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Abstract—Depth estimation is highly beneficial for robots per-
forming either navigation or manipulation. Traditional cameras
suffer from motion blur in dynamic and high-speed scenarios, to
which event cameras are robust while also offering high temporal
resolution, low latency, and high dynamic range. However, exist-
ing event-based methods require parameter tuning depending on
the camera speed and require external measurements of camera
motion. In this paper, we present a lightweight framework for
real-time depth estimation using stereo event cameras (typically a
front-end for SLAM). We propose the use of a velocity invariant
event representation to remove parameter tuning due to camera
speed, combined with Semi-Global Block Matching for fast depth
estimation without requiring camera motion cues or external
sensors. We achieve a consistent depth estimation under slow
motion (extremely sparse data) and fast motion (motion blur).
Our pipeline runs in real-time using only the CPU, with over 100
Hz output on the MVSEC dataset (i.e. 1.6× faster than state-of-
the-art), while also achieving a higher (or competitive) accuracy
on publicly available datasets.

Index Terms—Event Camera, Stereo Depth Estimation

I. INTRODUCTION

Depth estimation is a core task in robotics, enabling appli-
cations such as object manipulation, scene understanding, and
autonomous navigation. Stereo vision stands out as a power-
efficient solution, especially in outdoor environments where
active sensors like RGB-D cameras can struggle with sunlight
interference and limited depth range. Conventional stereo
systems are still limited in high-speed motion and dynamic
lighting conditions due to the global gains and fixed shutter
periods of frame-based camera technology. Event cameras
have emerged as a potential alternative for high-speed and
low-latency stereo vision [1].

Event cameras asynchronously detect per-pixel brightness
changes, rather than capturing full image frames at a fixed
frequency. They generate streams of events with microsec-
ond latency, resulting in reduced power consumption and
bandwidth requirements [2], [3]. These properties make event
cameras ideal in robotics applications, such as high-speed
feature tracking [4]–[6], depth estimation [7]–[9], SLAM [10],
[11], and robot control [12].

This paper focuses on high-frequency and real-time depth
estimation without motion cues on asynchronous event data
as a front-end system, i.e., before a full SLAM pipeline, that
includes mapping, camera motion estimation, and integration
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Fig. 1: Overview of the proposed stereo event-based depth
estimation pipeline. Asynchronous events from calibrated left
and right event cameras are first accumulated using the SCARF
representation to generate image-like frames. A Semi-Global
Block Matching (SGBM) algorithm is applied to compute
disparity maps, which are converted into depth estimations.
The proposed pipeline operates fully event-driven, without
requiring camera pose or external sensor information, enabling
real-time, high-frequency depth perception.

of those measurements. Our goal is to generate instantaneous
and semi-dense depth maps in real-time using only stereo event
streams. As illustrated in Fig. 1, we propose a novel real-time
pipeline that (i) uses a velocity invariant event representation to
enable instantaneous stereo depth estimation with an adaptive
number of events, without temporal tuning parameters, and (ii)
uses Semi-Global Block Matching (SGBM) to provide a CPU-
only semi-dense output at a high output rate independently
from the rate of input data.

The proposed pipeline achieves instantaneous semi-dense
depth maps without requiring camera motion. Our method
combines the strengths of event cameras and stereo matching
and offers a lightweight and accurate solution for real-world
robotic applications. The lightweight is defined in terms of
input requirements, as our method relies solely on pure event
data without motion cues, pose information, or additional
sensors such as an IMU. Therefore, there is a possibility
of a more robust front-end to integrate into SLAM. Our
contributions are:

1) State-of-the-Art accuracy on most evaluated datasets,
with higher event throughput and high-frequency depth
outputs.

2) Instantaneous stereo matching with event cameras using
a velocity-invariant representation, which eliminates the
requirement of temporal tuning or external motion esti-
mation – even in the presence of independently moving
objects. This enables integration as a front-end to SLAM
systems, improving depth accuracy.



Fig. 2: Overview of SCARF. (a) Raw events are output from
an event camera. (b) A grid structure shows active and inactive
regions. (c) Each block maintains a ring buffer to store events.
(d) SCARF displays all “active” events.

3) A CPU-based, semi-dense stereo pipeline using Semi-
Global Block Matching (SGBM) over pixel space for
real-time operation, independent of event rate. When
combined with the SCARF representation, this maxi-
mizes event throughput in real-time.

4) Open-source code to enable algorithm benchmarking
and comparison.

II. METHOD

Our proposed depth estimation method takes as input raw
events from a calibrated stereo camera set and estimates the
depth of the scene in a light-weight and high-frequency man-
ner without camera motion information or external sensors.
The overall pipeline is shown in Fig. 1. Inspired by the
classical stereo matching paradigm [13], we extend it into
the event-based domain. By converting asynchronous events
into 2D velocity invariant matrix representations, we bound
the amount of processing based on the number of pixels of
the event sensor, rather than the unknown and highly variable
number of events. Fast and high-frequency stereo matching can
then be achieved using conventional algorithms. Choosing the
appropriate representation allows real-time depth estimation
directly from event data, without the need for a temporal time
window or motion estimation.

In the pipeline, the event processing module first generates
an event representation, called SCARF (Sec. II-A), that is
then used for depth estimation. Secondly, the depth estimation
module applies Semi-Global Block Matching (SGBM) [13]
to estimate disparity over the most up-to-date left and right
SCARF representations to estimate depth (see Sec. II-B).

A. Event Representation: SCARF

Event cameras generate asynchronous events. Each event
e = (x, y, t, p) is triggered asynchronously by per-pixel
brightness changes, where (x, y) denotes the pixel location,
t is the timestamp, and p ∈ {−1,+1} is the polarity of the
change.

Fig. 3: SCARF vs Time Surface.

To transform the sparse, asynchronous, and sequential event
streams to represent spatial features, we integrate events into
the SCARF representation. SCARF addresses the challenge
of spatial-temporal event accumulation in scenes contain-
ing multiple objects moving at different velocities, including
camera motion. Previous works, such as Time Surface [14],
accumulate events over a temporal window, which, if not
properly tuned to the scene dynamics, can lead to motion
blur or missing information. Compared to Time Surface, as
illustrated in Fig. 3, SCARF preserves relatively sharp edges
with minimal redundant points and reduced motion blur,
particularly for the objects with variant motion speed.

SCARF divides the sensor plane into several grid-based
receptive fields (Fig. 2). The total number of receptive fields
depends on the configured block size b and camera resolution.
Each receptive field consists of an active region that spans the
entire block in the grid, and an inactive margin that overlaps
neighboring blocks. When an event arrives, it may fall within
one or more receptive fields. For each receptive field, the
event is added with a tag, active or inactive, depending on
its location within that field. Each receptive field maintains a
ring buffer to store its events. The buffers follow the First-In,
First-Out (FIFO) principle, which means that the most recent
event replaces the oldest event in the buffer. Only active events
contribute to the output intensity of the corresponding image
block. Events falling in the inactive border will be removed
from active events, thereby “clearing” blocks of irrelevant data
(i.e., sending the pixel intensity to 0).

B. Depth Estimation

To estimate depth from stereo event data, the Semi-Global
Block Matching (SGBM) algorithm [13] is used on stereo
SCARF representations. While SGBM, available in OpenCV,
is designed for dense grayscale images, the algorithm still
functions with the sparse representations generated by SCARF
and offers the best trade-off between speed and robustness in
traditional stereo literature.

The SGBM consists of three main components: (1) compu-
tation of a local matching cost for each disparity candidate,
(2) a semi-global cost aggregation strategy along multiple
directions with smoothness constraints, and (3) selection of
the optimal disparity. Finally, the disparity map is converted
into a depth map by the baseline B and focal length f of



Fig. 4: Depth Estimation. Qualitative comparison of depth
estimation results on several sequences using various stereo
algorithms. The first column shows intensity images from
Event camera (not used, just for visualization). Columns 2 to
5 show depth estimation results of ESVO [15], ESVO2 [11],
MC-EMVS [16], and our method, respectively. Depth maps
are color coded, from red (close) to blue (far) over a black
background, in the range 1–6.25 m for 1-3 rows (MVSEC [17])
and the range 0.55–6.25 m for the 6-8 rows (RPG [7]).

the stereo camera. To adapt in our problem, we run it on the
stereo SCARF and mask the produced depth map so that depth
estimates are only given at pixels where events happened.

III. EXPERIMENTS

We report both qualitative and quantitative comparisons
against state-of-the-art event-based stereo depth estima-
tion methods, including MC-EMVS [16], ESVO [15], and
ESVO2 [11] (Sec. III-A). We further analyze the run-time
performance and computational complexity of each approach
(Sec. III-B). In addition, Sec. III-C presents an evaluation on a
self-collected indoor data from robots. Finally, we conduct an
ablation study to investigate the comparison of SCARF v.s.
Time Surface representations (Sec. III-D). The open-source
code is run in the C++ environment for fair comparison. All
methods are executed on an Apple M1 Max chip (10-core
CPU) with 32 GB of memory. Our implementation is CPU-
only and does not rely on any GPU acceleration.

A. Comparison of Stereo Depth Estimation Methods

Our method is evaluated on data sequences from three
public event-based stereo datasets: MVSEC [17], M3ED [18],
and RPG [7]. These datasets cover different event-camera
types, spatial resolutions, and scene geometries, enabling
comprehensive evaluation. Our algorithm works on undistorted
and stereo-rectified coordinates, which are precomputed given
the camera calibration.

TABLE I: Quantitative evaluation of our proposed method and
baselines on MVSEC

Data Sequence Algorithm Mean Err Median Err Relative Err
[m] ↓ [m] ↓ ↓

MVSEC ESVO 0.30 0.20 12%
(upenn flying1) ESVO2 0.28 0.15 11%

ESVO2 Static 0.35 0.93 13%
MCEMVS 0.32 0.21 11%
Ours 0.26 0.14 9%

MVSEC ESVO 0.49 0.28 30%
(upenn flying2) ESVO2 0.35 0.43 16%

ESVO2 Static 0.33 1.19 21%
MCEMVS 0.33 0.18 14%
Ours 0.32 0.22 11%

We compare our depth estimation results against three stereo
methods and ground truth depth when available. The baseline
methods are abbreviated by ESVO [15], ESVO2 [11], and
MC-EMVS [16]. For a fair evaluation against our method, we
additionally compare with ESVO2 [11], which is abbreviated
as ESVO2 Static.

1) Qualitative Evaluation: Fig. 4 compares the quality of
the depth estimation produced by the above stereo methods.
The first column shows grayscale images from the datasets.
None of the methods requires intensity information. Columns
2 to 5 show depth estimation results of ESVO, ESVO2, MC-
EMVS, and our method, respectively.

Overall, our method produces sharper depth maps close to
the scene contours compared to baseline approaches in indoor
scenes. Our method reconstructs richer structural details and
textures, resulting in denser and more coherent depth maps,
whereas MC-EMVS produces significantly sparser reconstruc-
tions.

2) Quantitative Evaluation: We evaluate the quantitative
performance of our method on multiple benchmark datasets
and compare it against four baselines: ESVO, ESVO2, ESVO2
Static, and MC-EMVS. We summarize the results on MVSEC,
using mean error, median error, and relative error. The mean
error is defined as 1

N

∑N
k=1 |dest,k − dgt,k|, and the relative

error is defined as 1
N

∑N
k=1

|dest,k−dgt,k|
dgt,k

, where N is the
number of valid pixels, and dest,k and dgt,k are the estimated
depths and ground-truth at pixel index k.

In table I, the best results in each measurement are high-
lighted in bold. Since there is no ground truth in the RPG
dataset, we will not report the quantitative results of the
RPG dataset. Our method achieves the smallest errors across
all metrics on the MVSEC sequences. Besides, our method
outperforms ESVO2 Static in all evaluation metrics across
multiple sequences. This suggests that the proposed depth
estimation component can serve as a more accurate alternative
in existing SLAM pipelines. Although we do not integrate our
method into the full ESVO2 pipeline, the improved accuracy
performance indicates its potential as a drop-in replacement.



Fig. 5: Runtime analysis on MVSEC Indoor flying1. The mean
frequency depth estimation module across each method is
shown above the corresponding boxplot.

B. Runtime Analysis

We evaluate the runtime performance on the
MVSEC indoor flying1 sequence using all tested methods
and report their runtime statistics in Fig. 5. The boxplot
shows that our method achieves over 100 Hz, which is the
fastest among these four methods.

C. Experiments on Robots

To demonstrate our method’s practicality in dynamic indoor
environments, we collected our own dataset with stereo event
cameras (ATIS Gen3) [19] on a robotic platform, R1 [20]. We
manually control the robot to move at different speeds. To
compare the output of Time Surface and SCARF, we plot the
event rate over time and highlight selected timestamps (Fig.
6). The results show that SCARF consistently preserves clear
structural contours regardless of the event rate (on the left and
right), while Time Surface only produces clean contours when
the event rate is low (on the left). The results demonstrate
that our method is robust with respect to both ego-motion
and highly dynamic object motion robust in real-world robotic
perception tasks.

D. Ablation Study

We conducted an ablation study to evaluate the contri-
bution of the SCARF representation. Specifically, we com-
pared SCARF with Time Surfaces. Experiments are performed
on MVSEC and M3ED datasets. Specifically, we replaced
SCARF with the Time Surface as input, while keeping the
rest of the pipeline fixed (i.e., using SGBM as the stereo
matcher). As shown in Table II, our method outperforms the
time surface variant across all three datasets. These results
demonstrate that SCARF leads to better matching results under
indoor conditions, as we witness in the Robot experiment.

IV. CONCLUSION

In this paper, we presented a lightweight and real-time
pipeline for stereo depth estimation using event cameras. Un-
like previous approaches that rely on camera motion estimation
or computationally expensive neural networks, our method
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Fig. 6: Event rate and depth comparison between SCARF and
TS on our datasets. Event rate over time (middle) on the R1
dataset with selected timestamps. The color of all depth maps
follows the color bar.

TABLE II: Ablation study comparing the proposed SCARF
representation with the Time Surface (TS) under the same
SGBM depth estimation pipeline.

Data Sequence Algorithm Mean Err Median Err Relative Err
[m] ↓ [m] ↓ ↓

MVSEC TS+SGBM 0.28 0.18 12%
(upenn flying1) Our 0.26 0.14 9%

MVSEC TS+SGBM 0.24 0.11 12%
(upenn flying2) Ours 0.32 0.22 11%

M3ED TS+SGBM 0.68 0.43 16%
(spot indoor loop) Our 0.37 0.10 9%

M3ED TS+SGBM 0.48 0.29 11%
(falcon indoor flight1) Our 0.37 0.29 8%

achieves high-frequency depth estimation without requiring
pose or external sensors. Using a velocity-invariant event rep-
resentation, SCARF, we transform asynchronous stereo events
into an image-like frame with clear scene contours. Then we
leverage Semi-Global Block Matching (SGBM) to produce
disparity maps and calculate depth. Extensive experiments on
public datasets demonstrate that our method achieves state-
of-the-art performance on indoor sequences while maintaining
high runtime efficiency. The proposed pipeline can run at over
100 Hz on a standard CPU.



REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15 µs
latency asynchronous temporal contrast vision sensor,” IEEE journal of
solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[2] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[3] B. Chakravarthi, A. A. Verma, K. Daniilidis, C. Fermuller, and
Y. Yang, “Recent event camera innovations: A survey,” arXiv preprint
arXiv:2408.13627, 2024.

[4] A. Glover, L. Gava, Z. Li, and C. Bartolozzi, “Edopt: Event-camera
6-dof dynamic object pose tracking,” in 2024 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2024, pp. 18 200–
18 206.

[5] M. Ikura, C. Le Gentil, M. G. Müller, F. Schuler, A. Yamashita, and
W. Stürzl, “RATE: Real-time asynchronous feature tracking with event
cameras,” in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2024, pp. 11 662–11 669.

[6] Y.-F. Zuo, W. Xu, X. Wang, Y. Wang, and L. Kneip, “Cross-modal
semidense 6-dof tracking of an event camera in challenging conditions,”
IEEE Transactions on Robotics, vol. 40, pp. 1600–1616, 2024.

[7] Y. Zhou, G. Gallego, H. Rebecq, L. Kneip, H. Li, and D. Scaramuzza,
“Semi-dense 3d reconstruction with a stereo event camera,” in Proceed-
ings of the European conference on computer vision (ECCV), 2018, pp.
235–251.

[8] M. Firouzi and J. Conradt, “Asynchronous event-based cooperative
stereo matching using neuromorphic silicon retinas,” Neural Processing
Letters, vol. 43, pp. 311–326, 2016.

[9] S. Ghosh and G. Gallego, “Event-based stereo depth estimation: A
survey,” arXiv preprint arXiv:2409.17680, 2024.

[10] A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate
slam? combining events, images, and imu for robust visual slam in
hdr and high-speed scenarios,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 994–1001, 2018.

[11] J. Niu, S. Zhong, X. Lu, S. Shen, G. Gallego, and Y. Zhou, “ESVO2:
Direct visual-inertial odometry with stereo event cameras,” IEEE Trans-
actions on Robotics, 2025.

[12] M. Monforte, L. Gava, M. Iacono, A. Glover, and C. Bartolozzi, “Fast
trajectory end-point prediction with event cameras for reactive robot
control,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4036–4044.

[13] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 30, no. 2, pp. 328–341, 2007.

[14] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman,
“Hots: a hierarchy of event-based time-surfaces for pattern recognition,”
IEEE transactions on pattern analysis and machine intelligence, vol. 39,
no. 7, pp. 1346–1359, 2016.

[15] Y. Zhou, G. Gallego, and S. Shen, “Event-based stereo visual odometry,”
IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1433–1450, 2021.

[16] S. Ghosh and G. Gallego, “Multi-event-camera depth estimation and out-
lier rejection by refocused events fusion,” Advanced Intelligent Systems,
vol. 4, no. 12, p. 2200221, 2022.
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