Published as a Tiny Paper at ICLR 2023

FUSING 3D-CNN AND LIGHTWEIGHT SWIN TRANS-
FORMER NETWORKS FOR HSI

Baisen Liu'-2, Yuanjia Liu'*, Wulin Zhang', Yiran Tian'

! Mudanjiang Normal University, Mudanjiang 157011, China
2 Heilongjiang Institute of Technology, Harbin 150001, China
*1023321561@stu.mdjnu.edu.cn

ABSTRACT

Recently deep learning has occupied an important position in hyperspectral image
(HSI) classification. In this study, we explore the advantages of using convolu-
tional neural networks (CNN) for feature extraction and fusing an advanced shift-
window (swin) transformer network based on the transformer model for HSI clas-
sification. The swin transformer network attention perception, capable of learning
local and global features, can avoid the dependence on single features during HSI
classification. The experiments show that our proposed model outperforms tradi-
tional machine learning models, and achieves competitive results with advanced
models. The source code can be found at https://github.com/MinatoRyu007/CNN-
Swin.

1 INTRODUCTION

Hyperspectral image classification are remote sensing images that contain both image information
and spectral information. The CNN have been one of the hottest research hotspots in pattern recog-
nition for a long time, and the HSI classification field is no exception (Lee & Kwon|(2017)). Swin
Transformer is a Vision Transformer (VIT) network based on the self-attentive mechanism (Liu et al.
(2021))). The transformer-based architecture processes patch through fixed-length contexts and are
limited when applied to HSI classification tasks (He et al.|(2021))). It is worth thinking about using
CNN to replace the part of swin transformer model originally used for preprocessing and feature
extraction. Therefore, this work proposes the combination of CNN and swin transformer classifier
to improve HSI classification accuracy.
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Figure 1: The proposed classification model fusing CNN and Swin transformer structure.

2  PROPOSED APPROACH

While the visual transformer model is making a splash in various fields of pattern recognition, we
realize its potential in the field of HSI classification. However, the visual transformer model alone
cannot handle the complex and high-dimensional HSI features well, so we consider combining it
with the excellent feature extraction capability of CNN. We consider combining it with the excellent
feature extraction ability of CNN and integrating it into the Swin transformer structure with global
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self-attentive computation, which can also effectively complement the limited perceptual field of the
CNN classifier.

Fig[I] shows the structural diagram of the model proposed in this work. As shown in the figure, the
first part is a feature extraction CNN module consisting of three 3D-CNN layer and one 2D-CNN
layer(Roy et al.[(2019)). PCA is a dimensionality reduction for HSI. The function of the 3D-CNN
module is to extract spatial-spectral features. The 2D-CNN module processes it to conform to the
dimensions of the swin transformer module. Each layer uses the Relu activation function. The
random-crop and random-flip are the most commonly used data augmentation method in DL. The
Patch Embedding part is to crop the feature data to the settings window size and embed it in each
patch. The function of the Patch Merging module is to subsample before the beginning of each
Stage. Finally, the global average pooling layer will get the output with softmax activation function
corresponding to different classes.

Two successive swin transformer blocks are the core of the swin transformer . The features z!~1

input to this stage go through the Layer Normalization (LN), Multi-head Self-Attention (W-MSA),
and residual layer in turn to get 2!. After going through LN and Multilayer Perceptron (MLP) again,
it enters the second block that has Shifted Windows Multi-head Self-Attention (SW-MSA).

2P=W — MSA(LN (') + MSA(LN(Z'71)) + 271
A= MLP(LN(Z7h) + 240 2l = MLP(LN(2Y) + 2 (1)
= SW — MSA(LN(2')) + MSA(LN(Z")) + Z

3 EXPERIMENTAL

We use the Indian Pine (IP) dataset, the Salinas (SA) and the Pavia University (PU) datasets. In
this study, The model uses Adam optimizer, Tensorflow 2.6 and python 3.8. Convolution kernel is
3 x 3 x 1. In the swin transformer model, we use a patch size of 2x2, a dropout rate of 0.03, a
number of attention heads of 8, an embedding dimension of 64, a number of multilayer perceptrons
of 256, a window size of 2 and shift window step of 1. The model under comparison uses open
source projects as its source of code. This tool contains all the models involved in this experiment
for comparison, including SVM and Baseline (Audebert et al.|(2019)). The hyperparameters of the
comparison test are set as follows: epochs=40, learning rate=0.01, training sample=30%.

Table[T]shows the comparison of the metrics of the models under the average accuracy (AA), overall
accuracy (OA) and Kappa evaluation systems. It can be seen that the proposed model has the same
excellent performance as the current mainstream models in terms of both classification reality map
and accuracy, and is better than the traditional machine learning models (Hu et al.| (2015))(Hamida
et al. (2018)) (Lee & Kwon|(2016)))(|L1 et al.[(2017)). See the appendix for a richer comparison.

Table 1: Comparison results of the classification in the three Public datasets (%).

Indian Pines Salinas PaviaU
Methods AA OA Kappa | AA OA Kappa | AA OA Kappa
SVM 0.317 0.528 0427 0.317 0.528 0427 | 0635 0.834 0.771
baseline 0.654 0.753 0.713 0.908 0917 0908 | 0.852 0.961 0.948

1D CNN 0.203 0.449 0.324 | 0.809 0.832 0.812 | 0.585 0.781 0.696
3D CNN 0.663 0.775 0.737 | 0.879 0911 0.901 | 0.857 0.954 0.939

3D FCN 0.545 0.702 0.658 | 0.904 0.939 0.932 | 0.867 0976 0.968
S-S3DCNN | 0.744 0.779 0.749 | 0908 0.947 0941 | 0.876 0.969 0.959
Ours 0.988 0997 0.9974 | 0.998 0.999 0.999 | 0.996 0.998 0.998

4 DISCUSSION

In this paper, a new network with deep CNN and state-of-the-art swin transformer fusion is proposed.
The excellent feature extraction capability of CNN is used to extract complex spatial spectral joint
features in hyperspectrum. And these features are sent to the lightweight swin transformer global
attention container for training.
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5 APPENDIX

Figurd?] [3| and 4] shows the classification chart of the IP dataset for the classification results in our
proposed model. Our proposed model achieves the best visual performance on the classification
graph. Not only does it perform well on the IP dataset, but also on the SA and PU datasets.

Figure [5] shows the accuracy function and loss function in our model.Figure [6] depicts a graphical
comparison of the classification accuracy of various models in the IP, SA and PU datasets as training
progress increases. In comparison to other models, our model achieves higher accuracy in shorter
training epochs and has a more stable accuracy curve.
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Figure 3: Comparison of SA dataset classification chart with other models.

Figure 4: Comparison of PU dataset classification chart with other models.
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Figure 5: The validation accuracy and validation loss of our model in IP datasets, SA datasets and
PU datasets.
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Figure 6: Comparison of model validation accuracy in the IP, SA and PU datasets.
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