Divide-and-conquer Heterogeneous Structure Learning for Text-to-SQL

Anonymous ACL submission

Abstract

Existing leading Text-to-SQL approaches with heterogeneous structure learning utilize a unified learning process for semantic and node-edge structural information. However, the unified learning process leads to two major limitations: (i) The mixing of semantic and structural information may cause incorrect linking in structure learning. (ii) The indiscriminate processing of the node graph and the edge graph will cause the loss of the unique property of each graph. In order to address these limitations, we propose a divide-and-conquer Heterogeneous Structure Learning (DCHL) framework for Text-to-SQL, which abstracts the structural information and divides out the semantic information from the original input. Specifically, our framework is featured with the Abstract Graph Construction and Abstract Graph Encoder for the node and edge respectively. We also devise a Semantic-structural Aggregation Mechanism to fuse the divided semantic information and the topological structure information of nodes and edges. Extensive experiments on three benchmark datasets show that DCHL clearly outperforms strong competitors and achieves new state-of-the-art results. The proposed DCHL achieves competitive results (62.9% with GLOVE, 72.1% with ELECTRA) on the cross-domain text-to-SQL benchmark Spider at the time of writing.

1 Introduction

The Text-to-SQL task, aiming to convert natural language questions into corresponding SQL queries, is a key technology for building database business intelligence applications (Cai et al., 2018; Hwang et al., 2019; Yu et al., 2018a). To alleviate the huge cost of training the Text-to-SQL model for each specific database, the cross-domain Text-to-SQL tries to generalize the trained models to unseen databases. The core of cross-domain generalization lies in solving the question-schema linking problem, i.e., building alignment between natural language questions and database schemas. Existing leading approaches address the question-schema linking problem under the heterogeneous structure learning framework. Among them, the approaches adopting heterogeneous graph encoders have shown significant improvement by taking the advantage of learning multiple prior structure knowledge simultaneously (Wang et al., 2020a; Cai et al., 2021; Cao et al., 2021), e.g., SADGA devises a unified dual graph framework to jointly learn the semantic and structural information of the question and database schema, LGESQL constructs a node-centric graph and an edge-centric graph and further utilizes unified RGAT to alternatively update the representation of node and edge.

Although some promising results have been reported, the existing heterogeneous structure learning methods are still limited by their widely used unified encoding process. The first limitation is due to the mixing of semantic and structural information. Specifically, both the semantic information and the structural information (nodes or edges) are represented using tokens, which may raise the wrong (or missing) important structural information. For example, as shown in Figure 1(a), the "average" in the given case is an item of the database, but the existing approach incorrectly generates the SQL aggregation function "AVG". The second limitation is the indiscriminate processing process of the node-centric graph and the edge-centric graph. Specifically, the topological characteristics of edge-centric graphs are different from those of nodes, and using the same encoding process will cause the loss of the unique property of each graph. Though the line graph used in LGESQL splits the nodes into multiple edges during RGAT encoding, they still cannot extract the edge topology information accurately. Thus, the key to tackling these limitations is to effectively divide complex heterogeneous struc-
In this paper, we propose a Divide-and-conquer Heterogeneous Structure Learning (DCHL) for cross-domain Text-to-SQL. The "Divide-and-conquer" is a combination term that we borrowed from computer science, and nicely echoes the idea of the proposed DCHL. The division of DCHL has two aspects meaning: (i) the semantic information and the structure information are separated; (ii) the structure information of nodes and edges are processed separately by considering their unique characteristics. To implement the above division, we first extract the semantic and structural information from the input graph, then further divide the structural information into abstract node graph and abstract edge graph. Second, we propose Abstract Graph Encoder includes two encoding branches for abstract node graph and abstract edge graph, which employ a new edge graph transformation method and a corresponding hypergraph encoder to accurately and scalably encode the structure information of edges. As shown in Fig 1(b), retaining the structural information after removing the semantic information can effectively prevent incorrect links brought by specific tokens. However, Fig 1(c) shows that when semantic information is lost, it also leads to incorrect query generation. Therefore, the semantic graph branch with full graph input is retained in DCHL and the learning process is consistent with leading work. Finally, the Semantic-Structural Aggregation Mechanism will aggregate the semantic graph branch and the other two abstract structural branches by a gated-based aggregation mechanism. The contributions are summarized as follows:

- We propose the DCHL framework to solve the problem of heterogeneous structure learning in cross-domain Text-to-SQL by dividing hybrid inputs into semantic information and structural information.
- We devise the Abstract Graph Encoder and Semantic-structural aggregation mechanism which allows different types of information to be learned separately and fused efficiently.
- We conduct extensive experiments to study the effectiveness of the proposed DCHL framework. Experiments on three benchmarks demonstrate DCHL outperforms the baseline methods. Our implementation will be open-sourced after acceptance.

2 Model Overview

We first make the necessary definition for the Text-to-SQL task and the Heterogeneous Graph Input for our DCHL framework. DCHL follows the encoder-decoder manner to efficiently process heterogeneous structure learning by dividing semantic and node-edge structure information encoding branches.

Problem Definition Text-to-SQL task can be defined as follows: given a natural language ques-
Heterogeneous Graph Input As many existing works do (Cao et al., 2021; Cai et al., 2021; Wang et al., 2020a), we first construct a heterogeneous graph consisting of the question and the database, which can be represented by \(G = (V, R, P) \). Specifically, \(a) \) the node set \(V = Q \cup \mathcal{T} \cup \mathcal{C} \) consists nodes of question words, tables and columns. The initial node embedding matrix \(X \in \mathbb{R}^{(|V|+|\mathcal{T}|+|\mathcal{C}|) \times d} \) is obtained by GloVe embeddings (Pennington et al., 2014) or the pretrained language model (PLM). \(b) \) The relation matrix \(R = \{r_{i,j}\}_{i=1,j=1}^{V \times V} \) represents the edge type among nodes. According to some typical database-specific knowledge and string-match strategies, we redefine several edge types and assign each edge to one of the predefined types. Each edge type is represented as a learnable embedding with random initialization, and the edge embedding matrix can be represented as \(Z \in \mathbb{R}^{R \times d} \). Details of all predefined edge types can be found in the appendix. \(c) \) The vector \(\mathcal{P} = \{p_i\}_{i=1}^{V} \in \{\text{question}, \text{table}, \text{column}\} \) represents the node type for each node. In order to better capture the lexical information between question words, we further subdivide the question type into various lexical categories, e.g., nouns, verbs. Each node type can be featured as a learnable vector initialized from GloVe or PLM, and the initial node type embedding matrix can be represented as \(S \in \mathbb{R}^{(|Q|+|\mathcal{T}|+|\mathcal{C}|) \times d} \). After the heterogeneous graph is constructed, it will be fed into a typical encoder-decoder framework.

Encoder In the encoder part, we devise the DCHL framework to solve the problem of heterogeneous structure learning, including three steps: abstract graph construction, abstract graph encoder, and semantic-structural aggregation mechanism. In the workflow of DCHL, we first construct two abstract graphs at the node level and edge level named abstract node graph and abstract edge graph. Second, we further design an abstract graph encoder including two branches for the two abstract graphs, which is more conducive to learning the topology of nodes and edges separately. Finally, the semantic-structural aggregation mechanism aggregates two abstract graphs (i.e., the abstract node feature and the abstract edge feature) into the RGAT layer (Wang et al., 2020b) combined with the semantic graph branch, to obtain the final graph representation in DCHL.

Decoder In the decoder part, we follow the tree-structured architecture, which transforms the SQL query into the abstract syntax tree (AST) in depth-first traversal order (Yin and Neubig, 2017). First, based on all node representations from DCHL, the decoder outputs a sequence of actions that generates an AST; then, the AST can be transformed into a sequential SQL query.

3 Divide-and-conquer Heterogeneous Structure Learning

In this section, we will delve into our encoder framework, Divide-and-conquer Heterogeneous Structure Learning (DCHL). DCHL first divides semantic and structural information from the original input; second, the topology structural information of nodes and edges is processed in Abstract Graph Construction and Abstract Graph Encoder respectively; finally, structural information and semantic information are aggregated in Semantic-Structural Aggregation. The details of each component are as follows.

3.1 Abstract Graph Construction

We construct the abstract graph by dividing the semantic information out from the original input \(G \). The construction details of the Abstract Node Graph and Abstract Edge Graph are as follows.

Abstract Node Graph In order to better learn the local structure of the nodes, following Cao et al. (2021), we divide all edge types into local relations and non-local relations, and only consider the local relation when constructing the Abstract Node Graph (ANG), which can be simply represented by \(G_{\text{local}}^{\text{ANG}} = (P, A_{\text{local}}) \), where \(P \) represents the type for each node in \(G \), and the \(A_{\text{local}} \) represents the adjacency matrix which only considers local relation. As shown in Figure 2, ANG only retains the graph structure and the node type feature.

Abstract Edge Graph As we describe in the introduction, the line graph transformation used in LGE SQL has obvious drawbacks: \(a) \) employing the same encoding method as the nodes may not be appropriate; \(b) \) splitting nodes into multiple edges leads to loss of topological information of the original graph during the transformation; \(c) \)
transformation is not unique, thus two different question-schema graphs may be transformed into the same line graph.

To address the above issues, we adopt Dual Hypergraph Transformation (DHT) (Jo et al., 2021) in construction, which can convert a graph into the corresponding hypergraph. The process of DHT is as follows: nodes on the original graph are transformed into hyperedges on the hypergraph, and edges are transformed into nodes on the hypergraph. Taking advantage of the duality of the hypergraph, DHT aims to interchange the structural role of node and edge. As shown in Figure 3, we provide a case for DHT, where the incidence matrix \(M \) in the original graph represents the interaction between \(|V| \) nodes and \(|R| \) edges, i.e., each entry indicates whether the node is incident to the edge. \(M^T \) indicates the incidence matrix in the hypergraph.

In DCHL, through DHT we convert the graph \(G^\text{local}_n \) and \(R^\text{local} \) into the hypergraph, which we call the Abstract Edge Graph (AEG), denoted as \(G^\text{e}_c = (P^\text{local}, M^T) \), where \(M \) can be transformed by \(A^\text{local} \) and \(T \) represents the transpose operation. AEG only reserves the graph structure and the edge type feature.

3.2 Abstract Graph Encoder

After the ANG and the AEG were constructed, we design two encoders, ANG Encoder and AEG Encoder, to learn the structural information for nodes and edges separately.

Abstract Node Graph Encoder For effectively learning the abstract structural knowledge of nodes, we employ a Graph Attention Network (GAT) (Velickovic et al., 2017) to encode the node abstract structure representation by performing message propagation among the self-structure. Given the representation \(s_i^{(l)} \) of node \(v_j \) in the ANG \(G^\text{local}_n \), the output abstract structure representation \(s_i^{(l+1)} \) of the \(l \)-th layer is computed by

\[
e_{ij}^{(l+1)} = a^{(l)} \left[W_k s_i^{(l)} || W_a s_j^{(l)} \right],
\]

\[
\alpha_{ij}^{(l+1)} = \frac{\exp \left(\text{LeakyReLU} \left(e_{ij}^{(l+1)} \right) \right)}{\sum_{k \in \mathcal{N}^\text{local}_i} \exp \left(\text{LeakyReLU} \left(e_{ik}^{(l+1)} \right) \right)},
\]

\[
s_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}^\text{local}_i} \alpha_{ij}^{(l+1)} W_a s_j^{(l)} \right),
\]

where \(\sigma \) is a nonlinearity function, e.g., ReLU, \(W_k, W_a \) are the learnable weight matrix, \(\mathcal{N}^\text{local}_i \).
represents the neighbor indices of node \(v_i \) in \(C_{\text{local}}^i \). With the help of GAT, the node type features in ANG can be encoded to obtain the node abstract structure representation.

Abstract Edge Graph Encoder To accurately and scalably encode the structure information of edges, we encode the edge abstract structure representation by performing message propagation using EHGNN (Jo et al., 2021). Given the AEG \(G_{\text{local}}^e \), the node representation \((z_i^*)^{(l+1)}\) of the \(l \)-th layer is computed by

\[
\hat{x}_i^{(l)} = \frac{1}{|N_{v_i}^*|} \sum_{z_j^* \in N_{v_i}^*} W_z z_j^{(l)} \tag{4}
\]

\[
(z_i^*)^{(l+1)} = \frac{1}{|N_{e, i}^*|} \sum_{x_j \in N_{e, i}^*} \hat{x}_j^{(l)} \tag{5}
\]

where \(\hat{x}_i \) represents the hyperedge \(v_i^* \) temporarily aggregates the information of surrounding nodes, \(N_{v_i}^* \) and \(N_{e, i}^* \) represent the set of nodes around hyperedge \(v_i^* \) and the set of hyperedges around node \(r_i^* \), respectively. \(|N_{v_i}^*| \) is always 3 (each node is connected to two hyperedges and an additional self-loop edge). Figure 4 shows the detail of the message passing on hypergraph in our AEG encoder.

Figure 4: The two steps of message passing on hypergraph: i) using the topology of the hypergraph to pass the node feature (the edge feature in the original graph) to the hyperedge, ii) passing the information from the hyperedge back to the node. Note that we only consider hyperedge 1 for simplicity.

In our DCHL, the AEG encoder is able to dedicatedly and efficiently learn edge topology information without any node information, unlike previous work that learns nodes and edges uniformly.

After the abstract graph encoding, we can obtain the abstract structural representation of nodes and edges separately, indicated as \(s \) and \(z \). In the next, we will introduce how to aggregate them combined with the node semantic information to obtain the final graph representation.

3.3 Semantic-Structural Aggregation

In this semantic-structural aggregation module, we combine the semantic feature in the original heterogeneous graph \(G \) and the abstract structural feature through the gate-based mechanism. Specially, for each node, the node representation \(c^{(l+1)} \) of the \(l \)-th layer is calculated by

\[
b_i = \left[x_i^{(l)} \right. \left. | s_i^{(l)} \right] \tag{6}
\]

\[
c^{(l+1)} = gate(b_i) \cdot x_i^{(l)} + (1 - gate(b_i)) \cdot s_i^{(l)} \tag{7}
\]

where \(|\cdot|\) represents vector concatenation and \(gate \) is a linear layer with a Sigmoid function indicating how much semantic or abstract structural information the node should receive.

After obtaining the new node representation with semantic-structural information and the edge structural feature from the AEG encoder, inspired by LGESQL (Cao et al., 2021), we leverage an RGAT (Wang et al., 2020b) layer to obtain the final node representation of the heterogeneous graph. The output representation \(x_i^{(l+1)} \) of the \(l \)-th layer is computed by

\[
e^{(h)}_{ij} = \frac{c_i W_q^{(h)} \left(c_j W_k^{(h)} + \psi(r_{ij}) \right)^T}{\sqrt{d_z/H}} \tag{8}
\]

\[
\alpha^{(h)}_{ij} = \text{softmax} \left\{ e^{(h)}_{ij} \right\} \tag{9}
\]

\[
x_i^{(l+1)} = \sum_{v_j \in N_i^*} \alpha^{(h)}_{ij} \left(c_j W_q^{(h)} + \psi(r_{ij}) \right) \tag{10}
\]

where \(W_q, W_k, W_c \) are the trainable parameter, \(H \) is the number of heads, \(N_i^* \) represents the neighborhoods of node \(v_i \). The function \(\psi(r_{ij}) \) returns an edge feature vector with respect to the relation \(r_{ij} \): if \(r_{ij} \) belongs to the local relation (i.e., has been learned by the AEG encoder, the function returns the edge structural representation \(z_{ij}^* \) from the AEG encoder, otherwise it returns a trainable feature vector.

Through the above semantic-structural aggregation method, we can effectively fuse the divided semantic information and the structural information of nodes and edges to obtain accurate decoding.

4 Experiments

4.1 Experiment Setup

Dataset We evaluate the DCHL framework on three widely used Text-to-SQL benchmarks
datasets as follows: (1) Spider (Yu et al., 2018b) is a large-scale cross-domain Text-to-SQL benchmark. It contains 8659 training samples across 146 databases and 1034 evaluation samples across 20 databases. We report the exact set match accuracy on the development set and the test set. The test dataset contains 2147 samples with 40 unseen databases. Since the fair competition, the Spider official has not released the test set for evaluation. We submit our model to the organizer of the challenge for evaluation. (2) Spider-DK (Gan et al., 2021b) is a human-curated dataset based on Spider, which is constructed by selecting 535 samples from Spider dev set, with focusing on evaluating the model understanding of domain knowledge. We train our model on the Spider training set and test on the Spider-DK development set. (3) Spider-SYN (Gan et al., 2021a) is another challenging variant of Spider. It is constructed by manually modifying NL questions with synonym substitution, making it more adaptable for cases where the user does not know the exact schema word mentioned.

Implementation Details

In the preprocessing phase, we tokenize and lexicalize questions, table names, column names, and their types with the Stanford Nature Language Processing toolkit. In order to use contextual information, we use GloVe (Pennington et al., 2014) word embeddings and the pre-trained language model ELECTRA (Clark et al., 2020). The schema linking strategy is borrowed from LGEQSAL (Cao et al., 2021), which is also our baseline. For a fair comparison with base-lines, we configure it with the same set of hyper-parameters. In the encoder, we stack 8 DCHL layers, the hidden size is set to 256 for GloVe and 512 for ELECTRA. In the decoder, the dimension of hidden state, action embedding and node type embedding are set to 512, 128 and 64. The learning rate is 5e-4 for GloVe and 1e-4 for ELECTRA. The number of training epochs is 100 for GLOVE, and 200 for PLMs respectively. We trained our models on one server with a single NVIDIA GTX 3090 GPU.

4.2 Overall Performance

Table 1 and Table 2 shows the exact match accuracy on three benchmarks with the exact match average accuracy of 3 runs. Almost all baseline results are obtained from official leaderboard or original papers. As shown in Table 1, we can see that DCHL outperforms all existing models on Spider. DCHL has a significant improvement over the SOTA model LGESQL+ELECTRA on the development set and gets comparable results on the test set. We guess that the domain difference between the development and test sets leads to this. This interesting observation is also evident in the Spider leaderboard. As shown in table 2, our models can significantly outperform the previous best models on Spider-DK and Spider-SYN. It is worth noting that our model obtains 7.2% improvement and 5.5% improvement over LGESQL on the Spider-DK and Spider-SYN datasets, respectively. Spider-DK and Spider-SYN improve domain knowledge and more

<table>
<thead>
<tr>
<th>Model</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without PLM: GloVe</td>
<td>52.7</td>
<td>47.4</td>
</tr>
<tr>
<td>RATSQL + STRUG (Deng et al., 2021)</td>
<td>72.6</td>
<td>68.4</td>
</tr>
<tr>
<td>RATSQL + GAP (Shi et al., 2021)</td>
<td>71.8</td>
<td>69.7</td>
</tr>
<tr>
<td>DCHL + ELECTRA</td>
<td>75.1</td>
<td>72.0</td>
</tr>
<tr>
<td>DCHL</td>
<td>76.5</td>
<td>72.1</td>
</tr>
</tbody>
</table>

Table 1: Exact match accuracy (%) on Spider-development set and test set.

<table>
<thead>
<tr>
<th>Model</th>
<th>DK</th>
<th>SYN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without PLM: GloVe</td>
<td>26.0</td>
<td>23.6</td>
</tr>
<tr>
<td>RATSQL + STRUG (Deng et al., 2021)</td>
<td>39.4</td>
<td>48.9</td>
</tr>
<tr>
<td>RATSQL + GAP (Shi et al., 2021)</td>
<td>44.1</td>
<td>49.8</td>
</tr>
<tr>
<td>DCHL + ELECTRA</td>
<td>51.0</td>
<td>65.6</td>
</tr>
<tr>
<td>DCHL</td>
<td>54.4</td>
<td>68.1</td>
</tr>
</tbody>
</table>

Table 2: Exact match accuracy (%) on Spider-DK and Spider-SYN.
technique spider spider-dk spider-syn

<table>
<thead>
<tr>
<th></th>
<th>spider</th>
<th>spider-dk</th>
<th>spider-syn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCHL</td>
<td>76.5</td>
<td>54.4</td>
<td>68.1</td>
</tr>
<tr>
<td>w/o NSI</td>
<td>76.0(0.5↓)</td>
<td>49.9(4.5↓)</td>
<td>64.9(3.2↓)</td>
</tr>
<tr>
<td>w/o ESI</td>
<td>74.7(1.8↓)</td>
<td>51.2(3.3↓)</td>
<td>63.8(4.3↓)</td>
</tr>
<tr>
<td>w/o SSA</td>
<td>74.8(1.7↓)</td>
<td>50.2(4.2↓)</td>
<td>63.7(4.4↓)</td>
</tr>
</tbody>
</table>

Table 3: Ablation study of different modules. NSI: node abstract structure information; ESI: edge abstract structure information; SSA: semantic-structural aggregation.

complex semantic information than Spider. Greater improvements in Spider-DK and Spider-SYN also effectively support that DCHL gets better generalization ability by abstracting structural and semantic information.

4.3 Ablation Studies

We conduct ablation studies to show the effectiveness of different modules of DCHL to the overall improved performance. The major model variants are as follows:

- **w/o node abstract structure information**: Discard the abstract node structural information learning phase (i.e., Eq. 2 ~4).
- **w/o edge abstract structure information**: Discard the abstract edge structural information learning phase (i.e., Eq. 6 ~7).
- **w/o semantic-structural aggregation**: Average aggregation of semantic and structural information (i.e., Eq. 9, gate(·) = 0.5).

The ablation experimental results are presented in Table 3. As the table shows, all components are necessary to DCHL. More specifically, DCHL w/o node structure information give us 0.5% less performance averaged on Spider, but on the other two datasets, performance decreases by 4.5% and 3.2%, respectively, indicating that structural information is essential in the synonym substitution or where domain knowledge is required. Similarly, edge structure information gives 3.1% performance boost in average over all benchmarks. Furthermore, when removing the semantic-structural aggregation, DCHL brings an average performance drop of 3.4%.

We can discover that the DCHL module contributes more in Spider-DK and Spider-SYN than the Spider benchmark, which proves the importance of abstract structural information in challenging settings.

4.4 Case Studies

To intuitively understand the effectiveness of our model, we selected three different types of cases from three benchmarks and presented them in Table 4 to compare the SQL statements generated by our model and LGESQL, including word polysemy, synonym substitution, and domain adaptation.

For the case of word polysemy, as shown in the first case and the second case, where the average have multiple implications: SQL function "AVG()" and column Average, baseline fails to determine the right implication for SQL generation, while our model can successfully identify the correct implication by selectively aggregating semantic and abstract structural information.

For the case of synonym substitution, as shown in the third case, the token category in question could not be matched to the column type via the string match method. Since our method has extracted and learned the structural information of the original question, the above problem can be avoided in most cases. As shown in Figure 5, we can obtain the interpretable result. For example, the question word category has a strong activation with the columns pet_type, although the string match method cannot capture the alignment, while DCHL can easily align the words with the help of abstract structural information.

For the case of domain adaptation, as shown in the fourth case, on the training set, the word or always corresponds to the "OR" in the SQL statement. However, when the domain knowledge on the development set is different from the training set, LGESQL generates incorrect SQL statements, while DCHL demonstrates domain adaptation capabilities.
Table 4: Case Study: The first two cases are sampled from Spider, the third example is from Spider-SYN and the last example is from Spider-DK.

5 RELATED WORK

Text-to-SQL Parsing. The architectures proposed for cross-domain Text-to-SQL show increasing complexity in the encoder. IRNet (Guo et al., 2019) leveraged two separate BiLSTMs with self-attention mechanism to encode the NL question and table schema. RATSQL (Wang et al., 2020a) proposes a unified encoding mechanism to handle various pre-defined relations. Recently, besides LGESQL some work has also used heterogeneous graph modeling to solve heterogeneous structure learning. SADGA (Cai et al., 2021) adapts a unified dual graph framework for both the question and database schema, to utilize the global and local structure information across the dual graph on the question schema linking. ShadowGNN (Chen et al., 2021) abstracts the item of database Schema to remove domain information to improve generalization. Sharing the idea of abstract structure, DCHL still has the following advantages over ShadowGNN. First, DCHL also abstracts the question to divide the semantic information of the question, which effectively solves the issue of wrong linking shown in Fig. 1. As for the problem, ShadowGNN only abstracts the schema unit of it and cannot solve the above issue. Second, DCHL has better domain generalization in addition to a more comprehensive division of semantic and structural information, and further topology learning of nodes and edges individually for structural information.

Domain generalization capabilities. Due to the limitations of the existing string match based method, some current works try to improve the accuracy of the graph linking phase with the help of PLM. PROTON (Wang et al., 2022) proposed a probing technique to probe schema linking information between the NL query and the database schema from large-scale PLMs during the initial graph link phase. Based on the distance metric, ISESL-SQL (Liu et al., 2022) is the first to introduce the graph structure learning methods into schema linking and Text-to-SQL, which refines the initial schema linking graph iteratively during model training. Different from these works, we do not use PLM to improve the string match method, but extract a unified structure representation in the encoding process to enhance the domain adaptability of the model.

6 CONCLUSION

In this paper, we propose a Divide-and-conquer Heterogeneous Structure Learning (DCHL) for cross-domain Text-to-SQL. The core idea of the proposed DCHL is to divide the semantic information and structural information from complex heterogeneous structural inputs, which can avoid incorrect question-schema linking and improve the model’s domain generalizability. By avoiding the existing methods’ unified encoding approach, DCHL devises encoders for the topology of nodes and edges separately and further improves the model’s generalizability. Experimental results demonstrated that our method substantially outperformed strong baselines and set state-of-the-art performance on three Text-to-SQL benchmarks.
Limitations

Compared to our baseline model LGESQL, our proposed DCHL requires more computational cost at each training step, with abstract node graph and abstract edge graph encoder.

Although our method divides the semantic information and structural information, the approach focuses more on learning with structural information, while semantic information is only aggregated through the gate-based mechanism. Therefore, a general strategy for learning semantic information is needed. We aim to address this limitation in our future work.

References

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, Bailin Wang, Binhuia Li, Jian Sun, Fei Huang, Luo Si, and Yongbin Li. 2022. Proton: Probabilistic schema linking information from pre-trained language models for text-to-sql parsing. In KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pages 1889–1898. ACM.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. 2018b. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. CoRR, abs/1809.08887.

A Example Appendix

A.1 Details of predefined edge types

All structures have been shown in Table 5. A edge exists from head node $x \in S$ to tail node $y \in S$ if the node pair listed in the Table with the corresponding label.
<table>
<thead>
<tr>
<th>Head x Tail y</th>
<th>Edge Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Q</td>
<td>Question-Question-Dist*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Question-Identity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Question-Generic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Question-Syntactic Dependency</td>
</tr>
<tr>
<td>Q</td>
<td>T</td>
<td>Question-Table-Exactmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Table-Partialmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Table-Nomatch</td>
</tr>
<tr>
<td>Q</td>
<td>C</td>
<td>Question-Column-Exactmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Column-Partialmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Question-Column-Nomatch</td>
</tr>
<tr>
<td>T</td>
<td>Q</td>
<td>Table-Question-Exactmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Question-Partialmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Question-Nomatch</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>Table-Table-Identity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Table-Fk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Table-Fkr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Table-Fkb</td>
</tr>
<tr>
<td>T</td>
<td>C</td>
<td>Table-Column-Pk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Column-Has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table-Column-Generic</td>
</tr>
<tr>
<td>C</td>
<td>Q</td>
<td>Column-Question-Exactmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Question-Partialmatch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Question-Nomatch</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>Column-Table-Pk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Table-Has</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Table-Generic</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>Column-Column-Identity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Column-SameTable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Column-Fk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Column-Column-Fkr</td>
</tr>
</tbody>
</table>

Table 5: All edge types used in our experiment.