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Abstract

Leveraging the powerful generation capability of large-scale pretrained text-to-
image models, training-free methods have demonstrated impressive image editing
results. Conventional diffusion-based methods, as well as recent rectified flow
(RF)-based methods, typically reverse synthesis trajectories by gradually adding
noise to clean images, during which the noisy latent at the current timestep is
used to approximate that at the next timesteps, introducing accumulated drift and
degrading reconstruction accuracy. Considering the fact that in RF the noisy latent
is estimated through direct interpolation between Gaussian noises and clean images
at each timestep, we propose Direct Noise Alignment (DNA), which directly refines
the desired Gaussian noise in the noise domain, significantly reducing the error
accumulation in previous methods. Specifically, DNA estimates the velocity field
of the interpolated noised latent at each timestep and adjusts the Gaussian noise
by computing the difference between the predicted and expected velocity field.
We validate the effectiveness of DNA and reveal its relationship with existing RF-
based inversion methods. Additionally, we introduce a Mobile Velocity Guidance
(MVG) to control the target prompt-guided generation process, balancing image
background preservation and target object editability. DNA and MVG collectively
constitute our proposed method, namely DNAEdit. Finally, we introduce DNA-
Bench, a long-prompt benchmark, to evaluate the performance of advanced image
editing models. Experimental results demonstrate that our DNAEdit achieves
superior performance to state-of-the-art text-guided editing methods. Our code,
model, and benchmark will be made publicly available.

1 Introduction

Recent advances in text-to-image (T2I) generation have been driven by Rectified Flow (RF)-based
models [12, 11], which significantly reduce sampling timesteps, enabling faster generation. Leverag-
ing large-scale T2I models such as SD3 [3] and FLUX [8], training-free text-guided image editing
methods [17, 22, 7, 30] can achieve high-quality editing results with fewer sampling steps. Existing
RF-based editing methods [17, 7, 2, 22, 25, 27, 30] typically follow earlier Diffusion Model (DM)-
based editing approaches [15, 6, 14], first reversing the generative trajectory by gradually adding
noise to the clean image, obtaining an inverted noise and then re-denosing it under new conditions to
generate the edited image, as shown by the black path in Fig. 1 (a). The inverted noise is critical for
the preservation of fidelity, as it retains the structural information of the reference image, ensuring
consistency between the edited and the reference images. However, this inversion process introduces
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Figure 1: Illustration of (a) existing re-noise based RF inversion methods and (b) our DNA. The ideal
Gaussian noise refers to the noise that can exactly reproduce the reference image. (c) The curves of
reconstruction MSE vs. timesteps for DNA and re-noise based RF inversion. (d) Visualization of the
difference in Gaussian noise between steps.

accumulated drifts that significantly degrade reconstruction accuracy and editing fidelity. These drifts
arise because the noise latent at the current timestep is unavailable and it has to be approximated
using the noise latents from the previous timesteps. The approximated latent is then used to estimate
the velocity field for inversion, resulting in shifted velocity fields. As the process continues, the drifts
accumulate, leading to significant distortions in the final noise.

Existing RF-based methods [17, 2, 13, 22, 25] aim to reduce the drift to improve editing fidelity. For
example, RF-inversion [17] employs two conditional velocity fields: one for inversion (conditioned on
Gaussian noise) and one for editing (conditioned on the source image). However, its global application
of guidance ignores region specificity, often degrading edit quality. Subsequent methods [2, 22, 13],
such as RF-solver [22], refine the discretization process using higher-order ordinary differential
equation (ODE) solvers, often combined with attention injection during editing to enhance fidelity.
More recently, FTEdit [25] reduces errors by performing iterative average at each inversion timestep,
increasing the number of sampling steps. While these approaches reduce errors through finer
discretization of the reverse ODE process, they incur additional Neural Function Evaluations (NFEs),
decreasing the efficiency. Despite offering slight improvements over RF inversion, these methods
remain inefficient and struggle to mitigate the accumulation and amplification of drift.

Actually, existing editing methods overlook the unique properties of RF. Unlike DM, RF models
the generation process as a straight trajectory between noise and image, allowing noise latent to
be derived via linear interpolation at each timestep. Keeping this in mind, let us revisit the editing
process. Note that inversion aims to estimate a noise sample that corresponds to the reference image,
enabling an accurate reconstruction of it during sampling. In RF, a better noise sample means a more
direct path between the noise and the reference image. Based on this, an intuitive question is: can
we directly refine the desired noise sample in the Gaussian noise domain, rather than gradually
transforming the image into noise? To answer this question, we propose a novel method in this work,
called Direct Noise Alignment Editing (DNAEdit). Unlike gradually transforming an image back to
Gaussian noise, DNAEdit directly refines the randomly initialized noise in the Gaussian noise domain,
gradually aligning it with a better target noise sample, as shown in Fig. 1 (b).

To achieve Direct Noise Alignment (DNA), we start from a Gaussian noise sample and iteratively
interpolate between it and the clean reference image at each timestep. As shown in Fig. 1 (b),
the predicted velocity field often deviates from the expected one derived from linear interpolation.
DNA, thus, corrects it by feeding the deviation back into the noise, refining the trajectory. We
visualize the changes during the DNA process in Fig. 1 (d). These changes contain the structure of
the original image, indicating that the original content is gradually infused into the initial random
noise, resulting structured noise. This process produces straighter paths and reduces the accumulated
error by avoiding dependence on previous random noise and latents. Finally, the noise converges
to a sample that is well aligned with the reference image, as verified by the reconstruction MSE in
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Fig. 1(c). We also provide a theoretical analysis showing that DNA shares the same principle with
RF-based methods in the Appendix.

To better balance editability and fidelity, we introduce a Mobile Velocity Guidance (MVG) to guide
denoising by computing the difference between source- and target-conditioned velocity fields in the
image domain, which yields a smooth transition from source to target images. In addition, existing
benchmarks [6, 10, 28, 16] focus on short prompts, limiting semantic richness. To address this,
we introduce DNA-Bench, a long-prompt benchmark to evaluate RF editing under detailed textual
guidance. Experiments on PIE-Bench and DNA-Bench show that our DNAEdit method strikes a
better balance between fidelity and editability, demonstrating the best performance.

2 Related Work
Inversion for Image Editing. Inversion seeks to transform an image into a corresponding Gaussian
noise. A successful inversion generates an initial noise vector that can accurately recreate the
reference image, which is essential for further editing. According to DDIM [18], the initial noise
can be gradually obtained by iteratively adding predicted noise, but the approximation error can
accumulate over timesteps. Various strategies have been developed to address this issue. Null-text
inversion [15] optimizes null text embeddings at each inversion step, but it is inefficient. Negative-
prompt-inversion improves efficiency by replacing null texts with negative prompts. Unlike DMs,
RF has a notably straighter generation path. However, current RF inversion methods still adhere to
DM principles, reversing the ODE to gradually add noise. RF inversion [17] aims to tackle this issue
by optimizing the reverse ODE process using dynamic optimal control through a linear quadratic
regulator to balance editability and fidelity. RF-solver [22] and FireFlow [2] use higher-order
solvers to better approximate the reverse ODE and reduce errors at each step. FEEdit [7] employs a
fixed-point iteration strategy, refining the added noise and averaging it to suppress approximation
errors. Although these approaches can reduce reconstruction error to some extent, they all follow the
iterative re-noising paradigm, making error accumulation inevitable. In contrast, our proposed DNA
framework directly aligns the noisy latent with the ideal noise derived from model priors within the
noise space, significantly reducing the error accumulation.

Rectified Flow-based Editing. Compared to DM-based editing methods [1, 21, 4, 5], RF-based
editing methods are not fully explored. Unlike most DM models that use the U-Net architecture, RF
models [8, 3] primarily use the MM-DiT architecture, which makes strategies relying on U-Net’s
cross-attention map unsuitable for RF-based editing methods. Some approaches [2, 22] adapt the
attention injection scheme to maintain fidelity during editing. Other methods [25] focus on the
exchange of text-image information in MM-DiT, manipulating features through AdaLN to control
the editing process. While these methods have achieved certain success, they often require additional
adaptations for different RF models, limiting their applicability. Some model-agnostic methods have
also been developed. FlowEdit [7] uses an inversion-free approach by calculating the difference
between the source and the target velocity fields, enabling direct image editing in the image space.
However, this method relies on editing the velocity difference of the reference image and restricts
the range of editable space, making it difficult to perform global editing tasks (e.g., changing style).
Our DNAEdit employs two model-agnostic processes: DNA and MVG. DNA minimizes cumulative
error and obtain a better initial Gaussian noise aligned with the source text. MVG guides the editing
process to preserve background fidelity while minimizing compromise on editability.

3 Direct Noise Alignment Editing (DNAEdit)

3.1 Approximation Errors in RF Inversion

Preliminary. Rectified Flow (RF) [12, 11] models the transition between two observed distributions
π0 and π1 using an ordinary differential model (ODE):

dZt = vθ(Zt)dt, Z0 ∼ π0, Z1 ∼ π1, t ∈ [0, 1], (1)

where vθ(·) is the learnable velocity field parameterized by θ. To encourage a near-linear trajectory
of the transition, RF employs the following objective to train vθ:

min
θ

∫ 1

0

E[∥(Z1 − Z0)− vθ(Zt)∥2]dt, Zt = tZ1 + (1− t)Z0, (2)
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Figure 2: Illustration of (a) DNA and (b) MVG, which collectively build our DNAEdit algorithm.

where Zt denotes the linear interpolation between Z0 ∼ π0 and Z1 ∼ π1.

Approximation Errors in Inversion. The denoising process maps the standard Gaussian distribution
(π0 = N (0, 1)) to the image distribution π1, while its reverse maps π1 back to π0. To solve the ODE
in Eq. (1), the time interval [0, 1] is discretized into T steps, denoted as {σ0, . . . , σT }. The Euler
solver is used to approximate the solution, with the forward and reverse steps given by:

Fwd : Zt+1 = Zt + vθ(Zt)(σt+1 − σt), Inv : Zt = Zt+1 − vθ(Zt)(σt+1 − σt), (3)

where the timestep index increases from 0 to T in the forward process and decreases from T to 0 in
the reverse process. It is evident that in the reverse process, at each step only the noisy latent Zt+1 is
available, while Zt, the desired output, is unknown. Consequently, the velocity field vθ(Zt) in Eq. (3)
cannot be directly evaluated, making the exact inversion intractable.

Considering that the differences between the noisy latents of adjacent timesteps are relatively small,
existing RF inversion methods [2, 22, 17, 25] approximate the velocity field at timestep t by evaluating
it at timestep t+ 1, leading to the following inversion formula:

Inv approx : vθ(Zt) ≈ vθ(Zt+1), Zt ≈ Zt+1 − vθ(Zt+1)(σt+1 − σt). (4)

However, due to the sequential nature of the inversion process, approximation errors at each step
will accumulate over time, resulting in a final latent that can deviate significantly from the expected
Gaussian noise (see Fig. 1 (a)). Furthermore, the noise sample obtained through this approximated
inversion is not guaranteed to follow the standard Gaussian distribution, mismatching with the model
assumption. As a result, the reconstructed or edited image (see Fig. 1 (c)) may be distorted or invalid.

3.2 Direct Noise Alignment (DNA)

Our DNAEdit method consists of two key components: DNA and MVG (see Section 3.3). DNA is
used to obtain a structured noise sample, enhancing the fidelity of the editing process. The resulting
noise is then re-denoised under the guidance of MVG to generate the final image. From the analysis
in Section 3.1, we see that the primary source of error comes from the use of the noisy latent Zt+1 to
replace Zt to compute the velocity field: vθ(Zt) ≈ vθ(Zt+1). Since the noise levels of Zt and Zt+1

are different, this approximation introduces inconsistencies with the model prior.

Using RF, fortunately, the latent variables Zt can be constructed via linear interpolation between
the clean image and Gaussian noise. One can sample a noise S ∼ N (0, 1) and interpolate it with
the image. However, since S is randomly sampled, the resulting path may lead to reconstruction
errors under text guidance. According to Eq. (2), there exists an optimal noise such that the RF-
driven trajectory forms a nearly linear path to the reference image. Motivated by this, we propose
directly shifting the random noise toward the target noise in the Gaussian space over timesteps:
ST ∼ N (0, 1) → ST−1 → · · · → S0.

To achieve this goal, we need to devise an effective algorithm to optimize random Gaussian noise
ST . This can be done by aligning the velocity vsrct predicted by the RF model with the expected
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Algorithm 1 Direct Noise Alignment (DNA)

Input: Number of optimization steps T , Source image ZT , Source text ψsrc, Timesteps {σt}0t=T , RF model
vθ with parameters θ, Randomly sampled start noise ST ∼ N (0, 1).
Output: Noisy latents {Zt}0t=T−1 and residual offset {∆xDNA

t }0t=T−1, Terminal noise sample S0

for t = T − 1, ..., 1, 0 do
Z∗

t ← Zt+1 × σt
σt+1

+ St+1 × (1− σt
σt+1

) ▷ Interpolate to get noisy latent Z∗
t

vlineart = (St+1 − Zt+1)/σt+1 ▷ Calculate the expected velocity on the linear path
vsrct = vθ(Z

∗
t , ψ

src) ▷ Calculate the predicted velocity by SD3 or FLUX
∆vDNA

t = vlineart − vsrct

St ← St+1 +∆vDNA
t × σt+1 ▷ Move Gaussian noise from St+1 to St

Zt ← Z∗
t +∆vDNA

t × (σt+1 − σt) ▷ Move interpolated latent from Z∗
t to Zt

∆xDNA
t = Z∗

t − Zt ▷ Compute the residual offset
end for
return S0, {Zt}0t=T−1 and {∆xDNA

t }0t=T−1

velocity vlineart along the linear path from Gaussian noise to image latent. Specifically, at timestep t,
we construct the linear path from noise St+1 to latent Zt+1 and obtain latent Z∗

t by interpolation:

Z∗
t =

σt
σt+1

× Zt+1 + (1− σt
σt+1

)× St+1. (5)

The estimated noisy latent Z∗
t is obtained via direct interpolation, eliminating the need to approximate

it using Eq. (4). We then compute the velocity field Z∗
t using the RF model as vsrct = vθ(Z

∗
t , ψ

src),
and define the expected velocity along the linear path as vlineart = (St+1 − Zt+1)/σt+1. However,
as shown in Fig. 2(a), a discrepancy arises between vlineart and vsrct due to the offset between the
actual noise St+1 and the noise St derived by the predicted velocity. We denote this mismatch as the
velocity gap ∆vDNA

t , and correct it by shifting the noise from St+1 to St:

∆vDNA
t = vlineart − vsrct , St = St+1 +∆vDNA × σt+1. (6)

As the noise moves to St, the interpolated noisy latent Z∗
t in Eq. (5) can be refined to a better estimate

Zt = σt

σt+1
× Zt+1 + (1 − σt

σt+1
) × St. It can be easily derived that the updated linear velocity

vlineart = (St − Zt+1)/σt+1 matches the predicted velocity vθ(Z∗
t , ψ

src). The difference between
the updated latent Zt and the initial estimate Z∗

t can be expressed as:

Zt − Z∗
t =

σt+1 − σt
σt+1

× (St − St+1). (7)

By substituting Eq. (6) into Eq. (7), we can derive that Zt = Z∗
t +∆vDNA × (σt+1 − σt). Eq. (7)

implies that although the random Gaussian noise ST may initially deviate from the ideal Gaussian
noise, the difference will become much smaller for interpolated latent Zt due to the small scaling
coefficient (σt+1 − σt)/σt+1, where σt+1 : 1 → 0. Therefore, it can be deduced that vθ(Zt, ψ

src) ≈
vθ(Z

∗
t , ψ

src). Starting fromZt, the predicted velocity field can lead toZt+1 with a small error. Eq. (7)
suggests aligning from large to small timesteps to avoid early errors, so we iteratively adjust noise
from σT to σ0. We also show that the residual offset ∆xDNA

t = Z∗
t −Zt allows exact reconstruction.

Adding it back to Zt, we recover Z∗
t and compute vθ(Z∗

t , ψ
src) for precise updates from Zt to Zt+1.

The algorithm is presented in Algorithm 1, and a theoretical analysis between DNA and existing
RF-based methods is provided in the Appendix.

3.3 Mobile Velocity Guidance (MVG)

Although DNA can estimate a noise sample with small reconstruction error, directly using target
texts to guide image generation may destroy the original structure of the reference image. Inspired
by [17], we can control the fidelity of the edited image by integrating the velocity field pointed to
the reference image. However, if the velocity field is introduced improperly, it can interfere with the
denoising process, resulting in an undesired overlay of the reference and target images and degrading
editability. To address this, we introduce Mobile Velocity Guidance (MVG), as illustrated in Fig. 2(b),
which adaptively guides the editing process to balance fidelity and editability.

The denoising process starts from a noise sample and gradually moves it to the target image, forming
a trajectory from Gaussian noise to the target, called Zedit

t . Specifically, at timestep t, we first
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Algorithm 2 Mobile Velocity Guidance (MVG)

Input: Source image ZT , Timesteps {σt}Tt=0, RF vθ(·), Noisy latents {Zt}0t=T−1, Residual gaps
{∆xDNA

t }0t=T−1, Start Step ts, Target text ψtgt

Output: Edited Image Zedit
T

Init: Zedit
ts = Zts , Zmvg

ts
= ZT

for t = ts, ts + 1, · · · , T − 1 do
vtgtt = vθ(Z

∗edit
t , ψtgt), Z∗edit

t ← Zedit
t +∆xDNA

t ▷ Involve residual gap to get target velocity
vsrct = vθ(Z

∗
t , ψ

src) =
Zt+1−Zt

σt+1−σt
, ∆vt = vtgtt − vsrct ▷ Reuse source velocity from DNA latents

Zmvg
t+1 ← Zmvg

t +∆vt × (σt+1 − σt) ▷ Move the mobile latent toward the target image
vmvg
t = (Zedit

t − Zmvg
t+1 )/(1− σt) ▷ Calculate the mobile velocity guidance

veditt = η × vtgtt + (1− η)× vmvg
t ▷ Calculate the synthesized denosing velocity

Zedit
t+1 ← Zedit

t + veditt × (σt+1 − σt) ▷ Perform denoising step
end for
return Zedit

T

incorporate ∆xDNA
t to shift Zedit

t to Z∗edit
t , enabling the exact computation of target velocity vtgtt :

Z∗edit
t = Zedit

t +∆xDNA
t , vtgtt = vθ(Z

∗edit
t , ψtgt). (8)

This step is crucial. According to Eq. (7), the residual ∆xDNA
t = Z∗

t − Zt is equivalent to the
weighted difference between two Gaussian noise samples and therefore free from image content.
Essentially, this operation ensures that the regions intended to be preserved in Z∗edit

t are perfectly
aligned with the noisy latent in the reverse process, i.e., Z∗

t in Eq. (5). As a result, the computed target
and source velocities (vtgtt and vsrct ) become near-identical in those preserved regions, which not
only improves reconstruction accuracy but also significantly enhances editing fidelity. Our ablation
study in Appendix further supports this finding.

In addition, there exists another trajectory that transitions from the source image to the target image
purely within the image space, denoted as Zmvg

t . Before using vtgtt to update the noisy latent Zedit
t

conditioned on the target text, we first apply the velocity difference between the source and target
to shift Zmvg

t from the reference image toward the target image. This velocity difference and the
corresponding mobile latent modification are defined as:

∆vt = vtgtt − vsrct , Zmvg
t+1 = Zmvg

t +∆vt × (σt+1 − σt). (9)

Here, we use the saved latents in DNA to calculate the velocity vsrct , which not only reduces the
number of function evaluations (NFEs) but also accurately captures the velocity field associated with
the reconstruction of the reference image. The velocity difference ∆vt is then applied to the mobile
reference image Zmvg

t , modifying specific regions to reflect the differences induced at timestep t
under the source and target text conditions. Using the updated latent Zmvg

t+1 , we obtain the final
denoising velocity by blending the velocity fully conditioned on the target text vtgtt with the MVG
vmvg
t using a weighting coefficient η as :

vmvg
t = (Zedit

t − Zmvg
t+1 )/(1− σt), veditt = η × vtgtt + (1− η)× vmvg

t , (10)

where η ∈ [0, 1] controls the trade-off between fidelity and editability.

Finally, we apply the synthesized velocity to perform the denoising by Zedit
t+1 = Zedit

t + veditt (σt+1 −
σt). This process is applied across all timesteps, as shown in Fig. 2(b). To avoid excessive changes
during editing, we skip the initial step and select Zts as the starting point for editing. The complete
algorithm of MVG is summarized in Algorithm 2. Using a fixed reference image for guidance, as in
[17], we maintain the denoising direction close to the reconstruction of the source image during the
early editing stages, thereby enhancing the fidelity. However, in later stages, as the image content
undergoes substantial changes, relying on the original reference image can severely hinder editability.
In contrast, our proposed MVG vmvg

t mitigates this issue by employing a moving reference for
guidance, effectively balancing fidelity and editability throughout the editing process.
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Table 2: Quantitative comparison on PIE-Bench. Red , blue , yellow represents top 3 performers.

Method Model Structure Background Preservation CLIP Similarity Rank
Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑ Avg. ↓

PnP[21] SD1.5 27.35 22.31 112.76 82.95 79.25 25.41 22.52 9.17
MasaCtrl[1] SD1.4 27.12 22.19 105.44 86.37 79.91 24.03 21.15 10.42
DI+PnP[6] SD1.5 23.35 22.46 105.51 79.94 79.88 25.49 22.64 6.83
DI+MasaCtrl[6] SD1.4 23.58 22.68 87.41 80.63 81.51 24.39 21.41 8.75
InfEdit[26] LCM 19.31 27.31 56.32 47.80 85.30 24.90 22.14 5.67
InsP2P[4] InsP2P 58.13 20.80 159.23 221.3 76.47 23.61 21.68 13.42

RF-Inv[17] FLUX 42.29 20.20 179.54 139.2 69.91 24.57 22.20 12.42
RFEdit[22] FLUX 21.79 24.83 113.15 52.46 83.38 25.57 22.26 6.42
FireFlow[2] FLUX 29.03 23.33 133.40 70.83 81.22 26.19 22.99 7.42
FlowEdit[7] FLUX 27.82 21.96 112.19 94.99 83.08 25.25 22.58 9.50
FlowEdit[7] SD3 27.12 22.22 104.12 85.96 93.22 26.53 23.57 5.58
FTEdit[25]* SD3.5 18.17 26.62 80.55 40.24 91.50 25.74 22.27 3.50

DNAEdit (Ours) FLUX 18.87 24.99 95.06 50.45 85.71 25.79 22.87 3.42
DNAEdit (Ours) SD3.5 14.19 26.66 74.57 32.76 88.63 25.63 22.71 2.50

4 Experiments

4.1 Experimental Settings

DNA-Bench. Text-guided editing has been extensively studied, and evaluation benchmarks [6, 10, 16]
have been proposed to evaluate and compare the different editing methods. However, most of these
benchmarks are developed in conjunction with diffusion-based models. Due to the limitations of text
encoders and pre-trained models, diffusion models struggle to accurately understand long text inputs.
As a result, existing benchmarks typically feature short descriptions. For example, PIE-Bench [6]
has an average prompt length of 9.46 words. In contrast, RF-based models have shown significant
improvements in understanding long text input, but the short descriptions in existing benchmarks
cannot fully evaluate the editing capabilities of RF-based models.

To bridge this gap, we propose an extended version of PIE-Bench, called DNA-bench, which is
tailored for long-text prompts. To construct DNA-Bench, we design target-aware prompts and
leverage the powerful multimodal large language model GPT-4o [20] to generate detailed descriptions
of the source images as source prompts. In addition, we modify and extend the original target prompts
to align with the editing tasks. The average prompt length in DNA-bench is 33.17 words. More details
of the construction process and example prompts of DNA-Bench can be found in the Appendix.

Implementation and Compared Methods. Two versions of DNAEdit are provided, which are
based on FLUX-dev [9] and SD3.5-medium [19], respectively. In both versions, the MVG coefficient
η is fixed at 0.8. Detailed hyper-parameter settings can be found in the Appendix. We compare
DNAEdit with representative DM-based methods [1, 21, 26] and latest RF-based editing methods
[17, 22, 2, 7, 25] using their official implementations and default settings in a shared environment,
except FTEdit, where we use provided results.

Evaluation and Metrics. We first conduct reconstruction and text-guided editing experiments on
the PIE-bench [6]. The PIE-bench consists of 700 natural and artificial images to evaluate editing
methods across 9 distinct dimensions. It provides the source and target prompts for each image, along
with the editing area masks to assess background preservation and local editing ability. We then
conduct experiments on our proposed DNA-bench. To evaluate the reconstruction and preservation
performance of non-edited areas, we adopt the commonly used image quality metrics, including

Table 1: Quantitative results on reconstruction.

Method NFE↓MSE↓LPIPS↓SSIM↑
Vallina Inversion 60 0.028 0.342 0.601
RF-Inversion [17] 56 0.023 0.279 0.526
RFEdit [22] 60 0.022 0.244 0.677
FireFlow [2] 57 0.015 0.200 0.726
DNA 56 0.010 0.110 0.830 Figure 3: Qualitative comparison on reconstruction.
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Figure 4: Qualitative comparison of different text-guided image editing methods.

LPIPS [29], SSIM [23], MSE, PSNR and structure distance [6]. Meanwhile, CLIP similarity [24] is
employed to assess the consistency between target prompts and edited results.

4.2 Main Results

Results on Reconstruction. In Fig. 3, we present a qualitative comparison among different RF-based
reconstruction methods. We see that our DNA method surpasses other approaches in reconstruction
accuracy, with only minor differences from the original image in the area highlighted by red-box.
FireFlow and RFEdit both use higher-order ODEs to reduce inversion drift, achieving good overall
accuracy. However, noticeable differences appear in areas such as the background and arms. RF-
Inversion uses the original image as a reference during reconstruction, leading to over-generation,
such as the house in the background, which is not faithful to the original image. Moreover, using
the original image as a reference can compromise the editability during editing. The quantitative
results are reported in Section 4. Compared to existing inversion-based methods [2, 17, 22], our DNA
achieves the lowest reconstruction error under similar NFEs.

Quantitative Comparison on Text-guided Editing. In Table 2, we evaluate editing methods in three
dimensions: structure preservation, background preservation, and clip similarity. We present the
overall ranking for each method by averaging the rankings in these dimensions in the last column of
Table 2. Our approach demonstrates superior overall performance, particularly in terms of structure
and background preservation. Specifically, while InfEdit shows better PSNR and LPIPS metrics, its
CLIP similarity is significantly lower than other methods. This suggests that its strong background
preservation hinders its editing capabilities. FlowEdit-SD3 achieves a higher CLIP score but shows
weaker background and structure preservation compared to our method (PSNR 22.22dB vs. 26.66dB),
indicating potential over-editing. This is attributed to its use of a large CFG in the generation, which
also leads to poorer visual quality, as illustrated in Fig. 4. Lastly, the recently developed FTEdit
shows relatively balanced performance. However, our method excels in background and structure
preservation, with similar whole CLIP scores (25.63 vs. 25.74). In edited regions, our DNAEdit
achieves a notably higher CLIP score, 22.71 vs. 22.27, indicating that our approach better preserves
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Table 3: Quantitative Results on DNA-Bench. Red , blue , yellow represents top 3 performers.

Method Model Structure Background Preservation CLIP Similarity Rank
Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑ Avg. ↓

RFEdit FLUX 20.18 25.13 104.92 49.46 84.01 28.34 22.99 2.92
RF-Inversion FLUX 41.92 20.18 176.40 139.69 69.96 27.98 22.89 6.83

FlowEdit SD3 30.93 21.35 118.48 103.52 81.45 28.89 23.58 4.58
FlowEdit FLUX 29.06 21.57 116.97 102.50 82.54 28.15 22.86 5.33
FireFLow FLUX 26.97 23.57 124.78 68.51 81.82 28.69 23.32 3.83

DNAEdit FLUX 18.61 24.89 93.76 50.80 85.80 28.36 22.99 2.41
DNAEdit SD3.5 25.67 23.24 112.60 67.32 83.69 28.90 23.66 2.08

non-edited areas while accurately editing targeted regions. Furthermore, our method is model-agnostic
and does not require alterations to the MM-DiT architecture, enhancing its applicability.

Qualitative Comparison on Text-guided Editing. We present visual comparisons of state-of-the-art
editing methods in Fig. 4, including object, attribute, color, material, style, and pose editing. It can be
found that InfEdit often results in edits without visible changes (see the 2nd, 4th and 7th rows). In
contrast, FireFlow frequently exhibits over-editing, as shown in the 2nd, 4th and 6th rows. Although
the editing instructions are followed, the original image’s structure is significantly changed. As for
FlowEdit, while the SD3 version of it successfully accomplishes most editing tasks without altering
much the original image’s structure, it suffers from low visual quality and noticeable over-saturation,
as evident in row 1 and row 4. The FLUX version of FlowEdit offers better visual quality, but it
has some shortcomings in fidelity and instruction following for some editing tasks. For instance, in
row 2, it fails to add a flower, and there is a noticeable change in the dog’s ears. Compared to these
methods, our proposed DNAEdit method is versatile across various editing tasks and shows superior
visual quality. For example, in row 5, our approach successfully applies a global pixel style while
preserving the original image’s character pose and overall structure. Similarly, in row 6, our method
effectively changes the makeup color while retaining facial ID and other details, achieving desired
results for both edited and non-edited areas. In summary, DNAEdit effectively balances between
editability and fidelity, which is consistent with our quantitative results.

Source Image Short Prompt Long Prompt

PIE-Bench: 
A cat dog with green eyes 
sitting on the ground.

DNA-Bench: 
A cat dog with striking green eyes and a fluffy striped coat is 
sitting on the ground, its ears perked up and whiskers 
prominently displayed, giving it an alert and curious expression.

Figure 5: Visual comparison between editing re-
sults using short and long prompt.

Results on DNA-Bench. Table 3 shows the
results of RF-based editing methods on DNA-
Bench. Our DNAEdit remains the best, achiev-
ing high clip scores while preserving the back-
ground. This validates that DNAEdit can be
used for image editing with short- and long-
text inputs without any change. Comparing
the results of the same method under long and
short prompts, we can see that inversion-based
methods achieve better background preservation
with long prompts (e.g., FireFLow achieves a
PSNR of 23.33dB on PIE-Bench and a PSNR of
23.57dB on DNA-Bench). This is because long texts provide detailed descriptions that align with
image contents, allowing more accurate reconstruction. As shown in Fig. 5, short prompts change a
cat into a dog but alter the pose, while long prompts keep the original pose, producing consistent
results. In addition, long prompts also result in improved clip similarity scored.

4.3 Ablation on Proposed Modules

Baseline. In Table 4, we present the experimental results of our proposed method with different
modules. We begin with Exp. 1⃝, which utilizes velocity fields computed on interpolated latents to
reverse ODE process. In Exp. 1⃝, we initiate the inversion process by randomly sampling Gaussian
noise, which is then used throughout the inversion process. At each step, the Gaussian noise is
interpolated with the latent at timestep t to compute the velocity field for timestep t− 1, facilitating
the inversion. During the re-denoise phase, we use the velocity field conditioned on target prompt to
generate target image. By employing interpolation to construct the latent of timestep t− 1, we can
mitigate errors caused by approximation. As observed, this setting already achieves relatively good
results. However, despite avoiding approximation errors at each step, the use of a fixed Gaussian
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Table 4: Ablation study on proposed modules.

Exp. Component Structure Background Preservation CLIP Similarity
Distance ↓ PSNR ↑ LPIPS ↓ MSE ↓ SSIM ↑ Whole ↑ Edited ↑

1⃝ Interpolation 31.90 22.61 147.77 84.60 78.93 25.73 22.47
2⃝ +DNA 32.67 22.18 146.27 89.92 79.73 26.24 23.08
3⃝ +ResOffset 24.93 23.75 120.56 64.81 82.24 26.02 22.79
4⃝ +DNA +ResOffset 33.98 21.97 149.84 95.19 79.32 26.40 23.23
5⃝ +DNA+MVG 18.81 24.91 95.44 50.29 85.55 25.78 22.48
6⃝ +DNA +ResOffset+MVG 18.87 24.99 95.06 50.45 85.71 25.79 22.87

noise throughout the process can introduce significant errors when approaching pure noise, especially
when the initially sampled Gaussian noise deviates much from the desired structure noise.

Effectiveness of DNA. In Exp. 2⃝, we introduce DNA by adjusting the initially sampled Gaussian
noise during the inversion process. By comparing 1⃝ and 2⃝, we can observe that as the structural
and background preservation metrics remain nearly unchanged, the Clip Whole and Clip Edited
similarity significantly increase, improving from 25.73 and 22.47 to 26.24 and 23.08, respectively.
This improvement is attributed to the DNA process, where the noise is continuously moved by the
difference between the linear velocity and the velocity conditioned on the source prompt. This
movement injects the original image structure and gradually aligns the random noise with the
structured noise corresponding to source prompt, enabling the generated results to better match the
target prompt during editing.

Effectiveness of ResOffset. Comparing Exp. 1⃝ and 3⃝, we see that the introduction of ResOffset
during the re-denoising process significantly improves the metrics for image structure and background
preservation. For instance, the Structure Distance improves from 31.90 to 24.93, and the PSNR
increases from 22.61 dB to 23.75 dB. By incorporating the latent calculated with ResOffset, we shift
Zedit
t to Z∗edit

t , enhancing the consistency between the intended preserved regions in the noisy latent
Z∗
t during the DNA process and those Z∗edit

t during re-denoising. This ensures that the velocity field
during denoising accordingly tends to preserve these regions.

Effectiveness of MVG. Comparing Exp. 4⃝ and 6⃝, we observe that the introduction of MVG results
in a decrease in structure similarity from 33.98 to 18.87, while PSNR increases from 21.97 dB to
24.99 dB, indicating a significant improvement in editing fidelity. As a trade-off for faithfulness
to the original image, there is a decrease in CLIP similarity. Since MVG ensures that the overall
structure of the edited image undergoes minimal changes, it imposes greater limitations on whole
image editing, leading to a decrease in the whole image metric from 26.40 to 25.79 (-0.61). However,
because MVG distinguishes between edited and non-edited regions and uses the evolved image to
guide the editing of specific areas, the restriction on edited regions is greatly reduced, resulting in
only a slight decrease of 0.36 in Edited CLIP similarity. This demonstrates that under the guidance of
MVG, fidelity can be significantly enhanced while avoiding the constraints on edited regions that
could lead to unchanged results. Please refer to Appendix for detailed ablation studies on the setting
of the MVG coefficient.

5 Conclusion

We presented a novel RF-based method, namely DNAEdit, for text-guided image editing. By utilizing
RF’s property of linear trajectory, we proposed a method to estimate accurate latents by calculating the
velocity fields at specific timesteps through random sampling and linear interpolation. By analyzing
the expected and predicted velocity fields, we presented DNA to align the image to the ideal noise
directly in the Gaussian noise domain. We then introduced MVG to maintain background areas
while guiding effective changes in editing regions. Theoretical analyses were provided to explain
the effectiveness of DNA and MVG and their connections with existing RF-based editing methods.
Experiments were conducted on the commonly used PIE-Bench and our newly improved long-text
DNA-Bench. Both qualitative and quantitative results showed that our DNAEdit approach performed
well on various editing tasks, producing high-quality edits faithful to the original image.

Limitations. As a training-free editing method, DNAEdit utilizes the strong priors of pre-trained T2I
models by converting images into structured noise aligned with the given text. Therefore, it may fall
short in achieving desired editing results for cases that lie outside the foundation T2I model’s prior.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the final section (after the conclusion).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, the paper provides a full set of assumptions and a proof for each theoretical
result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper fully discloses all necessary information to reproduce the main
experimental results, supporting the main claims and conclusions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data are publicly available. We will release the codes and new data if the
paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the paper provides all necessary details, including hyperparameters,
evaluation metrics and etc. to fully understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the type of compute resources in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research in the paper fully conforms to the NeurIPS Code of Ethics in
every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we analyze the potential social impact in appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we clearly indicate the baseline methods and testing data used in the
paper. Their licenses permit use with academic scope.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code and dataset will be release if the paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowd sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowd sourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method focuses on image editing and does not involve LLMs as part.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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