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Abstract

Existing leading Text-to-SQL approaches with001
heterogeneous structure learning utilize a uni-002
fied learning process for semantic and node-003
edge structural information. However, the uni-004
fied learning process leads to two major limi-005
tations: (i) The mixing of semantic and struc-006
tural information may cause incorrect linking in007
structure learning. (ii) The indiscriminate pro-008
cessing of the node graph and the edge graph009
will cause the loss of the unique property of010
each graph. In order to address these limita-011
tions, we propose a divide-and-conquer Hetero-012
geneous Structure Learning(DCHL) framework013
for Text-to-SQL, which abstracts the structural014
information and divides out the semantic infor-015
mation from the original input. Specifically,016
our framework is featured with the Abstract017
Graph Construction and Abstract Graph En-018
coder for the node and edge respectively. We019
also devise a Semantic-structural Aggregation020
Mechanism to fuse the divided semantic in-021
formation and the topological structure infor-022
mation of nodes and edges. Extensive experi-023
ments on three benchmark datasets show that024
DCHL clearly outperforms strong competitors025
and achieves new state-of-the-art results. the026
proposed DCHL achieves competitive results027
(62.9% with GLOVE, 72.1% with ELECTRA)028
on the cross-domain text-to-SQL benchmark029
Spider at the time of writing.030

1 Introduction031

The Text-to-SQL task, aiming to convert natu-032

ral language questions into corresponding SQL033

queries, is a key technology for building database034

business intelligence applications (Cai et al., 2018;035

Hwang et al., 2019; Yu et al., 2018a). To alle-036

viate the huge cost of training the Text-to-SQL037

model for each specific database, the cross-domain038

Text-to-SQL tries to generalize the trained mod-039

els to unseen databases. The core of cross-domain040

generalization lies in solving the question-schema041

linking problem, i.e., building alignment between 042

natural language questions and database schemas. 043

Existing leading approaches address the 044

question-schema linking problem under the 045

heterogeneous structure learning framework. 046

Among them, the approaches adopting hetero- 047

geneous graph encoders have shown significant 048

improvement by taking the advantage of learning 049

multiple prior structure knowledge simultaneously 050

(Wang et al., 2020a; Cai et al., 2021; Cao et al., 051

2021), e.g., SADGA devises a unified dual graph 052

framework to jointly learn the semantic and 053

structural information of the question and database 054

schema, LGESQL constructs a node-centric 055

graph and an edge-centric graph and further 056

utilizes unified RGAT to alternatively update the 057

representation of node and edge. 058

Although some promising results have been re- 059

ported, the existing heterogeneous structure learn- 060

ing methods are still limited by their widely used 061

unified encoding process. The first limitation is 062

due to the mixing of semantic and structural infor- 063

mation. Specifically, both the semantic informa- 064

tion and the structural information (nodes or edges) 065

are represented using tokens, which may raise the 066

wrong (or missing) important structural informa- 067

tion. For example, as shown in Figure 1(a), the "av- 068

erage" in the given case is an item of the database, 069

but the existing approach incorrectly generates the 070

SQL aggregation function "AVG". The second lim- 071

itation is the indiscriminate processing process of 072

the node-centric graph and the edge-centric graph. 073

Specifically, the topological characteristics of edge- 074

centric graphs are different from those of nodes, 075

and using the same encoding process will cause the 076

loss of the unique property of each graph. Though 077

the line graph used in LGESQL splits the nodes into 078

multiple edges during RGAT encoding, they still 079

cannot extract the edge topology information accu- 080

rately. Thus, the key to tackling these limitations is 081

to effectively divide complex heterogeneous struc- 082
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Figure 1: A toy example. The left part shows that some existing models, e.g., LGESQL, generate the wrong SQL
language when structural and semantic information is available. The middle part shows that without interference
from semantic information, the model can use structural information to generate accurate SQL. The right part shows
that the model cannot generate the correct SQL without the help of semantic information when using only structural
information.

tures into multiple aspects and specifically employ083

suitable structure learning modules.084

In this paper, we propose a Divide-and-conquer085

Heterogeneous Structure Learning (DCHL) for086

cross-domain Text-to-SQL. The "Divide-and-087

conquer" is a combination term that we borrowed088

from computer science, and nicely echoes the idea089

of the proposed DCHL. The division of DCHL has090

two aspects meaning: (i) the semantic information091

and the structure information are separated; (ii)092

the structure information of nodes and edges are093

processed separately by considering their unique094

characteristics. To implement the above division,095

we first extract the semantic and structural informa-096

tion from the input graph, then further divide the097

structural information into abstract node graph and098

abstract edge graph. Second, we propose Abstract099

Graph Encoder includes two encoding branches for100

abstract node graph and abstract edge graph, which101

employ a new edge graph transformation method102

and a corresponding hypergraph encoder to accu-103

rately and scalably encode the structure informa-104

tion of edges. As shown in Fig 1(b), retaining the105

structural information after removing the seman-106

tic information can effectively prevent incorrect107

links brought by specific tokens. However, Fig 1(c)108

shows that when semantic information is lost, it109

also leads to incorrect query generation. Therefore,110

the semantic graph branch with full graph input is111

retained in DCHL and the learning process is con-112

sistent with leading work. Finally, the Semantic-113

Structural Aggregation Mechanism will aggregate114

the semantic graph branch and the other two ab- 115

stract structural branches by a gated-based aggrega- 116

tion mechanism. The contributions are summarized 117

as follows: 118

• We propose the DCHL framework to solve 119

the problem of heterogeneous structure learn- 120

ing in cross-domain Text-to-SQL by dividing 121

hybrid inputs into semantic information and 122

structural information. 123

• We devise the Abstract Graph Encoder and 124

Semantic-structural aggregation mechanism 125

which allows different types of information to 126

be learned separately and fused efficiently. 127

• We conduct extensive experiments to study the 128

effectiveness of the proposed DCHL frame- 129

work. Experiments on three benchmarks 130

demonstrate DCHL outperforms the baseline 131

methods. Our implementation will be open- 132

sourced after acceptance. 133

2 Model Overview 134

We first make the necessary definition for the Text- 135

to-SQL task and the Heterogeneous Graph Input 136

for our DCHL framework. DCHL follows the 137

encoder-decoder manner to efficiently process het- 138

erogeneous structure learning by dividing seman- 139

tic and node-edge structure information encoding 140

branches. 141

Problem Definition Text-to-SQL task can be de- 142

fined as follows: given a natural language ques- 143
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tion Q = {qi}|Q|
i=1 and the corresponding database144

schema S = ⟨T,C⟩ including tables T = {ti}|T |
i=1145

and columns C =
{
ct11 , c

t1
2 , . . . , c

t2
1 , c

t2
2 , . . .

}
, the146

goal is to generate the correct SQL y for the ques-147

tion.148

Heterogeneous Graph Input As many existing149

works do (Cao et al., 2021; Cai et al., 2021; Wang150

et al., 2020a), we first construct a heterogeneous151

graph consisting of the question and the database,152

which can be represented by G = (V,R, P ). Spe-153

cially, a) the node set V = Q∪T∪C consists nodes154

of question words, tables and columns. The ini-155

tial node embedding matrix X ∈ R|V |Q|+|T |+|C||×d156

is obtained by GloVe embeddings (Pennington157

et al., 2014) or the pretrained language model158

(PLM). b) The relation matrix R = {r}|V |,|V |
i=1,j=1159

represents the edge type among nodes. Accord-160

ing to some typical database-specific knowledge161

and string-match strategies, we predefine several162

edge types and assign each edge to one of the pre-163

defined types. Each edge type is represented as164

a learnable embedding with random initialization,165

and the edge embedding matrix can be represented166

as Z ∈ R|R|×d. Details of all predefined edge167

types can be found in the appendix. c) The vector168

P = {p}|V |
i=1 ∈ {question, table, column} rep-169

resents the node type for each node. In order to170

better capture the lexical information between ques-171

tion words, we further subdivide the question type172

into various lexical categories, e.g., nouns, verbs.173

Each node type can be featured as a learnable vec-174

tor initialized from GloVe or PLM, and the initial175

node type embedding matrix can be represented176

as S ∈ R|V |Q|+|T |+|C||×d. After the heterogeneous177

graph is constructed, it will be fed into a typical178

encoder-decoder framework.179

Encoder In the encoder part, we devise the180

DCHL framework to solve the problem of hetero-181

geneous structure learning, including three steps:182

abstract graph construction, abstract graph encoder,183

and semantic-structural aggregation mechanism.184

In the workflow of DCHL, we first construct two185

abstract graphs at the node level and edge level186

named abstract node graph and abstract edge graph.187

Second, we further design an abstract graph en-188

coder including two branches for the two abstract189

graphs, which is more conducive to learning the190

topology of nodes and edges separately. Finally, the191

semantic-structural aggregation mechanism aggre-192

gates two abstract graphs (i.e., the abstract node fea-193

ture and the abstract edge feature) into the RGAT 194

layer (Wang et al., 2020b) combined with the se- 195

mantic graph branch, to obtain the final graph rep- 196

resentation in DCHL. 197

Decoder In the decoder part, we follow the tree- 198

structured architecture, which transforms the SQL 199

query into the abstract syntax tree (AST) in depth- 200

first traversal order (Yin and Neubig, 2017). First, 201

based on all node representations from DCHL, the 202

decoder outputs a sequence of actions that gener- 203

ates an AST; then, the AST can be transformed into 204

a sequential SQL query. 205

3 Divide-and-conquer Heterogeneous 206

Structure Learning 207

In this section, we will delve into our encoder 208

framework, Divide-and-conquer Heterogeneous 209

Structure Learning (DCHL). DCHL first divides se- 210

mantic and structural information from the original 211

input; second, the topology structural information 212

of nodes and edges is processed in Abstract Graph 213

Construction and Abstract Graph Encoder respec- 214

tively; finally, structural information and semantic 215

information are aggregated in Semantic-Structural 216

Aggregation. The details of each component are as 217

follows. 218

3.1 Abstract Graph Construction 219

We construct the abstract graph by dividing the 220

semantic information out from the original input 221

G. The construction details of the Abstract Node 222

Graph and Abstract Edge Graph are as follows. 223

Abstract Node Graph In order to better learn 224

the local structure of the nodes, following Cao et al. 225

(2021), we divide all edge types into local relations 226

and non-local relations, and only consider the lo- 227

cal relation when constructing the Abstract Node 228

Graph (ANG), which can be simply represented 229

by Glocal
n = (P,Alocal), where P represents the 230

type for each node in G, and the Alocal represents 231

the adjacency matrix which only considers local 232

relation. As shown in Figure 2, ANG only retains 233

the graph structure and the node type feature. 234

Abstract Edge Graph As we describe in the 235

introduction, the line graph transformation used 236

in LGESQL has obvious drawbacks: a) employ- 237

ing the same encoding method as the nodes may 238

not be appropriate; b) splitting nodes into multi- 239

ple edges leads to loss of topological information 240

of the original graph during the transformation; c) 241
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Figure 2: The overview of the proposed model.

transformation is not unique, thus two different242

question-schema graphs may be transformed into243

the same line graph.244

To address the above issues, we adopt Dual Hy-245

pergraph Transformation (DHT) (Jo et al., 2021)246

in construction, which can convert a graph into the247

corresponding hypergraph. The process of DHT is248

as follows: nodes on the original graph are trans-249

formed into hyperedges on the hypergraph, and250

edges are transformed into nodes on the hypergraph.251

Taking advantage of the duality of the hypergraph,252

DHT aims to interchange the structural role of node253

and edge. As shown in Figure 3, we provide a case254

for DHT, where the incidence matrix M in the255

original graph represents the interaction between256

|V | nodes and |R| edges, i.e., each entry indicates257

whether the node is incident to the edge. MT indi-258

cates the incidence matrix in the hypergraph.259

In DCHL, through DHT we convert the graph260

Glocal
n and Rlocal into the hypergraph, which we261

call the Abstract Edge Graph (AEG), denoted as262

Glocal
e = (Rlocal,MT ), where M can be trans-263

formed by Alocal and T represents the transpose264

operation. AEG only reserves the graph structure265

and the edge type feature.266

3.2 Abstract Graph Encoder267

After the ANG and the AEG were constructed, we268

design two encoders, ANG Encoder and AEG En-269

coder, to learn the structural information for nodes270

and edges separately.271

Abstract Node Graph Encoder For effectively272

learning the abstract structural knowledge of nodes,273
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Figure 3: The transformation of the original graph to
the hypergraph by DHT.

we employ a Graph Attention Network (GAT) 274

(Velickovic et al., 2017) to encode the node ab- 275

stract structure representation by performing mes- 276

sage propagation among the self-structure. 277

Given the representation s(l)i of node vi in the 278

ANG Glocal
n , the output abstract structure represen- 279

tation s(l+1)
i of the l-th layer is computed by 280

e
(l+1)
ij = a(l)

[
W l

ks
(l)
i ||W l

ks
(l)
j

]
, (1) 281

α
(l+1)
ij =

exp
(
LeakyReLU

(
e
(l+1)
ij

))
∑

k∈N local
i

exp
(
LeakyReLU

(
e
(l+1)
ik

)) , (2) 282

s
(l+1)
i = σ

 ∑
j∈N local

i

α
(l+1)
ij W l

as
(l)
j

 , (3) 283

where σ is a nonlinearity function, e.g., ReLU, 284

Wk, Wa are the learnable weight matrix, N local
i 285
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represents the neighbor indices of node vi in Glocal
n .286

With the help of GAT, the node type features in287

ANG can be encoded to obtain the node abstract288

structure representation.289

Abstract Edge Graph Encoder To accurately290

and scalably encode the structure information of291

edges, we encode the edge abstract structural repre-292

sentation by performing message propagation using293

EHGNN (Jo et al., 2021). Given the AEG Glocal
e ,294

the node representation (z∗i )
(l+1) of the l-th layer295

is computed by296

x̂i
(l) =

1

|N ∗
n, i|

∑
z∗j∈N ∗

n, i

Wzz
∗
j
(l) (4)297

(z∗i )
(l+1) =

1

|N ∗
e, i|

∑
xj∈N ∗

e, i

x̂j
(l), (5)298

where x̂i represents the hyperedge v∗i temporarily299

aggregates the information of surrounding nodes,300

N ∗
n, i and N ∗

e, i represent the set of nodes around301

hyperedge v∗i and the set of hyperedges around302

node r∗i , respectively. |N ∗
e, i| is always 3 (each303

node is connected to two hyperedges and an addi-304

tional self-loop edge). Figure 4 shows the detail305

of the message passing on hypergraph in our AEG306

encoder.307

Step1. node to hyperedge Step2. hyperedge to node

A
B

C

1

E
3

6

4
D

5

A
B

C

2 E
3

6

4
D

5

2

Figure 4: The two steps of message passing on hyper-
graph: i) using the topology of the hypergraph to pass
the node feature (the edge feature in the original graph)
to the hyperedge, ii) passing the information from the
hyperedge back to the node. Note that we only consider
hyperedge 1 for simplicity.

In our DCHL, the AEG encoder is able to dedi-308

catedly and efficiently learn edge topology informa-309

tion without any node information, unlike previous310

work that learns nodes and edges uniformly.311

After the abstract graph encoding, we can obtain312

the abstract structural representation of nodes and313

edges separately, indicated as s and z. In the next,314

we will introduce how to aggregate them combined315

with the node semantic information to obtain the316

final graph representation.317

3.3 Semantic-Structural Aggregation 318

In this semantic-structural aggregation module, we 319

combine the semantic feature in the original hetero- 320

geneous graph G and the abstract structural feature 321

through the gate-based mechanism. Specially, for 322

each node, the node representation c(l+1) of the 323

l-th layer is calculated by 324

bi =
[
x
(l)
i ||s(l)i

]
(6) 325

c(l+1) = gate(bi) · x(l)i + (1− gate(bi)) · s(l)i ,
(7)

326

where || represents vector concatenation and gate 327

is a linear layer with a Sigmoid function indicating 328

how much semantic or abstract structural informa- 329

tion the node should receive. 330

After obtaining the new node representation with 331

semantic-structural information and the edge struc- 332

tural feature from the AEG encoder, inspired by 333

LGESQL (Cao et al., 2021), we leverage an RGAT 334

(Wang et al., 2020b) layer to obtain the final node 335

representation of the heterogeneous graph. The out- 336

put representation x(l+1)
i of the l-th layer is com- 337

puted by 338

e
(h)
ij =

ciW
(h)
q

(
cjW

(h)
k + ψ (rij)

)T

√
dz/H

, (8) 339

α
(h)
ij = softmax

{
e
(h)
ij

}
, (9) 340

x
(l+1)
i =

∑
vj∈Ni

α
(h)
ij

(
cjW

(h)
v + ψ (rij)

)
(10) 341

where Wq, Wk, Wv are the trainable parameter, H 342

is the number of heads, Ni represents the neigh- 343

borhoods of node vi. The function ψ (rji) returns 344

an edge feature vector with respect to the relation 345

rji: if rji belongs to the local relation (i.e., has 346

been learned by the AEG encoder, the function re- 347

turns the edge structural representation z∗ij from 348

the AEG encoder, otherwise it returns a trainable 349

feature vector. 350

Through the above semantic-structural aggrega- 351

tion method, we can effectively fuse the divided 352

semantic information and the structural information 353

of nodes and edges to obtain accurate decoding. 354

4 Experiments 355

4.1 Experiment Setup 356

Dataset We evaluate the DCHL framework 357

on three widely used Text-to-SQL benchmarks 358
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Model Dev Test
Without PLM:GloVe

Global-GNN (Bogin et al., 2019) 52.7 47.4
EditSQL (Zhang et al., 2019) 36.4 32.9
IRNet (Guo et al., 2019) 53.2 46.7
RATSQL (Wang et al., 2020a) 62.7 57.2
LGESQL (Cao et al., 2021) 67.6 62.8
DCHL 69.3 62.9

With Model Adaptive PLM
RATSQL + STRUG (Deng et al., 2021) 72.6 68.4
RATSQL + GRAPPA (Yu et al., 2021) 73.4 69.6
SmBoP + GRAPPA (Rubin and Berant, 2021) 74.7 69.5
RATSQL + GAP (Shi et al., 2021) 71.8 69.7
SADGA + GAP (Cai et al., 2021) 73.9 70.1
DT-Fixup SQL-SP + RobERTa (Xu et al., 2021) 75.0 70.9
LGESQL + ELECTRA (Cao et al., 2021) 75.1 72.0
DCHL + ELECTRA 76.5 72.1

Table 1: Exact match accuracy (%) on Spider develop-
ment set and test set.

datasets as follows: (1) Spider (Yu et al., 2018b)359

is a large-scale cross-domain Text-to-SQL bench-360

mark. It contains 8659 training samples across361

146 databases and 1034 evaluation samples across362

20 databases. We report the exact set match accu-363

racy on the development set and the test set. The364

test dataset contains 2147 samples with 40 unseen365

databases. Since the fair competition, the Spider of-366

ficial has not released the test set for evaluation. We367

submit our model to the organizer of the challenge368

for evaluation. (2) Spider-DK (Gan et al., 2021b)369

is a human-curated dataset based on Spider, which370

is constructed by selecting 535 samples from Spi-371

der dev set, with focusing on evaluating the model372

understanding of domain knowledge. We train our373

model on the Spider training set and test on the374

Spider-DK development set. (3) Spider-SYN (Gan375

et al., 2021a) is another challenging variant of Spi-376

der. It is constructed by manually modifying NL377

questions with synonym substitution, making it378

more adaptable for cases where the user does not379

know the exact schema word mentioned.380

381

Implementation Details In the preprocessing382

phase, we tokenize and lexicalize questions, ta-383

ble names, column names, and their types with the384

Standford Nature Language Processing toolkit.1. In385

order to use contextual information, we use GloVe386

(Pennington et al., 2014) word embeddings and387

the pre-trained language model ELECTRA (Clark388

et al., 2020). The schema linking strategy is bor-389

rowed from LGESQL (Cao et al., 2021), which is390

also our baseline. For a fair comparison with base-391

1https://github.com/stanfordnlp/stanza

Model DK SYN
Without PLM: GloVe

Global-GNN (Bogin et al., 2019) 26.0 23.6
EditSQL (Zhang et al., 2019) 31.4 25.3
IRNet (Guo et al., 2019) 33.1 28.4
RATSQL (Wang et al., 2020a) 35.8 33.6
LGESQL (Cao et al., 2021) 39.2 40.5
ISESL-SQL (Liu et al., 2022) 42.1 44.4
DCHL 42.8 47.5

With Model Adaptive PLM
RATSQL + STRUG (Deng et al., 2021) 39.4 48.9
RATSQL + GRAPPA (Yu et al., 2021) 38.5 49.1
SmBoP + GRAPPA (Rubin and Berant, 2021) 42.2 48.6
RATSQL + GAP (Shi et al., 2021) 44.1 49.8
DT-Fixup SQL-SP + RobERTa (Xu et al., 2021) 40.5 50.4
LGESQL + ELECTRA (Cao et al., 2021) 47.2 62.6
ISESL-SQL + ELECTRA (Liu et al., 2022) 50.0 62.6
PROTON + ELECTRA (Wang et al., 2022) 51.0 65.6
SUN + ELECTRA (Qin et al., 2022) 52.7 66.9
DCHL + ELECTRA 54.4 68.1

Table 2: Exact match accuracy (%) on Spider-DK and
Spider-SYN.

lines, we configure it with the same set of hyper- 392

parameters. In the encoder, we stack 8 DCHL lay- 393

ers, the hidden size is set to 256 for GloVe and 394

512 for ELECTRA. In the decoder, the dimension 395

of hidden state, action embedding and node type 396

embedding are set to 512, 128 and 64. The learning 397

rate is 5e-4 for GloVe and 1e-4 for ELECTRA. The 398

number of training epochs is 100 for GLOVE, and 399

200 for PLMs respectively. We trained our models 400

on one server with a single NVIDIA GTX 3090 401

GPU. 402

4.2 Overall Performance 403

Table 1 and Table 2 shows the exact match accu- 404

racy on three benchmarks with the exact match 405

average accuracy of 3 runs. Almost all baseline 406

results are obtained from official leaderboard or 407

original papers. As shown in Table 1, we can see 408

that DCHL outperforms all existing models on Spi- 409

der. DCHL has a significant improvement over the 410

SOTA model LGESQL+ELECTRA on the devel- 411

opment set and gets comparable results on the test 412

set. We guess that the domain difference between 413

the development and test sets leads to this. This 414

interesting observation is also evident in the Spider 415

leaderboard. As shown in table 2, our models can 416

significantly outperform the previous best models 417

on Spider-DK and Spider-SYN. It is worth noting 418

that our model obtains 7.2% improvement and 5.5% 419

improvement over LGESQL on the Spider-DK and 420

Spider-SYN datasets, respectively. Spider-DK and 421

Spider-SYN improve domain knowledge and more 422

6

https://github.com/stanfordnlp/stanza


Technique Spider Spider-DK Spider-SYN
DCHL 76.5 54.4 68.1
w/o NSI 76.0(0.5↓) 49.9(4.5↓) 64.9(3.2↓)
w/o ESI 74.7(1.8↓) 51.2(3.3↓) 63.8(4.3↓)
w/o SSA 74.8(1.7↓) 50.2(4.2↓) 63.7(4.4↓)

Table 3: Ablation study of different modules. NSI: node
abstract structure information; ESI: edge abstract struc-
ture information; SSA: semantic-structural aggregation.

complex semantic information than Spider. Greater423

improvements in Spider-DK and Spider-SYN also424

effectively support that DCHL gets better general-425

ization ability by abstracting structural and seman-426

tic information.427

4.3 Ablation Studies428

We conduct ablation studies to show the effective-429

ness of different modules of DCHL to the overall430

improved performance. The major model variants431

are as follows:432

w/o node abstract structure information Discard433

the abstract node structural information learning434

phase (i.e., Eq. 2 ~4).435

w/o edge abstract structure information Discard436

the abstract edge structural information learning437

phase (i.e., Eq. 6 ~7).438

w/o semantic-structural aggregation Average439

aggregation of semantic and structural information440

(i.e., Eq. 9, gate(·) = 0.5).441

442

The ablation experimental results are presented443

in Table 3. As the table shows, all components444

are necessary to DCHL. More specifically, DCHL445

w/o node structure information give us 0.5% less446

performance averaged on Spider, but on the other447

two datasets, performance decreases by 4.5% and448

3.2%, respectively, indicating that structural infor-449

mation is essential in the synonym substitution or450

where domain knowledge is required. Similarly,451

edge structure information gives 3.1% performance452

boost in average over all benchmarks. Furthermore,453

when removing the semantic-structural aggrega-454

tion, DCHL brings an average performance drop455

of 3.4%.456

We can discover that the DCHL module con-457

tributes more in Spider-DK and Spider-SYN than458

the Spider benchmark, which proves the impor-459

tance of abstract structural information in challeng-460

ing settings.461

Figure 5: Alignment between question words and ta-
bles/columns in our model.

4.4 Case Studies 462

To intuitively understand the effectiveness of our 463

model, we selected three different types of cases 464

from three benchmarks and presented them in Table 465

4 to compare the SQL statements generated by our 466

model and LGESQL, including word polysemy, 467

synonym substitution, and domain adaptation. 468

For the case of word polysemy, as shown in the 469

first case and the second case, where the average 470

have multiple implications: SQL function "AVG()" 471

and column Average, baseline fails to determine 472

the right implication for SQL generation, while 473

our model can successfully identify the correct im- 474

plication by selectively aggregating semantic and 475

abstract structural information. 476

For the case of synonym substitution, as shown 477

in the third case, the token category in question 478

could not be matched to the column type via the 479

string match method. Since our method has ex- 480

tracted and learned the structural information of 481

the original question, the above problem can be 482

avoided in most cases. As shown in Figure 5, we 483

can obtain the interpretable result. For example, the 484

question word category has a strong activation with 485

the columns pet_type, although the string match 486

method cannot capture the alignment, while DCHL 487

can easily align the words with the help of abstract 488

structural information. 489

For the case of domain adaptation, as shown in 490

the fourth case, on the training set, the word or 491

always corresponds to the "OR" in the SQL state- 492

ment. However, when the domain knowledge on 493

the development set is different from the training 494

set, LGESQL generates incorrect SQL statements, 495

while DCHL demonstrates domain adaptation ca- 496

pabilities. 497
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Question What is the average and maximum capacities for all stadiums ?
LGESQL SELECT AVG(average), MAX(highest) FROM stadium
DCHL SELECT AVG(capacity), MAX(capacity) FROM stadium
Gold SELECT AVG(capacity), MAX(capacity) FROM stadium
Question What is the name and capacity for the stadium with highest average attendance?
LGESQL SELECT name, capacity FROM stadium GROUP BY highest ORDER BY AVG(average) DESC LIMIT 1
DCHL SELECT name, capacity FROM stadium ORDER BY average DESC LIMIT 1
Gold SELECT name, capacity FROM stadium ORDER BY average DESC LIMIT 1
Question Find the type and weight of the youngest pet.
SYN_Question Find the category and weight of the youngest pet.
LGESQL SELECT Pet_age, weight FROM Pets ORDER BY pet_age LIMIT 1
DCHL SELECT Pet_type, weight FROM Pets ORDER BY pet_age LIMIT 1
Gold SELECT Pet_type, weight FROM Pets ORDER BY pet_age LIMIT 1
Question How many concerts are there in year 2014 or 2015 ?
DK_Question How many concerts are there after or in year 2014 ?
LGESQL SELECT COUNT(*) FROM concert WHERE Year > "value" OR Year >= "value"
DCHL SELECT COUNT(*) FROM concert WHERE Year >= "value"
Gold SELECT COUNT(*) FROM concert WHERE Year >= 2014

Table 4: Case Study: The first two cases are sampled from Spider, the third example is from Spider-SYN and the
last example is from Spider-DK.

5 RELATED WORK498

Text-to-SQL Parsing. The architectures proposed499

for cross-domain Text-to-SQL show increasing500

complexity in the encoder. IRNet (Guo et al.,501

2019) leveraged two separate BiLSTMs with self-502

attention mechanism to encode the NL question503

and table schema. RATSQL (Wang et al., 2020a)504

proposes a unified encoding mechanism to handle505

various pre-defined relations. Recently, besides506

LGESQL some work has also used heterogeneous507

graph modeling to solve heterogeneous structure508

learning. SADGA (Cai et al., 2021) adapts a uni-509

fied dual graph framework for both the question510

and database schema, to utilize the global and lo-511

cal structure information across the dual graph on512

the question schema linking. ShadowGNN (Chen513

et al., 2021) abstracts the item of database Schema514

to remove domain information to improve gener-515

alization. Sharing the idea of abstract structure,516

DCHL still has the following advantages over Shad-517

owGNN. First, DCHL also abstracts the question518

to divide the semantic information of the question,519

which effectively solves the issue of wrong link-520

ing shown in Fig. 1. As for the problem, Shad-521

owGNN only abstracts the schema unit of it and522

cannot solve the above issue. Second, DCHL has523

better domain generalization in addition to a more524

comprehensive division of semantic and structural525

information, and further topology learning of nodes526

and edges individually for structural information.527

Domain generalization capabilities. Due to528

the limitations of the existing string match based529

method, some current works try to improve the 530

accuracy of the graph linking phase with the help 531

of PLM. PROTON (Wang et al., 2022) proposed a 532

probing technique to probe schema linking informa- 533

tion between the NL query and the database schema 534

from large-scale PLMs during the initial graph link 535

phase. Based on the distance metric, ISESL-SQL 536

(Liu et al., 2022) is the first to introduce the graph 537

structure learning methods into schema linking and 538

Text-to-SQL, which refines the initial schema link- 539

ing graph iteratively during model training. Differ- 540

ent from these works, we do not use PLM to im- 541

prove the string match method, but extract a unified 542

structure representation in the encoding process to 543

enhance the domain adaptability of the model. 544

6 CONCLUSION 545

In this paper, we propose a Divide-and-conquer 546

Heterogeneous Structure Learning (DCHL) for 547

cross-domain Text-to-SQL. The core idea of the 548

proposed DCHL is to divide the semantic infor- 549

mation and structural information from complex 550

heterogeneous structural inputs, which can avoid 551

incorrect question-schema linking and improve 552

the model’s domain generalizability. By avoid- 553

ing the existing methods’ unified encoding ap- 554

proach, DCHL devises encoders for the topology 555

of nodes and edges separately and further improves 556

the model’s generalizability. Experimental results 557

demonstrated that our method substantially out- 558

performed strong baselines and set state-of-the-art 559

performance on three Text-to-SQL benchmarks. 560
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Limitations561

Compared to our baseline model LGESQL, our562

proposed DCHL requires more computational cost563

at each training step, with abstract node graph and564

abstract edge graph encoder.565

Although our method divides the semantic in-566

formation and structural information, the approach567

focuses more on learning with structural informa-568

tion, while semantic information is only aggregated569

through the gate-based mechanism. Therefore, a570

general strategy for learning semantic information571

is needed. We aim to address this limitation in our572

future work.573
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Kong, China, November 3-7, 2019, pages 5337–790
5348. Association for Computational Linguistics.791

A Example Appendix792

A.1 Details of predefined edge types793

All structures have been shown in Table 5. A edge794

exists from head node x ∈ S to tail node y ∈ S795

if the node pair listed in the Table with the corre-796

sponding label.797
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Head x Tail y Edge Type Description

Q Q

Question-Question-Dist* Question item H is at a distance of * before question item T in the input question
Question-Question-Identity Question item H is question item T itself
Question-Question-Generic Question item H and question item T has no pre-defined relation
Question-Question-Syntactic Dependency Question item H has a syntactic dependencies on question item T

Q T
Question-Table-Exactmatch
Question-Table-Partialmatch Question item H is spelled exactly/partially/not the same as table item T
Question-Table-Nomatch

Q C

Question-Column-Exactmatch
Question-Column-Partialmatch Question item H is spelled exactly/partially/not the same as column item T
Question-Column-Nomatch
Question-Column-Valuematch Question item H is spelled exactly the same as a value in column item T

T Q
Table-Question-Exactmatch
Table-Question-Partialmatch Table item H is spelled exactly/partially/not the same as question item T
Table-Question-Nomatch

T T

Table-Table-Generic Table item H and table item T has no pre-defined relation
Table-Table-Identity Table item H is table item T itself
Table-Table-Fk At least one column in table item H is a foreign key for certain column in table item T
Table-Table-Fkr At least one column in table item T is a foreign key for certain column in table item H
Table-Table-Fkb Table item H and T satisfy both "Table-Table-Fk" and "Table-Table-Fkr" relations

T C
Table-Column-Pk Column item T is the primary key for table item H
Table-Column-Has Column item T belongs to table item H
Table-Column-Generic Table item H and column item T has no pre-defined relation

C Q
Column-Question-Exactmatch
Column-Question-Partialmatch Column item H is spelled exactly/partially/not the same as table item T
Column-Question-Nomatch

C T
Column-Table-Pk Column item H is the primary key for table item T
Column-Table-Has Column item H belongs to table item T
Column-Table-Generic Column item H and table item T has no pre-defined relation

C C

Column-Column-Identity Column item H is column item T itself
Column-Column-Sametable Column item H and column item T are in the same table
Column-Column-Fk

Column item H has a forward/reverse foreign key constraint relation with Column item T
Column-Column-Fkr
Column-Column-Generic Column item H and column item T has no pre-defined relation

Table 5: All edge types used in our experiment.
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