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ABSTRACT

The impacts of taking different actions in reinforcement learning (RL) tasks often
dynamically vary during the policy learning process. We exploit the causal relation-
ship between actions and potential reward gains, proposing a causal policy-reward
entropy term. This term could effectively identify and prioritize actions with high
potential impacts, thus enhancing exploration efficiency. Moreover, it could be
seamlessly incorporated into any Max-Entropy RL framework. Our instantiation,
termed Causal Actor-Critic (CAC), showcases superior performance across a range
of continuous control tasks and provides insightful explanations for the actions.

1 INTRODUCTION

Effective exploration lies in the core of reinforcement learning (RL) for optimal decision-
making (Lopes et al., 2012; Sutton & Barto, 2018; Ladosz et al., 2022). A prominent framework is
Maximum Entropy RL, which promotes exploration by maximizing specific entropy terms (Zhang
et al., 2021b; Agarwal et al., 2021a), often guided by the Optimism in the Face of Uncertainty (OFU)
principle (Cassel et al., 2022), prioritizing less frequented actions and states, thereby broadening
the visitation space. Intriguingly, we find in this paper that the conventional policy entropy (Mnih
et al., 2016; Haarnoja et al., 2018; Ji et al., 2023) simply aggregates uncertainty across all action
dimensions, failing to account for the varying significance of each action dimension in the policy
optimization process over the course of training, hence might lead to inefficient exploration.

A concrete example is provided in Figure 1, where a robotic arm is trained to hammer a screw,
revealing the varying importance of each action dimension, such as torque and positions, at different
policy learning stages. Emphasizing the exploration of actions with greater potential for reward gain
at the current stage could lead to enhanced learning efficiency. For example, at the stage indicated
by • in Figure 1, the arm struggles with grasping the hammer. By concentrating exploration on the
gripper finger’s torque, the agent develops a grasping policy more efficiently, requiring fewer samples
than if it were to explore the end-effector’s x and y positions. This example underscores the limitation
of traditional policy entropy: relying solely on uncertainty may result in unproductive exploration, as
interactions would be wasted in actions that have little impact on current performance.

time 

Focus: Grasp the hammer firmly (torque ↑)

Hammer a screw on the wall. Randomize the hammer and the screw positions

Focus: Optimize movement path (pos(x) ↑	, pos(y) ↑, pos(z) ↑ , torque ↓	)

Focus: Achieve stable and swift hammering (torque ↑	)

Figure 1: Motivating example. The task involves a robotic arm hammering a screw into a wall. • Initially, the
robotic arm struggles with hammer grasping, making torque exploration a priority for a stable grip. ▲ As the
training advances, the arm is able to perform the task, but not at an optimal level. The focus shifts to optimizing
movement, prioritizing end-effector position over torque. ⋆ Finally, potential improvements lie in the stable and
swift hammering, shifting focus back to torque. The evolving causal weights, depicted on the left, reflect these
changing priorities and align with human cognition.
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Figure 2: Success rate of CAC SAC, TD3 on 10 manipulation tasks from Meta-World (sorted alphabetically).
Solid curves depict the mean of 7 runs, and shaded regions correspond to the standard deviation.

Leveraging the interpretability inherent in causality, we introduce a versatile causal policy-reward
entropy. This entropy effectively identifies and prioritizes actions with a high potential for reward,
enhancing exploration efficiency. Furthermore, it facilitates understanding of the agent’s actions,
reflecting the adaptive learning mechanisms akin to human cognition. Our implementation, CAC,
achieves strong performance in various benchmark tasks.

2 POLICY LEARNING WITH CAUSAL POLICY-REWARD ENTROPY

Causal discovery on a → r|s. To explore the causal relationships between each action dimension
ai and its potential impact on reward gains r, we first establish a causal policy-reward structural
model, rt = rM

(
Bs→r|a ⊙ st,Ba→r|s ⊙ at, ϵt

)
, and provide theoretical analyses to ensure the

identifiability of the causal structure Ba→r|s in Appendix B. Specifically, under the causal Markov
condition and faithfulness assumption (Pearl, 2009), we establish conditions for the causal relationship
existence in Proposition B.3, then the true causal graph Ba→r|s could be identified from observational
data alone, as guaranteed in Theorem B.4. Given the policy π impacts the distribution of (s,a), the
corresponding causal weights also undergo dynamic evolution as it is computed on the fresh data.

Causal policy-reward entropy Hc. By infusing the explainable causal weights Ba→r|s into policy
entropy, we propose the causal policy-reward entropy Hc for enhanced exploration. Hc, defined as,

Hc(π(·|s)) = −Ea∈A

[∑dimA

i=1
Bai→r|sπ(ai|s) log π(ai|s)

]
,a = (a1, . . . , adimA). (2.1)

Policy optimization with Hc. Our causal policy-reward entropy provides a flexible solution that
can be seamlessly incorporated into any Max-Entropy RL framework. For example, as a plug-and-
play component, CAC can be implemented within SAC (Haarnoja et al., 2018) by integrating our Hc

into the policy optimization objective, J(π) =
∑∞

t=0 E(st,at)∼ρ(π) [γ
t(r(st,at) + αHc(π(·|st))].

▷ Preliminaries are detailed in Appendix A. For theoretical analyses, please refer to Appendix B.
And practical implementation details are provided in Appendix E.

3 EXPERIMENTS

We compare CAC to two popular model-free baselines, SAC (Haarnoja et al., 2018) and TD3 (Fuji-
moto et al., 2018) on a set of Meta-World (Yu et al., 2019) continuous control tasks. As shown in
Figure 2, CAC surpasses SAC and TD3 by a large margin in terms of success rates. Extensive results
on DMControl (Tassa et al., 2018), MuJoCo (Todorov et al., 2012), ROBEL (Ahn et al., 2020), and
panda-gym (Gallouédec et al., 2021) benchmark suites are provided in Appendix G.3.

4 CONCLUSION

In this paper, we unveil that leveraging the causal effects of each action dimension toward potential
reward gain could remarkably enhance exploration efficiency. In our experiments, we show that the
proposed entropy term emerges as a versatile tool that boosts policy learning performance.
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A PRELIMINARIES

Markov Decision Process. We denote a Markov decision process (MDP) as M = (S,A, P, r, γ),
where S is the state space, A the action space, r : S ×A → [−Rmax, Rmax] the reward function,
and γ ∈ (0, 1) the discount factor, P (·|s,a) the transition dynamics. Let ρ(π) denote the state-action
marginals of the trajectory distribution induced by π(at|st). The Q-value function Q : S ×A → R,
corresponds to the discounted returns obtained by starting from the state s and action a, and then
following the policy π(at|st).
Maximum Entropy Reinforcement Learning. Maximum Entropy Reinforcement Learning maxi-
mizes policy entropy or relative entropy in addition to the standard RL objective. A general maximum
entropy objective includes a policy entropy regularization term in the objective function with the aim
of performing more diverse actions for each given state and visiting states with higher entropy for
better exploration. The entropy-regularized policy objective function based on any policy entropy
term H(π(·|st)) is given as below, here α is a temperature parameter, which determines the relative
importance of the entropy term against the reward.

J(π) =

∞∑
t=0

E(st,at)∼ρ(π)

[
γt(r(st,at) + αH(π(·|st)))

]
(A.1)

Causal Policy-Reward Structural Modeling. Suppose we have sequences of observations
{st,at, rt}Tt=1, where st = (s1,t, ..., sdimS,t)

T ⊆ S denote the perceived dimS-dimensional states
at time t, at = (a1,t, ..., adimA,t)

T ⊆ A are the executed dimA-dimensional actions and rt is the
reward. Note that the reward variable rt may not be influenced by every dimension of st or at, and
there are causal structural relationships between st, at and rt (Huang et al., 2022c). To integrate
such relationships in MDP, we explicitly encode the causal structures over variables into the reward
function

rt = rM
(
Bs→r|a ⊙ st,Ba→r|s ⊙ at, ϵt

)
, (A.2)

where Bs→r|a ∈ RdimS×1 and Ba→r|s ∈ RdimA×1 are vectors that represent the graph structure 1

from st to rt given at and from at to rt given st, respectively. ⊙ denotes the element-wise product
while ϵt are i.i.d. noise terms.

B THEORETICAL ANALYSES

We first give definitions of the Markov condition and faithfulness assumption, which will be used in
our theoretical analyses.
Assumption B.1 (Global Markov Condition (Spirtes et al., 2000; Pearl, 2009)). The distribution
p over a set of variables V = (s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T satisfies the global Markov
condition on the graph if for any partition (S,A,R) in V such that if A d-separates S from R, then
p(S,R|A) = p(S|A)p(R|A).
Assumption B.2 (Faithfulness Assumption (Spirtes et al., 2000; Pearl, 2009)). For a set of variables
V = (s1,t, ..., sdimS,t, a1,t, ..., adimA,t, rt)

T , there are no independencies between variables that are
not entailed by the Markovian Condition.

With these two assumptions, we provide the following proposition to characterize the condition of
the causal relationship existence so that we are able to uncover those key actions from conditional
independence relationships.
Proposition B.3. Under the assumptions that the causal graph is Markov and faithful to the observa-
tions, there exists an edge from ai,t to rt if and only if ai,t ⊥̸⊥ rt|st,a−i,t, where a−i,t are states of
at except ai,t.

Proof. (i) We first prove that if there exists an edge from ai,t to rt, then ai,t ⊥̸⊥ rt|st,a−i,t. We
prove it by contradiction. Suppose that ai,t is independent of rt given st,a−i,t. According to the

1Please note that B·→· encodes information of both causal directions and causal effects. For example,
Bi

a→r = 0 means there is no edge between ai,t and rt; and Bi
a→r = c implies that ai,t causally influences rt

with effects c. Causal effects are called causal weights as well in this paper.
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faithfulness assumption, we get that from the graph, ai,t does not have a directed path to rt, i.e., there
is no edge between ai,t and rt. It contradicts our statement about the existence of the edge.

(ii) We next prove that if ai,t ⊥̸⊥ rt|st,a−i,t, then there exists an edge from ai,t to rt. Similarly, by
contradiction, we suppose that ai,t does not have a directed path to rt. From the definition of our
MDP, we see in the graph that the path from ai,t to rt could be blocked by st and a−i,t. According
to the global Markov condition, ai,t is independent of rt given st and a−i,t, which contradicts the
assumption about the dependence between ai,t and rt.

We next provide the theorem to guarantee the identifiability of the proposed causal structure.

Theorem B.4. Suppose st, at, and rt follow the MDP model with Eq.(A.2). Under the Markov
condition, and faithfulness assumption, the structural vectors Bs→r|a and Ba→r|s are identifiable.

Proof. We prove it motivated by (Huang et al., 2022a). Denote all variable dimensions in the MDP
by V, with V = {s1,t, ...sdimS,t, a1,t, ..., adimA,t, rt}, and these variables form a dynamic Bayesian
network (Murphy, 2002). Note that our theorem only involves possible edges from state dimensions
si,t ∈ st to the reward rt or from action dimensions aj,t ∈ at to the reward rt. (Huang et al., 2020)
showed that under the Markov condition and faithfulness assumption, even with non-stationary data,
for every Vi, Vj ∈ V, Vi and Vj are not adjacent in the graph if and only if they are independent
conditional on some subset of other variables in V, i.e., {Vl|l ̸= i, l ̸= j}. Based on this, we can
asymptotically identify the correct graph skeleton over V. Besides, due to the property of dynamic
Bayesian networks that future variables can not affect past ones, we can determine the directions as
ai,t → rt if ai,t and rt are adjacent. So does sj,t and rt. Thus, the structural vectors Bs→r|a and
Ba→r|s, which are parts of the graph in V, are identifiable. Note that, following results of (Shimizu
et al., 2011), if we further assume the linearity of observations as well as the non-Gaussianity of
the noise terms, we can uniquely identify Bs→r|a and Ba→r|s, including both causal directions and
causal effects.

C RELATED WORKS

Causal Reinforcement Learning. In the past decades, causality and reinforcement learning have
independently undergone significant theoretical and technical advancements, yet the potential for
a synergistic integration between the two has been underexplored (Zeng et al., 2023). Recently,
recognizing the substantial capabilities of causality in addressing data inefficiency and interpretability
challenges within RL, there has been a surge of research in the domain of causal reinforcement
learning (Gershman, 2017; Bannon et al., 2020; Zeng et al., 2023; Deng et al., 2023; Mohan et al.,
2023).

While existing methods in this area can be categorized based on whether causal information is
explicitly given or not, our work falls into the more challenging, practical, and realistic category where
the causal structure and effects are not explicitly provided. There exist as well other flourishing causal
reinforcement learning approaches to identify and exploit causal information. These approaches
are usually built upon causal influence detection (Seitzer et al., 2021; Jaques et al., 2019; Madumal
et al., 2020), invariance representation learning (Zhu et al., 2022b; Zhang et al., 2021a; 2020; Bica
et al., 2021; Huang et al., 2022a), factorization learning (Liu et al., 2023b; Pitis et al., 2020; Feng
et al., 2022), and causal structure learning (Huang et al., 2022b; Sun et al., 2021; Zhu et al., 2022a),
etc. Most approaches here assume a binary adjacency vector to characterize the existence of causal
directions, however, we model with causal weights in a more refined way for Ba→r|s. Additionally,
our CAC method is most similar to the one in (Seitzer et al., 2021), which derived a measure
of causal action influence and integrated it into RL algorithms to improve exploration. The key
difference lies in the fact that they exploited the independent relationships between action and the
next states, while we aim at inferring the causal effects between actions and reward given states, and
design the causal policy-reward entropy term to enhance exploration. The proposed term works as a
plug-and-play component with causal information, which is simpler and more adaptive. In causal
reinforcement learning, one of the challenges lies in the characterization of shifting structures and
effects from data, which might affect the performances of policy learning. To this end, alternatives
may involve incorporating the changing structures between states (Luczkow, 2021) into policy
learning or modeling the changes using some dynamic factors (Huang et al., 2022a; Feng et al., 2022).
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Our approach, however, focuses on capturing changing causal effects, a nuanced facet that improves
policy exploration.

RL in multi-stage learning. Inspired by human cognition, dividing the original task into multiple
stages for policy learning has been explored in RL through heuristic methods tailored to specific
tasks (Jinnai et al., 2019; Liu et al., 2023a). For instance, hierarchical RL (Sutton et al., 1999; Pateria
et al., 2021) has implemented this idea by introducing additional subgoal spaces or leveraging the
semi-Markov assumption. This allows the agent to segment tasks into different subtasks (Nachum
et al., 2018), options (Machado et al., 2023) or skills (Guan et al., 2022) as multiple stages, enabling
policies to possess distinct exploration capabilities across various stages, ultimately enhancing the
success of agents in complex continuous control tasks.

In contrast to explicit multi-stage approaches, our proposed method CAC does not necessitate a clear
task stage division. Instead, it can identify and prioritize actions with a high potential for reward
through causal discovery dynamically, emphasizing the various importance of each action dimension
in different stages for enhanced exploration and performance.

D ENVIRONMENT SETUP

We evaluate CAC across 19 diverse continuous control tasks, spanning MuJoCo (Todorov et al.,
2012), Robel (Ahn et al., 2020), DMControl (Tassa et al., 2018), and Meta-World (Yu et al., 2019).
It excels in both locomotion and manipulation tasks. Visualizations of these tasks are provided in
Figure 3.

basketball button press wall coffee button coffee push door open 

door unlock hammer hand insert pick place window open 

(a) Meta-World benchmark tasks

Hopper-v2 Walker2d-v2 Ant-v2 DKittyStandRandom-v0 DKittyOrientRandom-v0

(b) MuJoCo benchmark tasks (c) ROBEL benchmark tasks

CartpoleSwingup-v0 ReacherHard-v0 QuadrupedWalk-v0
PandaReachJoints-v3

(d) DMControl benchmark tasks (e) panda-gym benchmark tasks

Figure 3: Visualization of 19 benchmark tasks.

9



Published as a Tiny Paper at ICLR 2024

E PRACTICAL IMPLEMENTATION

Instantiating CAC amounts to specifying two main components: 1) how to effectively recognize
the causal weights of a → r|s; 2) how to incorporate causal weights and the corresponding causal
policy-reward entropy term into policy optimization. The pseudocode of our proposed CAC is
provided in Algorithm 1.

Causal discovery on a → r|s. To effectively compute Ba→r|s, we adopt the well-regarded
DirectLiNGAM method (Shimizu et al., 2011). While alternative score-based methods that simulta-
neously learn causal effects can also be employed, we opt for DirectLiNGAM for two main reasons:
1) Empirical validation confirms its remarkably exceptional performance, prioritizing actions with
higher reward potential and aligning with human cognition in executing complex tasks. 2) Under the
linearity assumption, one can straightforwardly and practically learn coefficients as causal effects.
Moreover, the non-Gaussianity assumption facilitates the unique identification of the causal structure.
The main implementation idea of DirectLiNGAM is as follows. In the first phase, it estimates a
causal ordering for all variables of interest (i.e., state, action, and reward variables), based on the inde-
pendence and non-Gaussianity characteristics of the root variable. The causal ordering is a sequence
that implies the latter variable cannot cause the former one. In the second phase, DirectLiNGAM
estimates the causal effects between variables, using some conventional covariance-based methods
such as least squares and maximum likelihood approaches. Its convergence is guaranteed theoretically
under some assumptions. Besides, we formulate a training regime wherein we iteratively adjust the
causal weights for the policy at regular intervals I on a local buffer Dc with fresh transitions to reduce
computation cost.

Policy optimization. Given the causal weight matrix Ba→r|s, we could obtain the causal policy-
reward entropy Hc(π(·|s)) through Eq.(2.1). Note that to ease the computation burden of updating
the causal weight matrix, we opt to conduct causal discovery with a fixed interval.

Based on the causal policy-reward entropy, then the Q-value for a fixed policy π could be computed
iteratively by applying a modified Bellman operator T π

c with Hc(π(·|s)) term as stated below,

T π
c Q(st,at) ≜ r(st,at) + γEst+1∼P [Eat∼π[Q(st+1,at+1) + αHc(π(at+1|st+1))]] . (E.1)

In particular, we parameterize two Q-networks and train them independently, and then adopt the
commonly used double-Q-techniques (Van Hasselt et al., 2016; Fujimoto et al., 2018; Haarnoja et al.,
2018; Han & Sung, 2021; Sun et al., 2022; Ji et al., 2023) to obtain the minimum of the Q-functions
for policy optimization. Based on the policy evaluation, we can adopt many off-the-shelf policy
optimization oracles; we chose SAC as the backbone technique primarily for its simplicity in our
primary implementation of CAC.

F HYPER-PARAMETERS

The hyperparameters used for training CAC are outlined in Table 1.
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Algorithm 1: Primary Implementation of Causal Actor-Critic (CAC)
initialize :Q network Qϕ, policy network πθ, replay buffer D;

local buffer Dc with size Nc, causal weight matrix Ba→r|s;
for each environment step t do

Collect data with πθ from real environment
Add to replay buffer D and local buffer Dc

/* Causal discovery */
if every I environment step then

Sample all Nc transitions from local buffer Dc

Update causal weight matrix Ba→r|s

for each gradient step do
Sample N transitions (s, a, r, s′) from D
/* Policy evaluation */
Compute causal policy-reward entropy Hc(π(·|s)) by Eq.(2.1)
Calculate the target Q value by Eq.(E.1)
Update Qϕ by minϕ (BQϕ −Qϕ)

2

/* Policy optimization */
Update πθ by maxθ Qϕ(s, a)

Table 1: Hyperparameter settings for CAC.

Hyper-parameter Value
Q-value network MLP with hidden size 512

V -value network MLP with hidden size 512

policy network Gaussian MLP with hidden size 512

discounted factor γ 0.99

soft update factor τ 0.005

learning rate α 0.0003

batch size N 512

policy updates per step 1

value target updates interval 2

sample size for causality Nc 5000

causality computation interval I 5000
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL METRICS

We report additional (aggregate) performance metrics of CAC and baselines on the set of 10 Meta-
World tasks using the rliable toolkit (Agarwal et al., 2021b). As shown in Figure 37, CAC outperforms
SAC and TD3 in terms of Median, interquantile mean (IQM), Mean, and Optimality Gap.

0.2 0.4 0.6 0.8 1.0

CAC

SAC

TD3

Median

0.4 0.6 0.8 1.0

IQM

0.4 0.6 0.8 1.0

Mean

0.0 0.5 1.0

Optimality Gap

Normalized Score

Figure 4: Rliable metrics. Median, IQM, Mean (higher values are better), and Optimality Gap
(lower values are better) of CAC and baselines on the 10 Meta-World manipulation tasks. 7 random
seeds.

G.2 ABLATION STUDIES

Hyperparameter study. The extra hyperparameters introduced by CAC are sample size for causal-
ity Nc and causality computation interval I . The primary choices for both hyperparameters are guided
by the objective of achieving a balanced trade-off between computational efficiency and algorithmic
performance. And they are sufficient to achieve strong performance throughout all our experiments.

We conduct experiments on these two hyperparameters; refer to Figure 5. We see that reducing the
causality computation interval may increase the performance yet cause more computation cost. And
the performance of CAC is not highly sensitive to the hyperparameters.

Different causal inference methods. We initially opted for DirectLiNGAM due to its simplicity and
efficacy in learning causal effects. However, to explore the adaptability of our CAC framework with
other score-based causal inference methods, we conducted additional experiments using Dagma (Bello
et al., 2022). These experiments were aimed at assessing whether different causal inference techniques
could yield comparable results within our framework. The results in Figure 6 indicate that the
integration of Dagma into the CAC method produces outcomes that are on par with those obtained
using DirectLiNGAM. This suggests that our CAC framework is versatile and can effectively work
with various causal inference methods.

G.3 GENERALIZABILITY AND EFFECTIVENESS OF CAC

Figure 2 in the main paper illustrates the superiority of CAC in dealing with manipulation tasks with
end-effector control. Here, we conduct more experiments on the various locomotion and manipulation
tasks to further demonstrate the generalizability of CAC. We evaluate CAC and baselines in robot
locomotion tasks based on MuJoCo (Todorov et al., 2012) and DMControl (Tassa et al., 2018)
benchmark tasks, as shown in Figure 7a and 7b, our CAC outperforms in terms of both the eventual
performance and the sample efficiency.

Moreover, we conduct experiments in sparse reward tasks to showcase the efficiency of CAC. We
evaluate in both robot locomotion and manipulation tasks, based on the sparse reward version of
benchmark tasks from ROBEL (Ahn et al., 2020) and panda-gym (Gallouédec et al., 2021). Panda-
gym manipulation tasks are based on a Franka Emika Panda robot with joint angle control. ROBEL
quadruped locomotion tasks are based on a D’Kitty robot with 12 joint positions control. As shown
in Figure 7c, our CAC surpasses the baselines by a large margin.
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Figure 5: Hyperparameter study. Performance
curves of CAC with different hyperparameters
over 7 random seeds.
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Figure 6: Different causal inference meth-
ods. Performance curves of CAC employing Di-
rectLiNGAM or Dagma. Runs over 7 random
seeds.
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(a) DMControl tasks. Training curves of CAC, SAC, TD3 in DMControl benchmark tasks.
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(b) MuJoCo tasks. Training curves of CAC, SAC, TD3 in MuJoCo locomotion tasks.
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(c) Sparse reward tasks. Training curves of CAC, SAC, TD3 in sparse reward tasks.
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Figure 7: Performance comparison of CAC and baselines on various continuous control tasks on
the DMControl, MuJoCo, ROBEL, and panda-gym robotics platforms. These tasks include
manipulation and locomotion tasks with dense and sparse reward types. Solid curves depict the mean
of 4 trials and shaded regions correspond to the standard deviations.
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H COMPUTING INFRASTRUCTURE AND COMPUTATIONAL TIME

Our experiments were conducted on a server equipped with an AMD EPYC 7763 64-Core
Processor (256 threads) and four NVIDIA GeForce RTX 3090 GPUs.

Figure 8 presents the computational time comparison between our algorithm CAC and SAC on 10
Meta-World benchmark tasks. Compared to SAC, the total training time of CAC only increased by
an average of 0.67 hours, hence, the additional costs are acceptable. Further, for practical use, CAC
requires fewer interactions for similar performance, which may lower the needed computation time.
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Figure 8: Computation time comparison. Computation time comparison between CAC and SAC in
ten Meta-World tasks, each averaged on 4 trials.
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