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Abstract

Planning involves the composition of primitive actions to achieve specific goals
within a given environment. Classical planning research has well-established
different types of goal-ordering challenges which have implications on the planning
heuristics. In this study, we investigate the performance of Large Language Models
(LLMs) in identifying if an order between two goals hold. We distinguish between
three types of goal orderings challenges: reasonable, necessary, and optimal. Our
findings reveal that LLMs predominantly struggle with reasonable goal ordering
tasks compared to necessary and optimal goal orderings. Advancing this area could
lead to improvements in the planning abilities of LLMs.

1 Introduction

Planning is a compositional reasoning problem that involves sequencing primitive actions to achieve
specific goals within a given environment. Classical planning domains transform real-world problems
into algorithmically analyzable formats [1, 2, 3]. Their extensive history and well-established
resources offer an ideal platform for evaluating the compositional reasoning capabilities of Large
Language Models (LLMs) [4, 5, 6, 7]. For example, Agarwal et al. [4] investigate the impact
of many-shot examples on the Logistics domain, while Lehnert et al. [5] examine LLMs’ ability
to replicate the A* algorithm within the Sokoban domain. However, despite these efforts, LLMs
frequently encounter difficulties with well-defined classical planning tasks [8, 9, 10]. This limitation
highlights the pressing need for a deeper analysis of the planning capabilities of LLMs.

An important aspect of classical planning problems is to decide which goal to tackle first. For example,
the LAMA planning system landmark heuristic [11] uses this information to evaluate if a subgoal
needs to be achieved again. Previous research in classical planning has identified two primary types
of goal orderings: reasonable and necessary [12, 3]. Notably, classifying whether a specific ordering
holds between two goals has been proven to be PSPACE-hard [12]. In our study, we investigate
LLMs’ ability to solve various goal ordering challenges. This task involves identifying the primitive
actions necessary to achieve a desired end goal, while also accounting for the interdependencies
between subgoals. We explore four distinct classical planning domains, and distinguish between
three types of goal orderings: reasonable, necessary, and optimal. Understanding how LLMs handle
these different goal ordering tasks can provide significant insights into their compositional reasoning
capabilities and limitations. Our analysis reveals that LLMs particularly struggle with reasonable
goal ordering, highlighting a key area for future research that could enhance their performance.

2 Goal Ordering Experiments

The following experiments aim to evaluate whether LLMs can effectively prioritize goals in scenarios
with inherent dependencies, evaluating the model’s compositional ability under the constraint of
many goals.
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Figure 1: Example optimal goal ordering task. In the Ferry planning domain, a problem instance
includes an initial state comprising the location of a ferry and several cars, with specified goals for
placing the cars in specific locations (left). The ferry is capable of boarding a car and transporting it
between locations. The goal ordering task requires the model to compare the two goals, and suggest
that car1 in location2 is the first goal to achieve in order to optimally solve this Ferry problem.

2.1 Task formulation

A state s ∈ S represents the complete configuration of all objects at any given point, with S
encompassing every conceivable configuration within the planning domain. An action a ∈ A is
applicable in state s if the state satisfies the action’s preconditions, s |= Pre(a), where Pre(a)
defines the necessary conditions for action applicability. Each action a is associated with an effect
function Eff(a) : S → S, which maps the current state to a new state resulting from the action’s
execution.

The input to the goal ordering task is an initial state s0 ∈ S, a set of desired subgoals G, a description
of the domain, and a task-specific instruction. The output of the goal ordering task is an ordered list
of subgoals G′, which reflects the sequence in which the subgoals should be achieved.

2.2 Experiment 1: Reasonable ordering

Reasonable ordering requires completing certain goals before others in order to achieve all objectives
simultaneously. Formally, given two atomic goals A,B ∈ G, we say that B ≤r A iff for every state
where goal A is achieved, there is no plan that achieves B without first destroying A [12].

For example, in the Blocksworld domain, blocks are stacked in towers, with the rule that only the top

block of any stack can be moved at each step. Suppose the goals are to have 1 on 3 and 3 on
2 . Prioritizing the latter goal is considered a reasonable order, as completing it first is the only way

to construct the tower. Otherwise, we must destroy one goal to achieve the other.1

2.3 Experiment 2: Necessary ordering

While reasonable ordering tests the ability to manage dependencies that arise when pursuing multiple
goals simultaneously, necessary ordering evaluates the models’ capacity to correctly identify that
certain goals cannot be achieved before others. Formally, given two atomic goals A,B ∈ G, we say
that B ≤n A iff for every state where goal A is achieved, goal B was already previously achieved.

For instance, in the Minigrid domain, an agent navigates a 2D map to pick up keys and unlock doors.
Each step must be strategically planned to access progressively deeper sections of the map. Here,
it becomes necessary to prioritize unlocking certain doors before others, as access to inner doors is
dependent on first unlocking outer doors that block the path.

1In our experiments, we increase the complexity by using towers of at least four blocks, avoiding scenarios
where the same block is mentioned in both goals.
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Reasonable ordering

<DOMAIN_DESCRIPTION>
Given this state: <STATE>
and the following goals: <ALL_GOALS>
In order to complete the task all goals must be accomplished simultaneously.
Which one of the following goals needs to be achieved first?
The goals are: <TWO_GOALS>
In your answer only specify the goal with no explanation.

Necessary ordering

<DOMAIN_DESCRIPTION>
Given this state: <STATE>
Which one of the following goals can be achieved first?
The goals are: <TWO_GOALS>
In your answer only specify the goal with no explanation.

Optimal ordering

<DOMAIN_DESCRIPTION>
Given this state: <STATE>
Which one of the following goals can be achieved with fewer actions?
The goals are: <TWO_GOALS>
In your answer only specify the goal with no explanation.

Figure 2: Prompt templates used for the goal ordering experiments.

2.4 Experiment 3: Optimal ordering

We additionally identify an optimal ordering between goals. In optimal ordering, the current state
determines the most efficient sequence of goals to minimize unnecessary actions. For example, as
illustrated in Figure 1, with the ferry already at location 1, the optimal plan would involve boarding
car 1 and then sailing to location 2, rather than moving the ferry without car 1. The Ferry and
Grippers domains are used in this experiment because they lack inherent necessary or reasonable
orderings between goals, thus emphasizing the formulation of the most optimal plans based on the
initial state.

3 Setup and Results

3.1 Models

We selected a diverse set of models for testing, including FALCON-180B, LLAMA-2-70B-
CHAT, LLAMA-3-70B-INSTRUCT, CODE-LLAMA-34B-INSTRUCT, MISTRAL-7B-INSTRUCT-V0-2,
MIXTRAL-8X7B-V0-1, and GPT-4 TURBO, chosen for their varying capacities and approaches
in handling complex tasks [13, 14, 15, 16, 17, 18, 19].2 To improve readability we use abbreviated
names for the models throughout the paper rather than their full titles. The specific prompts used in
these experiments are provided in Figure 2. All experiments were performed in a zero-shot fashion.

3.2 Dataset creation

We utilize classical planning domains, which transform real-world problems into structured formats
suitable for algorithmic analysis. A widely used formalism in classical planning is the Planning
Domain Definition Language (PDDL), developed to standardize the description of planning problems
and domains [20]. We generate problem instances using the PDDL generators library [21]. In all
experiments, the model is tasked with classifying which of two specific goals should be achieved

2In all experiments we used gpt-4-0125-preview.
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Table 1: Success rate results for the goal planning experiments, testing for the model’s ability
to prioritize goals when imposed when imposed with reasonable, necessary or optimal ordering
challenges.

REASON. NECES. OPTIMAL
MODEL BLOCKS MINIGRID FERRY GRIPPERS AVG.

FALCON .54 .55 .58 .54 .56
MISTRAL .52 .69 .52 .66 .59
MIXTRAL .54 .55 .56 .50 .53
CODELLAMA .58 .62 .54 .52 .53
LLAMA-2 .60 .59 .56 .60 .58
LLAMA-3 .66 .79 .60 .80 .70
GPT-4 .58 .86 .52 .54 .53

first (Section 2.1), establishing a baseline accuracy of 50% for these binary classification tasks. An
example problem is provided in Figure 6.

To determine the correct goal order for evaluation purposes, we employ the landmarks graph gener-
ated by the LAMA planner [11]. The landmarks graph includes directed edges between subgoals,
indicating the order in which they should be approached. These edges are labeled to denote the type of
ordering, such as “n” for necessary and “r” for reasonable. By leveraging landmarks identified by the
LAMA planner, our approach offers a novel method for constructing datasets that can systematically
evaluate the goal ordering capabilities of LLMs.

3.3 Results

The results are detailed in Table 1. Among the models tested, LLAMA-3 demonstrated superior
performance, outperforming the other models in two out of the three reasoning experiments. GPT-
4 followed, but surpisingly underperformed in several domains, achieving low results outside of
necessary goal ordering.

Notably, LLMs struggle significantly with the reasonable ordering task, as all models failed to
achieve success rates meaningfully above the 50% baseline. This finding underscores a significant
challenge for LLMs in managing goal dependencies, particularly in scenarios where a logical sequence
between subgoals is necessary but not explicitly enforced, such as in the case of constructing a tower
of blocks.

Interestingly, the two optimal ordering experiments, which utilized very similar domains differing
primarily in their description of actions, yielded significantly different results. This discrepancy
suggests that the compositional reasoning capabilities of the models are sensitive to how the
problem is described. We conjecture that embodied agents problems, such as Grippers, are more
common in the training data of LLMs.

4 Conclusions

In this work, we explored the differences between various classical planning domains through the
lens of goal ordering. Our analysis of multiple goal ordering techniques revealed that reasonable goal
ordering are more challenging for LLMs compared to those involving necessary or optimal orderings.
Future research could focus on developing more advanced planning techniques designed to address
these specific challenges and improve LLM performance in reasonable goal ordering tasks.
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A PDDL

(define (domain ferry)
(:predicates (at-ferry ?l) (at ?c ?l) (empty-ferry) (on ?c))

(:action sail
:parameters (?from ?to)
:precondition (at-ferry ?from)
:effect (and (at-ferry ?to) (not (at-ferry ?from))))

(:action board
:parameters (?car ?loc)
:precondition (and (at ?car ?loc) (at-ferry ?loc) (empty-ferry))
:effect (and (on ?car) (not (at ?car ?loc)) (not (empty-ferry))))

(:action debark
:parameters (?car ?loc)
:precondition (and (on ?car) (at-ferry ?loc))
:effect (and (at ?car ?loc) (empty-ferry) (not (on ?car)))))

Figure 3: The PDDL Ferry domain definition. The domain definition specifies the predicates and
actions, encapsulating the physics of the domain.

(define (problem ferry-l3-c2)
(:domain ferry)
(:objects l0 l1 l2 c0 c1

)
(:init

(empty-ferry)
(at c0 l1)
(at c1 l2)
(at-ferry l2)

)
(:goal

(and
(at c0 l0)
(at c1 l0)

)
)

)

Figure 4: An example PDDL problem
instance definition for the Ferry domain.

Classical planning is based on the notion that the entire
planning domain and problem instance are described in a
formalised, machine-readable format. One common for-
mat is the Planning Domain Definition Language (PDDL;
20). The domain definition (Figure 3) encodes the physics
of the world, while the problem instance definition (Fig-
ure 4) specifies the initial state and desired goals, thereby
customizing the domain to a specific scenario. The plan-
ning task entails generating a sequence of actions that
facilitate a transition from the initial state to a goal state,
thereby constituting a plan.

A domain consists of a pair <P,A>, where P represents
a set of predicates, and A is a set of actions. Each pred-
icate p ∈ P includes a name and a set of variables de-
noted by a question mark. For instance, at-ferry ?l
is a predicate, while at-ferry(loc1) is a specific truth-
assignment to the predicate, indicating the ferry’s pres-
ence at location 1. Predicates can also be negated (e.g.,
not(at-ferry(loc1))). An action a ∈ A consists of a
name, a set of variables, a set of effect predicates, and a
set of precondition predicates. For instance, board(?car
?loc) is an action denoting the boarding of car ?car on
the ferry at location ?loc. The action’s preconditions in-
clude predicates such as at_ferry(?loc), at(?car,?loc), and empty_ferry, signifying that
both the ferry and the car ?car are at location ?loc, and that the ferry is empty. The action’s effects
include predicates such as not(empty_ferry), not(at(?car,?loc)), and on(?car), indicating
that the ferry is no longer empty, that the car ?car is no longer at location ?loc, and that the car
?car is now on the ferry.

A problem is a triple <O,I,G>, where O is a set of objects, I is a set of truth-assigned predicates that
are currently true in the world model, and G is a set of truth-assigned predicates designated to be
achieved.
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B Experiment Details

In Section 3 we described a set of controlled experiments which test for specific reasoning abilities of
LLM-based planners. In Appendix B.1 we provide more details about the prompts used.

B.1 Prompts

Our prompt is constructed as following: for each domain we start by describing the domain in natural
language, such as exemplified by Figure 5. Then, we use the relevant prompt for each experiment
(Figure 2).

We are dealing with the Blocksworld problem. In this domain we have 4 possible
actions:

1. pickup - (?ob - object)
- Preconditions: The object (?ob) must be clear, on the table, and the arm

must be empty.
- Effects: After executing the action, the object is now held, not clear, and

not on the table.
- Example: If you execute (pickup blockA), it means you pick up "blockA" from

the table.
2. putdown - (?ob - object)
- Preconditions: The object (?ob) must be currently held.
- Effects: After executing the action, the object is now clear, the arm is

empty, and the object is on the table.
- Example: If you execute (putdown blockB), it means you put down "blockB" on

the table.
3. stack - (?ob - object, ?underob - object)
- Preconditions: The object that you want to stack (?ob) must be held, and

the object underneath (?underob) must be clear.
- Effects: After executing the action, the arm is empty, the stacked object

(?ob) is clear, and it is now on top of the underneath object (?underob).
The underneath object is no longer clear.

- Example: If you execute (stack blockC blockD), it means you stack "blockC"
on top of "blockD".

4. unstack - (?ob - object, ?underob - object)
- Preconditions: The object that you want to unstack (?ob) must be on top of

another object (?underob), and it (?ob) must be clear. Additionally, the
arm must be empty.

- Effects: After executing the action, the object (?ob) is now held, the
underneath object (?underob) is clear, and the relationship "on" between
(?ob) and (?underob) is broken. Also, (?ob) is no longer clear, and the
arm is not empty.

- Example: If you execute (unstack blockC blockD), it means you unstack
"blockC" from on top of "blockD".

Figure 5: Explanation provided about the Blocksworld domain before each Blocksworld experiment.

B.2 Examples

C Domains Characteristics

C.1 Domains

Blocksworld. In this domain, the objects are blocks and the agent is a robotic arm that can pick
them up and put them down on a table. Blocks can be stacked, and only a block that is clear (i.e.,
doesn’t have a block on top of it) can be picked up. The goal predicates are to stack blocks on top of
other blocks.

Ferry. In this domain the objects are cars and locations, and the agent is a ferry that can move
between locations, board a car in one location or debark it in another location. The ferry can only
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We are dealing with the Blocksworld problem. In this domain we have 4 possible
actions:

...

In your answer only specify the action with no explanation.

Given this state:
b5 is on b4 and is clear,
b1 is on b2,
b2 is on b3,
b3 on-table,
b4 is on b1,
arm is empty

and the following goals:
on b1 b2,
on b2 b5,
on b3 b4,
on b5 b3

In order to complete the task both goals must be accomplished simultaneously.
Which one of the following goals needs to be achieved first?
The goals are:
on b1 b2, on b3 b4

In your answer only specify the goal with no explanation
<ANSWER>
on b3 b4

Figure 6: Example reasonable ordering experiment from the Blocksworld domain.

board one car at a time. The problem requires the ferry to transport the cars to their designated
locations.

Grippers. In this domain the objects are balls and rooms, and the agent is a robot that can move
between rooms, pick-up balls or drop a picked-up ball. The robot can hold two balls simultaneously
with its left and right grippers. The problem requires the robot to transport the balls to their designated
rooms.

Depots. Similar to Blocksworld, the objects are crates and the agent is a hoist that can pick them up
or put them down. The difference from Blocksworld is that there are multiple “tables”, which are
called pallets, and each pallet has its own hoist. The pallets are located in different locations, called
depots and distributors. The truck is another agent that can move the crates between locations. This
is similar to Ferry and Grippers. The goal predicates are to stack the crates at specific locations, or on
top of other crates.

Minigrid. In this grid domain, the objects are walls, keys and doors, and the agent is a robot that
can traverse the grid, pick up keys and unlock doors. Doors can be locked, and their locks have
certain shapes with keys having matching shapes. Only one key can be picked up at a time, thus the
robot must first drop a key in order to pick up a different key. The more number of shapes there are,
the more often the robot has to switch the key it is holding. The goal predicate is to reach a certain
location in the board. The floor plan that we used for all Minigrid problems is depicted in Figure 7.

C.2 Domains Modifications

Some domains have a lot of predicates to describe the current state, thus creating a very long prompt
for the LLM. This is a problem mostly in the Minigrid domain, which as seen in Figure 7, has a
large 2D map which contains 64 places. This map is meticulously described in the PDDL format.
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Figure 7: Minigrid floorplan
that we used for generating
problem instances. L repre-
sents locked doors, W repre-
sents blocked places which
can’t be crossed, and all other
dots represent places where
the agent can walk. In each
problem instance, the robot
start and end location are cho-
sen randomly. The keys are
spread around the map, not de-
picted in this figure.

To sidestep this problem of having extremely long prompts, we make
several changes to their PDDL definition which allow us to create
a shorter state representation. Firstly, we remove predicates that
contain typing information of objects. For example, we remove
predicates that mention that the object p1 is a place (place p1),
that the object key1 is a key (key key1), and that the object shape1
is a shape (shape shape1). Given this change, it should still be
possible to calculate applicable actions, as LLMs have different
representations for each token, and they can infer the type of the
object from the prefix, context and provided examples. In addition,
we remove predicates which contain information about connected
paths, such as p1 is connected to p2 (conn p1 p2). Originally,
this is used in Minigird to represent the locations of walls. We
remove this only for the fine-tuned models which can learn the map
during training. Finally, in Minigrid, we remove predicates which
indicate that a door is open (e.g., open p3). The predicates already
describe which doors are locked (e.g., locked p16), and it should
be possible for the LLM to see which places are locked and from it
to infer the open doors.
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