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Abstract

There has been significant interest in searching for
off-policy Temporal-Difference (TD) algorithms
that find the same solution that would have been
obtained in the on-policy regime. An important
property of such algorithms is that their expected
update has the same fixed point as that of On-
policy TD(λ), which we call loose consistency.
Notably, Full-IS-TD(λ) is the only existing loosely
consistent method under general linear function ap-
proximation but, unfortunately, has a high variance
and is scarcely practical. This notorious high vari-
ance issue motivates the introduction of ETD(λ),
which tames down the variance but has a biased
fixed point. Inspired by these two methods, we
propose a new loosely consistent algorithm called
Average Emphatic TD (AETD(λ)) with a transient
bias, which strikes a balance between bias and
variance. Further, we unify AETD(λ) with exist-
ing methods and obtain a new family of loosely
consistent algorithms called Loosely Consistent
Emphatic TD (LC-ETD(λ, β, ν)), which can con-
trol a smooth bias-variance trade-off by varying the
speed at which the transient bias fades. Through
experiments on illustrative examples, we show the
effectiveness and practicality of LC-ETD(λ, β, ν).1

1 INTRODUCTION

Off-policy learning is a critical area in reinforcement learn-
ing (RL). Particularly, off-policy policy evaluation (OPPE),
also known as off-policy prediction, is an essential com-
ponent in model learning, options learning (Sutton et al.,
1999), and life-long learning (Sutton et al., 2022; White
et al., 2012). The goal of OPPE is to estimate the value

1The Python implementations of the experiments are available
at https://github.com/hejm37/LC-ETD.

function of a target policy with data collected by a differ-
ent behavior policy. We refer to the data collected by the
target policy as on-policy data and the data collected by the
behavior policy off -policy data. In this paper, we consider
the problem of OPPE with linear function approximation.

In online RL, where the algorithm makes incremental up-
dates, TD learning is a ubiquitous family of algorithms, and
On-policy TD(λ) is an essential approach to on-policy pre-
diction (Sutton, 1988). In OPPE, there have been substantial
efforts in obtaining the on-policy fixed point, to which On-
policy TD(λ) converges with on-policy data (Precup et al.,
2001; Hallak and Mannor, 2017; Gelada and Bellemare,
2019). There is a good reason for targeting the on-policy
fixed point: It produces a good approximation of the target
policy’s value function (Tsitsiklis and Van Roy, 1996).

When the ratio between the stationary distributions of the
target and behavior policies is available, we can use it to
reweight the TD update, allowing for the development of
algorithms that converge to the on-policy fixed point (Hal-
lak and Mannor, 2017). However, such a ratio, known as
the density ratio, is generally not accessible. One potential
approach is to learn an approximation of the density ratio,
which requires the ratio to be realizable by the features.
When such an assumption holds, extensive studies have
been conducted for both off-policy policy evaluation and
optimization (Hallak and Mannor, 2017; Liu et al., 2018;
Nachum et al., 2019; Zhang et al., 2020a,b; Lee et al., 2021;
Zhan et al., 2022; Chen and Jiang, 2022; Huang et al., 2023).

Nevertheless, the realizability assumption on the features
is quite strong and may not be feasible in practice. In this
paper, we consider algorithms with theoretical guarantees
that do not require such an assumption and hold under gen-
eral linear function approximation. Specifically, we search
for off-policy TD algorithms whose expected update has
the same fixed point as the on-policy fixed point, and we
say such algorithms are loosely consistent. An important
implication of an algorithm’s loose consistency is that if the
algorithm converges, it is to the on-policy fixed point.
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To our knowledge, Full Importance-Sampling TD (Full-IS-
TD(λ), Precup et al., 2001) is the only loosely consistent off-
policy TD algorithm under general linear function approxi-
mation. To obtain the on-policy fixed point, Full-IS-TD(λ)
reweights the TD update with the full importance-sampling-
ratio (IS-ratio) product, the multiplication of the IS ratios at
every time step. However, Full-IS-TD(λ) barely works in
practice due to the high variance of the full IS-ratio product.

To tame down the variance of Full-IS-TD(λ), Emphatic
TD (ETD(λ), Sutton et al., 2016) reweights the TD update
with the emphatic weighting. While the emphatic weighting
mitigates the variance issue, it also induces persistent bias,
deviating from the on-policy TD fixed point. Further, to
obtain a smooth bias-variance trade-off, Hallak et al. (2016)
proposed ETD(λ, β), which unifies Off-policy TD(λ) and
ETD(λ) with a tunable parameter β. Yet, ETD(λ, β) loses
the stability guarantee when β is smaller than an instance-
dependent condition number that is difficult to determine.

In this paper, we first propose Average Emphatic TD
(AETD(λ)), a novel loosely consistent algorithm inspired by
Full-IS-TD(λ) and ETD(λ), which strikes a better balance
between bias and variance. AETD(λ) renovates the idea
of ETD(λ), introducing a transient bias to achieve a lower
variance than Full-IS-TD(λ) while retaining consistency as
the bias fades away over time. Then, to make AETD(λ)
more practical, we introduce extra parameters to control
a smooth bias-variance trade-off by unifying it with exist-
ing algorithms. The resulting new family of loosely con-
sistent algorithms called Loosely Consistent Emphatic TD
(LC-ETD(λ, β, ν)) has a more general stability guarantee
than ETD(λ, β), the same fixed point as On-policy TD(λ),
and much better performance than Full-IS-TD(λ). Finally,
through experiments on didactic examples, we validate the
stability and the benefit of loose consistency of LC-ETD(λ,
β, ν). Experiment results on a more complex task with high
variance also show LC-ETD(λ, β, ν)’s faster convergence
to the lowest error. To our knowledge, LC-ETD(λ, β, ν) is
the first practical, loosely consistent algorithm for off-policy
TD learning under general linear function approximation.

2 BACKGROUND

We consider an infinite horizon Markov Decision Process
(MDP), which is defined as a tuple 〈S,A, p, d0, r, γ〉 where
S is the finite state space, A is the finite action space, p :
S × A → ∆(S) is the transition function, d0 ∈ ∆(S) is
the initial state distribution, r : S × A → R is the reward
function, and 0 ≤ γ < 1 is the discount factor. Here, ∆(X )
denotes the set of probability distributions over a finite set
X . The policy of the agent is defined as π : S → ∆(A).
The discounted value function is defined as

vπ(s)
.
= Eπ

[ ∞∑
t=0

γtr(St, At)|S0 = s

]
.

Particularly, we consider the setting of online OPPE with
linear function approximation, where the agent needs to esti-
mate the value function of a target policy π while interacting
with the environment with a behavior policy µ. We assume
the observation is parameterized by the feature function
φ : S → Rd or equivalently the feature matrix Φ ∈ R|S|×d,
where d is the dimension of the feature. At each time step
t, the agent selects action At based on the current state
St following the behavior policy µ and observes the next
state St+1 and reward Rt+1 = r(St, At). The importance-
sampling ratio at time step t is defined as ρt

.
= π(At|St)

µ(At|St) .
With linear function approximation, the agent approximates
the value function with v̂(s;θ) = φ(s)>θ or in matrix-
vector form, v̂

.
= Φθ, where θ ∈ Rd is a parameter vector.

We make a few common assumptions to make the problem
more tractable: Firstly, Assumption 2.1 ensures the unique
existence of the corresponding stationary distributions, dµ ∈
∆(S) and dπ ∈ ∆(S). In addition, it holds that for any
s ∈ S, dµ(s) > 0 and dπ(s) > 0; secondly, Assumption
2.2 makes sure that ρt is well-defined at every time step;
finally, Assumption 2.3 ensures that the features are well-
behaved, avoiding singularity in the analysis.

Assumption 2.1 (Ergodicity). The Markov chains induced
by the behavior policy µ and the target policy π are ergodic.

Assumption 2.2 (Coverage). For any s ∈ S and a ∈ A, if
π(a|s) > 0, then µ(a|s) > 0.

Assumption 2.3 (Independent Features). The feature matrix
Φ has independent columns.

Let I ∈ R|S|×|S| denote the identity matrix, Pπ ∈ R|S|×|S|
denote the on-policy transition matrix with [Pπ]ss′

.
=∑

a∈A π(a|s)p(s′|s, a), and rπ ∈ R|S| denote the on-policy
state reward function with [rπ]s

.
=
∑
a∈A π(a|s)r(s, a).

Similar to identifying v̂ as v̂, we also identify dµ as dµ and
dπ as dπ. Moreover, we define Dv

.
= diag(v) for some

vector v. Specifically, we use Dπ for Ddπ and Dµ for Ddµ.
We use ‖ · ‖v to denote the vector norm induced by Dv for
some vector v, i.e., ‖x‖v

.
=
√

x>Dvx.

Stability We will define the stability of a stochastic algo-
rithm with an update of the following form:

θt+1 = θt + α(bt −Atθt),

where α > 0 is a scalar step-size parameter, {θt}∞t=0 is the
sequence of weight vectors generated by the algorithm, and
{(At,bt)}∞t=0 is a sequence of random matrices and vectors
that depend on the problem and the algorithm. Define A

.
=

limt→∞ Eµ[At] and b
.
= limt→∞ Eµ[bt]. Using A and b,

we can form a deterministic algorithm:

θ̄t+1 = θ̄t + α(b−Aθ̄t),

which we call the expected update of the stochastic algo-
rithm. We use the definition of the stability of a stochastic



algorithm from Sutton et al. (2016): A stochastic algorithm
and its expected update are stable if the expected update
converges to a unique fixed point under any initialization.
It turns out that, the expected update is stable if and only if
the eigenvalues of its A matrix all have positive real parts
(Varga, 1999). As discussed in Sutton et al. (2016), the stabil-
ity of a stochastic algorithm is essential to its convergence:
If a stochastic algorithm is stable, then its parameter vector
may converge with probability one with a proper step-size
scheduling. Besides, if the stochastic algorithm converges, it
is to the fixed point of its expected update, θ̄ = A−1b. For
example, under Assumptions 2.1 and 2.3, On-policy TD(λ)
can be shown to be stable and converge to the on-policy
fixed point, θ̄On = A−1b, where

A = Φ>Dπ(I− λγPπ)−1(I− γPπ)Φ and

b = Φ>Dπ(I− λγPπ)−1rπ.

Loose Consistency We consider an off-policy TD algo-
rithm to be loosely consistent if its expected update con-
verges to the on-policy fixed point under any initialization.2

By definition, loose consistency implies stability. A suffi-
cient condition of loose consistency is that the algorithm has
the same expected update (or equivalently, A matrix and b
vector) as On-policy TD(λ). For simplicity, we will refer
to loose consistency as consistency and designate a loosely
consistent algorithm as a consistent algorithm throughout
the remainder of the paper.

In our pursuit of consistent off-policy TD algorithms, we
next review a line of work that has made progress toward
this goal by reweighting the TD update.

Off-Policy TD(λ) Off-policy TD(λ) (Precup, 2000) is the
earliest effort in this line of work. In the one-step case,
Off-policy TD(0) makes the following update:

θt+1 = θt + αρtδtφt, (1)

δt = Rt+1 + γφ>t+1θt − φ
>
t θt, (2)

where φt
.
= φ(St). Compared to On-policy TD(0), Off-

policy TD(0) uses the IS ratio ρt to correct the probability
of selecting actionAt at time step t, which allows Off-policy
TD(0) to converge to the true value function vπ if the feature
representation is tabular. This convergence guarantee is true
for any λ ∈ [0, 1] in the tabular case. However, Off-policy
TD(λ) can be shown to diverge in various counterexamples
with general linear features (Baird, 1995; Sutton and Barto,
2018). This divergence issue is due to the distribution of

2Hallak and Mannor (2017) referred to a similar property as
“consistency.” However, to distinguish it from the usage of the word
“consistency” in statistics, we redefine it as “loose consistency.”
Following the statistical convention, we can define strong or weak
consistencies based on whether the algorithm converges almost
surely or in probability.

Update (1) could deviate too much from the on-policy dis-
tribution, which is well explained by Sutton et al. (2016).
What is worse, the off-policy fixed point, the fixed point that
Off-policy TD(λ) converges to if it does converge, could
have an unbounded error in the one-step case (Kolter, 2011).

Full-IS-TD(λ) To address the divergence of Off-policy
TD(λ), Precup et al. (2001) introduced the idea of correct-
ing the distribution of Update (1) by reweighting it. The
algorithm they proposed, Full-IS-TD(λ), reweights the up-
date with the full IS-ratio product, the product of all the IS
ratios up to the current time step. Before we bring in the
update of Full-IS-TD(0), we introduce a general description
of one-step TD algorithms with an unspecified trace Ft:

θt+1 = θt + αρtFtδtφt, (3)

where δt is the TD error defined in Eq. (2). For Off-
policy TD(0), Ft = 1. In the case of Full-IS-TD(0),
Ft = ρt−1ρt−2 · · · ρ0 or Ft = ρt−1Ft−1 with F0 = 1,
which always corrects the distribution back to the on-policy
distribution completely (Precup et al., 2001). In general, for
Full-IS-TD(λ), Eµ[Ft|St = s] is equal to Pπ(St=s)

Pµ(St=s) , which

converges to the density ratio dπ(s)
dµ(s)

. Consequently, Full-IS-
TD(λ) has the same expected update as On-policy TD(λ),
implying its consistency. In fact, it is the only consistent
method.3 However, Full-IS-TD(λ) is scarcely practical due
to variance issues, which motivates the next idea in this line.

ETD(λ) Instead of using the full IS-ratio product to
weight the update, Sutton et al. (2016) proposed to use
the emphatic weighting:

Ft = γρt−1Ft−1 + 1,with F0 = 1, (4)

which is termed the followon trace, a geometrically
weighted sum of IS-ratio products accumulated from dif-
ferent time steps. By introducing incomplete IS-ratio prod-
ucts into the weighting, the proposed algorithm, ETD(λ),
reduces the variance and remains stable. However, these
incomplete IS-ratio products also introduce persistent bias
into Ft, causing ETD(λ) to converge to a biased fixed point.

3 TOWARDS PRACTICAL, CONSISTENT
TD LEARNING

AVERAGE FOLLOWON TRACE

As discussed in the last section, the only consistent method,
Full-IS-TD(λ), is not practical due to the high variance
issue. On the other hand, ETD(λ), an effective remedy to
the variance issue, is biased and deviates from our objective

3From now on, our discussion will be based exclusively on As-
sumption 2.3 for the features, without any additional assumptions.



of finding the on-policy fixed point. Then, can we find a
good trade-off point between Full-IS-TD(λ) and ETD(λ)?
Specifically, can we find a method that is consistent and has
a milder variance compared to Full-IS-TD(λ)? The answer
is, fortunately, yes. Inspired by the idea of using incomplete
IS-ratio products to reduce the variance, we propose to use
the below average emphatic weighting:

Ft =
t

t+ 1
ρt−1Ft−1 +

1

t+ 1
,with F0 = 1, (5)

which we term the average followon trace. Expanding this
trace reveals that it represents the mean of the IS-ratio prod-
ucts. By employing the mean instead of a geometrically
weighted sum, we gradually reduce bias by diminishing the
emphasis on the new IS-ratio product at each time step. Al-
though the expectation of the average followon trace at time
step t typically differs from Pπ(St=s)

Pµ(St=s) , this discrepancy di-
minishes as t increases, characterizing the average followon
trace as displaying a fading or transient bias. Remarkably,
the bias of Ft completely vanishes in the limit, rendering
the resulting algorithm defined by Update (3) and Eq. (5)
consistent. This algorithm is referred to as one-step Average
Emphatic TD (AETD(0)), and its consistency is presented in
Theorem 3.1. The detailed proof is deferred to the appendix.

Theorem 3.1 (Consistency of AETD(0)). Let Assumptions
2.1-2.3 hold. If limt→∞ Eµ[Ft|St = s] exists for all s ∈ S,
then AETD(0) has the same expected update as On-policy
TD(0). As a result, AETD(0) is stable and consistent.

Now, the idea of using a uniformly weighted sum of the IS-
ratio products to reweight the TD update is not entirely new.
Hallak et al. (2016) unified ETD(λ) and Off-policy TD(λ)
by introducing a tunable decay parameter, β ∈ [0, 1], in the
followon trace (Eq. (4)). The resulting algorithm, ETD(λ,
β), uses the following emphatic weighting:

Ft = βρt−1Ft−1 + 1,with F0 = 1. (6)

When β = 0, this trace degenerates to constant 1, and
ETD(λ, β) becomes Off-policy TD(λ); when β = γ, this
trace recovers Eq. (4), and ETD(λ, β) becomes ETD(λ);
when β = 1, this trace will equally weight each IS-ratio
product with weight 1. However, in their case, equally
weighting the products is problematic because the expecta-
tion of Ft diverges to infinity in the limit.

A SMOOTH BIAS-VARIANCE TRADE-OFF

Despite ETD(λ, β) not being a consistent algorithm for any
value of β, it presents an interesting strategy to trade off
bias and variance: With a small β, Ft has a low variance but
a large bias; with a large β, Ft has a small bias but a high
variance. Consequently, ETD(λ, β) can trade off the bias of
its fixed point and the variance it incurs by varying the value
of β. Then, we wonder, can we unify AETD(0) with other

algorithms to attain a smooth bias-variance trade-off? If
possible, we also want to retain the consistency of AETD(0).
To achieve this goal, we consider the unification of AETD(0)
with both Off-policy TD(0) and Full-IS-TD(0), the one with
the least variance but the greatest bias and the one with the
least bias but the greatest variance.

We first unify AETD(0) and Full-IS-TD(0). To unify the
traces that the two methods use, we introduce a tunable
parameter, β′ ∈ [0, 1], to the average followon trace: F (1)

t =

(1 − β′(t + 1)−1)ρt−1F
(1)
t−1 + β′(t + 1)−1 with F (1)

0 =

1. Then, when β′ = 0, F (1)
t becomes F (1)

t = ρt−1F
(1)
t−1,

which corresponds to the trace of Full-IS-TD(0); when β′ =

1, F (1)
t becomes the average followon trace.

Similarly, we can unify AETD(0) and Off-policy TD(0)
with another tunable parameter, ν ∈ [0, 1], and a new trace:
F

(2)
t = (1−(t+1)−ν)ρt−1F

(2)
t−1+(t+1)−ν with F (2)

0 = 1.
When ν = 0, F (2)

t becomes constant 1, which corresponds
to the trace of Off-policy TD(0); when ν = 1, F (2)

t becomes
the average followon trace.

We further unify F
(1)
t and F

(2)
t , leading us to a third

trace with two parameters, β′ and ν: F (3)
t = (1 − β′(t +

1)−ν)ρt−1F
(3)
t−1 + β′(t + 1)−ν with F

(3)
0 = 1. Addi-

tionally, we found that when ν = 0, the trace becomes
Ft = (1 − β′)ρt−1Ft−1 + β′, which is also a geometri-
cally weighted sum of IS-ratio products as in ETD(λ, β).
To obtain the same decay rate in the resulting trace and the
followon trace (Eq. (6)), we replace β′ with 1− β in F (3)

t ,
and name the resulting trace general followon trace:

Ft = (1− g(t))ρt−1Ft−1 + g(t),with F0 = 1, (7)

where g(t)
.
= (1 − β)(t + 1)−ν with β ∈ [0, 1] and

ν ∈ [0, 1]. Note that when ν = 0, the resulting trace be-
comes Ft = βρt−1Ft−1 +(1−β), which we call the scaled
followon trace. The resulting one-step algorithm is subse-
quently called Scaled ETD(0, β). Although the scaled fol-
lowon trace has the same decay rate as the original followon
trace (Eq. (6)), it is downscaled by 1− β (see Table 1). This
discrepancy, however, is not a qualitative difference because
the constant factor 1 − β can be absorbed in the step-size
parameter.4 Thus, Scaled ETD(0, β) can be viewed as a
slight variant of ETD(0, β).

Having settled the relationship between Scaled ETD(0, β)
and ETD(0, β), we are now ready to name the algorithm
that unifies AETD(0), Off-policy TD(0), Full-IS-TD(0), and
Scaled ETD(0, β). We call the resulting algorithm one-step
General Emphatic TD (GETD(0, β, ν)), which is defined
by Update (3) and the general followon trace (Eq. (7)).

4We can see from Table 1 that the coefficient of the full IS-ratio
product, βt, is not downscaled to βt(1− β). However, this minor
difference will not prevent Scaled ETD(0, β) from sharing the
same theory and empirical properties as ETD(0, β).



Table 1: The coefficients of different IS-ratio products in Ft.

IS-ratio Product Off-policy TD(λ) Scaled ETD(λ, β) Full-IS-TD(λ) AETD(λ) LC-ETD(λ, β, ν) ETD(λ, β)

1 1 1− β 0 1/(t+ 1) g(t) 1
ρt−1 0 β(1− β) 0 1/(t+ 1) (1− g(t))g(t− 1) β

ρt−1ρt−2 0 β2(1− β) 0 1/(t+ 1) Πt
k=t−1(1− g(k))g(t− 2) β2

...
...

...
...

...
...

...
Πt
k=2ρk−1 0 βt−1(1− β) 0 1/(t+ 1) Πt

k=2(1− g(k))g(1) βt−1

Πt
k=1ρk−1 0 βt 1 1/(t+ 1) Πt

k=1(1− g(k)) βt

So far, we have only introduced the one-step form of AETD
and GETD. By applying the same idea of uniform averaging
and the same strategy of unification to the multi-step boot-
strapping case, we can obtain their multi-step version. Here,
we present the unified algorithm with multi-step bootstrap-
ping called General Emphatic TD (GETD(λ, β, ν)), which
makes the following update5:

θt+1 = θt + αδtzt,

δt = Rt+1 + γφ>t+1θt − φ
>
t θt,

zt = ρt(γλzt−1 +Mtφt),with z−1 = 0,

Mt = (1− λh(t))Ft + λg(t),

Ft = (1− g(t)) ρt−1Ft−1 + g(t),with F0 = 1,

(8)

where h(t) and g(t) are defined as follows:

h(t)
.
=

(
1− β
t+ 1

)ν
and g(t)

.
=

1− β
(t+ 1)ν

(9)

with β ∈ [0, 1] and ν ∈ [0, 1]. Similar to the one-step case,
GETD(λ, β, ν) subsumes AETD(λ) , Off-policy TD(λ),
Full-IS-TD(λ), and Scaled ETD(λ, β). A list of the updates
of all these algorithms is included in the appendix.

LOOSELY CONSISTENT EMPHATIC TD

In this section, we examine the product of the unification.
The question here is, while the introduced decay parameters
β and ν offer us a smooth bias-variance trade-off, is the
consistency of AETD(0) retained? Fortunately, the answer is,
again, yes. We name this new class of consistent algorithms
with tunable decay parameters as Loosely Consistent Em-
phatic TD (LC-ETD(λ, β, ν)).6 Specifically, LC-ETD(λ, β,
ν) is defined by Update (8) with β ∈ [0, 1) and ν ∈ (0, 1],
or β = 1 and ν ∈ [0, 1].7 We provide its pseudocode in
Algorithm 1 and present its consistency in Theorem 3.2, of
which the proof is deferred to the appendix.

5For simplicity, we have not included general state-dependent
interest, discounting, and bootstrapping functions as Sutton et al.
(2016). However, GETD(λ, β, ν) can be extended to those cases.

6Recall that we refer to loose consistency as consistency.
7We also include Full-IS-TD(λ) in LC-ETD(λ, β, ν), since it

is also consistent. LC-ETD(λ, β, ν) becomes Full-IS-TD(λ) when
β = 1 and ν ∈ [0, 1].

Algorithm 1: LC-ETD(λ, β, ν) for online OPPE
with linear function approximation

1 Input MDP 〈S,A, p, d0, r, γ〉, feature function φ,
behavior policy µ, target policy π, step size
α ∈ (0, 1], bootstrapping parameter λ ∈ [0, 1],
and decay parameters β ∈ [0, 1) and ν ∈ (0, 1],
or β = 1 and ν ∈ [0, 1]

2 Initialize value-function weights θ arbitrarily,
followon trace F = 1, and eligibility trace z = 0

3 Draw S0 from d0
4 for t = 0 :∞ do
5 Take action At ∼ µ(·|St)
6 Observe St+1 ∼ p(·|St, At), Rt+1 = r(St, At)
7 M ← (1− λh(t))F + λg(t), where

g(t) = (1− β)(t+ 1)−ν and
h(t) = (1− β)ν(t+ 1)−ν

8 z ← ρt(γλz +Mφ(St)), where ρt = π(At|St)
µ(At|St)

9 F ← (1− g(t+ 1))ρtF + g(t+ 1)

10 θ ← θ+α[Rt+1 +γφ(St+1)>θ−φ(St)
>θ]z

11 end

Theorem 3.2 (Consistency of LC-ETD(λ, β, ν)). Let As-
sumptions 2.1-2.3 hold. For any β ∈ [0, 1) and ν ∈ (0, 1],
or β = 1 and ν ∈ [0, 1], if limt→∞ Eµ[Ft|St = s] and
limt→∞ Eµ[zt|St = s] exist for all s ∈ S , then LC-ETD(λ,
β, ν) has the same expected update as On-policy TD(λ). As
a result, LC-ETD(λ, β, ν) is stable and consistent.

Remark 3.3. LC-ETD(λ, β, ν) is stable for any values of
β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1]. This is
significantly stronger than ETD(λ, β) (Hallak et al., 2016).
In their case, ETD(λ, β) is stable only with β > β0 where
β0 ≤ γ is an instance-dependent condition number.

Remark 3.4. LC-ETD(λ, β, ν) is consistent for any values
of β ∈ [0, 1) and ν ∈ (0, 1], or β = 1 and ν ∈ [0, 1]. This
is, again, significantly stronger than ETD(λ, β). For any
β ∈ [0, 1), ETD(λ, β) has persistent bias. In particular, the
bias will increase as the value of β decrease. At the extreme
end when β = 0, ETD(λ, β) becomes Off-policy TD(λ),
which could have unbounded bias (Kolter, 2011).

Having settled the consistency of LC-ETD(λ, β, ν), we now
discuss the bias-variance trade-off we obtained. Figure 1
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Figure 1: The landscape of GETD(λ, β, ν). The square
excluding the left edge and its bottom endpoint represents
LC-ETD(λ, β, ν). The darkness of the color at each point
inside the square represents the magnitude of Ft’s variance.

plots the landscape of GETD(λ, β, ν), which illustrates the
relationship between LC-ETD(λ, β, ν) and other algorithms.
Starting from AETD(λ), intuitively, as ν decreases, the al-
gorithm gets closer to Off-policy TD(λ) with the variance
decreased, but the bias increases; meanwhile, as β increases,
the algorithm moves towards to Full-IS-TD(λ) with the bias
decreased, but the variance increased. More generally, it
holds for LC-ETD(λ, β, ν) that increasing β or ν will re-
duce the bias and increase the variance, and vice versa.

To better analyze the bias-variance trade-off that β and ν
control, we study three instances of LC-ETD(λ, β, ν), which
cover a diagonal line and two edges of LC-ETD(λ, β, ν)
(see Figure 1). The first instance is LC-ETD1(λ, β), which
corresponds to a diagonal line of LC-ETD(λ, β, ν). In this
diagonal line, the value of ν is always the same as the value
of β. This line has the special property that it connects
Off-policy TD(λ) and Full-IS-TD(λ). The update of LC-
ETD1(λ, β) is the same as Update (8) but with h(t) and g(t)
specified as the following:

h(t)
.
=

(
1− β
t+ 1

)β
and g(t)

.
=

1− β
(t+ 1)β

. (10)

The second instance is LC-ETD2(λ, ν), the bottom edge
of LC-ETD(λ, β, ν), which connects Off-policy TD(λ) and
AETD(λ). Here, β is always 0. The update of LC-ETD2(λ,
ν) is the identical as Update (8) but with h(t) and g(t) set
as the following:

h(t)
.
= (t+ 1)−ν and g(t)

.
= (t+ 1)−ν . (11)

The third instance is LC-ETD3(λ, β), the right edge of LC-
ETD(λ, β, ν), which links AETD(λ) and Full-IS-TD(λ). In
this edge, ν is always 1. The update of LC-ETD3(λ, β) is
the same as Update (8) but with h(t) and g(t) specified as
the following:

h(t)
.
=

1− β
t+ 1

and g(t)
.
=

1− β
t+ 1

. (12)

4 EXPERIMENTS

In this section, we present experiments that demonstrate the
effectiveness of LC-ETD(λ, β, ν) in the one-step case. The
results for the multi-step case exhibit a similar pattern and
are provided in the appendix. Additionally, for stability anal-
ysis on Baird’s (1995) counterexample, please refer to the
appendix. To maintain simplicity, we omit the λ argument
from all algorithms. For instance, LC-ETD(β, ν) refers to
LC-ETD(0, β, ν). We evaluate the quality of the learned θ
using the root-mean-square-value error as our metric:

RMSVE(θ) = ‖v̂θ − vπ‖dπ .

For all experiments, we use constant step sizes α = 2x

for all algorithms where x ∈ {−18,−17, · · · ,−1, 0}.
For tunable algorithms with an adjustable decay pa-
rameter (ETD(β), LC-ETD1(β), LC-ETD2(ν), and LC-
ETD3(β)), the decay parameter (β or ν) is chosen
from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Note that ETD(β), LC-
ETD1(β), and LC-ETD2(ν) with β = 0.0 or ν = 0.0 are
the same as Off-policy TD; LC-ETD1(β) and LC-ETD3(β)
with β = 1.0 are the same as Full-IS-TD; ETD(β) with
β = 1.0 is an unsound method with a followon trace whose
expectation will blow up to infinity in the limit. All results
are reported with the best-performing step size, with which
the final error is the smallest. We also provide the step-size
sensitivity analysis in the appendix. The final error is calcu-
lated by averaging the errors in the last 1% of the training
steps. Compared to the area under the learning curve (AUC),
the final error is favored because it is a better reflection of
how the algorithm performs asymptotically.

CONSISTENCY OF LC-ETD(β, ν)

Two-State Task To illustrate the benefit of LC-ETD(β,
ν)’s consistency, we designed a didactic task with two states
(Figure 3). In this task, the target policy π will go to the
left state from any state with a probability of 0.6, while the
probability for the behavior policy µ is 0.4. The discount
factor γ is 0.8. The on-policy fixed point in this task induces
an error of RMSVE(θ̄On) ≈ 1.155, whereas the off-policy
fixed point induces an error of RMSVE(θ̄Off) ≈ 1.523. For
ETD (ETD(β) with β = γ = 0.8), its fixed point has an er-
ror of RMSVE(θ̄ETD) ≈ 1.251. Thus, consistent algorithms
have a theoretical advantage in this task because their fixed
point (the on-policy fixed point) has the lowest RMSVE. We
run each algorithm for 100,000 steps and present the results
in Figure 2, which are averaged over 100 independent runs.
The shaded region near each learning curve represents the
standard error. Likewise, the standard error is shown as an
error bar for each point in the sensitivity plot.

From Figure 2(a), we can see that all LC-ETD instances
achieve an error between RMSVE(θ̄ETD) ≈ 1.251 and
RMSVE(θ̄On) ≈ 1.155 (the dash lines). They are the best-
performing algorithms and significantly improve over the
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Figure 2: Performance of different algorithms on the Two-state task. The y-axis shows RMSVE. The dash lines from top to
bottom in Figure (a) show RMSVE(θ̄ETD) ≈ 1.251 and RMSVE(θ̄On) ≈ 1.155, respectively.

θ 2θ 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𝗅𝖾𝖿𝗍, r = 0

Figure 3: The Two-state task. The values of the two states
are approximated by θ and 2θ, respectively.

only existing consistent algorithm, Full-IS-TD, which can-
not learn due to the high variance issue. On the other hand,
ETD (ETD(β) with β = 0.8) is the second-tier algorithm in
this task, achieving its theoretical optimal error of 1.251. For
Off-policy TD, it also converges to its fixed point, which in-
duces a significantly larger error of RMSVE(θ̄Off) ≈ 1.523.

Figures 2(c)-2(f) plot the learning curves of tunable algo-
rithms with fixed values of the decay parameter. From Figure
2(c), it is evident that ETD(β) converges to solutions with
large biases for most values of β. When β = 1, its error
explodes after some steps, demonstrating the unsoundness
of ETD(β) with β = 1 in the infinite horizon case. For LC-
ETD instances (Figures 2(d)-2(f)), with the decay parameter
in interval [0.2, 0.8], they all converge smoothly to errors at
a similar level, which is lower than existing algorithms.

Figure 2(b) summarizes these results. We can conclude that
all LC-ETD instances consistently enjoy lower errors than
existing algorithms, which implies LC-ETD(β, ν)’s consis-
tency across all its decay parameter choices.

PRACTICALITY OF LC-ETD(β, ν)

Rooms Task To further test the performance of LC-
ETD(β, ν) in more complex tasks with higher variance,
we modified the Rooms task proposed by Ghiassian and
Sutton (2021) to include continuing target policies. The
discount factor γ is kept at 0.9. Other task specifications
also largely follow from Ghiassian and Sutton (2021), and
the modifications can be found in the appendix. Compared
to the Two-state task, the Rooms task has more states and
complex feature representation. Moreover, the differences
between the target policies and the behavior policy are larger,
inducing much larger variance. We run each algorithm for
150,000 steps and 30 runs. To better illustrate the advantage
of LC-ETD(β, ν), we present the results using Interquartile
Mean (IQM) in Figure 4, which are more robust and sta-
tistically efficient compared to the mean or median results
(Agarwal et al., 2021). The standard error is presented as a
shaded region or an error bar, similar to the Two-state task.
However, in this case, the standard error is based only on
the middle 50% of the samples since we used IQM instead
of the mean. Additionally, we provide a comprehensive per-
formance profile by presenting the mean results (averaged
over all runs) in the appendix.

Figure 4(a) shows that ETD, ETD(β), and all LC-ETD
instances achieve similar final errors. Among them, LC-
ETD2(ν) and LC-ETD3(β) learn the fastest. Same as in
the Two-state task, Off-policy TD converges quickly to a
solution with a large bias, while Full-IS-TD cannot learn.
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Figure 4: Performance of different algorithms on the Rooms task. The y-axis shows RMSVE.

Figures 4(c)-4(f) plot the learning curves of tunable algo-
rithms with fixed values of the decay parameter. From Figure
4(c), we can see that as β increases, the bias of the solution
ETD(β) found becomes smaller, and the learning also be-
comes slower. For LC-ETD1(β) and LC-ETD2(ν) (Figures
4(d) and 4(e)), they learn faster with larger values of the
decay parameter. On the other hand, LC-ETD3(β) is not
very sensitive to the value of β (Figure 4(f)).

Figure 4(b) summarizes the above results. We can see that
even in the high variance setting, LC-ETD instances are still
better: They converge faster to the lowest error and are less
sensitive to the decay parameter compared to ETD(β).

THE BIAS-VARIANCE TRADE-OFF

We now analyze the bias-variance trade-off that β and ν
control. We first analyze the bias and variance of the trace
Ft in Eq. (7) for different algorithms. Ideally, the expectation
of Ft given St = s should be Pπ(St=s)

Pµ(St=s) , which converges
to the density ratio in the limit and corrects the distribution
of the update back to the on-policy distribution. Full-IS-TD
achieves a zero bias but has the highest variance. LC-ETD
instances have a relatively lower variance and a non-zero
bias that will converge to zero asymptotically. On the other
hand, Scaled ETD(β) exhibits an even lower variance but a
persistent bias. We conducted experiments on the Two-state
task, sampling 100,000 trajectories of length 30 to estimate
the bias and variance of Ft, as shown in Figure 5. Further
details and discussions can be found in the appendix.

Figure 5 shows that increasing the decay parameter reduces
the bias and increases the variance for all algorithms but
with different speeds of change. LC-ETD1(β) exhibits sym-
metric bias and variance curves, with the lowest variance
and the highest bias at β = 0 (Off-policy TD), and the
lowest bias and the highest variance at β = 1 (Full-IS-TD).
Scaled ETD(β) also connects Off-policy TD with Full-IS-
TD, but it is not consistent and only becomes less biased as
β increases. It is also worth mentioning that its bias is persis-
tent, while the bias of LC-ETD instances will fade away as
more time steps are given. Additionally, LC-ETD2(ν) and
LC-ETD3(β) combined also form a polygonal line connect-
ing Off-policy TD and Full-IS-TD. The bias and variance
curves of the two algorithms combined form a similar shape
to that of LC-ETD1(β) but much wider. As a result, these
two algorithms are less sensitive to the decay parameter but
risk not achieving the best trade-off. Generally, LC-ETD2(ν)
holds the best trade-off point in tasks with high variance.

We next look at how the updates at the two states are ac-
tually weighted in the experiment on the Two-state task.
We calculate the ratio of Ft’s averages at the two states for
every 1,000 steps. Then we compute the absolute error of
this ratio to the ratio of the density ratios at the two states as
a measure of how effective Ft is in reweighting the update.
We refer to this error as the ratio error in the remaining text.
We use the same data that generates Figure 2 and show the
resulting ratio errors in logarithmic scale in Figure 6, which
are averaged over 100 runs. The shaded region near each
curve represents the standard error, which is unnoticeable.



Figure 5: Bias-variance trade-off of different algorithms.
The y-axis shows the normalized bias and variance of Ft.

From Figure 6, we can see that the level of the ratio error has
a positive correlation with RMSVE plotted in Figure 2. For
LC-ETD instances with the decay parameter in the interval
[0.2, 0.8], their ratio errors are among the lowest. For Full-
IS-TD (LC-ETD1(β) and LC-ETD3(β) with β = 1), its
ratio error is very unstable at the beginning and then quickly
remains at the same level as Off-policy TD (LC-ETD1(β)
with β = 0 and LC-ETD2(ν) with ν = 0). This is because
its Ft, the full IS-ratio product, diminishes to near zero after
some steps, resulting in the ratio of Ft remaining at 1 due
to numerical issues. On the other hand, the ratio error of
ETD(β) becomes smaller and noisier as β decreases. Noted
that though the ratio error of ETD(β) when β = 1 is also
among the lowest, its performance is extremely unstable, as
shown in Figure 2(c). This is because the magnitude of Ft
at both states is enormous despite the small ratio error.

In summary, the analysis illustrates how the decay param-
eters β and ν affect the bias and variance of Ft, providing
insights into the property of the corresponding algorithm.

5 CONCLUSIONS AND DISCUSSION

In this paper, we first introduced Average Emphatic TD
(AETD(λ)), a new consistent off-policy algorithm. To at-
tain a smooth bias-variance trade-off, we unified AETD(λ)
with some existing algorithms (Precup, 2000; Precup et al.,
2001; Sutton et al., 2016; Hallak et al., 2016). The result-
ing unified algorithm contains a new family of consistent
algorithms, Loosely Consistent Emphatic TD (LC-ETD(λ,
β, ν)), which has several desired theoretical and empirical
properties. Firstly, different from ETD(λ, β), LC-ETD(λ, β,
ν) is guaranteed to be stable regardless of the values of its
parameters. Secondly, while ETD(λ, β) has a biased fixed
point, LC-ETD(λ, β, ν) has the same fixed point as On-
policy TD(λ). Thirdly, the bias-variance trade-off that its
parameters control makes LC-ETD(λ, β, ν) practical, pro-
viding an effective remedy to Full-IS-TD(λ), the only con-

Figure 6: Ratio errors under different states in the experi-
ment on the Two-state task. The y-axis shows the ratio error.

sistent method previously. To our knowledge, LC-ETD(λ, β,
ν) is the first practical, consistent algorithm for off-policy
TD learning under general linear function approximation.
By constraining LC-ETD(λ, β, ν)’s decay parameters, we
obtained its three instances with the same number of pa-
rameters as ETD(λ, β). Experiment results on a didactic
example and a complex task with high variance showed
a competitive performance of the instances, validating the
effectiveness and practicality of LC-ETD(λ, β, ν).

Despite having the ability to control a smooth bias-variance
trade-off, LC-ETD(λ, β, ν) still suffers from high variance
issue to some degree (see the appendix). This issue is in-
herent to all importance-sampling-based methods includ-
ing ETD(λ, β) and Full-IS-TD(λ). Potential treatments in-
clude periodically restarting or truncating the followon trace
(Guan et al., 2022; Zhang and Whiteson, 2022) and learning
an expected followon trace (Zhang et al., 2020c; Jiang et al.,
2022). Investigating these and new approaches to further
reduce the variance is one direction to be explored. Another
unanswered question is the convergence of LC-ETD(λ, β,
ν). Same as ETD(λ) (Sutton et al., 2016), we have provided
the stability guarantee of LC-ETD(λ, β, ν), which is an
important necessary condition of its convergence. Similar to
proving the convergence of ETD(λ) (Yu, 2016), significant
technical challenges may present in proving the convergence
of LC-ETD(λ, β, ν). Thus, we leave it for future work.
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