
HAL Id: hal-03602394
https://hal.science/hal-03602394v1

Submitted on 9 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object-Based Visual Camera Pose Estimation From
Ellipsoidal Model and 3D-Aware Ellipse Prediction

Matthieu Zins, Gilles Simon, Marie-Odile Berger

To cite this version:
Matthieu Zins, Gilles Simon, Marie-Odile Berger. Object-Based Visual Camera Pose Estimation From
Ellipsoidal Model and 3D-Aware Ellipse Prediction. International Journal of Computer Vision, 2022,
130, pp.1107-1126. �10.1007/s11263-022-01585-w�. �hal-03602394�

https://hal.science/hal-03602394v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Object-Based Visual Camera Pose Estimation From Ellipsoidal
Model and 3D-Aware Ellipse Prediction

Matthieu Zins · Gilles Simon · Marie-Odile Berger

Received: date / Accepted: date

Abstract In this paper, we propose a method for ini-

tial camera pose estimation from just a single image

which is robust to viewing conditions and does not re-

quire a detailed model of the scene. This method meets

the growing need of easy deployment of robotics or aug-

mented reality applications in any environments, espe-

cially those for which no accurate 3D model nor huge

amount of ground truth data are available. It exploits

the ability of deep learning techniques to reliably de-

tect objects regardless of viewing conditions. Previous

works have also shown that abstracting the geometry

of a scene of objects by an ellipsoid cloud allows to

compute the camera pose accurately enough for various

application needs. Though promising, these approaches

use the ellipses fitted to the detection bounding boxes

as an approximation of the imaged objects. In this pa-
per, we go one step further and propose a learning-

based method which detects improved elliptic approxi-

mations of objects which are coherent with the 3D el-

lipsoids in terms of perspective projection. Experiments

prove that the accuracy of the computed pose signifi-

cantly increases thanks to our method. This is achieved

with very little effort in terms of training data acqui-

sition – a few hundred calibrated images of which only

three need manual object annotation. Code and models

are released at https://gitlab.inria.fr/tangram/

3d-aware-ellipses-for-visual-localization.
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Fig. 1: Camera pose estimation from objects.

0.0 0.2 0.4 0.6 0.8 1.0

Position error threshold (m)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

liz
ed

 im
ag

e(
 (
%
)

Rel%c OpenVSLAM (m%n% map)
Rel%c OpenVSLAM (RGB­D map)
P%(eLSTM
In(cribed (2D (upervi(i%n)
Our( (3D­c%heren) ellip(e()

0 10 20 30 40 50

Orientation error threshold (°)

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca
liz
ed

 im
ag

es
 (
%
)

Reloc OpenVSLAM (mono map)
Reloc OpenVSLAM (RGB­D map)
Po)eLSTM
In)c(ibed (2D )upe(vi)ion)
Ou() (3D­cohe(ent ellip)e))

Fig. 2: Enhanced robustness of object-based visual lo-

calization compared to keypoint-based and direct pose

regression methods.

1 Introduction

Estimating the 6-DoF pose of a camera from an RGB

image is a fundamental task for Augmented Reality

(AR) or robotics. This task can be particularly chal-

lenging when no a priori knowledge of the pose is avail-

able, for example following a tracking failure or when

trying to initialize the pose at the beginning of the pro-

cess.

Classical methods generally rely on local descrip-

tors and matching between the 2D keypoints detected

https://gitlab.inria.fr/tangram/3d-aware-ellipses-for-visual-localization
https://gitlab.inria.fr/tangram/3d-aware-ellipses-for-visual-localization
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in a query image and the 3D landmarks present in a

previously reconstructed map point cloud [22, 43, 44].

The 6-DoF pose is then computed with the PnP al-

gorithm inside a RANSAC loop. While these methods

can achieve very good accuracy, they usually require

heavy computations and scene models. Also, they only

provide a limited robustness to change of viewpoints or

environmental settings, such as illumination.

New methods appeared with the advances of deep

learning and, in particular, with the convolutional neu-

ral networks (CNN). They propose to directly regress

the six parameters of the absolute camera pose using a

CNN [18, 20, 25]. With these methods, the pose is ob-

tained with a single forward pass in the network, rather

than a heavy matching process. They also provide a bet-

ter robustness to illumination changes. However, they

do not reach the same level of accuracy as structured-

based methods and have difficulties to generalize to

viewpoints distant form the training images [45].

In this paper, we propose an object-based method

for initial pose estimation from just a single image,

which leverages the robustness of object detectors to

large changes of viewpoints and environmental condi-

tions. We model objects in 3D with ellipsoids, which

can be interpreted as higher-level semantic landmarks

for pose computation. A scene model made of ellipsoids

is thus reconstructed in an initial step and is assumed to

remain static for the localization. We use the term ”ob-

ject” here in a broad sense, i.e. any elements that can

be detected by a specifically trained object detector. It

is also conceivable to model larger objects by parts with

multiple ellipsoids. The major interest of the proposed

method is its flexibility, provided by our rough ellip-

soidal modeling that can be applied to any objects. In

particular, we show that the fitting accuracy between

the ellipsoidal model and the real object is not impor-

tant. Our method thus meets the growing need of easy

deployment for robotics or augmented reality applica-

tions in any environments, especially those for which no

accurate model nor huge amount of ground truth data

are available.

Many methods exist for estimating the pose of an

object with respect to the camera frame [4, 17, 23, 30,

32, 36, 48, 50, 57], however, they usually require a de-

tailed textured model of the object and sufficient train-

ing images. This makes them unsuitable for our type of

applications, as precisely digitizing all the objects and

registering them in a global referential is challenging

and not conceivable during the deployment on a new

scene.

Similarly to [11,12], we also use an ellipsoidal repre-

sentation of the objects in the scene (Fig. 1), which can

be obtained with a coarse reconstruction. Though these

previous works are promising, the main source of inac-

curacy originates from a poor approximation of objects

in 2D with an ellipse aligned with the image axes and

inscribed in the detection bounding box (BB). Some

methods exist to detect an object in the form of an

ellipse. For example, Dong et al. [10] propose a direct

elliptic detection and compare it with an ellipse fitting

on the mask predicted by Mask R-CNN [13], in the con-

text of object 3D size and pose estimation. In [29], the

authors improve the detection of elliptic objects with

the application of knots detection in sawn lumber im-

ages. However, this method is dedicated to the 2D de-

tection of elliptic shapes, but do not impose any pro-

jective coherency with a 3D model. In this paper, we go

one step further and propose a learning-based method

which detects improved elliptic approximations of ob-

jects which are coherent with the 3D ellipsoid i.e. that

are likely to be the projection of the ellipsoid. This way

of detecting elliptic abstractions of objects significantly

improves the accuracy of the recovered pose. Our main

contributions are as follows:

– A network for an improved 3D-aware object detec-

tion, which predicts ellipses around objects that are

coherent with the projection of their 3D ellipsoidal

abstractions. Its goal is to overcome the weaknesses

of directly fitting the ellipses to the axis-aligned

bounding boxes. Our data augmentation procedure

allows for robustness to box boundaries variability.

– We show how the concept of ellipsoidal abstractions

of objects and 3D-coherent ellipse predictions can

be used for robust pose computation when only a

small amount of data is available on the scene. We

show that the pose accuracy little depends on the

choice of this ellipsoidal abstraction, which makes

the method flexible and easy to use in practice. Only

three calibrated images need to be annotated by

hand to build the ellipsoid cloud. Annotations of

the object are then obtained by projection in the

training images.

This paper is an extended version of [58]. In this

longer paper, we additionally provide:

– A new loss formulation which handles more natu-

rally the discontinuity of the angular parameter of

an ellipse.

– Further investigations on the influence of the visible

background in the crop images of the objects. We

analyzed the benefits of using a ground truth object

mask and proposed another masking strategy based

on elliptic masks, which is more feasible in practice.

– A demonstration of the practical effectiveness of the

method by exhibiting scenes where our object-based

localization method outperforms the point-based re-
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localization module used in a state-of-the-art SLAM

method (Fig. 2).

2 Background and related works

Visual localization from monocular RGB images is an

important problem in computer vision which witnessed

a complete renaissance with the emergence of deep learn-

ing. Thanks to the ability of such methods to detect

features across a wide range of viewpoints, largely in-

dependently from environmental conditions, this opens

the way towards more robust localization and matching

methods, especially able to handle few-textured scenes.

2.1 Structure-based localization

These traditional methods usually represent the scene

as a point cloud and estimate the camera pose from

2D-3D matches between keypoints extracted from the

query image and landmarks from the 3D map [22, 43,

44]. This matching is generally based on local hand-

crafted descriptors such as SIFT [24] or ORB [41], and

the pose is computed using the PnP algorithm inside

a RANSAC loop. However, these methods only suc-

ceed if enough points are correctly matched, which ex-

plains their relatively limited robustness to illumination

changes, motion blur or large change of viewpoints.

More recent works leveraged the advances of deep

learning to improve the keypoints detectors, descriptors

and matching [9, 42,56].

2.2 Image-retrieval localization

Image-retrieval methods estimate the camera pose from

a query image by finding the most similar image in a

database. They combine global descriptors (BoW [47],

Fisher vector [33] or VLAD [8, 16]), with efficient and

scalable retrieval methods [28,34]. With the emergence

of convolutional neural networks, learned descriptors

appeared [2]. The NetVLAD architecture was intro-

duced in [1] and showed remarkable results, outper-

forming the state-of-the-art non-learnt image represen-

tations and off-the-shelf CNN descriptors.

These methods can also be used as initial coarse

pose estimation that is further refined. InLoc [49] com-

bines image retrieval for large-scale initial pose estima-

tion with dense matching for pose refinement. Piasco et

al. proposed a fast and lightweight solution that com-

bines image retrieval, dense matching and monocular

depth prediction in [35].

2.3 Learning-based pose regression

One of the pioneering method in the use of deep learn-

ing for pose computation is PoseNet [20], where the

absolute camera pose is regressed using a CNN. By

leveraging the notion of Bayesian networks, Kendall

proposed a method for estimating the uncertainty of

the predicted pose in [18]. A Long Short-Term Mem-

ory (LSTM) architecture was proposed by Walch et

al. [51] in order to address the problem of over-fitting.

Kendall also replaced the original loss, which required

hyper-parameters tuning, with a geometric learned loss

in [19]. These methods provided solutions to challenges

for which classical methods failed, such as illumination

changes or motion blur. Also, they have a constant-time

inference, compared to structure-based methods which

often require heavy computations of 2D-3D matching

inside a RANSAC loop. However, these methods have

not yet reached the same level of accuracy and, as pointed

out by Sattler [45], they are more closely related to pose

approximation via image retrieval than to accurate pose

estimation via 3D structure. As a result, such methods

have difficulties to generalize to trajectories far from

the training sequences.

2.4 Scene coordinates regression

These methods propose to regress dense 3D scene coor-

dinates, originally with random forests [46], and more

recently, by training a CNN [5, 6]. The camera pose

is then computed by solving a PnP problem, coupled

with advanced versions of RANSAC [3]. These methods

obtain remarkable results, but require depth informa-
tion for training and are usually limited to small-scale

scenes.

2.5 Object-based methods

Finding the pose of the camera from general shape ob-

jects can also be viewed as estimating the objects poses

in the camera frame. Many works exist on this sub-

jects [17, 23, 32, 36, 48, 50, 57]. SSD-6D [17] extends the

idea of 2D object detection and infers 6D pose based on

a discrete viewpoint classification while an autoencoder

is used in [48] to recover the object orientation. Another

way to infer object pose is by predicting the 2D pro-

jections of the corners of the bounding box of the 3D

object with a CNN. This avoids the need for a meta-

parameter to balance the position and orientation error

since the 6D pose can be estimated with PnP from 2D-

3D correspondences. In BB8 [36], segmentation is first

performed to detect the objects and a CNN then infers
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the projection of the BBs. Data augmentation with a

random background is performed during training to re-

duce the influence of the scene context.

However, all these methods assume to have access

to a detailed textured model of the objects. NOCS [52]

is an interesting category-level approach, in which a

normalized coordinate space is used to represent differ-

ent objects from a same category. Their large real and

syntehtic dataset enable them to generalize to unseen

objects from known categories. The objects poses are

recovered by combining the predicted coordinate maps

with a measured depth map.

While the above methods treat each object sepa-

rately, in its own reference frame, other methods create

maps of objects and localize the camera in it. Wein-

zaepfel et al. [53] propose a method where the camera

pose is estimated from dense 2D-3D correspondences

between the objects present in a query image and those

in reference images. However, this method is limited to

planar objects. Yang et al. [55] integrated objects into

a SLAM system by representing them with cuboids. In

the context of autonomous driving, [26] also represent

objects with 3D boxes and estimates their pose and di-

mensions using the geometric constraints provided by

their 2D bounding boxes and some additional assump-

tions for their orientation. However, representing ob-

jects with 3D cuboids and the 2D detections with rect-

angles does not allow to derive closed-form solutions to

the projection equations and leads to solutions with a

high combinatorics.

Modelling 2D/3D objects correspondences with el-

lipses/ellipsoids was already used by [40] in the con-

text of multiview reconstruction and by Nicholson et al.

in the context of SLAM [27]. Resolution was based on

the minimization of a geometric cost function between

bounding boxes, using odometry sensors for initial po-

sition and orientation.

Recent works have proposed solutions for pose com-

putation from ellipse-ellipsoid matching hypotheses with-

out the need of an initial estimate [11]: shows that the

problem of estimating the camera pose from ellipse-

ellipsoid correspondences has at most 3 degrees of free-

dom, since the position can be obtained from its ori-

entation. Direct closed form solution can thus be esti-

mated once the orientation is known. In [12], a method

for full pose recovery from at least 2 ellipse-ellipsoid

correspondences was proposed under assumptions sat-

isfied by many robotics applications. In practical ex-

periments, axis-aligned ellipses are inferred from the

bounding boxes detected by YOLO. The authors how-

ever note that such an elliptic 2D approximation is not

always sufficiently accurate and may lead to a signifi-

cant error on the estimated pose.

3 Visual localization pipeline

3.1 Scene abstraction

Fig. 3: Reconstructed scene model for the Chess scene.

In our method, we chose to represent our scene with

an ellipsoid cloud, where each object is simply modelled

with one ellipsoid. Figure 3 shows an example of such

scene model, obtained on the Chess scene.

This scene model is built once and does not evolve,

as the goal of this work is to relocalize a single RGB

image without using any temporal information. The

method used to build it is described in subsection 4.1.

While being an approximate modelling of an object,

this ellipsoidal representation has several advantages:

– An object can be described with only 9 parame-

ters (for the ellipsoid) with, potentially, one addi-

tional semantic attribute (i.e. the class of the ob-

ject), which makes the scene model very compact

and lightweight.

– The reconstruction of an ellipsoid from three ellipse

observations has a closed-form solution, developed

by Rubino et al. in [40]. For example, this would not

be the case with 3D and 2D bounding boxes.

– With ellipsoidal objects and, contrary to what hap-

pens with 3D boxes, the equation of their projec-

tion (C∗) can be formally and continuously written

as a function of the ellipsoid (Q∗) and the projection

parameters (P ): C∗ = PQ∗PT .

– Ellipsoids were already used as primitives for de-

composing objects, such as in [31]. Even if treating

an object by parts is not the focus of this work, the

camera pose could also be estimated from such kind

of decomposition. An example is given in Figure 4.
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Fig. 4: Camera pose estimated from a by-part modeling

of a statue (head, left/right shoulders, left arm, bottom

of the armor). The position error is written in the top-

left corner and the orientation error in the top-right.

The predicted ellipses are in solid line, the projections

of the ellipsoids with the computed pose are in dashed

lines and the white ellipsoids are projected with the

ground truth camera pose. The green ellipses were used

by P3P to compute the pose, the blue ellipse was con-

sidered as inlier in the validation step of the RANSAC

and the red one was not used.

3.2 Improved 3D-aware object detection

In contrast to keypoint-based methods, where points

have no shape but just a location, our objects have a

shape both in 3D with the ellipsoid and in 2D with the

ellipse. As explained in [11, 12], computing the cam-

era pose from pairs of ellipse-ellipsoid comes down to

aligning their respective back-projection and projection

cones. This requires a good coherency between our 3D

abstractions of objects and their observations in the

image. Ideally, the detected ellipse in the image should

correspond to the intersection between the projection

cone of the ellipsoid and the image plane.

Classical object detection methods usually predict

axis-aligned bounding boxes [37,38]. Some of them were

also extended to predict a fine segmentation mask of the

objects. However, all these methods are trained to per-

fectly fit to the objects contours, which is not coherent

with our rough ellipsoidal models of objects. On the one

hand, an ellipse inscribed in an axis-aligned bounding

box will fail to correctly represent an object as soon as

it appears rotated in the image. On the other hand, a

fine object segmentation mask would only be coherent

with the projection of a perfectly detailed 3D model of

the object, which can not be easily obtained in practice.

We thus propose to use an improved object detec-

tion method, with an ellipse prediction module specifi-

cally trained to be coherent with our scene modelling.

3.3 Ellipse prediction

Ellipse parameterization. An ellipse is a special kind

of conic which can be represented with the following

quadratic equation:

(x− c)TR(θ)

[ 1
α2 0

0 1
β2

]
R(θ)T (x− c) = 1 (1)

where c is its center, θ its orientation and (α, β) are

the lengths of its semi-axes. The quadratic form of the

ellipse can also be expressed as xTCx = 0 using ho-

mogeneous coordinates, in which the ellipse becomes a

single symmetric 3 × 3 matrix. This matrix C is de-

fined up to a scale as the ellipse has only five degrees of

freedom. However, although it could be possible to rep-

resent an ellipse with the five coefficients in the upper

triangular part of this matrix, it is usually more conve-

nient to use its physical attributes (position, size and

orientation). Because of the symmetric nature of the

ellipse, we always define the orientation as the angle

between the horizontal axis and the part of the longest

semi-axis which is in the right half of the ellipse. The

possible values are constrained in the interval [−π2 , π2 ].

Ellipse loss. Directly computing a loss between two el-

lipses using this representation is not straightforward.

The axes and position parts can not be directly mixed

with the orientation angle because of the discontinu-

ity of the latter. Indeed, two very similar ellipses, just

slightly rotated, can have a totally different orientation

value (one at 89° and the other at −89°). To reduce this

effect, a multi-bin approach with both a classification

and a regression of the angular parameter was proposed

in [58].

To solution this problem of angular discontinuity,

we propose here a new loss formulation in which an

ellipse is represented by a 2D embedding function Φ :

Ω ⊂ R2 → R. The distance between the ground truth

and the predicted ellipse is then defined between their

respective embedding functions Φgt and Φpref .

d2(Epred, Egt) =

∫
Ω

(Φpred(x)− Φgt(x))2dx (2)

In practice, we measure this distance at discrete po-

sitions, sampled regularly over the whole input image

passed to the network. We used a square grid of sam-

pling with dimensions 25× 25.

d2(Epred, Egt) =

N∑
i=1

(Φpred(xi)− Φgt(xi))
2 (3)
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Fig. 5: Proposed pipeline for training and inference. Here, the sampling grid was subsampled to 12 × 12 for the

sake of visibility. In practice a grid of 25× 25 points was used.

In the context of shape matching, a classical em-

bedding function is the signed distance to the closest

contour point [39]:

Φ(x) =


D(x, C) if x inside C

−D(x, C) if x outside C

0 if x ∈ C
(4)

Computing the closest distance to a contour is not

straightforward and, in our case of aligning two ellipses,

simpler and more efficient functions can be used. One of

the most natural one is indeed the quadratic equation

of an ellipse (Equation 1), representing it as the level-

curve of value 1. This equation defines an oriented non-

isotropic distance map from the center of the ellipse.

However, we observed numerical instability while

training the network with this expression. Huge values

of gradients and strong irregularities in the loss can be

noted in Figure 21 and can be explained by the expres-

sions on the diagonal of the central matrix, [ 1
α2 ,

1
β2 ] and

their respective derivatives [−2
α3 ,

−2
β3 ] which can become

huge when α and β are small.

We evaluated different forms for this central matrix,

discussed in subsection 6.5, and finally simplified it with

the following expression, which provides the better re-

sults:

Φ(x) = (x− c)TR(θ)

[
α 0

0 β

]
R(θ)T (x− c) (5)

Compared to the previous multi-bin loss proposed

in [58], this new loss has several advantages:

– It combines all the parameters of the ellipse in order

to avoid the arbitrary weighting that is usually nec-

essary to compare different quantities (for example,

distances and angles).

– It naturally handles the discontinuity of the angular

parameter of the ellipse.

– It naturally handles the case of almost circular el-

lipses (undefined angle parameter).

3.4 Network architecture

The architecture of the neural network part of our sys-

tem is described in Figures 5 and 6. It mixes the stan-

dard Faster R-CNN architecture for object detection

and a custom-designed network for the 3D-aware el-

lipse prediction. This second network takes as input a

square subset of the image containing a detected object

and resized to 256 × 256 with a bicubic interpolation.

The image crops are defined by the bounding boxes pro-

vided by Faster R-CNN and are forced to be square by

using their largest dimension to avoid distortion.

This ellipse prediction network has a VGG-19 base

followed by a few fully-connected layers, and finally,

three branches predict the ellipse parameters: center (2

values), size (2 values) and orientation (1 value). The

center and size are predicted with a final sigmoid acti-

vation layer so that their values are between 0 and 1.
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Fig. 6: Network architecture for ellipse prediction.

We interpret them as being normalized with respect to

the size of the crop input image (256 × 256). The cen-

ter and dimensions of the ground truth ellipses in the

training data are thus also normalized.

At test time, when the predicted ellipse is used for

pose computation, the coordinates of its center are scaled

back by max(wbox,hbox)
256 and translated by the coordi-

nates of the top-left corner of the square detection box,

in order to recover the coordinates in the original full-

size image. The ellipse dimensions are scaled by the

same factor.

As we defined the orientation angle in the right half

of the ellipse, we can fully retrieve it from its sine value.

The orientation branch thus ends with a hyperbolic tan-

gent activation to produce a value between -1 and 1 that

we interpret as the sine of the angle.

3.5 Data association

Similarly to keypoint-based methods, where a 2D-3D
matching between image keypoints and landmarks is

sought, we also need to associate the predicted ellipses

with their corresponding ellipsoidal models available in

the pre-built map. The process to reconstruct this map

beforehand is explained in subsection 4.1. Also, the el-

lipse regression network is trained separately for each

object of our scene model, and thus, the correct version

of the network should be used for each detected object.

We can only partly rely on the class label predicted by

the object detector, because the scene might contain

several instances of the same object class (Also, we can

not leverage temporal consistency by using associated

data from previous frames, as the goal of our method is

to estimate the camera pose from a single image.) In-

spired by [12], we use a robust RANSAC-based method,

in which a score is computed for each association hy-

pothesis. This score is computed using the object-wise

Intersection-over-Union (IOU) between a detected el-

lipse in the image and the projection of its associated

ellipsoid.

3.6 Pose computation with ellipses-ellipsoids

RANSAC needs a direct method for pose computation

from a minimal number of ellipse-ellipsoid correspon-

dences. [12] is the only work that describes a direct

pose computation from two correspondences, but un-

der the assumption of a near-to-zero camera roll. When

the number of correspondences is larger, we used an-

other strategy which consists in generating pose hy-

potheses from point-to-point correspondences between

the ellipses and ellipsoids centers and validating them

on the basis of a maximum IoU score. These strategies

are described below:

– When at least three objects are detected, the stan-

dard P3P algorithm between the ellipses and ellip-

soids centers can be used. Assuming that the center

of the ellipsoid projects on the center of the ellipse

is wrong in theory, however, this is a totally realis-

tic assumption in practice. The error remains quite

small (only a few pixels, see Figure 7) in the field-

of-view of a classical camera.

– When only two objects are detected, we use the P2E

method described in [12]. Assuming that the cam-

era roll is null, this method transforms the 6-DoF

problem into a reduced problem with only one re-

maining degree-of-freedom which corresponds to an

angular parameter. This makes it possible to review

all the possible solutions in the same RANSAC that

is used for data association.

– When only one object is detected, it is still possible

to estimate the camera position if we have access

to orientation data [11]. In practice, this can be ob-

tained using an external sensor (IMU) or with an

automatic vanishing point detection algorithm.

Fig. 7: Distance between the center of the projected

ellipse and the projection of the ellipsoid center. The

experiment is illustrated on the right, where ellipsoids

(of size [30 cm, 20 cm, 15 cm]) are placed at different az-

imuths and distances from the camera (fx = fy = 450,

image dimension: 640 × 480). In each figure, the black

lines represent the field-of-view of a classical camera

(70◦).
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4 Data acquisition and augmentation

4.1 3D model and training data generation

The scene reconstruction and the generation of training

data for our network only requires a set of calibrated

images and a small amount of manual annotations. This

makes the method easy to deploy in a new environment,

which is very interesting from a practical point-of-view.

The procedure works as follows:

1. Choose a minimum of three images of the scene

showing the object(s) from various viewing angles.

2. Define boxes around the objects visible in these im-

ages and associate a label to each box.

3. Fit ellipses to these boxes. Just taking the inscribed

ellipses is sufficient here. Indeed, we show in the ex-

periment in subsection 6.1 that the fitting accuracy

between the ellipsoidal models and the objects in

3D has almost no influence.

4. Build the ellipsoid cloud which will be used as scene

model.

5. Reproject the ellipsoid cloud in all the training im-

ages to get ellipse annotations.

The obtained ellipsoids obviously depend on the im-

ages chosen for reconstruction. Fortunately, we show in

Section 6.1 that their size and orientation may vary sig-

nificantly without degrading the method performance.

4.2 Data augmentation

Data augmentation plays an important role in the train-

ing of the ellipse prediction network and its generaliza-

tion with a relatively limited number of annotated im-

ages. Several strategies were performed during training:

– Color jittering randomly changes the brightness, con-

trast and saturation of an image in order to simulate

illumination changes.

– Blurring filters the images with a randomly-sized

Gaussian kernel in order to accommodate different

resolutions caused by the object distance.

– Shifting randomly translates the images so that the

object is not always perfectly centered, which should

accommodate noisy object crops.

– In-plane rotations as well as perspective deforma-

tions (homographies) were added to generate new

views of the object. They can, for example, simulate

a camera which is not held upright, or not aiming

at the object center.

5 Experimental results

5.1 Full camera pose estimation

We used the 7-Scenes dataset to evaluate our method

for camera pose estimation. This dataset is a collection

of seven indoor scenes scanned with an RGB-D camera.

For each scene, several scanned sequences are provided

with color and depth frames as well as ground truth

pose annotations. We used the scene called Chess, as

it illustrates a typical environment where object-based

methods can be used. We split the six available se-

quences as follows: sequences 1, 4, 6 for training and

2, 3, 5 for testing.

Training details. We trained the ellipse prediction net-

work for 100 epochs per object, with an initial learning

rate of 5 × 10−5, reduced by half after 50 epochs. The

batch size was set to 16 and the Adam optimizer [21]

was used. The object detection network, Faster R-CNN,

was fine-tuned on the objects of the scene, separated in

seven categories (tv, xbox, chair, ...), for 2000 iterations

with a base learning rate of 2.5× 10−4.

Comparison with other methods. We tested two other

visual localization methods, one using a classical point-

based approach (OpenVSLAM) and a second one which

directly regresses the camera pose with a trained net-

work (PoseLSTM). For OpenVSLAM, we built the map

using the complete SLAM system on the training se-

quences 1, 4 and 6. We actually built two maps, one

with the RGB-D SLAM and the second one with the

monocular version (with a manually estimated scaling

factor). Their results are respectively named RGB-D

map and mono map in Tables 1 and 11. For localiza-

tion, we used only its relocalization module. It combines

image matching (BoW) and keypoints (ORB), but the

tracking and the motion model are disabled. In practice,

this module is used when the slam is lost and needs to

relocalize itself from only the map and a single image,

which is a typical example of where our system can

be used. PoseLSTM was trained on the 3000 frames

provided in sequences 1, 4 and 6 during 2000 epochs.

To evaluate the benefits of our 3D-aware object detec-

tion, we also reported the results obtained with only the

object detector part (for predicting bounding boxes)

trained with a 2D supervision provided by manual an-

notations. The inscribed ellipses are extracted from the

detection boxes and the same RANSAC procedure is

used to estimate the camera pose.

Results. Table 1 shows the results obtained on the three

test sequences, but only on frames where at least two
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objects were detected. Otherwise, a direct comparison

with the object-based methods is not totally fair. We

nevertheless reported the results on all frames of the

sequences in the left column of Table 11. Also, note that

the two SLAM-based relocalization methods sometimes

fail and do not provide any pose results. Their median

position and orientation errors are thus only computed

on the frames where they succeeded. The proportions

of valid estimations are also reported, in which a pose

is considered valid when its position error is less than

20 cm and its orientation error less than 20°.
More complete results are available in Table 11.

They show, for each test sequence, how the proportion

of correctly localized images evolves when increasing

the error threshold. The columns correspond to results

obtained on all the frames of each sequence, but also

on subsets of frames (only those with at least 2 or 3

detected objects).

Figure 8 compares the position errors obtained on

each frame of sequence 2. Note that the points above

1.75 m correspond to frames where the pose estima-

tion failed without returning any result (especially with

OpenVSLAM and our method). For our method, this

happens when strictly less than two objects are de-

tected. In particular, the frames that failed (around

800-900) were taken with the camera very close to the

table, and thus, only one (and sometimes two) object(s)

could be detected.

The results clearly show the benefits offered by us-

ing objects as high-level landmarks. The keypoint-based

method (with the RGB-D map) is slightly more accu-

rate in position, but fails more frequently (especially in

sequence 2). PoseLSTM does not reach the same level

of accuracy. However, it has the advantage being able

to find a coarse pose for all the frames of the sequences.

For example, in sequence 3, PoseLSTM can compute

a coarse pose estimate for all the frames with an error

not larger than 65 cm in position and 30° in orientation.

Our method with 3D-coherent ellipses clearly outper-

forms the 2D-supervised and axes-aligned detections.

Figure 9 shows some localized frames. In particular,

we can see the multiple ellipse hypotheses for the chair

backs (as three instances exist in our scene model).

The bold ellipses are the reprojections of the ellipsoidal

models with the estimated pose. Green stands for el-

lipses effectively used in the direct pose computation,

blue for ellipses considered as inliers in the validation

process and red for the unused ones. Note that, despite

the fact that the left chair back detected in the first

image was not in our scene model, the method is still

able to find an accurate pose from the other objects.

The last image shows a failure case, which can hap-

pen when only two objects are detected in the image.
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Fig. 8: Full camera pose estimation: Position errors

and the number of detected objects obtained on the

frames of sequence 2 of the Chess scene. The points

above 1.75m correspond to frames where the method

(either OpenVSLAM or our method) failed and could

not provide any resulting pose.

Indeed, computing the pose with only two detections

is particularly challenging as no other objects can be

used in the IoU-based validation. Finally, the third im-

age shows the robustness of computing the camera pose

from objects, despite the relatively strong motion blur.

5.2 Camera position estimation

In some situations, it is possible to obtain the cam-

era orientation using an external sensor (IMU) or a

vanishing-point detection algorithm. In such scenarios,

the camera position is determined from only one object.

We evaluate here its accuracy and show the benefits of-

fered by our improved object observation method com-

pared to the axis-aligned ellipse. We used the LINEMOD

dataset [14], which provides RGB-D images of 15 ob-

jects in cluttered environments with ground truth pose

information. We split the available images in two, lead-

ing to around 200 images for testing and 200 for train-

ing. A few of them were used to reconstruct the el-

lipsoidal model of each object. Rather than assuming

that we know the ground truth camera orientation at

test time, we added a random noise, uniformly sam-

pled in between −2° and 2° on each of its Euler angle.

This was done to be more realistic with what an ex-

ternal measurement could provide. Note that we did

not fine-tune the object detection part of our system,

but only evaluate the impact of the 3D-coherent ellipse

prediction. Figure 10 and Tables 2, 3 show the pro-
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Method
Sequence 2 Sequence 3 Sequence 5

pos. err. rot. err. % valid pos. err. rot. err. % valid pos. err. rot. err. % valid
Reloc OpenVSLAM (RGB-D map) 5.14 2.41 61.15 5.05 2.53 77.93 4.57 3.52 83.35
Reloc OpenVSLAM (mono map) 6.48 2.04 45.0 6.54 3.17 68.08 6.55 2.61 78.0

PoseLSTM 29.15 8.94 24.69 18.73 6.06 53.68 16.16 6.03 62.28
Inscribed (2D supervision) 11.62 3.69 69.69 10.56 3.12 70.78 10.20 3.24 75.33
Ours (3D-coherent ellipses) 6.46 2.20 79.48 7.03 2.12 82.59 6.42 2.05 85.92

Table 1: Full camera pose estimation: Median position and orientation errors obtained on the Chess scene

(only on images with at least 2 objects detected). An estimated pose is considered valid when its position error is

below 20 cm and its orientation error below 20°.

Fig. 9: Full camera pose estimation: Some results obtained on frames from sequences 2, 3 and 5. In each image,

the left value is the position error and the right value the orientation error. The detection boxes are in white, the

predicted ellipses are in solid line and the projection of the objects ellipsoids with the estimated pose are in dashed

lines. The ellipses used for pose computation are in green, those considered as inliers in the validation process are

in blue and the remainings are in red.

portion of correctly estimated positions wrt. the repro-

jection and ADD errors. These last two metrics com-

pute the error between the object point cloud (provided

in the dataset) transformed once with the estimated

position and once with the ground truth value, either

projected in the image (projection error) or directly in

3D (ADD). These experiments show a significant im-

provement compared to the inscribed ellipses. Examples

of predicted ellipses for some objects of the dataset are
provided in Figure 11.

Finally, a comparison with previous methods for ob-

ject 6D pose estimation is available in Table 4. Notice,

that this comparison is given for information only, as

our method does not use detailed 3D models of the ob-

jects, but assumes a known orientation when only one

object is visible (a random noise uniformly sampled be-

tween -2° and 2° was added to each of the ground truth

Euler angles).

5.3 Robustness to new viewpoints

One of the main limitation of existing methods for ab-

solute pose regression is its low generalization ability to

new viewpoints. Our previous experiment on 7-Scenes

only partially evaluates this capacity, as the camera tra-

jectories used to generate the training and testing im-

ages stay approximately in the same area.

Method Inscribed ellipse [11] Ours

Thresh. 5 px 10 px 15 px 20 px 5 px 10 px 15 px
ape 95.39 100.0 100.0 100.0 100.0 100.0 100.0
cam 49.77 94.47 100.0 100.0 100.0 100.0 100.0
can 57.60 79.26 98.62 100.0 100.0 100.0 100.0
cat 68.20 98.62 100.0 100.0 100.0 100.0 100.0

driller 16.13 61.75 90.32 98.62 96.31 99.08 100.0
duck 89.40 100.0 100.0 100.0 100.0 100.0 100.0

eggbox 97.70 100.0 100.0 100.0 100.0 100.0 100.0
glue 54.38 88.02 95.85 99.54 100.0 100.0 100.0

holepunc 83.41 100.0 100.0 100.0 100.0 100.0 100.0
iron 17.05 51.15 78.34 93.09 98.16 99.54 100.0
lamp 18.43 60.37 84.79 97.24 99.08 100.0 100.0
phone 34.56 70.97 88.48 97.24 99.54 100.0 100.0

Table 2: Camera position estimation: Proportion of

camera positions correctly estimated wrt. an increas-

ing threshold of reprojection error, obtained on the

LINEMOD objects.
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Fig. 10: Camera position estimation: Proportion of

camera positions correctly estimated wrt. an increas-

ing position error threshold. Left : using the inscribed

ellipse. Right : using the predicted ellipse.
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Method Inscribed ellipse [11] Ours

Threshold
(% of diam.) 10% 15% 25% 10% 15% 25%

ape 18.43 35.94 56.68 70.51 85.25 92.63
cam 34.10 56.68 84.33 91.24 98.16 99.08
can 12.90 18.43 31.34 93.09 97.70 98.16
cat 26.27 37.33 55.30 76.04 92.63 96.77

driller 42.86 57.14 76.04 85.71 92.17 97.24
duck 31.34 47.00 67.28 66.82 83.87 92.17

eggbox 16.59 22.58 40.09 88.48 94.47 97.24
glue 11.98 23.04 32.72 70.51 82.95 92.63

holepunc 12.90 20.74 30.88 86.64 92.63 97.24
iron 16.59 25.81 40.55 91.71 98.62 99.54
lamp 23.04 35.48 58.99 96.77 100.0 100.0
phone 22.12 29.03 42.86 92.63 98.62 99.54

Table 3: Camera position estimation: Proportion of

camera positions correctly estimated wrt. an increasing

threshold of ADD error, obtained on the LINEMOD

objects.

Method
BB8 U-D 6D Tekin Pix2Pose Inscribed

Ours
[36] [4] [50] [30] ellipses [11]

ape 27.9 33.2 21.6 58.1 18.43 70.51
cam 40.1 38.4 36.6 60.9 34.10 91.24
can 48.1 62.9 68.8 84.4 12.90 93.09
cat 45.2 42.7 41.8 65.0 26.27 76.04

driller 58.6 61.9 63.5 76.3 42.86 85.71
duck 32.8 30.2 27.2 43.58 31.34 66.82

eggbox 40.0 49.9 69.6 96.8 16.59 88.48
glue 27.0 31.2 80.0 79.4 11.98 70.51

holepunc 42.4 52.8 42.6 74.8 12.90 86.64
iron 67.0 80.0 75.0 83.4 16.59 91.71
lamp 39.9 67.0 71.1 82.0 23.04 96.77
phone 35.2 38.1 47.7 45.0 22.12 92.63

Table 4: Camera position estimation: Proportion of

camera positions correctly estimated for an ADD error

of 10% on the LINEMOD objects.

Fig. 11: Camera position estimation: Predicted el-

lipse (in green) for some objects of LINEMOD. The red

ellipse (partially behind the green one) corresponds the

ground truth projection of the ellipsoidal object model.

The reported value in each image is the error of the

estimated camera position.

Fig. 12: Robustness to new viewpoints (position

only): Predicted ellipses (green) and ground truth pro-

jections (blue) of the ellipsoid in WatchPose (near im-

age on the left and far image on the right). The green

box shows the square detection box which contains the

sub-image passed to the ellipse prediction network.

Case Method
Median Threshold

error (mm) 5 cm 10 cm 15 cm

Easy
Inscribed ell. 84.11 27.87 57.38 77.05

Ours 26.63 77.27 97.72 100.0

Hard
Inscribed ell. 120.31 14.61 38.20 66.29

Ours 54.12 40.74 81.48 88.88

Table 5: Robustness to new viewpoints (position

only): Position errors obtained on WatchPose in the

easy and hard cases (training and testing at mixed dis-

tances vs training only near the object and testing at

larger distances).

Position estimation. We used the WatchPose dataset

[54], which provides ten industrial scenes with images

taken at different distances (near at around 60cm and

far at around 1.4m). Unfortunately, only one object per

scene can be used for localization, and thus, only the

camera position was evaluated. We tested two scenarios:

an easy one, where a subset of near and far images were

used for training and testing, and a hard one, where

training was done only on near images and testing on

far images. Examples of predicted ellipses are available

in Figure 12. The results in Table 5 show the benefits

offered by the the 3D-coherent ellipses, even in the far

case.

Full pose estimation. In order to evaluate the robust-

ness to new viewpoints of the full camera pose esti-

mation, we created a synthetic dataset. This virtual

scene is composed of ten objects taken from the YCB

benchmark and rendered with Blender. This enabled us

to completely control the camera viewpoints between

training and testing. Figure 13 shows the scene with

our reconstructed object models. The training images

were generated from three camera trajectories taken at

approximately 4 m around the center of the scene, for

a total of 192 images. We then generated other camera

trajectories for evaluation with more diverse viewpoints
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(Ours)
Method PoseLSTM Inscribed Predicted

ell. ell.

Test 1
Pos. err. 0.645 0.057 0.048
Rot error 6.21 0.818 0.592

Test 2
Pos. err. 1.93 0.064 0.062
Rot error 12.43 0.652 0.538

Test 3
Pos. err. 3.53 0.096 0.118
Rot error 23.46 0.884 0.977

Table 6: Robustness to new viewpoints (full

pose): Mean position errors (in meters) and rotation

errors (in degrees) on the three test cases of the scene.

and more distant from the center of the scene (until 8 m

for the test case 3).

The obtained results are available in Table 6 and the

estimated poses are visible in Figure 13b. Our method

achieves a very good accuracy on test cases 1 and 2,

with a position error around 5 cm and an orientation

error around 5°. The errors are larger on test case 3,

but stay acceptable given the large distance between

the camera and the scene. Test cases 1 and 2 also show

the benefits of using the predicted ellipses. In test case

3, the inscribed ellipses are slightly better. This can

be explained by the fact that, at such distances, the

objects appear very small in the image, which reduces

the interest of predicting 3D-aware ellipses.

We also compared with the direct pose regression

method PoseLSTM [51]. In contrast to our ellipse pre-

diction module, this method has more difficulties to

generalize to the new viewpoints of the test images.

A noticeable difference which could explain the better

generalization of our ellipse prediction module, is that,

instead of using the whole image for prediction, it only

takes as input a local patch around the objects. Indeed,

this limits much more the change of appearance when

the viewpoint changes.

6 Analysis

6.1 Influence of the reconstructed ellipsoid

As our ellipsoidal models for objects depend on the el-

lipse observations used during the reconstruction, and,

in particular, their viewpoints, it is important for our

method to be able to learn the projection of more-or-

less any ellipsoids, and not only the one which fits the

best with the object. We verified it by repeating the ex-

periment described in Section 5.2 on the driller that we

approximated with three different ellipsoids, shown in

Figure 14. The results (in Table 7) are very similar for

each model, which indicates that the choice of ellipsoid

has no real influence.

We did a similar experiment on a scene with multi-

ple objects, for which we are able to estimate the full

6D-pose of the camera. We reconstructed an ellipsoidal

scene model from objects bounding box annotations in

three images, and then, randomly deformed the ellip-

soids into two other scene models (see Figure 15). We

retrained the ellipse prediction network for each model.

The results obtained are very similar in terms of pose

accuracy for all the three scene models (see Table 8),

which confirms again that our method does not strongly

depend on the fitting accuracy between the ellipsoidal

models and the real objects in 3D.

Fig. 14: Influence of the reconstructed ellipsoid:

The three different ellipsoids used in our experiment.

Ellipsoid 1 from Table 7 is in blue, ellipsoid 2 in green

and ellipsoid 3 in red.

Metric Reprojection error Position error ADD
Threshold 5 pixels 5 cm 10% of diam.
Ellipsoid 1 96.31 95.85 85.71
Ellipsoid 2 96.31 96.31 85.25
Ellipsoid 3 98.62 95.85 84.79

Table 7: Influence of the reconstructed ellipsoid:

Results obtained with different ellipsoidal models of the

driller.

Fig. 15: Influence of the reconstructed ellipsoid:

Three different scene models. The blue ellipsoids were

reconstructed from manual bounding box annotations

and the green and red ones were manually deformed.

Only three objects are used in the scene as it is sufficient

to recover the full camera pose.
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(a) Reconstructed scene model (the green ellipsoids) and tra-
jectories used to generate the images (blue for training and red
for testing).

(b) Estimated camera poses obtained with our method. The
ground truth camera trajectories are shown in black (test 1),
yellow (test 2) and white (test 3).

Fig. 13: Robustness to new viewpoints (full pose): Experiments on the virtual scene.

Median position Median orientation

error (cm) error (◦)

Ellipsoids 1 (blue) 3.17 2.37

Ellipsoids 2 (green) 3.10 2.44

Ellipsoids 3 (red) 2.87 2.15

Ellipses inscribed 4.81 3.58

Table 8: Influence of the reconstructed ellipsoid:

Median position and orientation errors obtained on

TLESS (Fig. 15) for three different scene models. The

three models provide similar results. The last line,

where the pose is estimated using the inscribed ellipses,

is given for comparison.

6.2 Influence of the background on ellipse prediction

As the ellipse prediction network takes a fixed-size crop

image as input, a certain proportion of this image corre-

sponds to background, depending on the object shape.

In order to have a better understanding of how much

this background interferes or contributes to the ellipse

prediction, we created two synthetic scenes with the

same central object but with different neighbouring ob-

jects and environments (see Figure 16). We then trained

our ellipse prediction network on the first scene and

tested it on both scenes. During training, we used three

different masking strategies (Figure 17):

1. Our traditional method with a square crop image of

the object.

2. With an elliptic mask obtained by projecting the el-

lipsoidal model of the object and used to randomize

the outside area.

3. With a ground truth object mask used to randomize

the background.

The randomized backgrounds were taken from COCO.

Figure 18 shows the evolution of the mean IoU obtained

for the driller and the cracker on the two sets of test

images at different times during the training.

The results obtained on the test images with the

same background as in training (left column of Fig-

ure 18) show relatively similar performances for all strate-

gies. On both objects, the strategy without mask seems

slightly better and the elliptic mask slightly worse. This

means that the network can benefit from the part of

background visible in our crop images.

The second test, on the images of the same ob-

ject in a different environment (right column), con-

firms this impression. This time, completely random-

izing the background works the best whereas training

with the original crop images gives the worst results.

The method of elliptic masks is in-between and seems

to still provide a good independence to the background

with results only slightly lower than the ground truth

masks. Nevertheless, the IoUs obtained in this second

experiment stay relatively high (around 85% without

masks). This means that our network is still able to

predominantly use the object appearance in order to

predict the ellipse. Of course, this will depend on the

shape of the object and the proportion of visible back-

ground in the crop images. This link between the en-

vironment around the object and the predicted ellipse

can thus be both beneficial or disadvantageous, depend-

ing on the usage. In our experiments, the scene remains

static, which explains why we did not use any masking

strategy. If a stronger independence to the background

is required, using the elliptic mask strategy seems a

good compromise as it does not require to know a pre-

cise 3D model of the object and takes advantage of the

ellipsoid reconstruction step.

6.3 Robustness to detection noise

An interesting point of our method is that the ellipse

prediction module is quite robust to noisy detection

boxes. We evaluated this ability on a scene with multi-
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Fig. 16: Influence of the background: The two syn-

thetic scenes with the driller as central object in differ-

ent environments, used to evaluate the influence of the

background on the ellipse prediction.

(a) No mask (b) Elliptic mask (c) GT mask

Fig. 17: Influence of the background: The three

masking strategies.
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Fig. 18: Influence of the background: Comparison

of the three masking strategies in terms of mean IoUs

obtained during 300 training epochs for the driller and

cracker objects. The left column shows the results ob-

tained on test images with the same background as in

the training images. The right columns show the results

obtained on test images with an unseen background.

ple objects taken from the T-LESS dataset [15], where

we simulated noisy detections. We randomly shifted the

corners defining each detection box. Figures 19 and 20

compare the influence of these noisy boxes on the in-

scribed ellipses and on the predicted ones.

On the one hand, it is easy to see that this spatial

noise has a direct impact on the inscribed ellipses. On

Fig. 19: Robustness to detection noise: Inscribed

ellipses (left) vs Predicted ellipses (right). Noisy BBs

used for cropping and extracting the ellipses used for

pose computation are in green. Ground truth projection

of the ellipsoids are in red and ground truth objects BBs

are in blue. Note that, despite noisy crops, the predicted

ellipses fit much better to the ground truth projections.

Fig. 20: Robustness to detection noise: Influence of

noisy BB detections on the estimated pose. Left: Ori-

entation error (in degrees). Right: Position error (in

cm). Both horizontal axes represent the half-range of

the noisy shifts applied to the BBs.

the other hand, the predicted ellipses seem more robust.

This is especially true for the objects marked with the

arrows in Figure 19. Even though the crop passed to the
prediction network does not contain the whole object,

the inferred ellipses are still correct. This robustness

is mostly achieved thanks to our data augmentation

which randomly shifts the image (equivalent to shifting

the detection box before cropping).

6.4 Comparison with the previous multi-bin loss

We compared our new loss formulation with the previ-

ous multi-bin approach. We reused the 11 objects which

were used in the experiment on 7-Scenes (Section 5.1).

The results obtained on sequence 2 are summarized in

Table 9, in terms of Intersection-over-Union between

the predicted ellipses and the ground truth ones. Our

new loss outperforms the multi-bin loss on each object,

which clearly shows the benefits offered by a more nat-

ural way of handling the angular discontinuity.
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Objects

Multi-Bin loss Sampling-based loss

Mean % Mean %

IoU IoU > 0.8 IoU IoU > 0.8

Tv (left) 0.912 1.0 0.96 1.0

Tv (right) 0.897 1.0 0.936 1.0

Xbox (left) 0.869 0.788 0.943 0.995

Xbox (right) 0.854 0.8 0.952 0.997

Chair (middle) 0.906 0.948 0.95 1.0

Chair (left) 0.888 0.802 0.902 0.831

Chair (right) 0.847 0.7 0.873 0.837

Chess clock 0.908 0.952 0.936 0.996

Video Games 0.946 1.0 0.945 1.0

Interrupter 0.918 0.997 0.935 1.0

Gamepad 0.93 0.96 0.941 1.0

Table 9: Comparison with the previous multi-bin

loss: Mean IoU scores of the predicted ellipses obtained

with the multi-bin loss and with our new loss based on

implicit function sampling. The objects are those used

in our experiment on 7-Scenes (Section 5.1).

6.5 Comparison of different embedding functions

We analyze here the performance of different embed-

ding functions used in the loss of our ellipse prediction

network. More precisely, we only changed the form of

the central matrix in Equation 5, which is responsible

for integrating the ellipse axes. The results in Table 10

were obtained on two objects: the synthetic driller, al-

ready used in the experiment described in subsection 6.2,

and the real driller from LINEMOD.

They show that the simplified version, with only

[α, β] on the diagonal, provides the best results. The

lower performances of the other expressions are proba-

bly caused by numerical instability encountered during

training and which can be observed in Figure 21. In

particular, the huge gradient values can be explained

by the form of the derivative of the expressions on the

diagonal of the central matrix, [−2
α3 ,

−2
β3 ] which can be-

come huge when α and β are small. In our case, α and

β are normalized between 0 and 1.

7 Discussion: class-level vs. instance-level

In our method, ellipse prediction is done at instance-

level while object detection is performed at class-level.

One might ask if a single multi-class ellipse prediction

network is conceivable or whether an end-to-end train-

ing for both object detection and ellipse predictions is

possible. Actually, in our case, two instances of the same

object do not necessarily share the same ellipsoidal rep-

resentation, as these are simply obtained from multi-

view reconstruction. That is why predicting an ellipse

coherently with the ellipsoidal 3D model of a specific

object requires instance-level awareness, whereas typi-

central Synthetic driller LINEMOD driller

matrix Mean % IoU Mean % IoU

form IoU > 0.8 IoU > 0.8[
1
α2 0

0 1
β2

]
0.873 0.86 0.866 0.90[

1
α 0

0 1
β

]
0.910 0.97 0.903 0.98[

α2 0

0 β2

]
0.919 0.98 0.903 0.97[

α 0

0 β

]
0.921 0.98 0.930 0.99

Table 10: Mean IoU and percentage of predicted ellipses

with an IoU greater than 0.8 with the ground truth

ellipse for different embedding functions. The evalua-

tion was performed for two objects: the orange synthetic

driller (Fig. 15), and the LINEMOD driller (Fig. 11).
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Fig. 21: Evolution of the gradient wrt. the ellipse pa-

rameters and the loss during training. Top row : The
quadratic equation of an ellipse is directly used as in-

termediate function representation. Bottom row : Our

proposed function (5) is used. Note the difference in

scale between the two rows.

cal object detection networks work at class-level. Train-

ing a network to differentiate two instances of the same

object is challenging and likely to lead to erroneous pre-

dictions when neither the visual aspect of the objects

nor the background provide enough information. Wrong

object instances associations would directly degrade the

estimated camera pose. Instead, we detect objects at

class-level, predict multiple ellipses hypotheses and dis-

ambiguate them in the RANSAC loop, which is more

likely to discard wrong correspondences.Also, this pro-

vides more flexibility for the detection part. In fact, any

existing pre-trained network for object detection can be

used (YOLO [37], Faster R-CNN [38], DETR [7], ...).
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8 Conclusion

In this paper, we proposed a method for object-based

camera pose estimation which does not require an ac-

curate model of the scene. Its main component is a

3D-aware ellipse prediction network with an improved

loss. By learning from different viewpoints, the net-

work is able to map the object appearance to ellipse

parameters which are coherent with the projection of

the object ellipsoidal abstraction, and thus, improves

the estimated camera pose. Three key aspects of the

method are its good invariance to the chosen ellipsoidal

models, its robustness to variance in the box detection

boundaries and its minimal amount of manual anno-

tations required, making the method of large practical

interest. While, the proposed method already provides

poses with a good accuracy, adding a camera pose re-

finement step is an interesting direction to explore in

future works. In particular, the question of establishing

a cost between two ellipses (detection vs. reprojection)

arises.
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Table 11: Full camera pose estimation: Proportion of correctly localized frames wrt. an error threshold on the

Chess scene. The columns represent different subsets of frames, according to the number of detected objects.
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35. Piasco, N., Sidibé, D., Demonceaux, C., Gouet-
Brunet, V.: Perspective-n-learned-point: Pose estima-
tion from relative depth. In: 30th British Ma-
chine Vision Conference 2019, BMVC 2019, Cardiff,
UK, September 9-12, 2019, p. 14. BMVA Press
(2019). URL https://bmvc2019.org/wp-content/

uploads/papers/0981-paper.pdf
36. Rad, M., Lepetit, V.: BB8: A scalable, accurate, robust

to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In: IEEE In-
ternational Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pp. 3848–3856. IEEE
Computer Society (2017)

37. Redmon, J., Farhadi, A.: YOLO9000: better, faster,
stronger. In: CVPR (2017)

38. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN:
towards real-time object detection with region proposal
networks. In: C. Cortes, N.D. Lawrence, D.D. Lee,
M. Sugiyama, R. Garnett (eds.) Advances in Neural In-
formation Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 91–99 (2015)

39. Rosenhahn, B., Brox, T., Cremers, D., Seidel, H.: A com-
parison of shape matching methods for contour based
pose estimation. In: R. Reulke, U. Eckardt, B. Flach,
U. Knauer, K. Polthier (eds.) Combinatorial Image Anal-
ysis, 11th International Workshop, IWCIA 2006, Berlin,
Germany, June 19-21, 2006, Proceedings, Lecture Notes
in Computer Science, vol. 4040, pp. 263–276. Springer
(2006). DOI 10.1007/11774938\ 21. URL https://doi.

org/10.1007/11774938_21
40. Rubino, C., Crocco, M., Bue, A.D.: 3d object localisation

from multi-view image detections. IEEE TPAMI (2018)
41. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.:

ORB: an efficient alternative to SIFT or SURF. In: D.N.
Metaxas, L. Quan, A. Sanfeliu, L.V. Gool (eds.) IEEE In-
ternational Conference on Computer Vision, ICCV 2011,
Barcelona, Spain, November 6-13, 2011, pp. 2564–2571.
IEEE Computer Society (2011)

42. Sarlin, P., DeTone, D., Malisiewicz, T., Rabinovich, A.:
Superglue: Learning feature matching with graph neural

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICCV.2019.00776
https://doi.org/10.1109/ICCV.2019.00776
https://bmvc2019.org/wp-content/uploads/papers/0981-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/0981-paper.pdf
https://doi.org/10.1007/11774938_21
https://doi.org/10.1007/11774938_21


Object-Based Visual Camera Pose Estimation From Ellipsoidal Model and 3D-Aware Ellipse Prediction 19

networks. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020, pp. 4937–4946. IEEE (2020)

43. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-
based localization by active correspondence search. In:
A.W. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato,
C. Schmid (eds.) Computer Vision - ECCV 2012 - 12th
European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 7572, pp. 752–765.
Springer (2012)

44. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective
prioritized matching for large-scale image-based localiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 39(9),
1744–1756 (2017)

45. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixé, L.: Un-
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