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Abstract
The so-called path-norm measure is considered
one of the best indicators for good generaliza-
tion of neural networks. This paper introduces
a proximal gradient framework for the training
of deep neural networks via 1-path-norm regu-
larization, which is applicable to general deep
architectures. We address the resulting nonconvex
nonsmooth optimization model by transforming
the intractable induced proximal operation to an
equivalent differentiable proximal operation. We
compare automatic differentiation (backpropaga-
tion) algorithms with the proximal gradient frame-
work in numerical experiments on FashionMNIST
and CIFAR10. We show that 1-path-norm regu-
larization is a better choice than weight-decay for
fully connected architectures, and it improves the
robustness to the presence of noisy labels. In this
latter setting, the proximal gradient methods have
an advantage over automatic differentiation.

1. Introduction
In deep learning, assessing the generalization ability of
neural networks is essential. This is reflected by the interest
of the community in finding complexity measures to predict
generalization, e.g., Jiang et al. [1]. One measure gaining
prominence is the path-norm measure [2], which quantifies
the complexity or length of the paths taken by the network
during training. Comprehensive numerical experiments [3]
found that among norm-based and margin-based measures,
the path-norm of a neural network is the most positively-
correlated with generalization (see Table 2 therein).

Among the family of path-norm complexity measures, the
1-path-norm stands out as the only one providing width-
independent generalization bounds for ReLU networks [2].
This is a striking property, as any excess-risk bound depend-
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ing on the width of the network is otherwise incapable of
explaining the good generalization of overparametrized neu-
ral networks, see for example Neyshabur et al. [4, 5], Novak
et al. [6]. Notwithstanding, the path-norm expression is
nonconvex and nonsmooth, making it hard to handle in an
optimization framework. This might pose great difficulty to
the automatic-differentiation (AD) paradigm: software such
as PyTorch [7], or TensorFlow [8], may compute incorrect
gradient information of compositions of non-differentiable
functions [9, 10].

Our contributions. •We establish a theoretical connection
that relates the 1-path-norm to the Lipschitz constant of
networks with arbitrary depth with either differentiable or
ReLU activations (Theorem 1). This significantly general-
izes the result of Latorre et al. [11, Theorem 1] for shallow
networks with differentiable activations.

•We introduce an approximate proximal gradient scheme
for 1-path-norm regularization that requires only for-
ward/backward passes through a modified network architec-
ture (Algorithm 4). It is based on a differentiable reformula-
tion of the proximal mapping problem, and uses first-order
methods to avoid computing the exact proximal mapping.
We verify that this leads to better solutions than AD.

• We study the effects of 1-path-norm regularization on
image classification tasks. On FashionMNIST [12] and
CIFAR10 [13] we show how 1-path-norm regularization
improves the classification error of Fully connected archi-
tectures, and leads to more robust models in the presence
of noisy data, compared to L2 (weight decay) or no regu-
larization. We show that AD as optimizer performs well in
terms of accuracy, compared to proximal methods, despite
the lack of theory. However, the proximal gradient methods
perform better than AD when we evaluate the robustness to
random perturbations of the input data.

2. Preliminaries and Problem Statement
For an L-layer feedforward neural network fW (x) :=
WLσ(WL−1σ(· · ·σ(W 1x) · · · )) with a differentiable ac-
tivation function σ : R → R and weight matrices
with dimensions determined by a sequence of layer sizes1

1Here, the 0-th and L-th layer correspond to the input and
output layer, respectively.
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d0, . . . , dL−1, dL, its 1-path-norm [2] can be defined as:

P1(W ) := 1
T
∣∣WL

∣∣∣∣WL−1∣∣ · · · ∣∣W 1
∣∣1 (1)

where
∣∣W `

∣∣ is the matrix obtained by entry-wise application
of the absolute value function, and the symbol 1 denotes
an all-ones column vector with dimension inferred by the
context. One of the key properties of the 1-path-norm, is
that it controls the smoothness of the network as it upper
bounds its Lipschitz constant. This is known in the case of
shallow networks with differentiable activation functions
[11]. This result is more general and holds for networks of
arbitrary depth and or networks with ReLU activations.

Theorem 1. Let fW : Rd0 → R, fW (x) :=
WLσ(WL−1σ(· · ·σ(W 1x) · · · )) be a network such that
the gradient of the activation σ is globally bounded between
zero and one, i.e., 0 ≤ σ′(x) ≤ 1 or σ(x) = ReLU(x).
Choose the `∞-norm for the input space and | · | for the out-
put space. The Lipschitz constant of the network, denoted
by LW is bounded as follows:

LW ≤ P1(W ) ≤
L∏
`=1

‖W `‖∞. (2)

The right-hand-side of Equation (2) is usually referred to as
the trivial bound based on the product of the norms of each
weight matrix. Precisely, Theorem 1 states that the 1-path-
norm is a better estimator of the `∞-Lipschitz constant of the
network, than the trivial product bound, in the case of single
output. The proof is provided in Appendix A. This also
motivates the use of the 1-path-norm as a regularizer, given
that the the Lipschitz constant is related to the generalization
and robustness of the network [14–17].

We can succintly describe the 1-path-norm of a network
(1) as the sum of the absolute value of the product of the
weights along each path from input to output layer. From
now on we will refer to any such choice of one neuron per
layer as one path. The following is the 1-path-norm regu-
larized empirical risk minimization problem on n labeled
training samples (xi, yi) ∈ Rd0 ×RdL , loss function L and
regularization parameter λ ∈ R≥0:

min
W

1

n

n∑
i=1

L (fW (xi), yi) + λP1(W ) (3)

When L ≥ 2, common losses L, such as the cross-entropy,
lead to a composite optimization objective in (3) that is
non-convex and non-smooth due to the presence of absolute
values and products. Obviously, such a model cannot be
solved globally.

Thus, instead of global optimality, we turn to the task of de-
vising algorithms with non-asymptotic rates of convergence
to first-order stationarity via the proximal gradient approach.

Let us recall the definition of the proximal mapping, a well-
known concept in optimization [18], in the context of the
1-path-norm: [19, Definition 12.23]:

proxλP1(W ) ∈ argmin
Z

1

2
‖Z −W‖2F + λP1(Z). (4)

For the type of problem in consideration, eq. (4) constitutes
a highly challenging task because it involves solving a non-
convex and non-smooth problem. Indeed, in the case of the
1-path-norm, an efficient implementation of the proximal
mapping is only known for the case of linear functions and
shallow neural networks [11], which hinders the applica-
bility of 1-path-norm regularization for contemporary deep
network architectures used in practice.

Proximal-gradient type methods are the only first-order al-
gorithms with guarantees of convergence for composite
non-smooth non-convex problems [20]. Hence, it is worth
exploring their use for 1-path-norm regularization, and de-
cide if it is a better choice than the automatic differentiation
approach. However, the intractability of the proximal opera-
tor of the 1-path-norm leaves as only alternative the option
of replacing it with principled heuristics.

Algorithm 1 1-PN regularization using AD (Path-AD)
1: for t = 1, . . . , T do
2: Sample i1, . . . , ib ∼ Unif[n]
3: Wt+1 ← Wt −
γ∇W

[
1
b

∑b
j=1 L

(
fWt

(xij ), yij
)

+ λP1(Wt)
]

4: return WT

Algorithm 2 (Stochastic) Proximal Gradient Descent
1: for t = 1, . . . , T do
2: Sample i1, . . . , ib ∼ Unif[n]

3: Wt+1/2 ←Wt − γ∇W 1
b

∑b
j=1 L

(
fWt(xij ), yij

)
4: Wt ← proxγλP1

(Wt+1/2)

5: return WT

3. Approximate Prox-Grad Scheme
We propose three strategies to optimize the objective in
eq. (3). The first one is to use automatic differentiation
directly on such objective (Algorithm 1), together with an
off-the-shelf first-order optimization algorithm like SGD
or Adam [21]. The second one is to follow the Proximal
Gradient Template (Algorithm 2), and replace the proximal
mapping by a few steps of automatic differentiation applied
to the non-smooth objective defining it (4). This leads to
Algorithm 3 (Prox-AD), where the approximation of the
prox occurs between line 4 and line 10. The third strategy
we propose relies on the following:
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Lemma 1. Let P be a function satisfying P (W ) = P (|W |).
Its proximal mapping satisfies

proxP (W ) = sign(W )� prox+
P (|W |)

prox+
P (X) := argmin

Z∈Rd
+

1

2
‖X − Z‖2F + P (Z).

(5)

We present a proof of Lemma 1 in Appendix B. Clearly,
the 1-path-norm P1 satisfies the conditions of Lemma 1,
as it defined on the absolute values of the weight matrices
|WL|, . . . , |W 1|. This result states that instead of solving
proxλP1

, we can alternatively solve prox+
λP1

which is a con-
strained optimization problem over the nonnegative orthant,
with a differentiable objective. Indeed, over nonnegative
weight matrices, the 1-path-norm is identical to the func-
tion 1TWL · · ·W11 which is infinitely differentiable. Our

Algorithm 3 1-path-norm regularization using AD for
the Proximal Mapping. (Prox-AD)

1: for t = 0, . . . , T − 1 do
2: Sample i1, . . . , ib ∼ Unif[n]

3: Wt+1/2 ←Wt − γ∇W 1
b

∑b
j=1 L

(
fWt

(xij ), yij
)

4: if t = 0 (mod B) then
5: Z0 = Wt+1/2

6: for t′ = 0, . . . , T ′ − 1 do
7: Zt′+1 = Zt −
γ′∇Z

[
1
2‖Wt+1/2 − Zt′‖22 + λγP1(Zt′)

]
8: Wt+1 = ZT ′

9: else
10: Wt+1 = Wt+1/2

11: return WT

third strategy Prox-DIF (Algorithm 4) follows the proximal
gradient template, but computes an approximation of the
proximal mapping of the 1-path-norm using Projected Gra-
dient Descent on the objective that defines prox+

λP1
(c.f.,

eq. (5), Lines 4 and 12 in Algorithm 4), and uses the sign of
the weights to recover an approximate solution of proxλP1

(c.f., Line 10 in Algorithm 4), as Lemma 1 indicates.

Efficiently computing the 1-path-norm for arbitrary ar-
chitectures. We can efficiently compute the 1-path-norm
as it is equivalent to the following process: (1) replace the
activations in the network with the identity σ(x) = x; (2)
replace the weights by their absolute values; (3) remove
biases; (4) compute the forward pass of the resulting (linear)
network on the vector of all-ones 1; and (5) sum the outputs.
For example, in the case of CNNs, this avoids transforming
the kernel matrices into their equivalent representation as a
huge doubly circulant matrix (c.f., Sedghi et al. [22]), which
would be inefficient memory-wise.

Algorithm 4 Differentiable Proximal training of 1-path-
norm regularized NNs (Prox-DIF )

1: for t = 0, . . . , T − 1 do
2: Sample i1, . . . , ib ∼ Unif[n]

3: Wt+1/2 ←Wt − γ∇W 1
b

∑b
j=1 L

(
fWt(xij ), yij

)
4: if t = 0 (mod B) then
5: Z0 = |Wt+1/2|
6: for t′ = 0, . . . , T ′ − 1 do
7: Zt′+1/2 = Zt −
γ′∇Z

[
1
2‖|Wt+1/2| − Zt′‖22 + λγP1(Zt′)

]
8: Zt′+1 = max(0, Zt′+1/2)

9:
10: Wt+1 = sign(Wt+1/2)� ZT ′
11: else
12: Wt+1 = Wt+1/2

13: return WT

4. Experiments
Proximal Mapping approximation. We compare the per-
formance of the two proposed algorithms that approximate
the proximal mapping of the 1-path-norm. This corresponds
to line 4 in algorithm 3, and lines 4 and 12 in algorithm 4. In
Figure 1, we observe that for larger values of the regulariza-
tion parameter λ, Prox-DIF (Algorithm 4) has an advantage
over the baseline Prox-AD (Algorithm 3), which uses auto-
matic differentiation directly on the non-smooth objective
eq. (4). Prox-DIF reaches lower values of the objective
much faster. The differentiability of the Prox-DIF objective
allows the use of momentum more effectively. In the case of
shallow networks, where the optimum is known (cf. Latorre
et al. [11, Algorithm 2]), Prox-DIF almost reaches such
value. Nevertheless, as observed in the bottom row of fig. 1,
for really small values of λ, the difference between the two
methods is pretty small. This suggests that for problems
where only a small amount of regularization is needed, there
might be no advantage for Prox-DIF .

Impact on the Generalization Error. We train fully-
connected networks and CNNs on the FashionMNIST and
CIFAR10 benchmark datasets, using different types of
regularization. We plot the validation accuracy as a function
of the training epoch in Figure 2. We observe that for fully
connected networks, the 1-path-norm is a significantly
better choice than no-regularization or weight-decay
(L2 regularization). We don’t observe major differences
among the 1-path-norm regularization methods, other than
Prox-DIF achieving slightly less accuracy, or Prox-AD
achieving a slightly more accurate MLP in CIFAR10.
This is probably due to λ = 10−6 and λ = 10−3 being
small values which lead to higher accuracy. For CNNs,
1-path-norm regularization struggles to improve over weight
decay. This can be attributed to the fact that CNNs are
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Figure 1. Objective value of the proximal mapping 0.5‖W−Z‖2+
λP1(Z) vs. iteration, using the inner-most loop in the algorithms
Prox-AD (Algorithm 3) and Prox-DIF (Algorithm 4), for randomly
initialized W . Averaged over 5 random initializations.

Figure 2. Validation accuracy vs. epoch, for different training
algorithms. Averaged over 5 independent runs.

Figure 3. Absolute difference in test accuracy with regards to the
unregularized model vs image noise level, for different training
algorithms. Averaged over 5 independent runs.

equivalent to highly-sparse fully connected networks [22].
Due to the reduced parameter count in CNNs, the number
of different paths from input to output is small by design.
As the 1-path-norm controls complexity by reducing the
number of paths it can be expected to perform poorly for
CNNs. As such, 1-path-norm regularization might be more
suitable for architectures like MLP-mixer [23].

Robustness to Noise. We study the effect of regularization
in the presence of noisy data. Uniform noise is sampled from
an `∞-ball of varying radius (referred to as the noise level)
and added to the test images. In this setting, the 1-path-norm
regularization improves all fully-connected networks and
achieves significantly higher accuracy than weight-decay or
no regularization on the majority of noise levels, for both
datasets. In MLPs we observe that the proximal methods
Prox-AD and Prox-DIF are better than Path-AD consis-
tently, in particular for CIFAR10 it is crucial to use them to
achieve higher robustness, with Prox-DIF achieving higher
robustness over Prox-AD for large levels of the noise, in
particular visible for FashionMNIST-MLP2 and CIFAR10-
MLP3. This is consistent with the sparsity-inducing prop-
erty of Prox-DIF (line 8). For CNNs 1-path-norm fails to
provide benefits, probably due to the already highly sparse
structure of the CNNs. Our goal is not to provide state-of-
the-art numbers for robustness, rather, regularization can
be used together with Adversarial Training [24] to enhance
robustness, as is done for example in [25].
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5. Conclusions
Our results indicate that 1-path-norm regularization clearly
outperforms weight-decay on robustness and generalization
tasks using fully-connected networks (MLPs). On the other
hand, for highly sparse architectures like CNNs the effect is
more muted or negative. Indeed, 1-path-norm works better
when the number of effective paths in the network is large
i.e., MLPs or MLP-Mixer [23]. Nevertheless, the difference
between different optimizers for 1-path-norm regularization
seems to be small, but appear more noticeable when the
sparsity of the network is crucial, e.g., robustness against
noise in the data. Hence, the use of AD for 1-path-norm
regularization is not discouraged despite its lack of theory.

1-path-norm regularization is not without drawbacks. First,
an initial round of tuning is required for each model archi-
tecture to obtain satisfactory parameters for the proximal
approximation method. Secondly, the computational cost
of the proximal step might slow down training, so a bal-
ance struck by skipping the proximal map in some iterations
[26] or reducing the number of iterations for the proximal
approximation step. Thirdly, 1-path-norm increases expo-
nentially with regards to network depth, which might cause
numerical problems for 1-path-norm regularization of really
deep neural networks. This issue requires further attention
and is left for future work. Finally, it does not consistently
improve the robustness in the noisy-labels task.
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[14] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and
Miguel R. D. Rodrigues. Robust large margin deep
neural networks. Trans. Sig. Proc., 65(16):4265–4280,
aug 2017. ISSN 1053-587X. doi: 10.1109/TSP.2017.
2708039. URL https://doi.org/10.1109/
TSP.2017.2708039.

[15] Cem Anil, James Lucas, and Roger Baker Grosse.
Sorting out lipschitz function approximation. In Inter-
national Conference on Machine Learning, 2018.

[16] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and
Michael J. Cree. Regularisation of neural networks by
enforcing lipschitz continuity. Mach. Learn., 110(2):
393–416, feb 2021. ISSN 0885-6125. doi: 10.1007/
s10994-020-05929-w. URL https://doi.org/
10.1007/s10994-020-05929-w.

[17] Patricia Pauli, Anne Koch, Julian Berberich, Paul
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A. Proof of theorem 1
We prove theorem 1 by first showing that the 1-path-norm is upper bounded by the product-of-norms lemma 2 and then
showing that the 1-path-norm upper bounds the Lipschtiz constant of the network lemma 3.

Lemma 2. Let W = [W 1, . . . ,WL] be the weight matrices of a fully-connected network with a single output. Then

P1(W ) ≤ ΠL
`=1‖W `‖∞ (6)

Proof. We proceed by induction. The base case corresponds to shallow networks and is already known as Latorre et al. [11,
Theorem 1.]. Assume that the result is true for L layers. Let W = [W 1, . . . ,WL+1] where WL+1 ∈ R1,dL is a matrix with
a single row. In this case we have

P1(W ) = 1
T |WL+1||WL||WL−1| . . . |W 1|1

=

dL∑
i=1

|WL+1
i ||WL[i, :]||WL−1| . . . |W 1|1

=

dL∑
i=1

|WL+1
i |P1(WL[i, :], . . . ,W 1)

≤
dL∑
i=1

|WL+1[1, i]| ‖WL[i, :]‖1︸ ︷︷ ︸
≤‖WL‖∞

ΠL−1
`=1 ‖W

`‖∞

≤
dL∑
i=1

|WL+1[1, i]|‖WL‖∞ΠL−1
`=1 ‖W

`‖∞

= ‖WL+1[1, :]‖1‖WL‖∞ΠL−1
`=1 ‖W

`‖∞
= ΠL+1

`=1 ‖W
`‖∞

(7)

where the second equality is due to the definition of the path-norm, the first inequality is due to the induction hypothesis
and the second inequality is due to the definition of the∞-operator norm ‖W‖∞ = maxdi=1 ‖W [i, :]‖1 is the maximum
`1-norm of the rows. Note that in the last two lines ‖WL+1[1, :]‖1 denotes the `1-norm as a vector while ‖WL+1‖∞ denotes
the∞-operator norm of WL+1 as a matrix with a single row. �

Lemma 3. Let fW : Rd0 → R, fW (x) = WLσ(WL−1σ(. . . σ(W 1x) . . .) be a neural network where WL ∈ RdL×1, i.e.,
a single-output network. In the case of a differentiable activation function suppose that that the derivative of the activation
is globally bounded between zero and one. For ReLU, we have that the subgradient satisfiest 0 ≤ σ′(x) ≤ 1. Its Lipschitz
constant, denoted as LW , with respect to the `∞ norm (for the input space) and absolute-value (for the output space)
satisfies the inequality LW ≤ P1(W ).

Proof. In the case of differentiable activation functions, we have that the `∞-Lipschitz constant of fW is equal to the
supremum of the `1-norm of its gradient, over its domain (c.f., Latorre et al. [11, Theorem 1]). In the case of ReLU
activations, Chen et al. [27, Lemma 1] ensures that the `∞-Lipschitz constant is still equal to the supremum of the `1-norm
of the “gradient” computed with the backpropagation algorithm, which applies the chain-rule even in the presence of the
non-differentiable ReLU activation. Despite not being the true gradient, we will denote this element as∇fW (x). We use
the notation Df = ∇>f for the Jacobian (transpose of gradient).

Denote by f `W (x) the value of the `-th hidden layer (pre-activation) in the forward pass over the network, that is:

f `W (x) = W `σ(W `−1σ(. . . σ(W1x) . . .)) (8)

8
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We now upper bound the Lipschitz constant as follows, using Latorre et al. [11, Theorem 1] and the chain rule:

LW = sup
x
‖∇fW (x)‖1 (9)

= sup
x

sup
‖t‖∞≤1

DfW (x)t (10)

= sup
x

sup
‖t‖∞≤1

WL Diag(σ′(fL−1W (x)))WL−1 Diag(σ′(fL−2W (x))) . . .W 1t (11)

≤ sup
0≤s`≤1

sup
‖t‖∞≤1

WL Diag(sL)WL−1 Diag(sL−1) . . .W 2 Diag(s2)W 1t (12)

≤ sup
0≤s`≤1

sup
‖t‖∞≤1

ŴLŴL−1ŴL−2 . . . Ŵ 2W 1t (13)

where Ŵ ` = W ` Diag(s`). We see tthe right hand side of eq. (9) is equivalent to evaluating a fully connected linear neural
network on the input t, and then taking the supremum over all possible values of t i.e., −1 ≤ t ≤ 1 and s` = σ′(fL−1W (x)),
so 0 ≤ s` ≤ 1 by our assumption on the gradient of the activation (or subgradient in the case of ReLU). The output of a
linear neural network precisely corresponds to summing the product of weights over all input-output paths. We arrive at the
following:

LW ≤ sup
0≤s`≤1

sup
‖t‖∞≤1

∑
(i0,...,iL)

W 1[i1, i0]ti0ΠL
`=2Ŵ

`[i`, i`−1] (14)

LW ≤ sup
0≤s`≤1

sup
‖t‖∞≤1

∑
(i0,...,iL)

W 1[i1, i0]ti0ΠL
`=2W

`[i`, i`−1]s`i`−1
(15)

LW ≤
∑

(i0,...,iL)

ΠL
`=1|W `[i`, i`−1]| = P1(W ) (16)

�

B. Proof of lemma 1
Let P be a function satisfying P (W ) = Q(|W |). Denote by � the element-wise multiplication operation. First note that

‖sign(X �W )�X −W‖2 ≤ ‖X −W‖2 (17)

Too see this there are two cases. In the first case Xi has the same sign as Wi so sign(XiWi) = 1 and (sign(XiWi)Xi −
Wi)

2 = (Xi − Wi)
2. In the second case, they have opposite signs, then |sign(XiWi)Xi − Wi| = | − Xi − Wi| ≤

|Xi|+ |Wi| = |Xi−Wi|. Now, due to the assumption we also have P (sign(X �W )�X) = P (X) i.e., P doesn’t change
after changing signs of variables. With these observations we have:

1

2
‖sign(X �W )�X −W‖2 + P (sign(X �W )�X) ≤ 1

2
‖X −W‖2 + P (X) (18)

this implies

min
X

1

2
‖sign(X �W )�X −W‖2 + P (sign(X �W )�X) ≤ min

X

1

2
‖X −W‖2 + P (X) (19)

Letting sign(X �W )�X = X̂ we see that the opposite inequality also holds. Hence,

min
X

1

2
‖sign(X �W )�X −W‖2 + P (sign(X �W )�X) = min

X

1

2
‖X −W‖2 + P (X) (20)

Now, we modify the objective function in the left hand side as follows:

1

2
‖sign(X �W )�X −W‖2 + P (sign(X �W )�X)

=
1

2
‖sign(W )� (sign(X)�X − |W |)‖2 + P (sign(X �W )�X)

=
1

2
‖sign(X)�X − |W |‖2 + P (sign(X)�X)

(21)
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Table 1. Layer dimensions of fully-connected networks.

Model Dataset Dimensions

Input Hidden layers Output

MLP2 FMNIST [28, 28, 1] [500, 500] 10
MLP3 FMNIST [28, 28, 1] [500, 500, 500] 10
MLP3 CIFAR10 [32, 32, 3] [1024, 512, 256] 10

Noting that sign(X)�X is a matrix with nonnegative entries, we have the following:

min
X≥0

1

2
‖X − |W |‖2 + P (X) = min

X

1

2
‖X −W‖2 + P (X) (22)

Hence we see that both objective functions defining proxP (W ) and prox+
P (|W |) have the same value. By the previous

arguments the way to transform an element of prox+
P (|W |) into an optimal solution of proxP (W ) is by multiplying by the

sign of W , this follows from the last equation in eq. (21). This concludes the result.

C. Experimental details and additional plots
Model Architectures. We now detail the specific model architectures referred to in section 4. The dimensions of the
multilayer perceptrons trained on both Fashion-MNIST and CIFAR-10 are listed in the table below. A single convolutional
neural network architecture (CNN6) was trained on CIFAR-1. The CNN model consists of an input layer followed by
four convolutional layers and two fully connected layers. The convolutional layers each have a kernel of size 3× 3, and
respectively had 32, 32, 64, 64 output channels. A max pooling layer with 2× 2 kernel size was applied after each pair of
convolutional layers. Then, two fully-connected layers were added, respectively of widths 1600 and 512. ReLu activation
was applied after each convolutional layer except the last fully connected layer. No dropout was used for any of the models,
as we aimed to isolate the effects of each regularization method. All models were trained with batches of 64 samples.

Hyperparameter selection. Training hyperparameters, such as step size γ, momentum β and regularization strength λ were
selected through independent grid search for each regularization method, model architecture and dataset. An initial round of
grid search was run on a wide grid of parameters for 50 training epochs on 3 independent runs. The best hyperparameters
were then selected for each model, then the models were retrained for 200 training epochs on 5 independent runs. Model
training included early stopping, by which each model’s training was halted when maximal validation accuracy was reached.
All grid searches included both stochastic gradient descent (SGD) and Adam optimizers.

Additional parameters were required by the Prox-AD (algorithm 3) and Prox-DIF (algorithm 4) regularization methods
for the optimizer of the proximal objective; namely the inner step size γ′ and inner momentum β′. These parameters
were pre-tuned by minimizing the proximal objective eq. (4) on randomly initialized network weights and a wide range of
regularization strengths λ′ = λ · γ on for each architecture (refer to algorithm 1 for notation and Figure 1 for examples).
During grid search for the outer loop parameters, the inner loop optimizer and parameters were selected for both Prox-AD
and Prox-DIF as those minimizing the average final proximal objective after 250 iterations of Prox-AD over 5 independent
runs. Once the best combination of the above parameters were selected, a third and final round of grid search was performed
to tune the number of inner iterations T ′ and skip-prox parameter B. The values for the skip-prox parameter were chosen as
divisors of the total number of batches so that every epoch training would end with a proximal step. All selected parameters
are shown in the table below.

Noise robustness. Training hyperparameters were selected at noiseless conditions then reused for the noise robustness
experiments at all noise levels, since the same parameters were often found to yield the highest performance under all noise
conditions. The robustness to noisy data of different regularization methods was compared by evaluating the accuracy of
each trained model on the same test set at different noise levels, as shown in (fig. 3-bottom). Examples of images at varying
amounts of image corruption with uniform random noise are shown below.
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Table 2. Training parameters selected for each regularization method.

Model Dataset Regularization Hyperparameters

MLP2 FMNIST

None SGD; γ = .1, β = .6

L2 SGD; γ = .1, β = .6, λ = 10−4

Path-AD SGD; γ = .1, β = .9, λ = 10−6

Prox-AD
Outer: SGD; γ = .1, β = .9, λ = 10−3

Inner: Adam; γ′ = 10−4, T ′ = 250, B′ = 125

Prox-DIF
Outer: SGD; γ = .1, β = .9, λ = 10−3

Inner: Adam; γ′ = 10−4, T ′ = 250, B′ = 125

MLP3 FMNIST

None SGD; γ = 10−2, β = .9

L2 SGD; γ = .1, β = .5, λ = 10−3

Path-AD SGD; γ = .1, β = .9, λ = 10−6

Prox-AD
Outer: SGD; γ = .1, β = .8, λ = 10−4

Inner: Adam; γ′ = 10−3, T ′ = 250, B′ = 125

Prox-DIF
Outer: SGD; γ = .1, β = .9, λ = 10−3

Inner: Adam; γ′ = 10−3, T ′ = 250, B′ = 125

MLP3 FMNIST

None SGD; γ = .1, β = .1

L2 SGD; γ = .1, β = .1, λ = 10−4

Path-AD SGD; γ = .1, β = .8, λ = 10−7

Prox-AD
Outer: SGD; γ = .1, β = .7, λ = 10−3

Inner: Adam; γ′ = 10−3, T ′ = 250, B′ = 125

Prox-DIF
Outer: SGD; γ = .1, β = .7, λ = 10−3

Inner: Adam; γ′ = 10−3, T ′ = 250, B′ = 125

MLP3 FMNIST

None SGD; γ = 10−2, β = .9

L2 SGD; γ = 10−2, β = .9, λ = 10−4

Path-AD SGD; γ = 10−2, β = .9, λ = 10−9

Prox-AD
Outer: SGD; γ = 10−2, β = .9, λ = 10−5

Inner: Adam; γ′ = 10−4, T ′ = 200, B′ = 125

Prox-DIF
Outer: SGD; γ = 10−2, β = .9, λ = 10−5

Inner: Adam; γ′ = 10−4, T ′ = 200, B′ = 125

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 4. Examples of noisy images generated from the Fashion-MNIST dataset (top) and the CIFAR-10 dataset (bottom), at various
noise levels ranging from 0% to 90%.
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