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Abstract

Existing leading Text-to-SQL approaches with
heterogeneous structure learning utilize a uni-
fied learning process for semantic and node-
edge structural information. However, the uni-
fied learning process leads to two major limi-
tations: (i) The mixing of semantic and struc-
tural information may cause incorrect linking in
structure learning. (ii) The indiscriminate pro-
cessing of the node graph and the edge graph
will cause the loss of the unique property of
each graph. In order to address these limita-
tions, we propose a divide-and-conquer Hetero-
geneous Structure Learning(DCHL) framework
for Text-to-SQL, which abstracts the structural
information and divides out the semantic infor-
mation from the original input. Specifically,
our framework is featured with the Abstract
Graph Construction and Abstract Graph En-
coder for the node and edge respectively. We
also devise a Semantic-structural Aggregation
Mechanism to fuse the divided semantic in-
formation and the topological structure infor-
mation of nodes and edges. Extensive experi-
ments on three benchmark datasets show that
DCHL clearly outperforms strong competitors
and achieves new state-of-the-art results. the
proposed DCHL achieves competitive results
(62.9% with GLOVE, 72.1% with ELECTRA)
on the cross-domain text-to-SQL benchmark
Spider at the time of writing.

1 Introduction

The Text-to-SQL task, aiming to convert natu-
ral language questions into corresponding SQL
queries, is a key technology for building database
business intelligence applications (Cai et al., 2018;
Hwang et al., 2019; Yu et al., 2018a). To alle-
viate the huge cost of training the Text-to-SQL
model for each specific database, the cross-domain
Text-to-SQL tries to generalize the trained mod-
els to unseen databases. The core of cross-domain
generalization lies in solving the question-schema

linking problem, i.e., building alignment between
natural language questions and database schemas.

Existing leading approaches address the
question-schema linking problem under the
heterogeneous structure learning framework.
Among them, the approaches adopting hetero-
geneous graph encoders have shown significant
improvement by taking the advantage of learning
multiple prior structure knowledge simultaneously
(Wang et al., 2020a; Cai et al., 2021; Cao et al.,
2021), e.g., SADGA devises a unified dual graph
framework to jointly learn the semantic and
structural information of the question and database
schema, LGESQL constructs a node-centric
graph and an edge-centric graph and further
utilizes unified RGAT to alternatively update the
representation of node and edge.

Although some promising results have been re-
ported, the existing heterogeneous structure learn-
ing methods are still limited by their widely used
unified encoding process. The first limitation is
due to the mixing of semantic and structural infor-
mation. Specifically, both the semantic informa-
tion and the structural information (nodes or edges)
are represented using tokens, which may raise the
wrong (or missing) important structural informa-
tion. For example, as shown in Figure 1(a), the "av-
erage" in the given case is an item of the database,
but the existing approach incorrectly generates the
SQL aggregation function "AVG". The second lim-
itation is the indiscriminate processing process of
the node-centric graph and the edge-centric graph.
Specifically, the topological characteristics of edge-
centric graphs are different from those of nodes,
and using the same encoding process will cause the
loss of the unique property of each graph. Though
the line graph used in LGESQL splits the nodes into
multiple edges during RGAT encoding, they still
cannot extract the edge topology information accu-
rately. Thus, the key to tackling these limitations is
to effectively divide complex heterogeneous struc-
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Figure 1: A toy example. The left part shows that some existing models, e.g., LGESQL, generate the wrong SQL
language when structural and semantic information is available. The middle part shows that without interference
from semantic information, the model can use structural information to generate accurate SQL. The right part shows
that the model cannot generate the correct SQL without the help of semantic information when using only structural

information.

tures into multiple aspects and specifically employ
suitable structure learning modules.

In this paper, we propose a Divide-and-conquer
Heterogeneous Structure Learning (DCHL) for
cross-domain Text-to-SQL. The "Divide-and-
conquer" is a combination term that we borrowed
from computer science, and nicely echoes the idea
of the proposed DCHL. The division of DCHL has
two aspects meaning: (i) the semantic information
and the structure information are separated; (ii)
the structure information of nodes and edges are
processed separately by considering their unique
characteristics. To implement the above division,
we first extract the semantic and structural informa-
tion from the input graph, then further divide the
structural information into abstract node graph and
abstract edge graph. Second, we propose Abstract
Graph Encoder includes two encoding branches for
abstract node graph and abstract edge graph, which
employ a new edge graph transformation method
and a corresponding hypergraph encoder to accu-
rately and scalably encode the structure informa-
tion of edges. As shown in Fig 1(b), retaining the
structural information after removing the seman-
tic information can effectively prevent incorrect
links brought by specific tokens. However, Fig 1(c)
shows that when semantic information is lost, it
also leads to incorrect query generation. Therefore,
the semantic graph branch with full graph input is
retained in DCHL and the learning process is con-
sistent with leading work. Finally, the Semantic-
Structural Aggregation Mechanism will aggregate

the semantic graph branch and the other two ab-
stract structural branches by a gated-based aggrega-
tion mechanism. The contributions are summarized
as follows:

* We propose the DCHL framework to solve
the problem of heterogeneous structure learn-
ing in cross-domain Text-to-SQL by dividing
hybrid inputs into semantic information and
structural information.

We devise the Abstract Graph Encoder and
Semantic-structural aggregation mechanism
which allows different types of information to
be learned separately and fused efficiently.

* We conduct extensive experiments to study the
effectiveness of the proposed DCHL frame-
work. Experiments on three benchmarks
demonstrate DCHL outperforms the baseline
methods. Our implementation will be open-
sourced after acceptance.

2 Model Overview

We first make the necessary definition for the Text-
to-SQL task and the Heterogeneous Graph Input
for our DCHL framework. DCHL follows the
encoder-decoder manner to efficiently process het-
erogeneous structure learning by dividing seman-
tic and node-edge structure information encoding
branches.

Problem Definition Text-to-SQL task can be de-
fined as follows: given a natural language ques-



tion Q = {q;} g'l and the corresponding database
schema S = (T, C) including tables 1" = {ti}gl
and columns C = {c{', ', ... ¢, c2,... }, the
goal is to generate the correct SQL y for the ques-

tion.

Heterogeneous Graph Input As many existing
works do (Cao et al., 2021; Cai et al., 2021; Wang
et al., 2020a), we first construct a heterogeneous
graph consisting of the question and the database,
which can be represented by G = (V, R, P). Spe-
cially, a) the node set V' = QUTUC consists nodes
of question words, tables and columns. The ini-
tial node embedding matrix X € RIV'@*T*Clxd
is obtained by GloVe embeddings (Pennington
et al.,, 2014) or the pretrained language model
(PLM). b) The relation matrix R = {T}‘zgly:‘1
represents the edge type among nodes. Accord-
ing to some typical database-specific knowledge
and string-match strategies, we predefine several
edge types and assign each edge to one of the pre-
defined types. Each edge type is represented as
a learnable embedding with random initialization,
and the edge embedding matrix can be represented
as Z € RIEXd Details of all predefined edge
types can be found in the appendix. ¢) The vector
P = {p}ll‘j1 € {question, table, column} rep-
resents the node type for each node. In order to
better capture the lexical information between ques-
tion words, we further subdivide the question type
into various lexical categories, e.g., nouns, verbs.
Each node type can be featured as a learnable vec-
tor initialized from GloVe or PLM, and the initial
node type embedding matrix can be represented
as § € RIVIOHTHIClxd - pfper the heterogeneous
graph is constructed, it will be fed into a typical
encoder-decoder framework.

Encoder In the encoder part, we devise the
DCHL framework to solve the problem of hetero-
geneous structure learning, including three steps:
abstract graph construction, abstract graph encoder,
and semantic-structural aggregation mechanism.
In the workflow of DCHL, we first construct two
abstract graphs at the node level and edge level
named abstract node graph and abstract edge graph.
Second, we further design an abstract graph en-
coder including two branches for the two abstract
graphs, which is more conducive to learning the
topology of nodes and edges separately. Finally, the
semantic-structural aggregation mechanism aggre-
gates two abstract graphs (i.e., the abstract node fea-

ture and the abstract edge feature) into the RGAT
layer (Wang et al., 2020b) combined with the se-
mantic graph branch, to obtain the final graph rep-
resentation in DCHL.

Decoder In the decoder part, we follow the tree-
structured architecture, which transforms the SQL
query into the abstract syntax tree (AST) in depth-
first traversal order (Yin and Neubig, 2017). First,
based on all node representations from DCHL, the
decoder outputs a sequence of actions that gener-
ates an AST; then, the AST can be transformed into
a sequential SQL query.

3 Divide-and-conquer Heterogeneous
Structure Learning

In this section, we will delve into our encoder
framework, Divide-and-conquer Heterogeneous
Structure Learning (DCHL). DCHL first divides se-
mantic and structural information from the original
input; second, the topology structural information
of nodes and edges is processed in Abstract Graph
Construction and Abstract Graph Encoder respec-
tively; finally, structural information and semantic
information are aggregated in Semantic-Structural
Aggregation. The details of each component are as
follows.

3.1 Abstract Graph Construction

We construct the abstract graph by dividing the
semantic information out from the original input
G. The construction details of the Abstract Node
Graph and Abstract Edge Graph are as follows.

Abstract Node Graph In order to better learn
the local structure of the nodes, following Cao et al.
(2021), we divide all edge types into local relations
and non-local relations, and only consider the lo-
cal relation when constructing the Abstract Node
Graph (ANG), which can be simply represented
by Glocal = (P, Alocal)| where P represents the
type for each node in G, and the A" represents
the adjacency matrix which only considers local
relation. As shown in Figure 2, ANG only retains
the graph structure and the node type feature.

Abstract Edge Graph As we describe in the
introduction, the line graph transformation used
in LGESQL has obvious drawbacks: a) employ-
ing the same encoding method as the nodes may
not be appropriate; b) splitting nodes into multi-
ple edges leads to loss of topological information
of the original graph during the transformation; c)
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Figure 2: The overview of the proposed model.

transformation is not unique, thus two different
question-schema graphs may be transformed into
the same line graph.

To address the above issues, we adopt Dual Hy-
pergraph Transformation (DHT) (Jo et al., 2021)
in construction, which can convert a graph into the
corresponding hypergraph. The process of DHT is
as follows: nodes on the original graph are trans-
formed into hyperedges on the hypergraph, and
edges are transformed into nodes on the hypergraph.
Taking advantage of the duality of the hypergraph,
DHT aims to interchange the structural role of node
and edge. As shown in Figure 3, we provide a case
for DHT, where the incidence matrix M in the
original graph represents the interaction between
|V| nodes and | R| edges, i.e., each entry indicates
whether the node is incident to the edge. M” indi-
cates the incidence matrix in the hypergraph.

In DCHL, through DHT we convert the graph
focal and R into the hypergraph, which we
call the Abstract Edge Graph (AEG), denoted as
Glocal — (Rlocal MT), where M can be trans-
formed by A% and T represents the transpose
operation. AEG only reserves the graph structure
and the edge type feature.

3.2 Abstract Graph Encoder

After the ANG and the AEG were constructed, we
design two encoders, ANG Encoder and AEG En-
coder, to learn the structural information for nodes
and edges separately.

Abstract Node Graph Encoder For effectively
learning the abstract structural knowledge of nodes,
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Figure 3: The transformation of the original graph to
the hypergraph by DHT.

we employ a Graph Attention Network (GAT)
(Velickovic et al., 2017) to encode the node ab-
stract structure representation by performing mes-
sage propagation among the self-structure.

Given the representation SZ(-l) of node v; in the
ANG Gloca!  the output abstract structure represen-
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where o is a nonlinearity function, e.g., ReLU,
Wi, W, are the learnable weight matrix, /\/;-ZOC‘”



represents the neighbor indices of node v; in Gﬁfc‘ll.
With the help of GAT, the node type features in
ANG can be encoded to obtain the node abstract
structure representation.

Abstract Edge Graph Encoder To accurately
and scalably encode the structure information of
edges, we encode the edge abstract structural repre-
sentation by performing message propagation using
EHGNN (Jo et al., 2021). Given the AEG GL°,
the node representation (zl*)(l“) of the [-th layer
is computed by
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where 2; represents the hyperedge v temporarily
aggregates the information of surrounding nodes,
N,y ; and N ; represent the set of nodes around
hyperedge v; and the set of hyperedges around
node 77, respectively. [N ,| is always 3 (each
node is connected to two hyperedges and an addi-
tional self-loop edge). Figure 4 shows the detail
of the message passing on hypergraph in our AEG
encoder.

Step1. node to hyperedge

Step2. hyperedge to node

Figure 4: The two steps of message passing on hyper-
graph: i) using the topology of the hypergraph to pass
the node feature (the edge feature in the original graph)
to the hyperedge, ii) passing the information from the
hyperedge back to the node. Note that we only consider
hyperedge 1 for simplicity.

In our DCHL, the AEG encoder is able to dedi-
catedly and efficiently learn edge topology informa-
tion without any node information, unlike previous
work that learns nodes and edges uniformly.

After the abstract graph encoding, we can obtain
the abstract structural representation of nodes and
edges separately, indicated as s and z. In the next,
we will introduce how to aggregate them combined
with the node semantic information to obtain the
final graph representation.

3.3 Semantic-Structural Aggregation

In this semantic-structural aggregation module, we
combine the semantic feature in the original hetero-
geneous graph G and the abstract structural feature
through the gate-based mechanism. Specially, for
each node, the node representation 1) of the
[-th layer is calculated by

bi = [ 1s{"] ©)

WD = gate(b;) - 2 + (1 — gate(b;)) - s\,
@)

C(

where || represents vector concatenation and gate
is a linear layer with a Sigmoid function indicating
how much semantic or abstract structural informa-
tion the node should receive.

After obtaining the new node representation with
semantic-structural information and the edge struc-
tural feature from the AEG encoder, inspired by
LGESQL (Cao et al., 2021), we leverage an RGAT
(Wang et al., 2020b) layer to obtain the final node
representation of the heterogeneous graph. The out-

put representation xEHl) of the [-th layer is com-
puted by
T
() CiWq(h) (CjW]gh) + 'QZJ (T‘Z'j)) (8)
e.. = y
" Vd./H
ag.l) = softmazx {eg»b)} , )
A= 3 ol (W v () (10)
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where W, W}, W, are the trainable parameter, H
is the number of heads, N; represents the neigh-
borhoods of node v;. The function % (rj;) returns
an edge feature vector with respect to the relation
rji: if 7j; belongs to the local relation (i.e., has
been learned by the AEG encoder, the function re-
turns the edge structural representation z;; from
the AEG encoder, otherwise it returns a trainable
feature vector.

Through the above semantic-structural aggrega-
tion method, we can effectively fuse the divided
semantic information and the structural information
of nodes and edges to obtain accurate decoding.

4 Experiments

4.1 Experiment Setup

Dataset We evaluate the DCHL framework
on three widely used Text-to-SQL benchmarks



Model Dev Test Model DK SYN
Without PLM:GloVe Without PLM: GloVe

Global-GNN (Bogin et al., 2019) 52.7 | 47.4 Global-GNN (Bogin et al., 2019) 26.0 | 23.6
EditSQL (Zhang et al., 2019) 36.4 | 329 EditSQL (Zhang et al., 2019) 314 | 253
IRNet (Guo et al., 2019) 53.2 | 46.7 IRNet (Guo et al., 2019) 33.1 | 284
RATSQL (Wang et al., 2020a) 62.7 | 57.2 RATSQL (Wang et al., 2020a) 358 | 33.6
LGESQL (Cao et al., 2021) 67.6 | 62.8 LGESQL (Cao et al., 2021) 39.2 | 405
DCHL 69.3 | 62.9 ISESL-SQL (Liu et al., 2022) 42.1 | 44.4
With Model Adaptive PLM DCHL 2.8 | 475

RATSQL + STRUG (Deng et al., 2021) 72.6 | 68.4 With Model Adaptive PLM
RATSQL + GRAPPA (Yu et al., 2021) 73.4 | 69.6 RATSQL + STRUG (Deng et al., 2021) 39.4 | 48.9
SmBoP + GRAPPA (Rubin and Berant, 2021) | 74.7 | 69.5 RATSQL + GRAPPA (Yu et al., 2021) 38.5 | 49.1
RATSQL + GAP (Shi et al., 2021) 71.8 | 69.7 SmBoP + GRAPPA (Rubin and Berant, 2021) 422 | 48.6
SADGA + GAP (Cai et al., 2021) 739 | 70.1 RATSQL + GAP (Shi et al., 2021) 44.1 | 49.8
DT-Fixup SQL-SP + RobERTa (Xu et al., 2021) | 75.0 | 70.9 DT-Fixup SQL-SP + RobERTa (Xu et al., 2021) | 40.5 | 50.4
LGESQL + ELECTRA (Cao et al., 2021) 75.1 | 72.0 LGESQL + ELECTRA (Cao et al., 2021) 4721 62.6
DCHL + ELECTRA 76.5 | 72.1 ISESL-SQL + ELECTRA (Liu et al., 2022) 50.0 | 62.6
PROTON + ELECTRA (Wang et al., 2022) 51.0 | 65.6
Table 1: Exact match accuracy (%) on Spider develop- ~ SUN +ELECTRA (Qin etal,, 2022) 52.7 | 66.9
ment set and test set. DCHL + ELECTRA 54.4 | 68.1

datasets as follows: (1) Spider (Yu et al., 2018b)
is a large-scale cross-domain Text-to-SQL bench-
mark. It contains 8659 training samples across
146 databases and 1034 evaluation samples across
20 databases. We report the exact set match accu-
racy on the development set and the test set. The
test dataset contains 2147 samples with 40 unseen
databases. Since the fair competition, the Spider of-
ficial has not released the test set for evaluation. We
submit our model to the organizer of the challenge
for evaluation. (2) Spider-DK (Gan et al., 2021b)
is a human-curated dataset based on Spider, which
is constructed by selecting 535 samples from Spi-
der dev set, with focusing on evaluating the model
understanding of domain knowledge. We train our
model on the Spider training set and test on the
Spider-DK development set. (3) Spider-SYN (Gan
et al., 2021a) is another challenging variant of Spi-
der. It is constructed by manually modifying NL
questions with synonym substitution, making it
more adaptable for cases where the user does not
know the exact schema word mentioned.

Implementation Details In the preprocessing
phase, we tokenize and lexicalize questions, ta-
ble names, column names, and their types with the
Standford Nature Language Processing toolkit.'. In
order to use contextual information, we use GloVe
(Pennington et al., 2014) word embeddings and
the pre-trained language model ELECTRA (Clark
et al., 2020). The schema linking strategy is bor-
rowed from LGESQL (Cao et al., 2021), which is
also our baseline. For a fair comparison with base-

1h'ctps ://github.com/stanfordnlp/stanza

Table 2: Exact match accuracy (%) on Spider-DK and
Spider-SYN.

lines, we configure it with the same set of hyper-
parameters. In the encoder, we stack 8 DCHL lay-
ers, the hidden size is set to 256 for GloVe and
512 for ELECTRA. In the decoder, the dimension
of hidden state, action embedding and node type
embedding are set to 512, 128 and 64. The learning
rate is Se-4 for GloVe and le-4 for ELECTRA. The
number of training epochs is 100 for GLOVE, and
200 for PLMs respectively. We trained our models
on one server with a single NVIDIA GTX 3090
GPU.

4.2 Overall Performance

Table 1 and Table 2 shows the exact match accu-
racy on three benchmarks with the exact match
average accuracy of 3 runs. Almost all baseline
results are obtained from official leaderboard or
original papers. As shown in Table 1, we can see
that DCHL outperforms all existing models on Spi-
der. DCHL has a significant improvement over the
SOTA model LGESQL+ELECTRA on the devel-
opment set and gets comparable results on the test
set. We guess that the domain difference between
the development and test sets leads to this. This
interesting observation is also evident in the Spider
leaderboard. As shown in table 2, our models can
significantly outperform the previous best models
on Spider-DK and Spider-SYN. It is worth noting
that our model obtains 7.2% improvement and 5.5%
improvement over LGESQL on the Spider-DK and
Spider-SYN datasets, respectively. Spider-DK and
Spider-SYN improve domain knowledge and more
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Technique Spider Spider-DK  Spider-SYN
DCHL 76.5 54.4 68.1
w/o NSI 76.0(0.5]) | 49.9(4.5)) 64.9(3.2]))
w/o ESI 74.7(1.8)) | 51.2(3.3)) 63.8(4.3])
w/o SSA 74.8(1.7)) | 50.2(4.2)) 63.7(4.4])

Table 3: Ablation study of different modules. NSI: node
abstract structure information; ESI: edge abstract struc-
ture information; SSA: semantic-structural aggregation.

complex semantic information than Spider. Greater
improvements in Spider-DK and Spider-SYN also
effectively support that DCHL gets better general-
ization ability by abstracting structural and seman-
tic information.

4.3 Ablation Studies

We conduct ablation studies to show the effective-
ness of different modules of DCHL to the overall
improved performance. The major model variants
are as follows:

w/o node abstract structure information Discard
the abstract node structural information learning
phase (i.e., Eq. 2 ~4).

w/o edge abstract structure information Discard
the abstract edge structural information learning
phase (i.e., Eq. 6 ~7).

w/o semantic-structural aggregation Average
aggregation of semantic and structural information
(i.e., Eq. 9, gate(-) =0.5).

The ablation experimental results are presented
in Table 3. As the table shows, all components
are necessary to DCHL. More specifically, DCHL
w/0 node structure information give us 0.5% less
performance averaged on Spider, but on the other
two datasets, performance decreases by 4.5% and
3.2%, respectively, indicating that structural infor-
mation is essential in the synonym substitution or
where domain knowledge is required. Similarly,
edge structure information gives 3.1% performance
boost in average over all benchmarks. Furthermore,
when removing the semantic-structural aggrega-
tion, DCHL brings an average performance drop
of 3.4%.

We can discover that the DCHL module con-
tributes more in Spider-DK and Spider-SYN than
the Spider benchmark, which proves the impor-
tance of abstract structural information in challeng-
ing settings.
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Figure 5: Alignment between question words and ta-
bles/columns in our model.

4.4 Case Studies

To intuitively understand the effectiveness of our
model, we selected three different types of cases
from three benchmarks and presented them in Table
4 to compare the SQL statements generated by our
model and LGESQL, including word polysemy,
synonym substitution, and domain adaptation.

For the case of word polysemy, as shown in the
first case and the second case, where the average
have multiple implications: SQL function "AVG()"
and column Average, baseline fails to determine
the right implication for SQL generation, while
our model can successfully identify the correct im-
plication by selectively aggregating semantic and
abstract structural information.

For the case of synonym substitution, as shown
in the third case, the token category in question
could not be matched to the column type via the
string match method. Since our method has ex-
tracted and learned the structural information of
the original question, the above problem can be
avoided in most cases. As shown in Figure 5, we
can obtain the interpretable result. For example, the
question word category has a strong activation with
the columns pet_type, although the string match
method cannot capture the alignment, while DCHL
can easily align the words with the help of abstract
structural information.

For the case of domain adaptation, as shown in
the fourth case, on the training set, the word or
always corresponds to the "OR" in the SQL state-
ment. However, when the domain knowledge on
the development set is different from the training
set, LGESQL generates incorrect SQL statements,
while DCHL demonstrates domain adaptation ca-
pabilities.



Question

What is the average and maximum capacities for all stadiums ?

LGESQL SELECT AVG(average), MAX(highest) FROM stadium

DCHL SELECT AVG(capacity), MAX(capacity) FROM stadium

Gold SELECT AVG(capacity), MAX(capacity) FROM stadium

Question What is the name and capacity for the stadium with highest average attendance?
LGESQL SELECT name, capacity FROM stadium GROUP BY highest ORDER BY AVG(average) DESC LIMIT 1
DCHL SELECT name, capacity FROM stadium ORDER BY average DESC LIMIT 1
Gold SELECT name, capacity FROM stadium ORDER BY average DESC LIMIT 1
Question Find the type and weight of the youngest pet.

SYN_Question Find the category and weight of the youngest pet.

LGESQL SELECT Pet_age, weight FROM Pets ORDER BY pet_age LIMIT 1

DCHL SELECT Pet_type, weight FROM Pets ORDER BY pet_age LIMIT 1

Gold SELECT Pet_type, weight FROM Pets ORDER BY pet_age LIMIT 1

Question How many concerts are there in-year2014-or20152

DK_Question  How many concerts are there after or in year 2014 ?

LGESQL SELECT COUNT(*) FROM concert WHERE Year > "value" OR Year >= "value"
DCHL SELECT COUNT(*) FROM concert WHERE Year >= "value"

Gold SELECT COUNT(*) FROM concert WHERE Year >= 2014

Table 4: Case Study: The first two cases are sampled from Spider, the third example is from Spider-SYN and the

last example is from Spider-DK.

S RELATED WORK

Text-to-SQL Parsing. The architectures proposed
for cross-domain Text-to-SQL show increasing
complexity in the encoder. IRNet (Guo et al.,
2019) leveraged two separate BiLSTMs with self-
attention mechanism to encode the NL question
and table schema. RATSQL (Wang et al., 2020a)
proposes a unified encoding mechanism to handle
various pre-defined relations. Recently, besides
LGESQL some work has also used heterogeneous
graph modeling to solve heterogeneous structure
learning. SADGA (Cai et al., 2021) adapts a uni-
fied dual graph framework for both the question
and database schema, to utilize the global and lo-
cal structure information across the dual graph on
the question schema linking. ShadowGNN (Chen
et al., 2021) abstracts the item of database Schema
to remove domain information to improve gener-
alization. Sharing the idea of abstract structure,
DCHL still has the following advantages over Shad-
owGNN. First, DCHL also abstracts the question
to divide the semantic information of the question,
which effectively solves the issue of wrong link-
ing shown in Fig. 1. As for the problem, Shad-
owGNN only abstracts the schema unit of it and
cannot solve the above issue. Second, DCHL has
better domain generalization in addition to a more
comprehensive division of semantic and structural
information, and further topology learning of nodes
and edges individually for structural information.

Domain generalization capabilities. Due to
the limitations of the existing string match based

method, some current works try to improve the
accuracy of the graph linking phase with the help
of PLM. PROTON (Wang et al., 2022) proposed a
probing technique to probe schema linking informa-
tion between the NL query and the database schema
from large-scale PLMs during the initial graph link
phase. Based on the distance metric, ISESL-SQL
(Liu et al., 2022) is the first to introduce the graph
structure learning methods into schema linking and
Text-to-SQL, which refines the initial schema link-
ing graph iteratively during model training. Differ-
ent from these works, we do not use PLM to im-
prove the string match method, but extract a unified
structure representation in the encoding process to
enhance the domain adaptability of the model.

6 CONCLUSION

In this paper, we propose a Divide-and-conquer
Heterogeneous Structure Learning (DCHL) for
cross-domain Text-to-SQL. The core idea of the
proposed DCHL is to divide the semantic infor-
mation and structural information from complex
heterogeneous structural inputs, which can avoid
incorrect question-schema linking and improve
the model’s domain generalizability. By avoid-
ing the existing methods’ unified encoding ap-
proach, DCHL devises encoders for the topology
of nodes and edges separately and further improves
the model’s generalizability. Experimental results
demonstrated that our method substantially out-
performed strong baselines and set state-of-the-art
performance on three Text-to-SQL benchmarks.



Limitations

Compared to our baseline model LGESQL, our
proposed DCHL requires more computational cost
at each training step, with abstract node graph and
abstract edge graph encoder.

Although our method divides the semantic in-
formation and structural information, the approach
focuses more on learning with structural informa-
tion, while semantic information is only aggregated
through the gate-based mechanism. Therefore, a
general strategy for learning semantic information
is needed. We aim to address this limitation in our
future work.
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A Example Appendix
A.1 Details of predefined edge types

All structures have been shown in Table 5. A edge
exists from head node x € S to tailnode y € S
if the node pair listed in the Table with the corre-
sponding label.
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Taily Edge Type

Description

Question-Question-Dist*
Question-Question-Identity
Question-Question-Generic

Question item H is at a distance of * before question item T in the input question
Question item H is question item T itself
Question item H and question item T has no pre-defined relation

Question-Question-Syntactic Dependency

Question item H has a syntactic dependencies on question item T

Question-Table-Exactmatch
Question-Table-Partialmatch
Question-Table-Nomatch

Question item H is spelled exactly/partially/not the same as table item T

Question-Column-Exactmatch
Question-Column-Partialmatch
Question-Column-Nomatch

Question item H is spelled exactly/partially/not the same as column item T

Question-Column-Valuematch

Question item H is spelled exactly the same as a value in column item T

Table-Question-Exactmatch
Table-Question-Partialmatch
Table-Question-Nomatch

Table item H is spelled exactly/partially/not the same as question item T

Table-Table-Generic

Table item H and table item T has no pre-defined relation

Table-Table-Identity

Table item H is table item T itself

Table-Table-Fk
Table-Table-Fkr
Table-Table-Fkb

At least one column in table item H is a foreign key for certain column in table item T
At least one column in table item T is a foreign key for certain column in table item H
Table item H and T satisfy both "Table-Table-Fk" and "Table-Table-Fkr" relations

Table-Column-Pk
Table-Column-Has

Column item T is the primary key for table item H
Column item T belongs to table item H

Table-Column-Generic

Table item H and column item T has no pre-defined relation

Column-Question-Exactmatch
Column-Question-Partialmatch
Column-Question-Nomatch

Column item H is spelled exactly/partially/not the same as table item T

Column-Table-Pk
Column-Table-Has
Column-Table-Generic

Column item H is the primary key for table item T
Column item H belongs to table item T
Column item H and table item T has no pre-defined relation

Column-Column-Identity
Column-Column-Sametable

Column item H is column item T itself
Column item H and column item T are in the same table

Column-Column-Fk
Column-Column-Fkr

Column item H has a forward/reverse foreign key constraint relation with Column item T

Column-Column-Generic

Column item H and column item T has no pre-defined relation

Table 5: All edge types used in our experiment.
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