 0.318 0.522 0.796
Goals 0.343 0.252 0.336 0.484 0.793
Abilities 0.331 0.200 0.352 0.561 0.691
Experience 0.353 0.182 0.385 0.620 0.797
Condorcet 0.346 0.225 0.350 0.521 0.782

Table 2: Comparison for Eureka and Base model. Mod-
els highlighted with * represent the winning approach.

better. When aggregating all aspects, the Eureka- 492

optimized model had better results over all ranking 493

metrics, outperforming the base prompt model by 494

≈ 10% on average. These results indicate that 495

aligning the prompt with the human-curated data 496

provided benefits to the quality of synthetic data, 497

positively impacting the fine-tuning results. 498

Global Adapter and Specialized Adapters: We 499

also investigate two different methods of fine- 500

tuning our base model. The first method uses multi- 501

ple adapters, one for each aspect, while the second 502

method uses one single trained adapter that is used 503

by all aspects at inference time. Figure 5 shows the 504

difference between the two tested approaches. 505

For the Specialized Adapters, we have to train 506

each adapter separately, using each aspect as the 507

document passages during training. Then, each 508

trained adapter can only be used with its corre- 509

sponding aspect it was trained on. 510

Pre-trained
Model

Aspect 1 Aspect 2 Aspect N Aspect 2Aspect 1 Aspect N

Aspect 1
Aspect 2

Aspect N

Aspect 1
Aspect 2

Aspect N

Pre-trained
Model

. . .

. . . . . .

Figure 5: (left) Specialized and (right) Global adapters.

The Single Adapter approach performs the train- 511

ing only once. During the adapter training, we 512

concatenate all aspects’ text for each employee, 513

creating a long passage that is all text related to 514
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Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Model performance on removed aspect
Stella-LoRACondorcet −Role 0.381 0.260 0.407 0.60 0.771
Stella-LoRACondorcet −Behavior 0.352 0.245 0.379 0.58 0.762
Stella-LoRACondorcet −Goals 0.381 0.245 0.403 0.58 0.784
Stella-LoRACondorcet −Abilities 0.382 0.250 0.412 0.62 0.779
Stella-LoRACondorcet − Experience 0.373 0.256 0.397 0.58 0.773
Condorcet (Aggregation) 0.385 0.250 0.407 0.605 0.779

Table 3: Ablation results. At each step, we remove an aspect from training.

that employee. The resulting adapter can further be515

used globally by all aspects.516

Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Aspect Models - Specialized adapter
Role 0.343 0.210 0.351 0.520 0.786
Behavior* 0.292 0.202 0.299 0.460 0.774
Goals* 0.350 0.252 0.337 0.460 0.775
Abilities* 0.375 0.259 0.390 0.580 0.716
Experience* 0.359 0.202 0.396 0.600 0.802
Condorcet 0.358 0.260 0.393 0.581 0.771
Aspect Models - Global adapter
Role* 0.357 0.259 0.374 0.561 0.785
Behavior 0.262 0.150 0.271 0.443 0.755
Goals 0.254 0.161 0.248 0.380 0.749
Abilities 0.305 0.200 0.305 0.463 0.671
Experience 0.367 0.200 0.377 0.562 0.770
Condorcet* 0.385 0.250 0.407 0.605 0.779

Table 4: Comparison between a model trained with
specialized adapters and a model trained with a global
adapter. Models with * represent the winning approach.

Table 4 shows aspect-level and aggregation-level517

metrics for both strategies on the Synthetic Label-518

ing data. The grey coloring shows the winning as-519

pect/aggregation between the model pairs based on520

the average ration across all evaluation metrics. As521

expected, when looking at the aspect level, except522

for the Role, all other aspects had better overall per-523

formance when using specialized adapters over a524

single global adapter. However, surprisingly, when525

we aggregate the rankings, the global adapter aggre-526

gation achieves better results, achieving a marginal527

gain of around 3.5%, on average.528

Ablation Test: Finally, to leverage the individual529

importance of each aspect to model performance,530

we conduct an ablation study. At each test, we re-531

move one aspect from the training and aggregation532

process and calculate the metrics for each result-533

ing model. We then compare the ablation results534

against the full aggregation and the Concatenation535

models.536

Table 3 shows the ablation results. For this ex-537

periment, we used the Global adapter model intro-538

duced in the previous section. The table shows that539

by removing the Abilities aspect, the overall per-540

formance of the model increases marginally when 541

compared to the full Aggregation model. This sug- 542

gests that the Abilities aspect does not contribute 543

with useful information to the model and may even 544

introduce noise or redundancy. The other aspects 545

presented a performance decrease overall when 546

removed from training, with some exceptions re- 547

garding the nDCG@1 when discarding Role and 548

Experience aspects, which had a slight increase 549

in performance compared to the full aggregation 550

model. 551

6 Conclusion 552

In this thesis, we present a Synthetic data Fine- 553

tuning approach to improve the performance of 554

the Enterprise team Formation task. We design 555

this task as a Semantic search problem, where the 556

projects and tasks are modeled as queries, and the 557

employee with their aspects (e.g., skills, experience, 558

and behavior) are modeled as documents. We eval- 559

uate our model on a curated human-labeled dataset 560

and conduct a series of experiments in order to 561

validate our proposed approach. 562

7 Ethical Considerations 563

This work was done under the supervision of an 564

internal committee to ensure that the project fol- 565

lowed the Brazilian Personal Data Protection Law 566

(translated from Lei Geral de Proteção de Dados 567

Pessoais—LGPD). All annotators performed their 568

annotations during their working hours within the 569

company. 570

This is an experimental project done for a limited 571

set of employees within a company. Potential risks, 572

such as bias in the rankings, will be monitored 573

before deploying the system to production. 574

Throughout this work, we used Github Copi- 575

lot as a coding assistant and Grammarly for spell- 576

check and punctual writing improvements. 577
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Limitations578

We do not release the evaluation data, as they con-579

tain sensitive information about the partner com-580

pany’s employees, which limits the reproducibility581

of our results. Due to data limitations, our ap-582

proach does not consider inter-employee relation-583

ships when creating the team. For future work, we584

plan to collect data that leverages the affinity be-585

tween employees and build a system that considers586

both aspects and relationships when creating the587

team for a given project. Our experiments are also588

limited to a single company. We plan to test this589

approach in different enterprise contexts.590
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A Prompts802

In this section, we provide all prompts used during803

the modeling process.804

A.1 Task Generation805

The complete two-stage task generation process is806

highlighted in Figure 10.807

A.2 Synthetic Labeling808

For the synthetic labeling process, we have three809

prompts. The first prompt is a base handcrafted810

prompt that we use as a starting point in the Eureka811

optimization (Figure 6). The Eureka algorithm812

uses a review prompt that uses the current best-813

performing prompt as input to suggest new prompts814

based on a given fitness metric (in our case, f1,815

accuracy, precision, and recall). This prompt can816

be seen in Figure 7.817

Machine Feedback base prompt (Eureka inital prompt)

{enterprise_context}

You are responsible for the department of coordinators and
managers. This team consists of people from various sectors,
such as manufacturing, sales, human resources, and others.
Your task is to determine whether an employee is relevant
for a specific task in a project.

You will receive as input a project description, an associated
task, and an employee's resume. You must indicate whether
the employee is suitable for that task.

You should explain your decision, but the last character of
your response must be a score of 0 or 1, where:

0: irrelevant / insufficient
1: relevant / sufficient

You must be very strict in your decision. Consider both the
strengths and weaknesses of the resume in relation to the
task.

Now it's your turn:

Project: {project_description}
Task: {task_description}
Resume: {employee_resume}

Your response:

Figure 6: Initial handcrafted machine feedback prompt.
This is the starting point for the Eureka optimization
process.

Eureka's Review Prompt

You are Eureka, a prompt optimization algorithm for LLMs. Your task is to
improve a prompt for evaluating an employee's relevance to a given task.

As input, you will receive the current prompt along with some performance
metrics based on test data.
You must modify the prompt in a way that improves the metrics compared to
the previous generation.

You may reason to enhance your analysis. However, your final prompt must
always be enclosed within ```.

Here is an example template:

Response:
[YOUR REASONING]

Conclusion:
```[YOUR FINAL PROMPT]```

Now it's your turn. You will receive the best prompt from the previous
generation and its metrics. Your mission is to refine it to improve its metrics:

Prompt:
```
{best_prompt}
```

metrics:
accuracy: {acc}, precision: {prec}, recall: {rec}

examples: 
    - True Positive: ```{tp}```
    - True Negative: ```{tn}```
    - False Positive: ```{fp}```
    - False Negative: ```{fn}```

Response:

Figure 7: Review prompt for the Eureka optimization
process.

A.3 Synthetic Curriculums 818

Figure 9 shows the synthetic curriculums prompt. 819

B Data Collection 820

The evaluation data was collected through two dis- 821

tinct applications. The annotation process was 822

conducted by a group of senior Human Resources 823

specialists. For the team formation application, 824

annotators were instructed to submit only those 825

teams in which all task assignments within a given 826

project were deemed satisfactory. Regarding the 827

labeling application, annotators were required to 828

assign labels exclusively to pairs for which they 829

had absolute certainty (100% confidence). In cases 830

of uncertainty, they were explicitly instructed to 831

skip the pair. 832
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Machine Feedback prompt

{enterprise_context}
You are responsible for the department of coordinators and managers. Your
team consists of professionals from various areas, including manufacturing,
sales, and human resources.
Your task is to evaluate whether an employee is relevant or not for a specific
task in a project.
You will receive the description of a project and a related task, along with the
resume of an employee. Critically analyze the information to determine if the
employee is suitable to perform the described task.

Please follow these guidelines in your response:

1. Briefly summarize the Project and Task, highlighting the importance of the
task for the project's success.
2. Analyze the employee's competencies directly related to the task,
considering both practical and theoretical experience. Ask yourself: "How
relevant are the employee's skills and experiences to the task in question?"
3. Discuss the positives and negatives of the resume concerning the task,
dividing your analysis into sections:

- Competency Analysis
- Strengths
- Weaknesses
- Conclusion

4. The last character of your response must be a score of 0 or 1, where:
- 0: irrelevant/insufficient
- 1: relevant/sufficient

Be rigorous in your evaluation and justify your decision clearly and concisely.

Now it's your turn:

Project: {project_description}
Task: {task_description}
Resume: {employee_resume}

Your response:

Figure 8: Machine-feedback prompt for the synthetic la-
beling process. We extract labels generated by an LLM
to create synthetic relevance pairs between generated
tasks and real employees.

Synthetic Curriculum prompt

{enterprise_context}

You are responsible for the department of coordinators and
managers. This team includes people from diverse sectors such as
manufacturing, sales, human resources, and more.
Your task is to generate an ideal resume for a specific task related
to a project.

The generated resume must follow this format:

"
Position: IDEAL_POSITION

Objective: IDEAL_OBJECTIVE

Behavior: IDEAL_BEHAVIOR

Experience: IDEAL_EXPERIENCE (previous professional
experiences relevant to the position)

Skills: IDEAL_SKILLS (skills relevant to the position)
"

Now it's your turn:

Project: {project_description}
Task: {task_description}

Ideal resume:

Figure 9: Prompt for the synthetic curriculum prompt.
We use our generated synthetic tasks and generate an
ideal curriculum for each task, creating similarity pairs
that will be used during training.
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Brainstorm prompt

{enterprise_context}
Your task is to brainstorm possible projects that should be undertaken by the
members of the management team described above.
Since they are only managerial-level employees, the projects should be medium
to long-term, challenging, and innovative, as well as broad in scope.

Your output should be a Python list of strings, with each string representing a
project.
Do not worry about details; just list the projects.
Each project should be described in a short and concise sentence.
Your list must contain at least 4 projects.

Output format: ["Project 1", "Project 2", "Project 3", ...]

You should suggest projects related to the theme {theme} and similar areas.
It is highly recommended that you be creative and diverse in your suggestions.
Now it's your turn: format your response as a Python list (your response will be
processed using Python's "eval" method, so return only the final list): 

Task generation prompt

{enterprise_context}
Your task is to read a project description and enumerate the tasks necessary to successfully complete
the project. You do not need to be exhaustive; just list the most important tasks with minimal details.
Do not create subtasks, only the main tasks.
You should generate between 5 and 7 tasks. The tasks should be short and informative sentences.
Your response must be in the format of a Python dictionary with the following structure (your
response will be processed using Python's "eval" method, so return only the final output):

{{
'project': "PROJECT_DESCRIPTION",
"tasks": [

"TASK 1",
"TASK 2",
"TASK 3",
...

]
}}

An example:

Project: {one-shot human-written project}

Output:

{{
"project": {one-shot human-written project},
"tasks": [

{one-shot human-written task 1}
{one-shot human-written task 2}
...
{one-shot human-written task n}

]
}}

Now it's your turn:

Project: {project_description}

Output: 

Enterprise Context

Employee
Abilities

Human-written project example
(extracted from user application)

[Project1, Project2, ..., Project N]]
[Project1, Project2, ..., Project N]]

[Project1, Project2, ..., Project N]]
[Project1, Project2, ..., Project N]]

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

Figure 10: Two-stage prompt for the synthetic tasks creation. On the left, we brainstorm a set of projects; on the
right, we break the projects into tasks. The colored texts correspond to the contextual information provided to each
prompt.
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