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Abstract

State-space models (SSMs), particularly Mamba, emerge as an efficient Trans-
former alternative with linear complexity for long-sequence modeling. Recent
empirical works demonstrate Mamba’s in-context learning (ICL) capabilities com-
petitive with Transformers, a critical capacity for large foundation models. How-
ever, theoretical understanding of Mamba’s ICL remains limited, restricting deeper
insights into its underlying mechanisms. Even fundamental tasks such as linear
regression ICL, widely studied as a standard theoretical benchmark for Transform-
ers, have not been thoroughly analyzed in the context of Mamba. To address this
gap, we study the training dynamics of Mamba on the linear regression ICL task.
By developing novel techniques tackling non-convex optimization with gradient
descent related to Mamba’s structure, we establish an exponential convergence
rate to ICL solution, and derive a loss bound that is comparable to Transformer’s.
Importantly, our results reveal that Mamba can perform a variant of online gradient
descent to learn the latent function in context. This mechanism is different from
that of Transformer, which is typically understood to achieve ICL through gradient
descent emulation. The theoretical results are verified by experimental simulation.

1 Introduction

State-space models (SSMs), notably Mamba (Gu and Dao, 2024), have recently emerged as com-
pelling alternatives to Transformer-based architectures (Vaswani et al., 2017). Mamba integrates
gating, convolutions, and state-space modeling with selection mechanisms, enabling linear-time
complexity. This effectively addresses the quadratic computational costs typically associated with
self-attention mechanisms in Transformers. Consequently, Mamba demonstrates superior efficiency
in processing long sequences while maintaining or even surpassing Transformer performance across
diverse benchmarks (Gu and Dao, 2024; Dao and Gu, 2024; Patro and Agneeswaran, 2024; Liu et al.,
2024; Ahamed and Cheng, 2024; Li et al., 2024a,b).

In-context learning (ICL) (Brown et al., 2020) is a powerful paradigm that enables models to
generalize to unseen tasks by dynamically leveraging contextual examples (such as input-output
pairs) without task-specific fine-tuning. This capability has become a defining characteristic of large
foundation models, significantly enhancing their flexibility and adaptability. While extensive research
has provided substantial insights into Transformer-based ICL mechanisms (Garg et al., 2022; Gatmiry
et al., 2024; Sander et al., 2024; Zheng et al., 2024; Zhang et al., 2025), the principles underlying

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Mamba’s ability to perform in-context learning remain largely unexplored, highlighting a compelling
research gap.

Recent empirical studies have examined Mamba’s (ICL) capabilities, showing it matches Trans-
formers on many standard ICL tasks, while surpassing them in specialized scenarios like sparse
parity (Park et al., 2024; Grazzi et al., 2024). Bondaschi et al. (2025) theoretically analyzed its
representational capacity for in-context learning of Markov chains, and Li et al. (2025a) investigated
binary classification tasks with outliers. (Yang et al., 2024, 2025; Behrouz et al., 2025b,a) leverage
the connection between SSMs and online learning to design new architectures. However, even the
linear regression model, a canonical setting widely used for theoretical analysis of Transformer-based
ICL mechanisms, remains theoretically underexplored in the context of Mamba. To fill this gap, we
analyze Mamba’s training dynamics on in-context linear regression tasks. More precisely, following
the previous ICL analysis in Transformers (Garg et al., 2022; Zhang et al., 2024; Ahn et al., 2023),
this paper focuses on a data generative model with N input-output pairs ({xi, yi}Ni=1) and a query
input (xq) satisfying y = f(x) = w⊤x, where x denotes the input and y denotes the output, and
w is randomly sampled from Gaussian distribution, termed the context. In this work, we develop a
rigorous theoretical framework to analyze how randomly initialized Mamba models, when trained
through gradient descent, evolve to implement in-context learning. We demonstrate that the trained
Mamba architecture dynamically leverages the input context to perform implicit estimation of the
vector w. This estimation is achieved through hidden state updates that mimic online gradient descent
steps, finally implementing prediction for yq = f(xq) = w⊤xq. We also provide a loss bound that
is comparable to Transformers’. Our contributions are summarized as follows:

• We construct a Mamba architecture (S6: S4 with selection) capable of ICL, establishing
its exponential convergence rate to ICL solution, and further derive the loss bound after
convergence. The loss matches that of Transformers.

• Technically, we develop novel techniques to address optimization challenges induced by
random initialization and gradient descent, rigorously characterizing Mamba’s training
dynamics when trained from scratch.

• We reveal how trained Mamba achieves in-context linear regression by progressively aligning
its hidden states with the context through sequential token processing. This finding provides
a new perspective for understanding Mamba’s ICL mechanism, distinct from Transformer-
based approaches. All the above results are verified by experiments.

2 Related Work

In-Context Learning The seminal work of Brown et al. (2020) demonstrated the in-context learning
capability in Transformers, showing their ability to infer functional mappings from input-output
exemplars without weight updates. Garg et al. (2022) initiated the investigation of ICL from the
perspective of learning particular function classes. Following these, a line of research analyze this
phenomenon through the lens of algorithm imitation: Transformers can be trained to implement
various learning algorithms that can mimic the latent functions in context, including: a single step of
gradient descent (Von Oswald et al., 2023; Akyürek et al., 2023), statistical algorithms (Bai et al.,
2023), reinforcement learning algorithm (Lin et al., 2024), multi-step gradient descent (Gatmiry et al.,
2024), mesa-optimization (Zheng et al., 2024), Newton’s method (Giannou et al., 2025), weighted
preconditioned gradient descent (Li et al., 2025b), in context classification (Bu et al., 2024; Shen
et al., 2024; Bu et al., 2025) among others.

Recent work extends ICL analysis beyond Transformers: (Lee et al., 2024; Park et al., 2024)
empirically compared popular architectures (e.g., RNNs, CNNs, SSMs, Transformers) on synthetic
ICL tasks, identifying capability variations across model types and task demands. Tong and Pehlevan
(2024) demonstrate that MLPs can learn in-context a series of classical tasks such as regression and
classification with less computation than Transformers. Sushma et al. (2024) show that state space
models augmented with local self-attention can learn linear regression in-context. Unlike existing
research on ICL, this work focuses on the ICL mechanism of Mamba (specifically S4 with selection)
and its training dynamics.

Theoretical Understanding of SSMs As Gu et al. (2022) introduce structured state spaces models
in modeling long sequence and further be extended to Mamba (Gu and Dao, 2024), which gained
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significant attention as alternatives to Transformers, extensive research has sought to theoretically
understand the mechanisms and capabilities of state-spaces models (SSMs). Dao and Gu (2024)
propose the framework of state space duality, which establishes a connection between SSMs and
attention variants through the lens of structured matrices. Vankadara et al. (2024) provide a scaling
analysis of signal propagation in SSMs through the lens of feature learning. Cirone et al. (2024)
draw the link of SSMs to linear CDEs (controlled differential equations) and use tools from rough
path theory to study their expressivity. Chen et al. (2025) establish the computational limits of
SSMs and Mamba via circuit complexity analysis, questioning the prevailing belief that Mamba
possesses superior computational expressivity compared to Transformers. Nishikawa and Suzuki
(2025) demonstrate that state space models integrated with nonlinear layers achieve dynamic token
selection capabilities comparable to Transformers. Different from the above, we provide theoretical
understanding of Mamba from the perspective of ICL.

3 Problem Setup

In this section, we outline the ICL data model, the Mamba model, the prediction strategy, and the
gradient descent training algorithm.

Data Model. We consider an in-context linear regression task where each prompt corresponds to
a new function f(x) = w⊤x with weights w ∼ N (0, Id) and d > 1. For each task, we generate
N i.i.d. input-output pairs {(xi, yi)}Ni=1 and a query xq, where all inputs xi,xq ∼ N (0, Id) are
independent Gaussian vectors, and the outputs satisfy yi = f(xi). The goal is to predict yq = f(xq)
for the query.

To enable sequential processing of prompts in the Mamba model, we implement an embedding
strategy where:

1. The i-th context token is encoded as ei = (x⊤
i , yi)

⊤, formed by concatenating input xi

with its corresponding label yi.

2. The query token is represented as eq = (x⊤
q , 0)

⊤, masking the unknown target value with a
zero placeholder.

In many theoretical analyses of Transformer-based in-context learning, token embeddings are conven-
tionally concatenated into a single matrix to enable parallel computation of global attention (Zhang
et al., 2024; Ahn et al., 2023; Huang et al., 2023; Mahankali et al., 2024; Wu et al., 2024). In contrast,
since Mamba operates as a sequential model, we feed the embeddings of context tokens one by one,
and finally the query token (e1 → e2 → · · · → eN → eq).

Mamba Model. We consider a S6 layer of Mamba o1:L = Mamba(θ;u1:L) with selection,
discretization, and linear recurrence components, where ul,ol ∈ Rde . It can be described as follows:

h
(i)
l = Alh

(i)
l−1 +Blu

(i)
l ∈ Rdh×1, (1a)

o
(i)
l = C⊤

l h
(i)
l , Cl ∈ Rdh×1, (1b)

Al = exp(∆lA) ∈ Rdh×dh , (2a)

Bl = (∆lA)−1(exp(∆lA)− I)∆lBl ∈ Rdh×1 (2b)
for i ∈ [de]. Here, the superscript (i) denotes the i-th independent processing channel, where each
channel operates on a unique feature dimension of the input ul and output ol vectors (i.e., u(i)

l and
o
(i)
l correspond to the i-th elements of ul and ol, respectively). The hidden state h

(i)
l is initialized

as h(i)
0 = 0 and evolves according to Al ∈ Rdh×dh ,Bl ∈ Rdh×1 and the input u(i)

l . Cl ∈ Rdh×1

maps the hidden state h
(i)
l to the output o(i)l . As shown in (2), Al and Bl are computed using the

zero-order hold (ZOH) discretization method applied to A ∈ Rdh×dh ,Bl ∈ Rdh×1 and the timestep
∆l ∈ R. Next, we describe the selection mechanism.

Bl = WBul + bB , (3) Cl = WCul + bC , (4) ∆l = softplus(w⊤
∆ul + b∆), (5)

Here, softplus(x) = log(1 + exp(x)). WB ,WC ∈ Rdh×de , bB , bC ∈ Rdh×1, w∆ ∈ Rde×1,
b∆ ∈ R, along with A ∈ Rdh×dh are the parameters of the Mamba model. We use θ to denote the
collection of all the parameters.
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Unlike previous work (Sushma et al., 2024) that introduce local self-attention component to augment
SSMs, which may inherit the Transformer’s ICL ability, our model adheres to Mamba’s original
selective state-space framework (Gu and Dao, 2024). This alignment ensures us to mechanistically
analyze how Mamba’s architecture enables in-context learning (ICL).

Linear Regression Prediction. In this work, we set de = d + 1, enabling the Mamba model to
process the embeddings e1:N , eq . Given the prompt (e1, . . . ,eN , eq), the Mamba model will output
a sequence o1:N+1 = Mamba(θ; e1, . . . ,eN , eq). The prediction for the linear regression target
yq = w⊤xq is extracted from the terminal position of the output matrix (corresponding to the zero
placeholder in the query token eq = (x⊤

q , 0)
⊤). Concretely, ŷq = o

(d+1)
N+1 .

Training Algorithm. To train a Mamba model over the in-context linear regression task, we
consider minimizing the following population loss:

L(θ) = Ex1:N ,xq,w

[1
2
(ŷq − yq)

2
]
. (6)

Given a Mamba model, we use gradient descent to minimize population loss L(θ), and the update of
trainable parameters θ′ = {WB ,WC , bB , bC} can be written as follows:

θ′(t+ 1) = θ′(t)− η∇θ′L(θ(t)). (7)

4 Main Results

This section presents our main theoretical results that characterize the convergence state of Mamba
and its final loss. We also compare the results with other models.

Assumption 4.1 (1) Matrix A = −Idh
. (2) The vector w∆ is fixed as zero 0, and b∆ is fixed as

ln(exp((ln 2)/N) − 1). (3) Matrices WB , WC are initialized with entries drawn i.i.d. from the
standard Gaussian distribution N (0, 1). (4) The hidden state dimension satisfies: dh = Ω̃(d2). (5)
The learning rate satisfies: η = O(d−2d−1

h ). (6) Bias vectors bB , bC are initialized as zero 0. (7)
Token length N = Ω(d).

(1) The negative-definite matrix A = −Idh
guarantees the stable convergence of hidden states h(i)

l .
(2) Given the zero-mean and symmetric distribution of embeddings, w∆ can naturally converge to
0 during gradient descent, and we fix it as 0 for simplicity. We further fix b∆ to an appropriate
constant to maintain a suitable timestep ∆l, enabling us to concentrate our theoretical analysis on
WB , WC , bB , and bC . In prior works on Transformer-based in-context learning, merging key-query
weights (e.g., W := WQWK ) and specific initializations (e.g., WQ = WK = I) are often adopted
to simplify optimization analysis (Zhang et al., 2024; Ahn et al., 2023; Huang et al., 2023; Mahankali
et al., 2024; Wu et al., 2024). (3, 4, 5) In contrast, our Gaussian initialization of WB and WC

demonstrates more practicality, which requires a sufficiently large hidden state dimension dh and a
sufficiently small learning rate η to ensure favorable loss landscape properties. Assumption (6) is
intended to simplify the analysis. (7) Token length should be larger enough than the dimension of w
to capture sufficient contextual information.

Theorem 4.1 Under Assumption 4.1, if the Mamba is trained with gradient descent, and given a
new prompt (e1, . . . ,eN , eq), then with probability at least 1− δ for some δ ∈ (0, 1), the trainable
parameters θ′(t) = {WB(t),WC(t), bB(t), bC(t)} converge as t → ∞ to parameters that satisfies:

(a) Projected hidden state: (W⊤
C )[1:d,:](t)h

(d+1)
l = α(W⊤

C (t))[1:d,:]h
(d+1)
l−1 + (1− α)βylxl,

(b) Prediction for target: ŷq = x⊤
q

∑N−1
i=0 (1− α)αi+1βyN−ixN−i,

(c) Population loss: L(θ(t)) ≤ 3d(d+1)
2N ,

where α = exp((− ln 2)/N), β = 2(1+α)

α
(
3(1−α)d+4−2α

) .
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Theorem 4.1 characterizes the in-context learning (ICL) mechanism of Mamba and establishes an
upper bound on its population loss. Specifically, (Thm 4.1 (a)) shows how the hidden state is updated
according the given prompt el = (x⊤

l , yl)
⊤. (Thm 4.1 (b)) presents the final prediction given

prompt (e1, . . . ,eN , eq). (Thm 4.1 (c)) provides the upper bound for the population loss, which is
comparable to that of the Transformer (Zhang et al., 2024). Next, we’ll discuss it in more detail.

Update of Hidden State. If we define h̃l := (W⊤
C )[1:d,:]h

(d+1)
l , then (Thm 4.1 (a)) can be rewritten

as follows:
h̃l = αh̃l−1 + (1− α)βylxl = h̃l−1 + (1− α)(βylxl − h̃l−1). (8)

We observe its intrinsic connection to online gradient descent, which updates the model parameters
(h̃l) with only one currently arriving sample (el = (x⊤

l , yl)
⊤) at each step. Specifically, the system

gradually updates h̃l along the pseudo-gradient direction βylxl, with a fixed step size (1− α).

For a newly defined task f(x) = w⊤x, given that E[ylxl] = w, the direction of h̃l converges toward
w as mamba processes multiple prompts. This demonstrates mamba’s ability to internalize f(x)
through prompt processing, which ultimately ensures that predictions for query token eq = (x⊤

q , 0)
⊤

closely approximate f(xq).

Previous works have shown that Transformer can mimic a single step of gradient descent to achieve in-
context learning ability (Zhang et al., 2024; Mahankali et al., 2024). Concretely, a trained Transformer
can be described as follows

Transformer(e1, . . . ,eN , eq) ≈ x⊤
q

( 1

N

N∑
i=1

yixi

)
≈ x⊤

q w. (9)

Our theoretical analysis reveals that Mamba and Transformer have different in-context learning mech-
anisms. This divergence stems from their inherent architectural biases: Transformers process contexts
globally through self-attention, while Mamba enforces local sequential dependencies via recurrent
state transitions. These findings provide fundamental insights into the contrasting capabilities of
Transformer-based and Mamba-based models for in-context learning. As experimental work shows,
transformers can learn vector-valued MQAR tasks in the context which Mamba cannot, while Mamba
succeeds in sparse-parity in-context learning tasks where Transformers fail(Park et al., 2024).

Prediction Outcome. Comparing equations Thm 4.1 (b) and (9), we found both similarities and
distinctions in how Transformer and Mamba implement in-context learning (ICL). Both models
leverage a weighted aggregation of yixi, aligning with the intuition that learning f(x) = x⊤w
from context reduces to estimating the latent parameter w, since E[yixi] = w. Notably, their token
weighting strategies diverge: Transformer’s global attention mechanism implicitly assigns nearly
uniform weights (∼ 1

N , where N is the token length) to all yixi, while Mamba’s linear recurrence
imposes position-dependent weight variations. This difference arises from Mamba’s iterative state
update rule, where the influence of prompt tokens ei on the hidden state hl depends on their sequential
placement, governed by the model’s linear recurrence dynamics.

The derived upper bound (Thm 4.1 (c)) establishes an O(1/N) convergence rate for the loss (ignoring
dimension factor), demonstrating that Mamba matches the sample complexity scaling of Transformers
in linear regression ICL tasks (Zhang et al., 2024).

Compare with S4. Mamba extends the structured state space model (S4) (Gu et al., 2022) by
integrating a selection mechanism, which is critical for enabling ICL. In S4 model, the matrices
A ∈ Rdh×dh , and B,C ∈ Rdh×1 are static, leading to a fixed linear combination of inputs:

o
(i)
l =

l∑
j=1

C⊤A
l−j

B u
(i)
j , (10)

where the coefficients C⊤A
l−j

B are task-agnostic. This formulation inherently limits S4’s ability
to adapt to task-specific parameters w in ICL scenarios, as the model cannot adjust its inductive bias
to match distinct w across different tasks. Therefore, the S4 model cannot truly learn in-context.

In contrast, Mamba’s selection mechanism dynamically adjusts Bl and Cl (and optionally Al) based
on the input tokens (u1, . . . ,uN ). This allows the model to implicitly adapt its hidden state to
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align with the latent w of each task, effectively transforming the linear combination weights into
context-dependent functions f(x) = x⊤w. Such adaptability is essential for ICL, as it enables
Mamba to reconstruct diverse w from input prompts without task-specific fine-tuning.

5 Proof Sketch

This section outlines the main technical ideas to prove Theorem 4.1. The complete proofs are given
in the appendix.

Linear Recurrence. To start with, we show how the hidden states update when receiving token
el = (x⊤

l , yl)
⊤. By (Eq. (5)) and Assumption 4.1(2), we have ∆l = (ln 2)/N . Combining it with

(Eq. (1)(2)) and get:

h
(d+1)
l = αh

(d+1)
l−1 + (1− α)ylBl, (11)

where α := exp(−∆l) = exp((− ln 2)/N), the second equality is by discretization rule (2), the
third equality is by Assumption 4.1(2) and exp(−∆lI) = exp(−∆l)I .

Prediction Output. We next derive the expression of ŷq. By recurring (Eq.(11)), the hidden state
after receiving the first l context prompts e1:l is given by h

(d+1)
l = (1 − α)

∑l−1
i=0 α

iyl−iBl−i.
Receiving all the prompt tokens e1:N and the query token eq = (x⊤

q , 0)
⊤, we have:

h
(d+1)
N+1 = αh

(d+1)
N + (1− α) · 0 ·BN = (1− α)

N−1∑
i=0

αi+1yN−iBN−i. (12)

Finally, the prediction output is as follows

ŷq = C⊤
N+1h

(d+1)
N+1 = (1− α)(WCeq + bC)

⊤
N−1∑
i=0

αi+1yN−i(WBeN−i + bB). (13)

To handle WCeq and WBeN−i, we further decompose WB = [B b] and WC = [C c], where
B,C ∈ Rdh×d, b, c ∈ Rdh×1. Then we write another form of (Eq. (13)):

ŷq = (1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB). (14)

The loss becomes:

L(θ) = 1

2
E
[(

(1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)2]
. (15)

By computing the gradient of C, bC , B, b and bB with respect to L(θ(t)), we derive the following
update rule according to Eq. (7).

Lemma 5.1 (Update Rule) Let η be the learning rate and we use gradient descent to update the
weights WB ,WC , bB , bC , for t ≥ 0 we have

B(t+ 1) = B(t) + ηβ3C(t)− ηβ1C(t)C(t)⊤B(t),

C(t+ 1) = C(t) + ηβ3B(t)− ηβ1B(t)B(t)⊤C(t)− ηβ2b(t)b(t)
⊤C(t),

b(t+ 1) = b(t)− ηβ2C(t)C(t)⊤b(t), bB(t) = bC(t) = 0,

where β1 = E
[∑N−1

i=0

∑N−1
j=0 (1−α)2αi+j+2yN−iyN−jxN−ix

⊤
N−j

]
, β2 = E

[∑N−1
i=0

∑N−1
j=0 (1−

α)2αi+j+2y2N−iy
2
N−j

]
, β3 = E

[∑N−1
i=0 (1− α)αi+1yN−ixN−iw

⊤
]
.
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Technical Challenges. Unlike many prior Transformer-based ICL analyses that simplify dynamics
via merged weights or special initializations, our Gaussian-initialized WB , WC and discrete-time
gradient descent introduces more complexity (cf. assumption 4.1). To solve the optimization problem
described in Lemma 5.1, we have the following three questions to answer: (1) Convergence Target:
Where do the parameters converge? (2) Convergence Proof: How to rigorously establish convergence?
(3) Saddle Point Avoidance: How to avoid saddle points? To answer these three questions, we propose
two key techniques: Vector-coupled Dynamic, Negative Feedback Convergence, and apply them with
a Fine-grained Induction. We next describe them in detail.

5.1 Vector-coupled Dynamics

We can verify by Lemma 5.1 that C⊤B = Diag(a1, . . . , ad) with ai ∈ {0, β3

β1
}, C⊤b = 0 are the

fixed points for the parameters WB , WC .

Combining the loss function Eq. 15 and bB(t) = bC(t) = 0 in Lemma 5.1, the loss function can be
rewritten as

L(θ) = 1

2
E
[(

(1− α)

N−1∑
i=0

αi+1(x⊤
q C

⊤ByN−ixN−i + y2N−ix
⊤
q C

⊤b)−w⊤xq

)2]
.

To minimize loss, the term (1− α)
∑N−1

i=0 αi+1(x⊤
q C

⊤ByN−ixN−i + y2N−ix
⊤
q C

⊤b) should ap-
proximate w⊤xq. Given E[yN−ixN−i] = w and E[y2N−i] > 0, we derive that C⊤B should
converge to β3

β1
I , while C⊤b converges to 0 to minimize the loss. However, as mentioned above,

C⊤B = Diag(a1, . . . , ad) with partial ai = 0 can also enable convergence, which is an undesirable
scenario.

To analyze the convergence behavior of C⊤B and C⊤b, we introduce the Vector-coupled Dynamics
technique, which studies the inner product dynamics between decomposed column vectors of B
and C. Specifically, we decompose B and C into B = [b1 . . . bd], C = [c1 . . . cd]. Then we have
another form of Lemma 5.1 for B, C and b as the following lemma.

Lemma 5.2 (Vectors Update Rule) Let η be the learning rate and we use gradient descent to update
the weights WB ,WC , bB , bC , for i ∈ [d], t ≥ 0 we have

bi(t+ 1) = bi(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
ci(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · ck(t)
)
,

ci(t+1) = ci(t)+ η
((

β3−β1c
⊤
i (t)bi(t)

)
bi(t)−β1

d∑
k ̸=i

c⊤i (t)bk(t) ·bk(t)−β2c
⊤
i (t)b(t) ·b(t)

)
,

b(t+ 1) = b(t)− η
(
β2

d∑
k=1

c⊤k (t)b(t) · ck(t)
)
.

With Lemma 5.2, we can further analyze the dynamics of the inner products c⊤i (t)bi(t), c
⊤
i (t)bj(t)

and c⊤i (t)b(t), precisely characterizing the behavior of C⊤B and C⊤b. This technique helps answer
the question "Where do the parameters converge?"

5.2 Negative Feedback Convergence

As we discuss in Section 5.1, to minimize loss, the following conditions must be satisfied for all
i, j ∈ [d] with i ̸= j: c⊤i (t)bi(t) → β3

β1
, c⊤i (t)bj(t) → 0, c⊤i (t)b(t) → 0. To establish the

convergence, we introduce the Negative Feedback Convergence technique. This technique leverages
the negative feedback terms in the dynamical equations of c⊤i (t)bi(t), c

⊤
i (t)bj(t), and c⊤i (t)b(t) to

derive an exponential convergence rate. Taking c⊤i (t)bi(t) as an example, we derive the following
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update rule by Lemma 5.2.(
β3 − β1c

⊤
i (t+ 1)bi(t+ 1)

)
= β3 − β1c

⊤
i (t)bi(t)

−ηβ1

(
β3 − β1c

⊤
i (t)bi(t)

)
b⊤i (t)bi(t)− ηβ1

(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤i (t)ci(t)︸ ︷︷ ︸

negative feedback term

+ ηβ2
1

d∑
k ̸=i

c⊤i (t)bk(t) · b⊤k (t)bi(t) + ηβ2
1

d∑
k ̸=i

c⊤k (t)bi(t) · c⊤i (t)ck(t)

+ ηβ1β2c
⊤
i (t)b(t) · b⊤i (t)b(t)− β1

(
c(t+ 1)− c(t)

)⊤(
b(t+ 1)− b(t)

)
.

(16)

The term
(
β3−β1c

⊤
i (t+1)bi(t+1)

)
decomposes into its previous state

(
β3−β1c

⊤
i (t)bi(t)

)
(marked

with underline) plus the remaining terms (increment terms). The increment terms includes a negative
feedback term, which induces a tendency to drive

(
β3 − β1c

⊤
i (t)bi(t)

)
to 0 (c⊤i (t)bi(t) →

β3

β1
).

Intuitively, b⊤i (t)bi(t) and c⊤i (t)ci(t) are much larger than b⊤k (t)bi(t), c
⊤
i (t)ck(t) and b⊤i (t)b(t) at

Gaussian initialization with high probability. Also, as c⊤i (t)bj(t), b
⊤
i (t)b(t) → 0 with i ̸= j and η

is small enough, the effect of negative feedback term is the dominant term in the increment terms.
Therefore, denoting y(t) = β3 − β1c

⊤
i (t)bi(t) and ξ(t) = y(t+1)− y(t)− negative feedback term

we can model the update rule of (Eq. 16) as follows:

y(t+ 1) =
(
1− ηβ1(b

⊤
i (t)bi(t) + c⊤i (t)ci(t))

)
y(t) + ξ(t).

Recur this formula from 0 to t, we have:

y(t+ 1) =

t∏
s=0

(
1− ηβ1

(
b⊤i (s)bi(s) + c⊤i (s)ci(s)

))
y(0)

+

t∑
s=0

t∏
s′=s+1

(
1− ηβ1

(
b⊤i (s

′)bi(s
′) + c⊤i (s

′)ci(s
′)
))

ξ(s′).

(17)

Denoting γ = min{b⊤i (s)bi(s), c⊤i (s)ci(s)} for s ∈ [0, t], the first term on the RHS of (Eq. (17))
can be upper bounded by (1− 2ηβ1γ)

t+1y(0). if ξ(s′) has an exponentially decaying upper bound
(it can be proved when c⊤i (t)bj(t) → 0, c⊤i (t)b(t) → 0 with an exponential rate), the second
term on the RHS of (Eq. (17)) has an exponentially decaying upper bound. Therefore, we can
establish an exponential convergence rate for c⊤i (t)bi(t) →

β3

β1
. The similar method can be used

on c⊤i (t)bj(t) → 0, c⊤i (t)b(t) → 0. This technique helps answer the question "How to rigorously
establish convergence?"

5.3 Fine-grained Induction

The exponential convergence of c⊤i (t)bi(t) →
β3

β1
under the Negative Feedback Convergence frame-

work requires the following two conditions for all i, j ∈ [d] with i ̸= j:

(1) b⊤i (t)bi(t) and c⊤i (t)ci(t) dominate b⊤i (t)bj(t), c
⊤
i (t)cj(t) and b⊤i (t)b(t) in magnitude.

(2) c⊤i (t)bj(t) → 0, c⊤i (t)b(t) → 0 at an exponentially decaying rate.

On the one hand, condition (1) at initialization (t = 0) can be established via concentration in-
equalities, and critically, the preservation of Condition (1) for t > 0 relies on the rapid decay of
c⊤i (t)bi(t), c

⊤
i (t)bj(t), and c⊤i (t)b(t) (condition (2)). On the other hand, under the framework of

Negative Feedback Convergence, c⊤i (t)bj(t) → 0 in Condition (2) also relies on Condition (1) and
the rapid decay of c⊤i (t)bi(t) →

β3

β1
, c⊤i (t)b(t) → 0. This implies mutual dependencies among the

bounds of these Vector-coupled inner products.

To handle these dependencies and establish stable bounds, we introduce the technique
Fine-grained Induction: Divide the inner products into three groups: (1) Squared norms:
b⊤i (t)bi(t), c

⊤
i (t)ci(t), b

⊤(t)b(t). (2) Target terms: c⊤i (t)bi(t), c
⊤
i (t)bj(t), c

⊤
i (t)b(t). (3) Cross-

interactions: b⊤i (t)bj(t), c
⊤
i (t)cj(t), b

⊤
i (t)b(t). And then carefully give bounds for them with an

induction.
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Specifically, denoting δ(t) = maxs∈[0,t]{2
√
dh log(4d(2d+ 1)/δ), |b⊤i (s)bj(s)|, |c⊤i (s)cj(s)|,

|b⊤i (s)b(s)|} and γ = 1
2dh ≤ mint≥0{b⊤i (t)bi(t), c⊤i (t)ci(t), b⊤(t)b(t)}, we establish the fol-

lowing three properties A(t), B(t), and C(t) simultaneously for t ≥ 0:

A(t) : dh/2 ≤ b⊤i (t)bi(t), c
⊤
i (t)ci(t), b

⊤(t)b(t) ≤ 2dh.

B(t) : |β3−β1c
⊤
i (t)bi(t)| ≤ δ(t) exp(−ηβ1γt), |c⊤i (t)bj(t)| ≤ 2δ(t) exp(−ηβ1γt),

|c⊤i (t)b(t)| ≤ 2δ(t) exp(−ηβ2γt) +
δ(t)

β2
exp(−ηβ1γt).

C(t) : |b⊤i (t)bj(t)|, |c⊤i (t)cj(t)|, |b⊤i (t)b(t)| ≤ δ(t) ≤ 3
√

dh log(4d(2d+ 1)/δ).

The initial conditions A(0), B(0), and C(0) are established with high probability by concentration
inequalities. We also provide the following claims to establish A(t), B(t), and C(t) for t ≥ 0:

Claim 5.1 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ A(T + 1).

Claim 5.2 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ B(T + 1).

Claim 5.3 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ C(T + 1).

This induction answers the question "How to avoid saddle points?" because B(t) guarantees that
C⊤B → β3

β1
I and C⊤b → 0, preventing stagnation of partial diagonal entries of C⊤B at zero.

Theorem 4.1 can be proved by substituting C⊤B = β3

β1
I,C⊤b = 0, bB = bC = 0 into (Eq. (11),

(14), (15))

6 Experimental Results

We present simulation results on synthetic data to verify our theoretical results. More experimental
results can be found in Appendix E.

(a) Trained parameters (b) Similarity (c) Loss curve

Figure 1: (a) Post-training visualization of matrix product C⊤WB; (b) Cosine similarity evolution
between w and h̃l = (W⊤

C )[1:d,:]h
(d+1)
l across recurrent steps l (after processing prompts e1:l); (c)

Test loss versus token sequence length N . Blue curve: experimental results; orange curve: theoretical
upper bound.

Experiments Setting We follow Section 3 to generate the dateset and initialize the model. Specif-
ically, we set dimension d = 4, dh = 80, prompt token length N = 50, and train the Mamba
model on 3000 sequences by gradient descent. After training, we save the model and test it on 1000

new generated sequences, tracking the cosine similarity between h̃l(:= (W⊤
C )[1:d,:]h

(d+1)
l ) and w.

Moreover, we vary the length of the prompt token N from 4 to 80 and compare the test loss with
the theoretical upper bound. For each N , we conduct 10 independent experiments and report the
averaged results. All experiments are performed on an NVIDIA A800 GPU.
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Experiment Result Recalling that we denote WB = [B b], Figure 1a reveals the convergence of
C⊤B to a diagonal matrix and C⊤b to 0, confirming the theoretical induction presented in Section 5,
also consistent with (Thm 4.1 (b)). Figure 1b shows that the projected hidden state h̃l gradually aligns
with w as more prompt tokens are processed, consistent with (Thm 4.1 (a)). Figure 1c demonstrates
that the experimental loss has an upper bound 3d(d+1)

2N that decays linearly with N, aligning with
(Thm 4.1 (c)).

7 Conclusion

This paper study Mamba’s in-context learning mechanism, and rigorously establish its convergence
and loss bound. By analysing the Vector-coupled Dynamics, we provide an exponential convergence
rate with Negative Feedback Convergence technique in a Fine-grained Induction, and finally establish
a O(1/N) loss bound. The loss bound is comparable to that of Transformer. Our theoretical results
reveal the different mechanism between Transformer and Mamba on ICL, where Mamba emulates a
variant of online gradient descent to perform in-context, while Transformers approximate a single
step of gradient descent. Furthermore, our comparison with the S4 model demonstrates that the
selection components are essential for Mamba to perform ICL.

Limitations and Social Impact Our analysis focuses on one-layer Mamba model, thus the behavior
of Mamba with multi-layer or augmented with other components such as MLP is still unclear. We
believe that our work will provide insight for those cases and can be used to study more data models
such as nonlinear features. This paper is mainly a theoretical investigation, and we do not see an
immediate social impact.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract reflects the paper’s scope, and the introduction reflects the paper’s
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitation in the conclusion Section.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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the experiments setting in this paper, and the codes are in the supplementary material.
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to make their results reproducible or verifiable.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• While we encourage the release of code and data, we understand that this might not be
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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should state which ones are omitted from the script and why.
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versions (if applicable).
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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Table 1: Key notations
Symbols Definitions

xi,xq,w, yi, yq xi,xq,w are i.i.d. sampled from Gaussian distribution N (0, Id).
yi = w⊤xi, yq = w⊤xq .

b̄i(t) =
1
η

(
bi(t+ 1)− bi(t)

)
,

b̄i(t), c̄i(t), b̄(t) c̄i(t) =
1
η

(
ci(t+ 1)− ci(t)

)
,

b̄(t) = 1
η

(
b(t+ 1)− b(t)

)
.

Decompose the matrices WB ,WC into colums of vectors:
B, C, b, c, bi, ci WB = [B b] = [b1, . . . , bd b], WC = [C c] = [c1, . . . , cd c]

where WB ,WC ∈ Rdh×(d+1), B, C ∈ Rdh×d,
b, c, bi, ci ∈ Rdh×1

bi(t)
⊤bj(t), ci(t)

⊤cj(t), b(t)
⊤b(t) inner product of the vectors b, bi, ci with i, j ∈ [1, d].

ci(t)
⊤bj(t), bi(t)

⊤b(t), ci(t)
⊤b(t) e.g. bi(t)⊤bj(t) is the inner product of bi(t) and bi(t).

α A factor, α := exp(−∆l) = exp((− ln 2)/N).

The factors appearing in the gradient equation.

β1, β2, β3 Specifically, β1 =
(
α2

(
1− αN

)2
+

(d+1)α2(1−α)
(
1−α2N

)
(1+α)

)
,

β2 =
(
d2α2

(
1− αN

)2
+

(2d2+6d)α2(1−α)
(
1−α2N

)
(1+α)

)
,

β3 = α
(
1− αN

)
The lower bound of squared norms b⊤i (t)bi(t), c

⊤
i (t)ci(t),

γ and b⊤(t)b(t).
Specifically, γ = 1

2
dh.

The upper bound of cross-interactions: b⊤i (t)bj(t), c
⊤
i (t)cj(t),

δ(T ) and b⊤i (t)b(t).
Specifically, δ(t) = maxs∈[0,t]{2

√
dh log(4d(2d+ 1)/δ),

|b⊤i (s)bj(s)|, |c⊤i (s)cj(s)|, |b⊤i (s)b(s)|}.

A Basic Calculations

This Section provide the data statistics related to gaussian distribution, and compute the expressions
for the output, loss, gradient, training dynamics (particularly Vector-coupled Dynamics) of the
Mamba model. Section B presents the Fine-grained Induction with Negative Feedback Convergence
technique, and finally establish the results for Theorem 4.1. Section C details the complete proofs for
Section A and Section B. In Section D, we discuss about orthogonal initialization and compare our
framework with other techniques. In Section E, we give more experimental results.

A.1 Data Statistics

Lemma A.1 (Concentration Inequalities) Let bi(0) be the i-th colum of B(0), ci(0) be the i-th
colum of C(0), and suppose that δ > 0 and dh = Ω(log(4(2d + 1)/δ)), with probability at least
1− δ, we have:

3dh
4

≤ bi(0)
⊤bi(0), ci(0)

⊤ci(0), b(0)
⊤b(0) ≤ 5dh

4
,∣∣∣ci(0)⊤bi(0)∣∣∣, ∣∣∣ci(0)⊤bj(0)∣∣∣, ∣∣∣ci(0)⊤b(0)∣∣∣ ≤ 2

√
dh log(4d(2d+ 1)/δ),∣∣∣bi(0)⊤bj(0)∣∣∣, ∣∣∣ci(0)⊤cj(0)∣∣∣, ∣∣∣bi(0)⊤b(0)∣∣∣ ≤ 2

√
dh log(4d(2d+ 1)/δ)

for i, j ∈ [d], i ̸= j.

Proof of Lemma A.1. By Bernstein’s inequality, with probability at least 1− δ/2(2d+ 1) we have∣∣∣bi(0)⊤bi(0)− dh

∣∣∣ = O
(√

dh log(4(2d+ 1)/δ)
)
.
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Therefore, as long as dh = Ω(log(4(2d+1)/δ)), we have 3dh/4 ≤ bi(0)
⊤bi(0) ≤ 5dh/4. Similarly,

we have
3dh
4

≤ ci(0)
⊤ci(0), b(0)

⊤b(0) ≤ 5dh
4

.

For i, j ∈ [d], i ̸= j, By Bernstein’s inequality, with probability at least 1− δ/2d(2d+ 1), we have∣∣∣ci(0)⊤bi(0)∣∣∣, ∣∣∣ci(0)⊤bj(0)∣∣∣, ∣∣∣ci(0)⊤b(0)∣∣∣ ≤ 2
√
dh log(4d(2d+ 1)/δ),∣∣∣bi(0)⊤bj(0)∣∣∣, ∣∣∣ci(0)⊤cj(0)∣∣∣, ∣∣∣bi(0)⊤b(0)∣∣∣ ≤ 2

√
dh log(4d(2d+ 1)/δ).

We can apply a union bound to complete the proof.

Lemma A.2 If vectors x and w are iid generated from N (0, Id), y = x⊤w we have the following
expectations:

E
[
xx⊤ww⊤xx⊤

]
= (d+ 2)I,

E
[
y2
]
= d,

E
[
y4
]
= 3d(d+ 2).

The proof of lemma A.2 is in Section C.1.

Lemma A.3 If vectors xi and w are iid generated from N (0, Id), y = x⊤
i w we have the following

expectations:

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
· I,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iy
2
N−jxN−i

]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iy
2
N−j

]
=

d2α2
(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

,

E
[N−1∑

i=0

αi+1yN−ixN−iw
⊤
]
= α

(1− αN

1− α

)
· I,

E
[N−1∑

i=0

αi+1y2N−iw
]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2xN−i x
⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−jw︸ ︷︷ ︸
yN−j

]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iyN−j

]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−j

]
=

dα2
(
1− α2N

)
(1− α)(1 + α)

,

E
[N−1∑

i=0

αi+1yN−iw
]
= 0.

The proof of lemma A.3 is in Section C.2.

23



A.2 Output, Loss, Gradient

This section we derive the output of Mamba given sequence {e1:N , eq}, and establishe the loss
function formulation with its gradient expression.

Linear Recurrence. To start with, we show how the hidden states update when receiving token
el = (x⊤

l , yl)
⊤. By (Eq. (5)) and Assumption 4.1(2), we have ∆l = softplus(ln(exp((ln 2)/N)−

1)) = (ln 2)/N . Combining it with (Eq. (1)(2)) and get:

h
(d+1)
l = Alh

(d+1)
l−1 +Blyl

= exp(∆lA)h
(d+1)
l−1 + yl(∆lA)−1(exp(∆lA)− I)∆lBl

= exp(−∆l)Ih
(d+1)
l−1 − yl∆

−1
l (exp(−∆l)I − I)∆lBl

= exp(−∆l)h
(d+1)
l−1 + (1− exp(−∆l))ylBl

= αh
(d+1)
l−1 + (1− α)ylBl

(18)

where α := exp(−∆l) = exp((− ln 2)/N), the second equality is by discretization rule (2), the third
equality is by Assumption 4.1(2) and exp(−∆lI) = exp(−∆l)I . (Eq. (18)) is similar to theorem 1
in Gu and Dao (2024)

Prediction Output. We next derive the expression of ŷq . Based on (Eq.(11)), the hidden state after
receiving the first l context prompts e1:l is given by:

h
(d+1)
l = αh

(d+1)
l−1 + (1− α)ylBl

= α2h
(d+1)
l−2 + (1− α)ylBl + (1− α)αyl−1Bl−1

= . . .

= (1− α)

l−1∑
i=0

αiyl−iBl−i

(19)

Receiving the query token eq = (x⊤
q , 0)

⊤, we have:

h
(d+1)
N+1 = αh

(d+1)
N + (1− α) · 0 ·BN = (1− α)

N−1∑
i=0

αi+1yN−iBN−i (20)

Finally, the prediction output is as follows

ŷq = C⊤
N+1h

(d+1)
N+1 = (1− α)C⊤

N+1

N−1∑
i=0

αi+1yN−iBN−i

= (1− α)(WCeq + bC)
⊤

N−1∑
i=0

αi+1yN−i(WBeN−i + bB)

(21)

To handle WCeq and WBeN−i, we further denote WB = [B b] and WC = [C c], where B,C ∈
Rdh×d, b, c ∈ Rdh×1. Then we write another form of (Eq. (21)):

ŷq = (1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB) (22)

The loss becomes:

L(θ) = 1

2
E
[(

(1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)2]
(23)

The following lemma provides the gradient of B,C, b, bB , bC with respect to loss (Eq. (23)).
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Lemma A.4 (Gradient) The gradient of trainable parameters θ′ = {B,C, b, bB , bC} with respect
to loss (Eq. (23)) are as follows:

∇bB
L(θ) = 0,

∇bC
L(θ) = 0,

∇BL(θ) =
(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

CC⊤B − α
(
1− αN

)︸ ︷︷ ︸
:=β3

C,

∇bL(θ) =
(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

CC⊤b,

∇CL(θ) =
(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

BB⊤C

+
(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

bb⊤C

− α
(
1− αN

)︸ ︷︷ ︸
:=β3

B.

Here, we denote β1 =
(
α2

(
1 − αN

)2
+

(d+1)α2(1−α)
(
1−α2N

)
(1+α)

)
, β2 =

(
d2α2

(
1 − αN

)2
+

(2d2+6d)α2(1−α)
(
1−α2N

)
(1+α)

)
, β3 = α

(
1 − αN

)
for simplicity. The proof of lemma A.4 is in Sec-

tion C.3.

A.3 Training Dynamics

With the gradient in lemma A.4, we further provide the update rule for Mamba’s parameters

and the Vector-coupled Dynamics.

Using gradient descent algorithm θ′(t+ 1) = θ′(t)− η∇θ′L(θ(t)) with training rate η, we have the
following update rule base on lemma A.4.

Lemma A.5 (Update Rule, restatement of lemma 5.1) Let η be the learning rate and we use gra-
dient descent to update the weights WB ,WC , bB , bC , for t ≥ 0 we have

B(t+ 1) = B(t) + ηβ3C(t)− ηβ1C(t)C(t)⊤B(t),

C(t+ 1) = C(t) + ηβ3B(t)− ηβ1B(t)B(t)⊤C(t)− ηβ2b(t)b(t)
⊤C(t),

b(t+ 1) = b(t)− ηβ2C(t)C(t)⊤b(t),

bB(t) = bC(t) = 0.

We decompose B and C as B = [b1 . . . bd], C = [c1 . . . cd], and provide the update rule for bi, ci
and b with i ∈ [1 : d] as the following lemma.

Lemma A.6 (Vectors Update Rule, restatement of lemma 5.2) Let η be the learning rate and we
use gradient descent to update the weights WB ,WC , bB , bC , for i ∈ [d], t ≥ 0 we have

bi(t+ 1) = bi(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
ci(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · ck(t)
)
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=: bi(t) + ηb̄i(t)

ci(t+ 1) = ci(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · bk(t)− β2c
⊤
i (t)b(t) · b(t)

)
=: ci(t) + ηc̄i(t)

b(t+ 1) = b(t)− η
(
β2

d∑
k=1

c⊤k (t)b(t) · ck(t)
)
=: b(t) + ηb̄(t)

Here, we denote ηb̄i(t) = bi(t+1)− bi(t), ηc̄i(t) = ci(t+1)− ci(t), and ηb̄(t) = b(t+1)− b(t)
for simplicity.

Next, we provide the dynamics for the inner products of these vectors.

Lemma A.7 (Vector-coupled Dynamics) Let η be the learning rate and we use gradient descent to
update the weights WB ,WC , bB , bC , we have

b⊤i (t+ 1)bi(t+ 1)

= b⊤i (t)bi(t) + 2η
((

β3 − β1c
⊤
i (t)bi(t)

)
c⊤i (t)bi(t)− β1

d∑
k ̸=i

(
c⊤k (t)bi(t)

)2)
+ η2

∥∥∥b̄i(t)∥∥∥2
2

b⊤i (t+ 1)bj(t+ 1)

= b⊤i (t)bj(t) + η
(
2
(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤i (t)bj(t) + 2

(
β3 − β1c

⊤
j (t)bj(t)

)
c⊤j (t)bi(t)

− β3

(
c⊤i (t)bj(t) + c⊤j (t)bi(t)

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤k (t)bi(t) · c⊤k (t)bj(t)
)
+ η2b̄⊤i (t)b̄j(t)

c⊤i (t+ 1)ci(t+ 1)

= c⊤i (t)ci(t) + 2η
((

β3 − β1c
⊤
i (t)bi(t)

)
c⊤i (t)bi(t)− β1

d∑
k ̸=i

(
c⊤i (t)bk(t)

)2
− β2

(
c⊤i (t)b(t)

)2)
+ η2

∥∥∥c̄i(t)∥∥∥2
2

c⊤i (t+ 1)cj(t+ 1)

= c⊤i (t)cj(t) + η
(
2
(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤j (t)bi(t) + 2

(
β3 − β1c

⊤
j (t)bj(t)

)
c⊤i (t)bj(t)

− β3

(
c⊤i (t)bj(t) + c⊤j (t)bi(t)

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤i (t)bk(t) · c⊤j (t)bk(t)

− 2β2c
⊤
i (t)b(t) · c⊤j (t)b(t)

)
+ η2c̄⊤i (t)c̄j(t)

c⊤i (t+ 1)bi(t+ 1)

= c⊤i (t)bi(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
b⊤i (t)bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · b⊤k (t)bi(t)

− β2c
⊤
i (t)b(t) · b⊤i (t)b(t) +

(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤i (t)ci(t)
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− β1

d∑
k ̸=i

c⊤k (t)bi(t) · c⊤i (t)ck(t)
)
+ η2c̄⊤i (t)b̄i(t)

c⊤i (t+ 1)bj(t+ 1)

=
(
1− ηβ1

(
c⊤i (t)ci(t) + b⊤j (t)bj(t)

))
c⊤i (t)bj(t)

+ η
((

β3 − β1c
⊤
i (t)bi(t)

)
b⊤i (t)bj(t)− β1

d∑
k ̸=i,k ̸=j

c⊤i (t)bk(t) · b⊤k (t)bj(t)

− β2c
⊤
i (t)b(t) · b⊤j (t)b(t) +

(
β3 − β1c

⊤
j (t)bj(t)

)
c⊤i (t)cj(t)

− β1

d∑
k ̸=i,k ̸=j

c⊤k (t)bj(t) · c⊤i (t)ck(t)
)
+ η2c̄⊤i (t)b̄j(t)

b⊤(t+ 1)b(t+ 1) = b⊤(t)b(t)− 2η
(
β2

d∑
k=1

(
c⊤k (t)b(t)

)2)
+ η2

∥∥∥b̄(t)∥∥∥2
2

b⊤i (t+ 1)b(t+ 1)

= b⊤i (t)b(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
c⊤i (t)b(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · c⊤k (t)b(t)

− β2

d∑
k=1

c⊤k (t)b(t) · c⊤k (t)bi(t)
)
+ η2b̄⊤i (t)b̄(t)

c⊤i (t+ 1)b(t+ 1)

=
(
1− ηβ2

(
b⊤(t)b(t) + c⊤i (t)ci(t)

))
c⊤i (t)b(t)

+ η
((

β3 − β1c
⊤
i (t)bi(t)

)
b⊤i (t)b(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · b⊤k (t)b(t)

− β2

d∑
k ̸=i

c⊤k (t)b(t) · c⊤k (t)ci(t)
)
+ η2c̄⊤i (t)b̄(t)

Lemma A.7 is derive by calculating the inner products of the vectors update rule in lemma A.6. For
example, b⊤(t+ 1)b(t+ 1) is derived as follow:

b⊤(t+ 1)b(t+ 1) =
(
b(t) + ηb̄(t)

)⊤(
b(t) + ηb̄(t)

)
= b⊤(t)b(t)− 2ηb̄(t)⊤b(t) + η2

∥∥∥b̄(t)∥∥∥2
2

= b⊤(t)b(t)− 2η
(
β2

d∑
k=1

(
c⊤k (t)b(t)

)2)
+ η2

∥∥∥b̄(t)∥∥∥2
2

The other equations are similar to it.

B Proof of Theorem 4.1

In this section, we present the framework of Fine-grained Induction, and establish the results of
Theorem 4.1 after convergence.
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Fine-gained Induction Specifically, denoting δ(t) = maxs∈[0,t]{|b⊤i (s)bj(s)|, |c⊤i (s)cj(s)|, |b⊤i (s)b(s)|}
and γ = mint≥0{b⊤i (t)bi(t), c⊤i (t)ci(t), b⊤(t)b(t)}, we establish the following three properties
A(t), B(t), and C(t) simultaneously for t ≥ 0:

• A(t) :

dh/2 ≤ b⊤i (t)bi(t), c
⊤
i (t)ci(t), b

⊤(t)b(t) ≤ 2dh

• B(t) :
|β3 − β1c

⊤
i (t)bi(t)| ≤ δ(t) exp(−ηβ1γt)

|c⊤i (t)bj(t)| ≤ 2δ(t) exp(−ηβ1γt)

|c⊤i (t)b(t)| ≤ 2δ(t) exp(−ηβ2γt) +
δ(t)

β2
exp(−ηβ1γt)

• C(t) :

|b⊤i (t)bj(t)|, |c⊤i (t)cj(t)|, |b⊤i (t)b(t)| ≤ δ(t) ≤ 3
√
dh log(4d(2d+ 1)/δ) =: δmax

Here, i, j ∈ [1, d], i ̸= j. The initial conditions A(0), B(0), and C(0) are established with high
probability by concentration inequalities (lemma A.1). We also provide the following claims to
establish A(t), B(t), and C(t) for t ≥ 0:

Claim B.1 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ A(T + 1)

Claim B.2 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ B(T + 1)

Claim B.3 A(0), . . . ,A(T ),B(0), . . . ,B(T ), C(0), . . . , C(T ) =⇒ C(T + 1)

Remark. Property A(t) establishes the stability of quadratic norms:

min
{
bi(t)

⊤bi(t), ci(t)
⊤ci(t), b(t)

⊤b(t)
}
≥ dh/2.

This norm lower bound induces two critical effects:

1. Convergence Rate: As we can see in property B(t), The upper bound of c⊤i (t)bi(t),
c⊤i (t)bj(t) and c⊤i (t)b(t) is related to γ (lower bound of the squared norms), thus the
stability of quadratic norms ensure a stable rapid convergence rate for property B(t).

2. Saddle Point Avoidance: The strict positivity (> 0) of |bi|2 and |ci|2 prevents the dynamics
collapse to undesirable solutions bi = ci = 0, which would permanently make c⊤i bi = 0
(saddle points).

Property B(t) establishes a rapid exponential convergence rate:

C⊤B → β3

β1
I, C⊤b → 0

The rapid convergence rate ensures that the variations of Squared norms (in property A(t)) and Cross-
interactions (in property C(t)) remain bounded, thereby establishing their constraints. For example,
at initialization, b⊤i (0)bi(0) is bounded by 3dh/4 ≤ b⊤i (0)bi(0) ≤ 5dh/4. Further, thanks to the
exponential convergence rate in property B(t), we can prove that |b⊤i (t)bi(t)− b⊤i (0)bi(0)| ≤ dh/4,
and therefore dh/2 ≤ b⊤i (t)bi(t), c

⊤
i (t)ci(t), b

⊤(t)b(t) ≤ 3dh/2 ≤ 2dh.

Property C(t) establishes the upper bound for the Cross-interactions. As we discuss in section 5.2,
if the Squared norms ( c⊤i (t)bi(t), c

⊤
i (t)bj(t) and c⊤i (t)b(t) ) are larger enough than the Cross-

interactions ( b⊤i (t)bj(t), c
⊤
i (t)cj(t), and b⊤i (t)b(t) ), we can make use of the negative feedback

term to establish an exponential convergence rate. Thus property C(t) is also important.

The proof of claim B.1, claim B.2, and claim B.3 are in section C.4, section C.5, and section C.6
respectively.
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Proof of Theorem 4.1 After convergence (t → 0), we will have C⊤B = β3

β1
I,C⊤b = 0 (by

property B(t)), and bB(t) = bC(t) = 0 (by lemma A.5).

We will restate some equality for ease of reference.

Linear Recurrence (restatement of (Eq. (18)))

h
(d+1)
l = αh

(d+1)
l−1 + (1− α)ylBl (24)

Prediction Output (restatement of (Eq. (22)))

ŷq = (1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB) (25)

Loss (restatement of (Eq. (23)))

L(θ) = 1

2
E
[(

(1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)2]
(26)

Based on (Eq. (24)), we have

(W⊤
C )[1:d,:](t)h

(d+1)
l = α(W⊤

C )[1:d,:](t)h
(d+1)
l−1 + (1− α)yl(W

⊤
C )[1:d,:](t)Bl

= α(W⊤
C )[1:d,:](t)h

(d+1)
l−1 + (1− α)ylC

⊤(t)(B(t)xl + ylb(t) + bB(t))

= α(W⊤
C )[1:d,:](t)h

(d+1)
l−1 + (1− α)ylC

⊤(t)B(t)xl + (1− α)y2l C
⊤(t)b(t)

= α(W⊤
C )[1:d,:](t)h

(d+1)
l−1 + (1− α)

β3

β1
ylxl

= α(W⊤
C )[1:d,:](t)h

(d+1)
l−1 +

2(1 + α)(1− α)

α
(
3(1− α)d+ 4− 2α

)ylxl

(27)

where the second equality is by selection rule Bl = WBel + bB (Eq. (3)), and WB = [B b],
el = (x⊤

l , yl)
⊤. The third equality is by bB(t) = 0. The fourth equality is by C⊤B = β3

β1
I and

C⊤b = 0. (Eq. (27)) establish the first equation (Thm 4.1 (a)) of the Theorem.

Based on (Eq. (25)), we have

ŷq = (1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)

= x⊤
q C

⊤
N−1∑
i=0

(1− α)αi+1yN−i(BxN−i + yN−ib)

= x⊤
q

N−1∑
i=0

(1− α)αi+1yN−iC
⊤BxN−i + x⊤

q

N−1∑
i=0

(1− α)αi+1y2N−iC
⊤b

= x⊤
q

N−1∑
i=0

(1− α)αi+1 β3

β1
yN−ixN−i

= x⊤
q

N−1∑
i=0

2αi(1 + α)(1− α)(
3(1− α)d+ 4− 2α

)yN−ixN−i

(28)

where the second equality is by bB(t) = bC(t) = 0. The fourth equality is by C⊤B = β3

β1
I and

C⊤b = 0. (Eq. (28)) establish the second equation (Thm 4.1 (b)) of the Theorem.

29



Based on (Eq. (25)), we have

L(θ) = 1

2
E
[(

(1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)2]
=

1

2
E
[(β3

β1
x⊤
q

N−1∑
i=0

(1− α)αi+1yN−ixN−i −w⊤xq

)2]
=

1

2
E
[(β3

β1
x⊤
q

N−1∑
i=0

(1− α)αi+1yN−ixN−i

)2]
︸ ︷︷ ︸

♠

− E
[β3

β1
x⊤
q

N−1∑
i=0

(1− α)αi+1yN−ixN−i ·w⊤xq

]
︸ ︷︷ ︸

♣

+
1

2
E
[(

w⊤xq

)2]
︸ ︷︷ ︸

= d (by lemma A.2)

(29)

We compute terms ♠ and ♣ as follows:

♠ = E
[(β3

β1
x⊤
q

N−1∑
i=0

(1− α)αi+1yN−ixN−i

)2]
=

β2
3

β2
1

E
[
x⊤
q

(N−1∑
i=0

(1− α)αi+1yN−ixN−i

)(N−1∑
i=0

(1− α)αi+1yN−ixN−i

)⊤
xq

]
=

(1− α)2β2
3

β2
1

Exq

[
x⊤
q ExN−i,xN−j ,w

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]
xq

]

=
(1− α)2β2

3

β2
1

·
(α2

(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
E
[
x⊤
q Ixq

]
=

dβ2
3

β1

For the fourth equality, ExN−i,xN−j ,w

[∑N−1
i=0

∑N−1
j=0 αi+j+2yN−iyN−jxN−ix

⊤
N−j

]
=(

α2
(
1−αN

)2

(1−α)2 +
(d+1)α2

(
1−α2N

)
(1−α)(1+α)

)
· I by lemma A.3. The last equality is by β1 =(

α2
(
1− αN

)2
+

(d+1)α2(1−α)
(
1−α2N

)
(1+α)

)

♣ = E
[β3

β1
x⊤
q

N−1∑
i=0

(1− α)αi+1yN−ixN−i ·w⊤xq

]
=

(1− α)β3

β1
Exq

[
x⊤
q ExN−i,w

[N−1∑
i=0

αi+1yN−ixN−iw
⊤
]
xq

]
=

(1− α)β3

β1
· α

(1− αN

1− α

)
E
[
x⊤
q Ixq

]
=

dβ2
3

β1

For the third equality, ExN−i,w

[∑N−1
i=0 αi+1yN−ixN−iw

⊤
]
= α

(
1−αN

1−α

)
I by lemma A.3. The

last equality is by β3 = α
(
1− αN

)
.
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Substituting ♠ and ♣ into (Eq. (29)) and get:

L(θ) = dβ2
3

2β1
− dβ2

3

β1
+

1

2
d

=
d

2

(
1− β2

3

β1

)
=

d(d+ 1)α2(1− α)
(
1− α2N

)
2(1 + α)β1

= d(d+ 1)(1− α) · α
2

β1
·
(
1− α2N

)
2(1 + α)

≤ d(d+ 1)

N
· 4 · 3

8

=
3d(d+ 1)

2N

(30)

Recall β1 =
(
α2

(
1−αN

)2
+

(d+1)α2(1−α)
(
1−α2N

)
(1+α)

)
, β3 = α

(
1−αN

)
and α = exp((− ln 2)/N).

For the inequality, 1 − α = 1 − exp((− ln 2)/N) ≤ ln 2
N ≤ 1

N , β1 ≥ α2
(
1 − αN

)2
= 1

4α
2,

1−α2N = 1− 1
4 = 3

4 , thus d(d+1)(1−α) ≤ d(d+1)
N , α2

β1
≤ 4,

(
1−α2N

)
2(1+α) ≤ 3

8(1+α) ≤
3
8 . (Eq.

(30)) establish the third equation (Thm 4.1 (c)) of the Theorem.

C Complete Proof

This section presents the complete proof for the above results. To begin with, we provide the exact
assumptions for N , η and dh as part of Assumption 4.1.

Assumption

N = Ω(d) ≥ max{ 2 ln 2

ln 6− ln 5
,
3(d+ 1) ln 2

2
}

η = O(d−2d−1
h ) ≤ 1

2d2dh
≤ ln 2

β2dh

dh = Ω̃(d2) ≥ max{λ1, . . . , λ11}
where

λ1 =
(
1728 log(4d(2d+ 1)/δ) + 576(d− 1)β1 log(4d(2d+ 1)/δ)

)
/β1

λ2 =
(
576 log(4d(2d+ 1)/δ) + 192 log(4d(2d+ 1)/δ)

)
/β1

λ3 =
(
1728 log(4d(2d+ 1)/δ) + (576d+ 1872)β1 log(4d(2d+ 1)/δ)

)
/β1

λ4 = 576 log(4d(2d+ 1)/δ)/β1 + 192(d− 1) log(4d(2d+ 1)/δ)

+ 384 log(4d(2d+ 1)/δ)/β1 + 3840 ln 2 log(4d(2d+ 1)/δ)

λ5 = 2448d log(4d(2d+ 1)/δ)

λ6 = 816d log(4d(2d+ 1)/δ) + 768 ln 2d2 log(4d(2d+ 1)/δ) + 48 log(4d(2d+ 1)/δ)/β1

λ7 =
( 1√

log(4d(2d+ 1)/δ)
+ 24

√
log(4d(2d+ 1)/δ)

(
8β1(d− 1) + 10 + 6β1 + 12ηβ1/d

))2

λ8 = 36 log(4d(2d+ 1)/δ)
( 8

β1
+ 8(d− 2) + 6 +

12

d

)2

λ9 = 36 log(4d(2d+ 1)/δ)
(
4(d− 1) + 56d ln 2

)2

λ10 = 36 log(4d(2d+ 1)/δ)
(
6 + 4β1(d− 1) + 2(d− 1)

)2
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λ11 =
36

(ln(3/2))2
log(4d(2d+ 1)/δ)

(32d
β1

+
8β3

β1
+ 32d+

8

β1
+

4

β1β2
+ 80 ln 2

)2

Note that under the assumption of N ≥ max{ 2 ln 2
ln 6−ln 5 ,

3(d+1) ln 2
2 } and combining α =

exp((− ln 2)/N), we have the following:

5

6
≤ α2, 4β1 ≤ β2,

5

24
≤ β1 ≤ 3

4
, 1 ≤ 1

2
d ≤ β2, β3 = Θ(1)

These condition will be use to prove some bounds.

C.1 Proof of Lemma A.2

Lemma C.1 (restatement of lemma A.2) If vectors x and w are iid generated from N (0, Id), y =
x⊤w we have the following expectations:

E
[
xx⊤ww⊤xx⊤

]
= (d+ 2)I,

E
[
y2
]
= d,

E
[
y4
]
= 3d(d+ 2).

Proof. For (i, j)-th element of E
[
xx⊤ww⊤xx⊤

]
, we have:

E
[
xx⊤ww⊤xx⊤

]
[i,j]

= E
[
x[i]

d∑
k=1

(
x[k]w[k]

) d∑
l=1

(
w[l]x[l]

)
x[j]

]
=

d∑
k=1

d∑
l=1

E
[
x[i]x[k]x[l]x[j]

]
E
[
w[k]w[l]

]
According to the distribution of w, we have E

[
w[k]w[l]

]
= δkl, where δkl is the Kronecker delta

defined as:

δkl =

{
1 if k = l,

0 if k ̸= l,

By Isserlis Theorem, we have:

E
[
x[i]x[k]x[l]x[j]

]
= E

[
x[i]x[k]

]
E
[
x[l]x[j]

]
+ E

[
x[i]x[l]

]
E
[
x[k]x[j]

]
+ E

[
x[i]x[j]

]
E
[
x[k]x[l]

]
= δikδlj + δilδkj + δijδkl

Then we have:

E
[
xx⊤ww⊤xx⊤

]
[i,j]

=

d∑
k=1

d∑
l=1

E
[
x[i]x[k]x[l]x[j]

]
E
[
w[k]w[l]

]
=

d∑
k=1

d∑
l=1

(
δikδlj + δilδkj + δijδkl

)
δkl

=

d∑
k=1

(2δikδkj + δijδkk)

= (d+ 2)δij
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Then we have:
E
[
xx⊤ww⊤xx⊤

]
= (d+ 2)I

E
[
y2
]
= E

[
x⊤w · x⊤w

]
= E

[ d∑
i=1

(
x[i]w[i]

) d∑
j=1

(
x[j]w[j]

)]

=

d∑
i=1

d∑
j=1

E
[
x[i]x[j]

]
E
[
w[i]w[j]

]

=

d∑
i=1

d∑
j=1

δ2ij

= d

E
[
y4
]
= E

[
x⊤w · x⊤w · x⊤w · x⊤w

]
= E

[ d∑
i=1

(
x[i]w[i]

) d∑
j=1

(
x[j]w[j]

) d∑
k=1

(
x[k]w[k]

) d∑
l=1

(
x[l]w[l]

)]

=

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

E
[
x[i]x[j]x[k]x[l]

]
E
[
w[i]w[j]w[k]w[l]

]

=

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

(
δikδlj + δilδkj + δijδkl

)2
=

( ∑
i=j=k=l︸ ︷︷ ︸

=d

+
∑

i=j ̸=k=l

+
∑

i=k ̸=j=l

+
∑

i=k ̸=j=l︸ ︷︷ ︸
=3·d(d−1)

)
·
(
δikδlj + δilδkj + δijδkl

)2

= d · 32 + 3 · d(d− 1) · 12

= 3d(d+ 2)

C.2 Proof of Lemma A.3

Lemma C.2 (restatement of lemma A.3) If vectors xi and w are iid generated from N (0, Id),
y = x⊤

i w we have the following expectations:

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
· I,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iy
2
N−jxN−i

]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iy
2
N−j

]
=

d2α2
(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

,

E
[N−1∑

i=0

αi+1yN−ixN−iw
⊤
]
= α

(1− αN

1− α

)
· I,
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E
[N−1∑

i=0

αi+1y2N−iw
]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2xN−ix
⊤
N−iwx⊤

N−jw
]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iyN−j

]
= 0,

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−j

]
=

dα2
(
1− α2N

)
(1− α)(1 + α)

,

E
[N−1∑

i=0

αi+1yN−iw
]
= 0.

Proof.

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]

= E
[N−1∑

i=0

N−1∑
j=0

αi+j+2xN−i x
⊤
N−iw︸ ︷︷ ︸
yN−i

w⊤xN−j︸ ︷︷ ︸
yN−j

x⊤
N−j

]
=

∑
i̸=j

αi+j+2 E
[
xN−ix

⊤
N−i

]
︸ ︷︷ ︸

= I

E
[
ww⊤

]
︸ ︷︷ ︸

= I

E
[
xN−jx

⊤
N−j

]
︸ ︷︷ ︸

= I

+
∑
i=j

αi+j+2 E
[
xN−ix

⊤
N−iww⊤xN−jx

⊤
N−j

]
︸ ︷︷ ︸

= (d+2) I, by lemma A.2

=
((N−1∑

i=0

αi+1
)2

−
(N−1∑

i=0

α2i+2
))

I

+
(N−1∑

i=0

α2i+2
)
(d+ 2)I

=
(α2

(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
· I

Here,
∑

i̸=j α
i+j+2 =

(∑N−1
i=0 αi+1

)2

−
(∑N−1

i=0 α2i+2
)

for the third equality.

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iy
2
N−jxN−i

]

= E
[N−1∑

i=0

N−1∑
j=0

αi+j+2xN−i x
⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−jw︸ ︷︷ ︸
yN−j

x⊤
N−jw︸ ︷︷ ︸
yN−j

]
= 0

Notice that w appears three (odd) times in the second equality, if we define a function g(w) =

xN−ix
⊤
N−iwx⊤

N−jwx⊤
N−jw, we can see that g(−w) = −g(w), and further Ew

[
g(w)

]
= 0.

Therefore, the above expectation equals to 0. We will use the similar property in some of the
following equations.
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E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iy
2
N−j

]
=

∑
i̸=j

αi+j+2E
[
y2N−i

]
E
[
y2N−j

]
+
∑
i=j

αi+j+2E
[
y4N−i

]

=
((N−1∑

i=0

αi+1
)2

−
(N−1∑

i=0

α2i+2
))

d2 +
(N−1∑

i=0

α2i+2
)
· 3d(d+ 2)

=
d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

where the second equality is by E
[
y2N−i

]
= E

[
y2N−j

]
= d and E

[
y4N−i

]
= 3d(d+ 2) (lemma A.2).

E
[N−1∑

i=0

αi+1yN−ixN−iw
⊤
]

=

N−1∑
i=0

αi+1E
[
xN−i x

⊤
N−iw︸ ︷︷ ︸
yN−i

w⊤
]

=

N−1∑
i=0

αi+1 E
[
xN−ix

⊤
N−i

]
︸ ︷︷ ︸

= I

E
[
ww⊤

]
︸ ︷︷ ︸

= I

=

N−1∑
i=0

αi+1 · I

= α
(1− αN

1− α

)
· I

E
[N−1∑

i=0

αi+1y2N−iw
]

= E
[N−1∑

i=0

αi+1wx⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−iw︸ ︷︷ ︸
yN−i

]
= 0

Notice that w appears three (odd) times in the second equality, thus this expectation equals to 0.

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2xN−ix
⊤
N−iwx⊤

N−jw
]

=
∑
i=j

αi+j+2E
[
xN−ix

⊤
N−iwx⊤

N−iw
]

+
∑
i̸=j

αi+j+2E
[
xN−ix

⊤
N−i

]
E
[
wx⊤

N−jw
]

= 0+ 0 = 0

Notice that xN−i appears three (odd) times in E
[
xN−ix

⊤
N−iwx⊤

N−iw
]
, and x⊤

N−j appears once

(odd) in E
[
wx⊤

N−jw
]
, thus this expectation equals to 0.
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E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iyN−j

]

=

N−1∑
i=0

N−1∑
j=0

αi+j+2E
[
x⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−jw︸ ︷︷ ︸
yN−j

]
= 0

Notice that w appears three (odd) times in the second equality, thus this expectation equals to 0.

E
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iyN−j

]
=

∑
i̸=j

αi+j+2E
[
yN−iyN−j

]
+

∑
i=j

αi+j+2E
[
y2N−i

]

=
∑
i̸=j

αi+j+2E
[
x⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−jw︸ ︷︷ ︸
yN−j

]
+

N−1∑
i=0

α2i+2E
[
y2N−i

]

=
dα2

(
1− α2N

)
(1− α)(1 + α)

Notice that x⊤
N−i appears once (odd) in E

[
x⊤
N−iwx⊤

N−jw
]

where i ̸= j, thus∑
i̸=j α

i+j+2E
[
yN−iyN−j

]
= 0. Moreover, E

[
y2N−i

]
= d by lemma A.2.

E
[N−1∑

i=0

αi+1yN−iw
]

=

N−1∑
i=0

αi+1E
[
ww⊤xN−i︸ ︷︷ ︸

yN−i

]

=

N−1∑
i=0

αi+1E
[
ww⊤

]
E
[
xN−i

]
= 0

C.3 Proof of Lemma A.4

Lemma C.3 (restatement of lemma A.4) The gradient of trainable parameters θ′ =
{B,C, b, bB , bC} with respect to loss (Eq. (23)) are as follows:

∇bB
L(θ) = 0,

∇bC
L(θ) = 0,

∇BL(θ) =
(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

CC⊤B − α
(
1− αN

)︸ ︷︷ ︸
:=β3

C,

∇bL(θ) =
(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

CC⊤b,
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∇CL(θ) =
(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

BB⊤C

+
(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

bb⊤C

− α
(
1− αN

)︸ ︷︷ ︸
:=β3

B.

Proof of lemma C.3. Recalling the loss:

L(θ) = 1

2
E
[(

(1− α)(Cxq + bC)
⊤

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)2]
We will compute the gradient of {B,C, b, bB , bC} with respect to L(θ). Some expectation calcula-
tion are detailed in Section C.3.1.

∇bC
L(θ) = E

[
(1− α)

(
(1− α)(Cxq + bC)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)︸ ︷︷ ︸
:=v

−w⊤xq

)

·
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)︸ ︷︷ ︸
:=v

]

= (1− α)2E
[
vv⊤(Cxq + bC)

]
− (1− α)E

[
vw⊤xq

]
= (1− α)2E

[
vv⊤C

]
E
[
xq

]
+ (1− α)2E

[
vv⊤

]
bC − (1− α)E

[
vw⊤

]
E
[
xq

]

It is clear that E
[
xq

]
= 0. Thus, if bC = 0, then ∇bC

L(θ) = 0. Notice that we assume bC(0) = 0

at initialization, so by induction, bC(t) = 0 and ∇bC
L(θ(t)) = 0 for t ≥ 0. We will consider

bC = 0 when computing other gradients.

∇bB
L(θ) = E

[
(1− α)

(
(1− α)(Cxq + bC)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)
· (Cxq + bC) ·

N−1∑
i=0

αi+1yN−i

]
= E

[
(1− α)

(
(1− α)(Cxq)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)
·Cxq ·

N−1∑
i=0

αi+1yN−i

]
= (1− α)2E

[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib+ bB)
)
·Cxq ·

N−1∑
i=0

αi+1yN−i

]
− (1− α)E

[
w⊤xq ·Cxq ·

N−1∑
i=0

αi+1yN−i

]

=
dα2(1− α)

(
1− α2N

)
(1 + α)

CC⊤bB
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The last equality follows from lemma C.4 where we have: E
[
x⊤
q C

⊤
(∑N−1

i=0 αi+1yN−i(BxN−i +

yN−ib + bB)
)

· Cxq ·
∑N−1

i=0 αi+1yN−i

]
=

dα2

(
1−α2N

)
(1−α)(1+α) CC⊤bB , and E

[
w⊤xq · Cxq ·∑N−1

i=0 αi+1yN−i

]
= 0. Similar to bC , notice that bB is initialized as 0, thus by induction, bB(t) = 0

and ∇bB
L(θ(t)) = 0 for t ≥ 0. We will consider bB = bC = 0 when computing other gradients.

∇CL(θ) = E
[
(1− α)

(
(1− α)(Cxq + bC)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)
·
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)x
⊤
q

]
= (1− α)2E

[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)

·
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
x⊤
q

]
− (1− α)E

[
w⊤xq ·

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)x
⊤
q

]
=

(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

BB⊤C

+
(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

bb⊤C

− α
(
1− αN

)︸ ︷︷ ︸
:=β3

B

The last equality follows from lemma C.4, where we have:

E
[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
·
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
x⊤
q

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
BB⊤C

+
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
bb⊤C

and E
[
w⊤xq ·

∑N−1
i=0 αi+1yN−i(BxN−i + yN−ib)x

⊤
q

]
= α

(
1−αN

1−α

)
B

∇BL(θ) = E
[
(1− α)

(
(1− α)(Cxq + bC)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)
· (Cxq + bC)

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
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= (1− α)2E
[
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib) ·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
− (1− α)E

[
w⊤xq ·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
=

(
α2

(
1− αN

)2
+

(d+ 1)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β1

CC⊤B

− α
(
1− αN

)︸ ︷︷ ︸
:=β3

C

The last equality follows from lemma C.4, where we have:

E
[
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib) ·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
CC⊤B

and E
[
w⊤xq ·Cxq

∑N−1
i=0 αi+1yN−ix

⊤
N−i

]
= α

(
1−αN

1−α

)
C.

∇bL(θ) = E
[
(1− α)

(
(1− α)(Cxq + bC)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib+ bB)−w⊤xq

)
· (Cxq + bC) ·

N−1∑
i=0

αi+1y2N−i

]
= E

[
(1− α)

(
(1− α)(Cxq)

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)−w⊤xq

)
·Cxq ·

N−1∑
i=0

αi+1y2N−i

]
= (1− α)2E

[(
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)
·Cxq ·

N−1∑
i=0

αi+1y2N−i

]
− (1− α)E

[
w⊤xq ·Cxq ·

N−1∑
i=0

αi+1y2N−i

]
=

(
d2α2

(
1− αN

)2
+

(2d2 + 6d)α2(1− α)
(
1− α2N

)
(1 + α)

)
︸ ︷︷ ︸

:=β2

CC⊤b

The last equality follows from lemma C.4, where we have:

E
[(

x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)
·Cxq ·

N−1∑
i=0

αi+1y2N−i

]

=
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
CC⊤b

and E
[
w⊤xq ·Cxq ·

∑N−1
i=0 αi+1y2N−i

]
= 0.
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C.3.1 Auxiliary Lemma for Lemma A.4

Lemma C.4 If vectors xi, xq and w are iid generated from N (0, Id), y = x⊤
i w we have the

following expectations:

E
[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
·
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
x⊤
q

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
BB⊤C

+
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
bb⊤C

E
[
w⊤xq ·

N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)x
⊤
q

]
= α

(1− αN

1− α

)
B

E
[
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib) ·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
=

(α2
(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
CC⊤B

E
[
w⊤xq ·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]
= α

(1− αN

1− α

)
C

E
[(

x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)
·Cxq ·

N−1∑
i=0

αi+1y2N−i

]

=
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
CC⊤b

E
[
w⊤xq ·Cxq ·

N−1∑
i=0

αi+1y2N−i

]
= 0

E
[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib+ bB)
)
·Cxq ·

N−1∑
i=0

αi+1yN−i

]

=
dα2

(
1− α2N

)
(1− α)(1 + α)

CC⊤bB

E
[
w⊤xq ·Cxq ·

N−1∑
i=0

αi+1yN−i

]
= 0

Proof of lemma C.4. We will use the results of lemma A.3 to prove the above equation.
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E
[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)

︸ ︷︷ ︸
♠

·
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)
)
x⊤
q

]
= E

[N−1∑
i=0

αi+1yN−i

(
BxN−i + yN−ib

)
(
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)⊤

︸ ︷︷ ︸
♠

x⊤
q

]

= E
[N−1∑

i=0

N−1∑
j=0

αi+j+2
((

ByN−ixN−i + y2N−ib
)

(
yN−jx

⊤
N−jB

⊤ + y2N−jb
⊤))]CE

[
xqx

⊤
q

]
= BE

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]
B⊤C

+BE
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−iy
2
N−jxN−i

]
b⊤C

+ bE
[N−1∑

i=0

N−1∑
j=0

αi+j+2yN−jy
2
N−ixN−j

]
B⊤C

+ E
[N−1∑

i=0

N−1∑
j=0

αi+j+2y2N−iy
2
N−j

]
bb⊤C

=
(α2

(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
BB⊤C

+
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
bb⊤C

The last equality follows from lemma A.3, where we have:

E
[∑N−1

i=0

∑N−1
j=0 αi+j+2yN−iyN−jxN−ix

⊤
N−j

]
=

(
α2
(
1−αN

)2

(1−α)2 +
(d+1)α2

(
1−α2N

)
(1−α)(1+α)

)
I ,

E
[∑N−1

i=0

∑N−1
j=0 αi+j+2yN−iy

2
N−jxN−i

]
= 0 and E

[∑N−1
i=0

∑N−1
j=0 αi+j+2y2N−iy

2
N−j

]
=(d2α2

(
1−αN

)2

(1−α)2 +
(2d2+6d)α2

(
1−α2N

)
(1−α)(1+α)

)
.

E
[
w⊤xq︸ ︷︷ ︸

♠

·
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)x
⊤
q

]

= E
[N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib)w
⊤xq︸ ︷︷ ︸
♠

x⊤
q

]
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= BE
[N−1∑

i=0

αi+1yN−ixN−iw
⊤
]
E
[
xqx

⊤
q

]
+ bE

[N−1∑
i=0

αi+1y2N−iw
⊤
]
E
[
xqx

⊤
q

]
= α

(1− αN

1− α

)
B

The last equality follows from lemma A.3, where we have: E
[∑N−1

i=0 αi+1yN−ixN−iw
⊤
]
=

α
(

1−αN

1−α

)
I , E

[∑N−1
i=0 αi+1y2N−iw

]
= 0, and E

[
xqx

⊤
q

]
= I .

E
[
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)︸ ︷︷ ︸
♠

·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]

= E
[
Cxq

(
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)

︸ ︷︷ ︸
♠

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]

= CE
[
xqx

⊤
q

]
C⊤BE

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−ix
⊤
N−j

]

=
(α2

(
1− αN

)2
(1− α)2

+
(d+ 1)α2

(
1− α2N

)
(1− α)(1 + α)

)
CC⊤B

The last equality follows from lemma A.3, where we have:

E
[∑N−1

i=0

∑N−1
j=0 αi+j+2yN−iyN−jxN−ix

⊤
N−j

]
=

(
α2
(
1−αN

)2

(1−α)2 +
(d+1)α2

(
1−α2N

)
(1−α)(1+α)

)
I , and

E
[
xqx

⊤
q

]
= I .

E
[
w⊤xq︸ ︷︷ ︸

♠

·Cxq

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]

= CE
[
xq x

⊤
q w︸ ︷︷ ︸
♠

N−1∑
i=0

αi+1yN−ix
⊤
N−i

]

= CE
[
xqx

⊤
q

]
E
[N−1∑

i=0

αi+1yN−iwx⊤
N−i

]
= α

(1− αN

1− α

)
C

The last equality follows from lemma A.3, where we have: E
[∑N−1

i=0 αi+1yN−ixN−iw
⊤
]
=

α
(

1−αN

1−α

)
I , and E

[
xqx

⊤
q

]
= I .

E
[ (

x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)

︸ ︷︷ ︸
♠

·Cxq ·
N−1∑
i=0

αi+1y2N−i

]
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= E
[
Cxq

(
x⊤
q C

⊤
N−1∑
i=0

αi+1yN−i(BxN−i + yN−ib)
)

︸ ︷︷ ︸
♠

·
N−1∑
i=0

αi+1y2N−i

]

= CE
[
xqx

⊤
q

]
C⊤BE

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iy
2
N−jxN−i

]

+CE
[
xqx

⊤
q

]
C⊤bE

[N−1∑
i=0

N−1∑
j=0

αi+j+2y2N−iy
2
N−j

]

=
(d2α2

(
1− αN

)2

(1− α)2
+

(2d2 + 6d)α2
(
1− α2N

)
(1− α)(1 + α)

)
CC⊤b

The last equality follows from lemma A.3, where we have:
E
[∑N−1

i=0

∑N−1
j=0 αi+j+2yN−iy

2
N−jxN−i

]
= 0, E

[∑N−1
i=0

∑N−1
j=0 αi+j+2y2N−iy

2
N−j

]
=(d2α2

(
1−αN

)2

(1−α)2 +
(2d2+6d)α2

(
1−α2N

)
(1−α)(1+α)

)
, and E

[
xqx

⊤
q

]
= I .

E
[
w⊤xq︸ ︷︷ ︸

♠

·Cxq ·
N−1∑
i=0

αi+1y2N−i

]

= E
[
Cxq x

⊤
q w︸ ︷︷ ︸
♠

·
N−1∑
i=0

αi+1y2N−i

]

= CE
[
xqx

⊤
q

]
E
[N−1∑

i=0

αi+1y2N−iw
]

= 0

The last equality follows from lemma A.3, where we have E
[∑N−1

i=0 αi+1y2N−iw
]
= 0.

E
[
x⊤
q C

⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib+ bB)
)

︸ ︷︷ ︸
♠

·Cxq ·
N−1∑
i=0

αi+1yN−i

]

= E
[
Cxq · x⊤

q C
⊤
(N−1∑

i=0

αi+1yN−i(BxN−i + yN−ib+ bB)
)

︸ ︷︷ ︸
♠

·
N−1∑
j=0

αj+1yN−j

]

= CE
[
xqx

⊤
q

]
C⊤BE

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iyN−jxN−i

]

+CE
[
xqx

⊤
q

]
C⊤bE

[N−1∑
i=0

N−1∑
j=0

αi+j+2y2N−iyN−j

]

+CE
[
xqx

⊤
q

]
C⊤bBE

[N−1∑
i=0

N−1∑
j=0

αi+j+2yN−iyN−j

]

=
dα2

(
1− α2N

)
(1− α)(1 + α)

CC⊤bB
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The last equality follows from lemma A.3, where we have:
E
[∑N−1

i=0

∑N−1
j=0 αi+j+2xN−i x

⊤
N−iw︸ ︷︷ ︸
yN−i

x⊤
N−jw︸ ︷︷ ︸
yN−j

]
= 0, E

[∑N−1
i=0

∑N−1
j=0 αi+j+2y2N−iyN−j

]
= 0,

E
[∑N−1

i=0

∑N−1
j=0 αi+j+2yN−iyN−j

]
=

dα2

(
1−α2N

)
(1−α)(1+α) , and E

[
xqx

⊤
q

]
= I .

E
[
w⊤xq︸ ︷︷ ︸

♠

·Cxq ·
N−1∑
i=0

αi+1yN−i

]

= E
[
Cxq x

⊤
q w︸ ︷︷ ︸
♠

·
N−1∑
i=0

αi+1yN−i

]

= CE
[
xqx

⊤
q

]
E
[N−1∑

i=0

αi+1yN−iw
]

= 0

The last equality follows from lemma A.3, where we have E
[∑N−1

i=0 αi+1yN−iw
]
= 0.

C.4 Proof of claim B.1

This Section presents the bounds for terms b⊤i (T + 1)bi(T + 1), c⊤i (Tt+ 1)ci(T + 1) and b⊤(T +
1)b(T + 1), establishing the property A(T + 1).

Recurring the Vector-coupled Dynamics equations of b⊤i (t+ 1)bi(t+ 1), c⊤i (t+ 1)ci(t+ 1) and
b⊤(t+ 1)b(t+ 1) in lemma A.7, we have:

b⊤i (T + 1)bi(T + 1) = b⊤i (T )bi(T ) + 2η
((

β3 − β1c
⊤
i (T )bi(T )

)
c⊤i (T )bi(T )

− β1

d∑
k ̸=i

(
c⊤k (T )bi(T )

)2)
+ η2

∥∥∥b̄i(T )∥∥∥2
2

= b⊤i (0)bi(0) +

T∑
s=0

(
2η

((
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)− β1

d∑
k ̸=i

(
c⊤k (s)bi(s)

)2)
+ η2

∥∥∥b̄i(s)∥∥∥2
2

)
= b⊤i (0)bi(0) + 2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤k (s)bi(s)

)2
︸ ︷︷ ︸

term II

+ η2
T∑

s=0

∥∥∥b̄i(s)∥∥∥2
2︸ ︷︷ ︸

term III

c⊤i (T + 1)ci(T + 1) = c⊤i (T )ci(T ) + 2η
((

β3 − β1c
⊤
i (T )bi(T )

)
c⊤i (T )bi(T )

− β1

d∑
k ̸=i

(
c⊤i (T )bk(T )

)2 − β2

(
c⊤i (T )b(T )

)2)
+ η2

∥∥∥c̄i(T )∥∥∥2
2

= c⊤i (T )ci(T ) +

T∑
s=0

(
2η

((
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)− β1

d∑
k ̸=i

(
c⊤i (s)bk(s)

)2
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− β2

(
c⊤i (s)b(s)

)2)
+ η2

∥∥∥c̄i(s)∥∥∥2
2

)
= c⊤i (0)ci(0) + 2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤i (s)bk(s)

)2
︸ ︷︷ ︸

=term II

− 2ηβ2

T∑
s=0

(
c⊤i (s)b(s)

)2
︸ ︷︷ ︸

term IV

+η2
T∑

s=0

∥∥∥c̄i(s)∥∥∥2
2︸ ︷︷ ︸

term V

b⊤(T + 1)b(T + 1) = b⊤(T )b(T )− 2η
(
β2

d∑
k=1

(
c⊤k (T )b(T )

)2)
+ η2

∥∥∥b̄(T )∥∥∥2
2

= b⊤(0)b(0) + 2ηβ2

d∑
k=1

T∑
s=0

(
c⊤k (s)b(s)

)2
︸ ︷︷ ︸

=term IV

+η2
T∑

s=0

∥∥∥b̄(s)∥∥∥2
2︸ ︷︷ ︸

term VI

To bound terms I - VI, we will use some inequalities from property B(t) and lemma C.7 as following
with i, j, k ∈ [1, d], i ̸= j:

|β3 − β1c
⊤
i (s)bi(s)| ≤ δ(t) exp(−ηβ1γt)

|c⊤i (t)bj(t)| ≤ 2δ(t) exp(−ηβ1γt)

|c⊤i (t)b(t)| ≤ 2δ(t) exp(−ηβ2γt) +
δ(t)

β2
exp(−ηβ1γt)∣∣∣b̄i(t)⊤b̄k(t)∣∣∣ ≤ 8dhd

2δ(t)2 exp(−ηβ1γt),∣∣∣c̄i(t)⊤c̄k(t)∣∣∣ ≤ 8dhd
2δ(t)2 exp(−ηβ1γt) + 40β2

2dhδ(t)
2 exp(−ηβ2γt),∥∥∥b̄(t)∥∥∥2

2
≤ 16dhβ

2
2d

2δ(t)2 exp(−ηβ2γt) + 2dhd
2δ(t)2 exp(−ηβ1γt),

Next we begin bounding terms I - VI.

Bound of term I: By
∣∣∣β3 − β1c

⊤
i (s)bi(s)

∣∣∣ ≤ δ(s) exp(−ηβ1γs), we have:∣∣∣c⊤i (s)bi(s)∣∣∣ ≤ δ(s) exp(−ηβ1γs) + β3

β1

≤ 4δ(s) + 2α

α2

≤ 5δ(s)

α2

≤ 6δ(s)

The third inequality is by δ(s) ≥ 2
√

dh log(4d(2d+ 1)/δ) ≥ 2α = 2α = 2 exp((− ln 2)/N). For
the last inequality, as long as N ≥ 2 ln 2

ln 6−ln 5 , we have 5
α2 ≤ 6.

∣∣∣ T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)

∣∣∣
≤

T∑
s=0

6δ(s)2 exp(−ηβ1γs)
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≤ 6δ2max

∫ ∞

−1

exp(−ηβ1γs)ds

≤ 6δ2max exp(ηβ1γ)

ηβ1γ

The second inequality is due to exp(−ηβ1γs) is monotone decreasing.

Bound of term II:
T∑

s=0

(
c⊤k (s)bi(s)

)2
≤

T∑
s=0

(
2δ(s) exp(−ηβ1γs)

)2
≤ 4δ2max

∫ ∞

−1

exp(−2ηβ1γs)ds

≤ 2δ2max exp(2ηβ1γ)

ηβ1γ

The second inequality is due to exp(−2ηβ1γs) is monotone decreasing.

Bound of term III:
T∑

s=0

∥∥∥b̄i(s)∥∥∥2
2

≤
T∑

s=0

8dhd
2δ(t)2 exp(−ηβ1γt)

≤ 8dhd
2δ2max

∫ ∞

−1

exp(−ηβ1γs)ds

≤ 8dhd
2δ2max exp(ηβ1γ)

ηβ1γ

The second inequality is due to exp(−ηβ1γs) is monotone decreasing.

Bound of term IV:
T∑

s=0

(
c⊤i (s)b(s)

)2
=

T∑
s=0

(
2δ(s) exp(−ηβ2γs) +

δ(s)

β2
exp(−ηβ1γs)

)2

≤ δ2max ·
(
4

T∑
s=0

exp(−2ηβ2γs) +
4

β2

T∑
s=0

exp(−η(β1 + β2)γs) +
1

β2
2

T∑
s=0

exp(−2ηβ1γs)
)

≤ δ2max ·
(
4

∫ ∞

−1

exp(−2ηβ2γs)ds+
4

β2

∫ ∞

−1

exp(−η(β1 + β2)γs)ds

+
1

β2
2

∫ ∞

−1

exp(−2ηβ1γs)ds
)

=
2δ2max exp(2ηβ2γ)

ηβ2γ
+

4δ2max exp(η(β1 + β2)γ)

ηβ2(β1 + β2)γ
+

δ2max exp(2ηβ1γ)

2ηβ1β2
2γ

≤ 17δ2max

ηβ2γ
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The second inequality is due to exp(−2ηβ2γs), exp(−η(β1 + β2)γs) and exp(−2ηβ1γs) are
monotone decreasing. The last inequality is by exp(η(β1+β2)γ)

(β1+β2)
≤ 2 and exp(2ηβ1γ)

2β1β2
≤ 7 since

exp(2ηβ1γ) ≤ exp(η(β1 + β2)γ) ≤ 2 and β1 + β2 ≥ 1, β1β2 ≥ 1
7 .

Bound of term V:
T∑

s=0

∥∥∥c̄i(s)∥∥∥2
2

≤
T∑

s=0

(
8dhd

2δ(t)2 exp(−ηβ1γt) + 40β2
2dhδ(t)

2 exp(−ηβ2γt)
)

≤ 8dhd
2δ2max

∫ ∞

−1

exp(−ηβ1γs)ds+ 40β2
2dhδ

2
max

∫ ∞

−1

exp(−ηβ2γs)ds

=
8dhd

2δ2max exp(ηβ1γ)

ηβ1γ
+

40β2dhδ
2
max exp(ηβ2γ)

ηγ

≤ 16dhd
2δ2max exp(ηβ1γ)

ηβ1γ
+

80β2dhδ
2
max exp(ηβ2γ)

ηγ

The second inequality is due to exp(−ηβ2γs) and exp(−ηβ1γs) are monotone decreasing.

Bound of term VI:
T∑

s=0

∥∥∥b̄(s)∥∥∥2
2

≤
T∑

s=0

(
16dhβ

2
2d

2δ(t)2 exp(−ηβ2γt) + 2dhd
2δ(t)2 exp(−ηβ1γt)

)
≤ 16dhβ

2
2d

2δ2max

∫ ∞

−1

exp(−ηβ2γs)ds+ 2dhd
2δ2max

∫ ∞

−1

exp(−ηβ1γs)ds

≤ 16dhβ2d
2δ2max exp(ηβ2γ)

ηγ
+

2dhd
2δ2max exp(ηβ1γ)

ηβ1γ

The second inequality is due to exp(−ηβ2γs) and exp(−ηβ1γs) are monotone decreasing.

We next use the bounds of I - VI to bound b⊤i (T + 1)bi(T + 1), c⊤i (T + 1)ci(T + 1) and b⊤(T +
1)b(T + 1).

Lower bound of b⊤i (T + 1)bi(T + 1)

b⊤i (T + 1)bi(T + 1)

= b⊤i (0)bi(0)︸ ︷︷ ︸
≥ 3dh

4

+2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤k (s)bi(s)

)2
︸ ︷︷ ︸

term II

+ η2
T∑

s=0

∥∥∥b̄i(s)∥∥∥2
2︸ ︷︷ ︸

≥0

≥ 3dh
4

− 2η · 6δ
2
max exp(ηβ1γ)

ηβ1γ
− 2ηβ1(d− 1) · 2δ

2
max exp(2ηβ1γ)

ηβ1γ

≥ 3dh
4

− 12δ2max exp(ηβ1γ)

β1γ
− 4(d− 1)δ2max exp(2ηβ1γ)

γ
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≥ 3dh
4

− 2 ∗ 12 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

− 2 ∗ 4(d− 1) ∗ 9dh log(4d(2d+ 1)/δ)
1
2dh

≥ dh
2

The third inequality is by δmax = 3
√
dh log(4d(2d+ 1)/δ), exp(ηβ1γ) ≤ exp(2ηβ1γ) ≤ 2 and

γ = 1
2dh. The last inequality follows from dh = Ω̃(d2) ≥

(
1728 log(4d(2d + 1)/δ) + 576(d −

1)β1 log(4d(2d+ 1)/δ)
)
/β1.

Upper bound of b⊤i (T + 1)bi(T + 1)

b⊤i (T + 1)bi(T + 1)

= b⊤i (0)bi(0)︸ ︷︷ ︸
≤ 5dh

4

−2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤k (s)bi(s)

)2
︸ ︷︷ ︸

term II

+ η2
T∑

s=0

∥∥∥b̄i(s)∥∥∥2
2︸ ︷︷ ︸

term III

≤ 5dh
4

+ 2η · 6δ
2
max exp(ηβ1γ)

ηβ1γ
+ η2 · 8dhd

2δ2max exp(ηβ1γ)

ηβ1γ

≤ 5dh
4

+
12δ2max exp(ηβ1γ)

β1γ
+

8ηdhd
2δ2max exp(ηβ1γ)

β1γ

≤ 5dh
4

+
2 ∗ 12 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

+
2 ∗ 8ηdhd2 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

≤ 2dh

The third inequality is by δmax = 3
√
dh log(4d(2d+ 1)/δ), exp(ηβ1γ) ≤ 2 and γ = 1

2dh. The last
inequality follows from

dh = Ω̃(d2)

≥
(
576 log(4d(2d+ 1)/δ) + 192 log(4d(2d+ 1)/δ)

)
/β1

≥
(
576 log(4d(2d+ 1)/δ) + 384ηdhd

2 log(4d(2d+ 1)/δ)
)
/β1

Lower bound of c⊤i (T + 1)ci(T + 1)

c⊤i (T + 1)ci(T + 1)

= c⊤i (0)ci(0)︸ ︷︷ ︸
≥ 3dh

4

+2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤i (s)bk(s)

)2
︸ ︷︷ ︸

= term II

− 2ηβ2

T∑
s=0

(
c⊤i (s)b(s)

)2
︸ ︷︷ ︸

term IV

+η2
T∑

s=0

∥∥∥c̄i(s)∥∥∥2
2︸ ︷︷ ︸

≥0

≥ 3dh
4

− 2η · 6δ
2
max exp(ηβ1γ)

ηβ1γ
− 2ηβ1(d− 1) · 2δ

2
max exp(2ηβ1γ)

ηβ1γ
− 2ηβ2 ·

17δ2max

ηβ2γ

≥ 3dh
4

− 2 ∗ 12 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

− 2 ∗ 4(d− 1) ∗ 9dh log(4d(2d+ 1)/δ)
1
2dh

− 34 ∗ 9dh log(4d(2d+ 1)/δ)
1
2dh
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≥ dh
2

The second inequality is by δmax = 3
√
dh log(4d(2d+ 1)/δ), exp(ηβ1γ) ≤ exp(2ηβ1γ) ≤ 2 and

γ = 1
2dh. The last inequality follows from dh = Ω̃(d2) ≥

(
1728 log(4d(2d + 1)/δ) + (576d +

1872)β1 log(4d(2d+ 1)/δ)
)
/β1.

Upper bound of c⊤i (T + 1)ci(T + 1)

c⊤i (T + 1)ci(T + 1)

= c⊤i (0)ci(0)︸ ︷︷ ︸
≤ 5dh

4

+2η

T∑
s=0

(
β3 − β1c

⊤
i (s)bi(s)

)
c⊤i (s)bi(s)︸ ︷︷ ︸

term I

−2ηβ1

d∑
k ̸=i

T∑
s=0

(
c⊤i (s)bk(s)

)2
︸ ︷︷ ︸

=term II

− 2ηβ2

T∑
s=0

(
c⊤i (s)b(s)

)2
︸ ︷︷ ︸

≥0

+η2
T∑

s=0

∥∥∥c̄i(s)∥∥∥2
2︸ ︷︷ ︸

term V

≤ 5dh
4

+ 2η · 6δ
2
max exp(ηβ1γ)

ηβ1γ
+ 2ηβ1(d− 1) · 2δ

2
max exp(2ηβ1γ)

ηβ1γ

+ η2 ·
(16dhd2δ2max exp(ηβ1γ)

ηβ1γ
+

80β2dhδ
2
max exp(ηβ2γ)

ηγ

)
≤ 5dh

4
+

2 ∗ 12 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

+
2 ∗ 4(d− 1) ∗ 9dh log(4d(2d+ 1)/δ)

1
2dh

+
2 ∗ 16ηdhd2 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

+
2 ∗ 80ηβ2dh ∗ 9dh log(4d(2d+ 1)/δ)

1
2dh

≤ 2dh

The second inequality is by δmax = 3
√
dh log(4d(2d+ 1)/δ), exp(ηβ1γ) ≤ exp(2ηβ1γ) ≤ 2 and

γ = 1
2dh. The last inequality follows from

dh = Ω̃(d2)

≥ 576 log(4d(2d+ 1)/δ)/β1 + 192(d− 1) log(4d(2d+ 1)/δ)

+ 384 log(4d(2d+ 1)/δ)/β1 + 3840 ln 2 log(4d(2d+ 1)/δ)

≥ 576 log(4d(2d+ 1)/δ)/β1 + 192(d− 1) log(4d(2d+ 1)/δ)

+ 768ηdhd
2 log(4d(2d+ 1)/δ)/β1 + 3840ηβ2dh log(4d(2d+ 1)/δ)

Lower bound of b⊤(T + 1)b(T + 1)

b⊤(T + 1)b(T + 1) = b⊤(0)b(0)︸ ︷︷ ︸
≥ 3dh

4

−2ηβ2

d∑
k=1

T∑
s=0

(
c⊤k (s)b(s)

)2
︸ ︷︷ ︸

=term IV

+η2
T∑

s=0

∥∥∥b̄(s)∥∥∥2
2︸ ︷︷ ︸

≥0

≥ 3dh
4

− 2ηβ2d ·
17δ2max

ηβ2γ

≥ 3dh
4

− 34dδ2max

γ

≥ 3dh
4

− 34d ∗ 9dh log(4d(2d+ 1)/δ)
1
2dh

≥ dh
2

The third inequality is by δmax = 3
√

dh log(4d(2d+ 1)/δ) and γ = 1
2dh. The last inequality

follows from dh = Ω̃(d2) ≥ 2448d log(4d(2d+ 1)/δ).
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Upper bound of b⊤(T + 1)b(T + 1)

b⊤(T + 1)b(T + 1) = b⊤(0)b(0)︸ ︷︷ ︸
≤ 5dh

4

−2ηβ2

d∑
k=1

T∑
s=0

(
c⊤k (s)b(s)

)2
︸ ︷︷ ︸

=term IV

+η2
T∑

s=0

∥∥∥b̄(s)∥∥∥2
2︸ ︷︷ ︸

term VI

≤ 5dh
4

+ 2ηβ2d ·
17δ2max

ηβ2γ
+ η2 ·

(16dhβ2d
2δ2max exp(ηβ2γ)

ηγ
+

2dhd
2δ2max exp(ηβ1γ)

ηβ1γ

)
≤ 5dh

4
+

34dδ2max

γ
+

2 ∗ 16ηdhβ2d
2δ2max

γ
+

2 ∗ 2ηdhd2δ2max

β1γ

≤ 5dh
4

+
34d ∗ 9dh log(4d(2d+ 1)/δ)

1
2dh

+
32ηdhβ2d

2 ∗ 9dh log(4d(2d+ 1)/δ)
1
2dh

+
4ηdhd

2 ∗ 9dh log(4d(2d+ 1)/δ)

β1
1
2dh

≤ 2dh
The second inequality is by exp(ηβ1γ) ≤ exp(ηβ2γ) ≤ 2 The third inequality is by δmax =

3
√
dh log(4d(2d+ 1)/δ) and γ = 1

2dh. The last inequality follows from

dh = Ω̃(d2)

≥ 816d log(4d(2d+ 1)/δ) + 768 ln 2d2 log(4d(2d+ 1)/δ) + 48 log(4d(2d+ 1)/δ)/β1

≥ 816d log(4d(2d+ 1)/δ) + 768ηβ2dhd
2 log(4d(2d+ 1)/δ) + 96ηdhd

2 log(4d(2d+ 1)/δ)/β1

C.5 Proof of claim B.2

This Section presents the exponential decay bounds for terms
(
β3 − β1c

⊤
i (T + 1)bi(T + 1)

)
,

c⊤i (T + 1)bj(T + 1) and c⊤i (T + 1)b(T + 1), establishing the property B(T + 1).

Bound of
(
β3 − β1c

⊤
i (T + 1)bi(T + 1)

)
Recall the following equation from lemma A.7.

c⊤i (t+ 1)bi(t+ 1) = c⊤i (t)bi(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
b⊤i (t)bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · b⊤k (t)bi(t)

− β2c
⊤
i (t)b(t) · b⊤i (t)b(t) +

(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤i (t)ci(t)

− β1

d∑
k ̸=i

c⊤k (t)bi(t) · c⊤i (t)ck(t)
)
+ η2c̄⊤i (t)b̄i(t)

Based on the above equation, we have:∣∣∣(β3 − β1c
⊤
i (T + 1)bi(T + 1)

)∣∣∣ = ∣∣∣β3 − β1c
⊤
i (T )bi(T )

− ηβ1

((
β3 − β1c

⊤
i (T )bi(T )

)
b⊤i (T )bi(T )− β1

d∑
k ̸=i

c⊤i (T )bk(T ) · b⊤k (T )bi(T )

− β2c
⊤
i (T )b(T ) · b⊤i (T )b(T ) +

(
β3 − β1c

⊤
i (T )bi(T )

)
c⊤i (T )ci(T )

− β1

d∑
k ̸=i

c⊤k (T )bi(T ) · c⊤i (T )ck(T )
)
− η2β1c̄

⊤
i (T )b̄i(T )

∣∣∣
=

∣∣∣(1− ηβ1

(
b⊤i (T )bi(T ) + c⊤i (T )ci(T )

))(
β3 − β1c

⊤
i (T )bi(T )

)
+ ηβ2

1

d∑
k ̸=i

c⊤i (T )bk(T ) · b⊤k (T )bi(T ) + ηβ2
1

d∑
k ̸=i

c⊤k (T )bi(T ) · c⊤i (T )ck(T )

+ ηβ1β2c
⊤
i (T )b(T ) · b⊤i (T )b(T )− η2β1c̄

⊤
i (T )b̄i(T )

∣∣∣

(31)
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The term β3 − β1c
⊤
i (T )bi(T ) is highlighted with underline, and we collect its negative feedback

terms together. The factor
(
1− ηβ1

(
b⊤i (T )bi(T ) + c⊤i (T )ci(T )

))
≤ 1 will drive

(
β3 − β1c

⊤
i (T +

1)bi(T + 1)
)

to converge to zero.

By Recurring (Eq. (31)) from 0 to T , we have:

∣∣∣(β3 − β1c
⊤
i (T + 1)bi(T + 1)

)∣∣∣
=

∣∣∣ T∏
s=0

(
1− ηβ1

(
b⊤i (s)bi(s) + c⊤i (s)ci(s)

))(
β3 − β1c

⊤
i (0)bi(0)

)
+

T∑
s=0

T∏
s′=s+1

(
1− ηβ1

(
b⊤i (s

′)bi(s
′) + c⊤i (s

′)ci(s
′)
))

·
(
ηβ2

1

d∑
k ̸=i

c⊤i (s)bk(s) · b⊤k (s)bi(s) + ηβ2
1

d∑
k ̸=i

c⊤k (s)bi(s) · c⊤i (s)ck(s)︸ ︷︷ ︸
♠

+ ηβ1β2c
⊤
i (s)b(s) · b⊤i (s)b(s)︸ ︷︷ ︸

♣

− η2β1c̄
⊤
i (s)b̄i(s)︸ ︷︷ ︸
♢

)∣∣∣

(32)

Here
∏T

s=0

(
1 − ηβ1

(
b⊤i (s)bi(s) + c⊤i (s)ci(s)

))
≤ (1 − 2ηβ1γ)

T+1 since γ ≤
b⊤i (s)bi(s), c

⊤
i (s)ci(s). Besides, from property B(0), . . . ,B(T ) and lemma C.7 we know that

c⊤i (s)bk(s), c
⊤
i (s)b(s) and c̄⊤i (s)b̄i(s) have bounds with exponential decreasing rate. Therefore, it

is easy to derive an exponential decreasing upper bound for
∣∣∣(β3 − β1c

⊤
i (T + 1)bi(T + 1)

)∣∣∣.
By substituting the bounds of c⊤i (s)bk(s), c

⊤
i (s)b(s), c̄

⊤
i (s)b̄i(s), b

⊤
k (s)bi(s), c

⊤
i (s)ck(s) and

b⊤i (s)b(s), we have:

∣∣∣(β3 − β1c
⊤
i (T + 1)bi(T + 1)

)∣∣∣
≤ (1− 2ηβ1γ)

T+1
∣∣∣β3 − β1c

⊤
i (0)bi(0)

∣∣∣
+

T∑
s=0

(1− 2ηβ1γ)
T−s ·

(
2ηβ2

1(d− 1) · 2δ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸
♠

+ ηβ1β2 ·
(
2δ(s)2 exp(−ηβ2γs) +

δ(s)2

β2
exp(−ηβ1γs)

)
︸ ︷︷ ︸

♣

+ η2β1

(
8dhd

2δ(t)2 exp(−ηβ1γt) + 8β2dhdδ(t)
2 exp(−ηβ2γt)

)︸ ︷︷ ︸
♢

)
(33)

The notations ♠, ♣ and ♢ highlight the corresponding terms between (Eq. (32)) and (Eq. (33)) for
refference.
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We further have the following:∣∣∣(β3 − β1c
⊤
i (T + 1)bi(T + 1)

)∣∣∣
≤ (1− 2ηβ1γ)

T+1
∣∣∣β3 − β1c

⊤
i (0)bi(0)

∣∣∣
+

T∑
s=0

(1− 2ηβ1γ)
T−s ·

(
2ηβ2

1(d− 1) · 2δ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸
♠

+ ηβ1β2 ·
(
2δ(s)2 exp(−ηβ2γs) +

δ(s)2

β2
exp(−ηβ1γs)

)
︸ ︷︷ ︸

♣

+ η2β1

(
8dhd

2δ(t)2 exp(−ηβ1γt) + 8β2dhdδ(t)
2 exp(−ηβ2γt)

)︸ ︷︷ ︸
♢

)
≤ exp(−2ηβ1γ(T + 1))

∣∣∣β3 − β1c
⊤
i (0)bi(0)

∣∣∣
+

T∑
s=0

exp(2ηβ1γ(s− T )) ·
((

4ηβ2
1(d− 1)δ(s)2 + ηβ1δ(s)

2 + 8η2β1dhd
2δ(t)2

)
exp(−ηβ1γs)

+
(
2ηβ1β2δ(s)

2 + 8η2β1β2dhdδ(s)
2
)
exp(−ηβ2γs)

)
≤ (β3 + β1δ(0)) exp(−2ηβ1γ(T + 1))

+
(
4ηβ2

1(d− 1)δ(T )2 + ηβ1δ(T )
2 + 8η2β1dhd

2δ(T )2
)
· 2

ηβ1γ
exp(−ηβ1γ(T + 1))

+
(
2ηβ1β2δ(T )

2 + 8η2β1β2dhdδ(T )
2
)
· 3

ηβ2γ
exp(−ηβ1γ(T + 1))

≤
( β3

δ(0)
+ β1 +

8β1(d− 1)δ(T )

γ
+

2δ(T )

γ
+

16ηdhd
2δ(T )

γ
+

6β1δ(T )

γ
+

24ηβ1dhdδ(T )

γ

)
· δ(T ) · exp(−ηβ1γ(T + 1))

≤ δ(T ) exp(−ηβ1γ(T + 1))
(34)

The second inequality is derived by factoring out the factors exp(−ηβ1γs) and exp(−ηβ2γs). The
third inequality is due to

∑T
s=0 exp(2ηβ1γ(s − T )) · exp(−ηβ1γs) ≤ 2

ηβ1γ
exp(−ηβ1γ(T + 1))

and
∑T

s=0 exp(2ηβ1γ(s − T )) · exp(−ηβ2γs) ≤ 3
ηβ2γ

exp(−ηβ1γ(T + 1)) in lemma C.5. The
fourth inequality is by δ(0) ≤ δ(T ), exp(−2ηβ1γ(T +1)) ≤ exp(−ηβ1γ(T +1)), and we consider
β3 = β3

δ(0) ·δ(0) ≤
β3

δ(0) ·δ(T ). The fifth inequality is by proving
(

β3

δ(0) +β1+
8β1(d−1)δ(T )

γ + 2δ(T )
γ +

16ηdhd
2δ(T )

γ + 6β1δ(T )
γ + 24ηβ1dhdδ(T )

γ

)
≤ 1 as follows:

β3

δ(0)
+ β1 +

8β1(d− 1)δ(T )

γ
+

2δ(T )

γ
+

16ηdhd
2δ(T )

γ
+

6β1δ(T )

γ
+

24ηβ1dhdδ(T )

γ

≤ β3

δ(0)
+

3

4
+

δ(T )

γ
·
(
8β1(d− 1) + 2 + 16ηdhd

2 + 6β1 + 24ηβ1dhd
)

≤ β3

2
√
dh log(4d(2d+ 1)/δ)

+
3

4

+
3
√
dh log(4d(2d+ 1)/δ)

1
2dh

·
(
8β1(d− 1) + 2 + 16ηdhd

2 + 6β1 + 24ηβ1dhd
)

≤ 1

The first inequality is by β1 ≤ 3
4 . The second inequality is by δ(0) ≥ 2

√
dh log(4d(2d+ 1)/δ),

δ(T ) ≤ 3
√
dh log(4d(2d+ 1)/δ) and γ = 1

2dh. The last inequality hold as long as dh =

52



Ω̃(d2) ≥
(

1√
log(4d(2d+1)/δ)

+24
√

log(4d(2d+ 1)/δ)
(
8β1(d− 1)+2+8+6β1+12ηβ1/d

))2

≥(
1√

log(4d(2d+1)/δ)
+ 24

√
log(4d(2d+ 1)/δ)

(
8β1(d − 1) + 2 + 16ηdhd

2 + 6β1 + 24ηβ1dhd
))2

.

Therefore, we have∣∣∣(β3−β1c
⊤
i (T+1)bi(T+1)

)∣∣∣ ≤ δ(T ) exp(−ηβ1γ(T+1)) ≤ δ(T+1) exp(−ηβ1γ(T+1)) (35)

where the last inequality is by δ(T ) ≤ δ(T + 1).

The proof for the bounds of c⊤i (T + 1)bj(T + 1) and c⊤i (T + 1)b(T + 1) are similar to that of(
β3 − β1c

⊤
i (T + 1)bi(T + 1)

)
. We presents the calculation as follows.

Bound of c⊤i (T + 1)bj(T + 1)∣∣∣c⊤i (T + 1)bj(T + 1)
∣∣∣

=
∣∣∣c⊤i (T )bj(T ) + η

((
β3 − β1c

⊤
i (T )bi(T )

)
b⊤i (T )bj(T )− β1

d∑
k ̸=i

c⊤i (T )bk(T ) · b⊤k (T )bj(T )

− β2c
⊤
i (T )b(T ) · b⊤j (T )b(T ) +

(
β3 − β1c

⊤
j (T )bj(T )

)
c⊤i (T )cj(T )

− β1

d∑
k ̸=j

c⊤k (T )bj(T ) · c⊤i (T )ck(T )
)
+ η2c̄⊤i (T )b̄j(T )

∣∣∣
=

∣∣∣(1− ηβ1

(
c⊤i (T )ci(T ) + b⊤j (T )bj(T )

))
c⊤i (T )bj(T )

+ η
(
β3 − β1c

⊤
i (T )bi(T )

)
b⊤i (T )bj(T )− ηβ1

d∑
k ̸=i,k ̸=j

c⊤i (T )bk(T ) · b⊤k (T )bj(T )

− ηβ2c
⊤
i (T )b(T ) · b⊤j (T )b(T ) + η

(
β3 − β1c

⊤
j (T )bj(T )

)
c⊤i (T )cj(T )

− ηβ1

d∑
k ̸=i,k ̸=j

c⊤k (T )bj(T ) · c⊤i (T )ck(T ) + η2c̄⊤i (T )b̄j(T )
∣∣∣

=
∣∣∣ T∏
s=0

(
1− ηβ1

(
c⊤i (s)ci(s) + b⊤j (s)bj(s)

))
c⊤i (0)bj(0)

+

T∑
s=0

T∏
s′=s+1

(
1− ηβ1

(
c⊤i (s

′)ci(s
′) + b⊤j (s

′)bj(s
′)
))

·
(
η
(
β3 − β1c

⊤
i (s)bi(s)

)
b⊤i (s)bj(s) + η

(
β3 − β1c

⊤
j (s)bj(s)

)
c⊤i (s)cj(s)︸ ︷︷ ︸

♠

− ηβ1

d∑
k ̸=i,k ̸=j

c⊤i (s)bk(s) · b⊤k (s)bj(s)− ηβ1

d∑
k ̸=i,k ̸=j

c⊤k (s)bj(s) · c⊤i (s)ck(s)︸ ︷︷ ︸
♣

− ηβ2c
⊤
i (s)b(s) · b⊤j (s)b(s)︸ ︷︷ ︸

♢

+ η2c̄⊤i (s)b̄j(s)︸ ︷︷ ︸
♡

)∣∣∣
≤ (1− 2ηβ1γ)

T+1
∣∣∣c⊤i (0)bj(0)∣∣∣

+

T∑
s=0

(1− 2ηβ1γ)
T−s

(
2ηδ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸

♠

+ 2ηβ1(d− 2) · 2δ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸
♣
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+ ηβ2 ·
(
2δ(s)2 exp(−ηβ2γs) +

δ(s)2

β2
exp(−ηβ1γs)

)
︸ ︷︷ ︸

♢

+ η2
(
8dhd

2δ(t)2 exp(−ηβ1γt) + 8β2dhdδ(t)
2 exp(−ηβ2γt)

)︸ ︷︷ ︸
♡

)
≤ exp(−2ηβ1γ(T + 1))

∣∣∣c⊤i (0)bj(0)∣∣∣
+

T∑
s=0

exp(2ηβ1γ(s− T ))
((

2ηδ(s)2 + 4ηβ1(d− 2)δ(s)2 + ηδ(s)2 + 8η2dhd
2δ(s)2

)
exp(−ηβ1γs)

+
(
2ηβ2δ(s)

2 + 8η2β2dhdδ(s)
2
)
exp(−ηβ2γs)

)
≤ δ(T ) exp(−ηβ1γ(T + 1))

+
(
2ηδ(T )2 + 4ηβ1(d− 2)δ(T )2 + ηδ(T )2 + 8η2dhd

2δ(T )2
)
· 2

ηβ1γ
exp(−ηβ1γ(T + 1))

+
(
2ηβ2δ(T )

2 + 8η2β2dhdδ(T )
2
)
· 3

ηβ2γ
exp(−ηβ1γ(T + 1))

=
(
1 +

4δ(T )

β1γ
+

8(d− 2)δ(T )

γ
+

2δ(T )

β1γ
+

16ηdhd
2δ(T )

β1γ
+

6δ(T )

γ
+

24ηdhdδ(T )

γ

)
· δ(T ) exp(−ηβ1γ(T + 1))

≤ 2δ(T ) exp(−ηβ1γ(T + 1))

≤ 2δ(T + 1) exp(−ηβ1γ(T + 1)) (36)

This bound requires δ(T )
γ

(
4
β1

+ 8(d − 2) + 2
β1

+ 16ηdhd
2

β1
+ 6 + 24ηdhd

)
≤ 1, which can be

verified by dh = Ω̃(d2) ≥ 36 log(4d(2d + 1)/δ)
(

4
β1

+ 8(d − 2) + 2
β1

+ 2
β1

+ 6 + 12
d

)2

≥

36 log(4d(2d+ 1)/δ)
(

4
β1

+ 8(d− 2) + 2
β1

+ 16ηdhd
2

β1
+ 6 + 24ηdhd

)2

.

Bound of c⊤i (T + 1)b(T + 1)

∣∣∣c⊤i (T + 1)b(T + 1)
∣∣∣

=
∣∣∣c⊤i (T )b(T ) + η

((
β3 − β1c

⊤
i (T )bi(T )

)
b⊤i (T )b(T )− β1

d∑
k ̸=i

c⊤i (T )bk(T ) · b⊤k (T )b(T )

− β2c
⊤
i (T )b(T ) · b⊤(T )b(T )− β2

d∑
k=1

c⊤k (T )b(T ) · c⊤k (T )ci(T )
)
+ η2c̄⊤i (T )b̄(T )

∣∣∣
=

∣∣∣(1− ηβ2

(
b⊤(T )b(T ) + c⊤i (T )ci(T )

))
c⊤i (T )b(T )

+ η
(
β3 − β1c

⊤
i (T )bi(T )

)
b⊤i (T )b(T )− ηβ1

d∑
k ̸=i

c⊤i (T )bk(T ) · b⊤k (T )b(T )

− ηβ2

d∑
k ̸=i

c⊤k (T )b(T ) · c⊤k (T )ci(T ) + η2c̄⊤i (T )b̄(T )
∣∣∣

=
∣∣∣ T∏
s=0

(
1− ηβ2

(
b⊤(s)b(s) + c⊤i (s)ci(s)

))
c⊤i (0)b(0)

+

T∑
s=0

T∏
s′=s+1

(
1− ηβ2

(
b⊤(s′)b(s′) + c⊤i (s

′)ci(s
′)
))
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·
(
η
(
β3 − β1c

⊤
i (s)bi(s)

)
b⊤i (s)b(s)︸ ︷︷ ︸

♠

− ηβ1

d∑
k ̸=i

c⊤i (s)bk(s) · b⊤k (s)b(s)︸ ︷︷ ︸
♣

− ηβ2

d∑
k ̸=i

c⊤k (s)b(s) · c⊤k (s)ci(s)︸ ︷︷ ︸
♢

+ η2c̄⊤i (s)b̄(s)︸ ︷︷ ︸
♡

)∣∣∣
≤ (1− 2ηβ2γ)

T+1
∣∣∣c⊤i (0)b(0)∣∣∣

+

T∑
s=0

(1− 2ηβ2γ)
T−s

(
ηδ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸

♠

+ ηβ1(d− 1) · 2δ(s)2 exp(−ηβ1γs)︸ ︷︷ ︸
♣

+ ηβ2(d− 1) ·
(
2δ(s)2 exp(−ηβ2γs) +

δ(s)2

β2
exp(−ηβ1γs)

)
︸ ︷︷ ︸

♢

+ η2
(
4dhd

2δ(s)2 exp(−ηβ1γs) + 28β2
2dhdδ(s)

2 exp(−ηβ2γs)
)︸ ︷︷ ︸

♡

)
≤ exp(−2ηβ2γ(T + 1))

∣∣∣c⊤i (0)b(0)∣∣∣
+

T∑
s=0

exp(2ηβ2γ(s− T ))
((

ηδ(T )2 + 2ηβ1(d− 1)δ(T )2

+ η(d− 1)δ(T )2 + 4η2dhd
2δ(T )2

)
exp(−ηβ1γs)

+
(
2ηβ2(d− 1)δ(T )2 + 28η2β2

2dhdδ(s)
2
)
exp(−ηβ2γs)

)
≤ δ(T ) exp(−ηβ2γ(T + 1))

+
(
ηδ(T )2 + 2ηβ1(d− 1)δ(T )2 + η(d− 1)δ(T )2 + 4η2dhd

2δ(T )2
)
· 2

ηβ2γ
exp(−ηβ1γ(T + 1))

+
(
2ηβ2(d− 1)δ(T )2 + 28η2β2

2dhdδ(T )
2
)
· 2

ηβ2γ
exp(−ηβ2γ(T + 1))

= δ(T )
(
1 +

4(d− 1)δ(T )

γ
+

56ηβ2dhdδ(T )

γ

)
exp(−ηβ2γ(T + 1))

+
δ(T )

β2

(2δ(T )
γ

+
4β1(d− 1)δ(T )

γ
+

2(d− 1)δ(T )

γ
+

8ηdhd
2δ(T )

γ

)
exp(−ηβ1γ(T + 1))

≤ 2δ(T ) exp(−ηβ2γ(T + 1)) +
δ(T )

β2
exp(−ηβ1γ(T + 1))

≤ 2δ(T + 1) exp(−ηβ2γ(T + 1)) +
δ(T + 1)

β2
exp(−ηβ1γ(T + 1)) (37)

This bound requires δ(T )
γ

(
4(d−1)+56ηβ2dhd

)
≤ 1 and δ(T )

γ

(
2+4β1(d−1)+2(d−1)+8ηdhd

2
)
≤

1, which can be verified by dh = Ω̃(d2) ≥ 36 log(4d(2d + 1)/δ)
(
4(d − 1) + 56d ln 2

)2

≥

36 log(4d(2d+ 1)/δ)
(
4(d− 1) + 56ηβ2dhd

)2

and
dh = Ω̃(d2) ≥ 36 log(4d(2d+1)/δ)

(
2+4β1(d−1)+2(d−1)+4

)2

≥ 36 log(4d(2d+1)/δ)
(
2+

4β1(d− 1) + 2(d− 1) + 8ηdhd
2
)2

.
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Property B(T + 1) is established by (Eq. (35)), (Eq. (36)) and (Eq. (37)).

C.5.1 Auxiliary lemma

Lemma C.5 As long as 2ηβ1γ ≤ ln 2, and 2ηβ2γ ≤ ln 2, we have

T∑
s=0

exp(2ηβ1γ(s− T )) · exp(−ηβ1γs) ≤
2

ηβ1γ
exp(−ηβ1γ(T + 1))

T∑
s=0

exp(2ηβ1γ(s− T )) · exp(−ηβ2γs) ≤
3

ηβ2γ
exp(−ηβ1γ(T + 1))

T∑
s=0

exp(2ηβ2γ(s− T )) · exp(−ηβ1γs) ≤
2

ηβ2γ
exp(−ηβ1γ(T + 1))

T∑
s=0

exp(2ηβ2γ(s− T )) · exp(−ηβ2γs) ≤
2

ηβ2γ
exp(−ηβ2γ(T + 1))

Proof of lemma C.5.
T∑

s=0

exp(2ηβ1γ(s− T )) · exp(−ηβ1γs)

=

T∑
s=0

exp(ηβ1γs− 2ηβ1γT )

≤
∫ T+1

0

exp(ηβ1γs− 2ηβ1γT )ds

≤ 1

ηβ1γ

(
exp(−ηβ1γ(T − 1))− exp(−2ηβ1γT )

)
≤ 1

ηβ1γ
exp(−ηβ1γ(T − 1))

≤ exp(2ηβ1γ)

ηβ1γ
exp(−ηβ1γ(T + 1))

≤ 2

ηβ1γ
exp(−ηβ1γ(T + 1))

The first inequality is due to exp(ηβ1γs) is monotone increasing. The last inequality is due to
2ηβ1γ ≤ ln 2.

T∑
s=0

exp(2ηβ1γ(s− T )) · exp(−ηβ2γs)

=

T∑
s=0

exp(−η(β2 − 2β1)γs− 2ηβ1γT )

≤
∫ T

−1

exp(−η(β2 − 2β1)γs− 2ηβ1γT )ds

≤ 1

η(β2 − 2β1)γ

(
exp(η(β2 − 2β1)γ − 2ηβ1γT )− exp(−ηβ2γT )

)
≤ 1

η(β2 − 2β1)γ
exp(η(β2 − 2β1)γ − 2ηβ1γT )

≤ exp(ηβ2γ)

η(β2 − 2β1)γ
exp(−2ηβ1γ(T + 1))
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≤ 2 exp(ηβ2γ)

ηβ2γ
exp(−2ηβ1γ(T + 1))

≤ 3

ηβ2γ
exp(−ηβ1γ(T + 1))

The first inequality is due to exp(−η(β2 − 2β1)γs) is monotone decreasing. The fourth inequality is
due to β2 ≥ 4β1, thus 1

β2−2β1
≤ 2

β2 . The last inequality is due to ηβ2γ ≤ (ln 2)/2 ≤ ln(3/2).

T∑
s=0

exp(2ηβ2γ(s− T )) · exp(−ηβ1γs)

=

T∑
s=0

exp(η(2β2 − β1)γs− 2ηβ2γT )

≤
∫ T+1

0

exp(η(2β2 − β1)γs− 2ηβ2γT )ds

≤ 1

η(2β2 − β1)γ

(
exp(2ηβ2γ − ηβ1γ(T + 1))− exp(−2ηβ2γT )

)
≤ 1

η(2β2 − β1)γ
exp(2ηβ2γ − ηβ1γ(T + 1))

≤ exp(2ηβ2γ)

η(2β2 − β1)γ
exp(−ηβ1γ(T + 1))

≤ 2

ηβ2γ
exp(−ηβ1γ(T + 1))

The first inequality is due to exp(η(2β2 − β1)γs) is monotone increasing. The last inequality is due
to β2 ≥ β1 and 2ηβ2γ ≤ ln 2.

The proof of
∑T

s=0 exp(2ηβ2γ(s − T )) · exp(−ηβ2γs) ≤ 2
ηβ2γ

exp(−ηβ2γ(T + 1)) is similar to∑T
s=0 exp(2ηβ1γ(s − T )) · exp(−ηβ1γs) ≤ 2

ηβ1γ
exp(−ηβ1γ(T + 1)). Just replace β1 with β2,

and consider 2ηβ2γ ≤ ln 2.

C.6 Proof of claim B.3

This Section presents the bounds for terms b⊤i (T + 1)bj(T + 1), c⊤i (T + 1)cj(T + 1) and b⊤i (T +
1)b(T + 1) with i, j ∈ [1, d], i ̸= j, establishing the property C(T + 1).

Recall the Vector-coupled Dynamics equations of b⊤i (t + 1)bj(t + 1), c⊤i (t + 1)cj(t + 1) and
b⊤i (t+ 1)b(t+ 1) in lemma A.7:

b⊤i (t+ 1)bj(t+ 1)

= b⊤i (t)bj(t) + η
(
2
(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤i (t)bj(t) + 2

(
β3 − β1c

⊤
j (t)bj(t)

)
c⊤j (t)bi(t)

− β3

(
c⊤i (t)bj(t) + c⊤j (t)bi(t)

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤k (t)bi(t) · c⊤k (t)bj(t)
)
+ η2b̄⊤i (t)b̄j(t)

(38)

c⊤i (t+ 1)cj(t+ 1)

= c⊤i (t)cj(t) + η
(
2
(
β3 − β1c

⊤
i (t)bi(t)

)
c⊤j (t)bi(t) + 2

(
β3 − β1c

⊤
j (t)bj(t)

)
c⊤i (t)bj(t)

− β3

(
c⊤i (t)bj(t) + c⊤j (t)bi(t)

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤i (t)bk(t) · c⊤j (t)bk(t)

− 2β2c
⊤
i (t)b(t) · c⊤j (t)b(t)

)
+ η2c̄⊤i (t)c̄j(t)

(39)
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b⊤i (t+ 1)b(t+ 1)

= b⊤i (t)b(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
c⊤i (t)b(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · c⊤k (t)b(t)

− β2

d∑
k=1

c⊤k (t)b(t) · c⊤k (t)bi(t)
)
+ η2b̄⊤i (t)b̄(t)

(40)

To give bounds for the above three terms, we will use the following bounds from property B(t) and
lemma C.7:

|β3 − β1c
⊤
i (t)bi(t)| ≤ δ(t) exp(−ηβ1γt)

|c⊤i (t)bj(t)| ≤ 2δ(t) exp(−ηβ1γt)

|c⊤i (t)b(t)| ≤ 2δ(t) exp(−ηβ2γt) +
δ(t)

β2
exp(−ηβ1γt)

∣∣∣b̄i(t)⊤b̄j(t)∣∣∣ ≤ 8dhd
2δ(t)2 exp(−ηβ1γt),

∣∣∣c̄i(t)⊤c̄j(t)∣∣∣ ≤ 8dhd
2δ(t)2 exp(−ηβ1γt) + 40β2

2dhδ(t)
2 exp(−ηβ2γt),

∣∣∣b̄⊤i (t)b̄(t)∣∣∣ ≤ 8β2dhd
2δ(t)2 exp(−ηβ2γt) + 4dhd

2δ(t)2 exp(−ηβ1γt)

Besides, by
∣∣∣β3 − β1c

⊤
i (t)bi(t)

∣∣∣ ≤ δ(t) exp(−ηβ1γt), we have:

∣∣∣c⊤i (t)bi(t)∣∣∣ ≤ δ(t) exp(−ηβ1γt) + β3

β1

≤ 4δ(t) + 2α

α2

≤ 5δ(t)

α2

≤ 6δ(t)

The third inequality is by δ(s) ≥ 2
√

dh log(4d(2d+ 1)/δ) ≥ 2α = 2α = 2 exp((− ln 2)/N). For
the last inequality, as long as N ≥ 2 ln 2

ln 6−ln 5 , we have 5
α2 ≤ 6.

We will provide the upper bounds for
∣∣∣b⊤i (T + 1)bj(T + 1)

∣∣∣, ∣∣∣c⊤i (T + 1)cj(T + 1)
∣∣∣ and

∣∣∣b⊤i (T +

1)b(T + 1)
∣∣∣ by substituting the above bounds into (Eq. 38), (Eq. 39) and (Eq. 40) respectively.
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Bound of
∣∣∣b⊤i (T + 1)bj(T + 1)

∣∣∣

∣∣∣b⊤i (T + 1)bj(T + 1)
∣∣∣

=
∣∣∣b⊤i (T )bj(T ) + η

(
2
(
β3 − β1c

⊤
i (T )bi(T )

)
c⊤i (T )bj(T ) + 2

(
β3 − β1c

⊤
j (T )bj(T )

)
c⊤j (T )bi(T )

− β3

(
c⊤i (T )bj(T ) + c⊤j (T )bi(T )

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤k (T )bi(T ) · c⊤k (T )bj(T )
)
+ η2b̄⊤i (T )b̄j(T )

∣∣∣
≤

∣∣∣b⊤i (T )bj(T )∣∣∣+ 2η
∣∣∣(β3 − β1c

⊤
i (T )bi(T )

)
c⊤i (T )bj(T )

∣∣∣+ 2η
∣∣∣(β3 − β1c

⊤
j (T )bj(T )

)
c⊤j (T )bi(T )

∣∣∣
+ ηβ3

∣∣∣(c⊤i (T )bj(T ) + c⊤j (T )bi(T )
)∣∣∣+ 2ηβ1

d∑
k ̸=i,k ̸=j

∣∣∣c⊤k (T )bi(T ) · c⊤k (T )bj(T )∣∣∣+ η2
∣∣∣b̄⊤i (T )b̄j(T )∣∣∣

≤ δ(T ) + 4η · δ(T ) exp(−ηβ1γT ) · 2δ(T ) exp(−ηβ1γT ) + 2ηβ3 · 2δ(T ) exp(−ηβ1γT )

+ 2ηβ1(d− 2) ·
(
2δ(T ) exp(−ηβ1γT )

)2

+ η2 · 8dhd2δ(T )2 exp(−ηβ1γT )

≤ δ(T ) + δ(T )
(
8ηδ(T ) exp(−ηβ1γT ) + 4ηβ3 + 8ηβ1(d− 2)δ(T ) exp(−ηβ1γT )

+ 8η2dhd
2δ(T )

)
· exp(−ηβ1γT )

≤ δ(T ) + δ(T )
(
8ηδmax + 4ηβ3 + 8ηβ1(d− 2)δmax + 8η2dhd

2δmax

)
exp(−ηβ1γT )

(41)

The first inequality is derived by triangle inequality. The second inequality is derived by∣∣∣b⊤i (T )bj(T )∣∣∣ ≤ δ(T ) and substituting the bounds of |β3 − β1c
⊤
i (t)bi(t)|, |c⊤i (t)bj(t)| and∣∣∣b̄i(t)⊤b̄j(t)∣∣∣. The third inequality is derived by factoring out the common factor δ(T ). The

last inequality is derived by δ(T ) ≤ δmax and exp(−ηβ1γT ) ≤ 1.
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Bound of
∣∣∣c⊤i (T + 1)cj(T + 1)

∣∣∣

∣∣∣c⊤i (T + 1)cj(T + 1)
∣∣∣

=
∣∣∣c⊤i (T )cj(T ) + η

(
2
(
β3 − β1c

⊤
i (T )bi(T )

)
c⊤j (T )bi(T ) + 2

(
β3 − β1c

⊤
j (T )bj(T )

)
c⊤i (T )bj(T )

− β3

(
c⊤i (T )bj(T ) + c⊤j (T )bi(T )

)
− 2β1

d∑
k ̸=i,k ̸=j

c⊤i (T )bk(T ) · c⊤j (T )bk(T )

− 2β2c
⊤
i (T )b(T ) · c⊤j (T )b(T )

)
+ η2c̄⊤i (T )c̄j(T )

∣∣∣
≤

∣∣∣c⊤i (T )cj(T )∣∣∣+ 2η
∣∣∣(β3 − β1c

⊤
i (T )bi(T )

)
c⊤j (T )bi(T )

∣∣∣+ 2η
∣∣∣(β3 − β1c

⊤
j (T )bj(T )

)
c⊤i (T )bj(T )

∣∣∣
+ ηβ3

∣∣∣(c⊤i (T )bj(T ) + c⊤j (T )bi(T )
)∣∣∣+ 2ηβ1

d∑
k ̸=i,k ̸=j

∣∣∣c⊤i (T )bk(T ) · c⊤j (T )bk(T )∣∣∣
+ 2ηβ2

∣∣∣c⊤i (T )b(T ) · c⊤j (T )b(T )∣∣∣+ η2
∣∣∣c̄⊤i (T )c̄j(T )∣∣∣

≤ δ(T ) + 4η · δ(T ) exp(−ηβ1γT ) · 2δ(T ) exp(−ηβ1γT ) + 2ηβ3 · 2δ(T ) exp(−ηβ1γT )

+ 2ηβ1(d− 2) ·
(
2δ(T ) exp(−ηβ1γT )

)2

+ 2ηβ2

(
2δ(T ) exp(−ηβ2γT ) +

δ(T )

β2
exp(−ηβ1γT )

)2

+ η2 ·
(
8dhd

2δ(T )2 exp(−ηβ1γT ) + 40β2
2dhδ(T )

2 exp(−ηβ2γT )
)

≤ δ(T ) + δ(T )
(
8ηδ(T ) exp(−ηβ1γT ) + 4ηβ3 + 8ηβ1(d− 2)δ(T ) exp(−ηβ1γT ) + 8η2dhd

2δ(T )

+
2ηδ(T )

β2
exp(−ηβ1γT ) + 8ηδ(T ) exp(−ηβ2γT )

)
· exp(−ηβ1γT )

+ δ(T )
(
8ηβ2δ(T ) exp(−ηβ2γT ) + 40η2β2

2dhδ(T )
)
· exp(−ηβ2γT )

≤ δ(T ) + δ(T )
(
16ηδmax + 4ηβ3 + 8ηβ1(d− 2)δmax + 8η2dhd

2δmax +
2ηδmax

β2

)
· exp(−ηβ1γT )

+ δ(T )
(
8ηβ2δmax + 40η2β2

2dhδmax

)
· exp(−ηβ2γT )

(42)

The first inequality is derived by triangle inequality. The second inequality is derived by∣∣∣b⊤i (T )bj(T )∣∣∣ ≤ δ(T ) and substituting the bounds of |β3 − β1c
⊤
i (t)bi(t)|, |c⊤i (t)bj(t)| and∣∣∣c̄i(t)⊤c̄j(t)∣∣∣. The third inequality is derived by factoring out the common factor δ(T ). The

last inequality is derived by δ(T ) ≤ δmax, exp(−ηβ1γT ) ≤ 1 and exp(−ηβ2γT ) ≤ 1.
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Bound of
∣∣∣b⊤i (T + 1)b(T + 1)

∣∣∣
∣∣∣b⊤i (T + 1)b(T + 1)

∣∣∣
=

∣∣∣b⊤i (T )b(T ) + η
((

β3 − β1c
⊤
i (T )bi(T )

)
c⊤i (T )b(T )− β1

d∑
k ̸=i

c⊤k (T )bi(T ) · c⊤k (T )b(T )

− β2

d∑
k=1

c⊤k (T )b(T ) · c⊤k (T )bi(T )
)
+ η2b̄⊤i (T )b̄(T )

∣∣∣
=

∣∣∣b⊤i (T )b(T ) + η
((

β3 − β1c
⊤
i (T )bi(T )

)
c⊤i (T )b(T )− β1

d∑
k ̸=i

c⊤k (T )bi(T ) · c⊤k (T )b(T )

− β2

d∑
k ̸=i

c⊤k (T )b(T ) · c⊤k (T )bi(T )− β2c
⊤
i (T )b(T ) · c⊤i (T )bi(T )

)
+ η2b̄⊤i (T )b̄(T )

∣∣∣
≤

∣∣∣b⊤i (T )b(T )∣∣∣+ η
∣∣∣(β3 − β1c

⊤
i (T )bi(T )

)
c⊤i (T )b(T )

∣∣∣+ ηβ1

d∑
k ̸=i

∣∣∣c⊤k (T )bi(T ) · c⊤k (T )b(T )∣∣∣
+ ηβ2

d∑
k ̸=i

∣∣∣c⊤k (T )b(T ) · c⊤k (T )bi(T )∣∣∣+ ηβ2

∣∣∣c⊤i (T )b(T ) · c⊤i (T )bi(T )∣∣∣+ η2
∣∣∣b̄⊤i (T )b̄(T )∣∣∣

≤ δ(T ) + η · δ(T ) exp(−ηβ1γT ) ·
(
2δ(T ) exp(−ηβ2γT ) +

δ(T )

β2
exp(−ηβ1γT )

)
+ η(β1 + β2)(d− 1) · 2δ(T ) exp(−ηβ1γT ) ·

(
2δ(T ) exp(−ηβ2γT ) +

δ(T )

β2
exp(−ηβ1γT )

)
+ ηβ2 · 6δ(T ) ·

(
2δ(T ) exp(−ηβ2γT ) +

δ(T )

β2
exp(−ηβ1γT )

)
+ η2 ·

(
8β2dhd

2δ(T )2 exp(−ηβ2γT ) + 4dhd
2δ(T )2 exp(−ηβ1γT )

)
≤ δ(T ) + δ(T )

(
η
(
2(β1 + β2)(d− 1) + 1

)
· δ(T )

β2
exp(−ηβ1γT )

+ 6ηβ2 ·
δ(T )

β2
+ 4η2dhd

2δ(T )
)
· exp(−ηβ1γT )

+ δ(T )
(
2η

(
2(β1 + β2)(d− 1) + 1

)
δ(T ) exp(−ηβ1γT )

+ 12ηβ2δ(T ) + 8η2β2dhd
2δ(T )

)
· exp(−ηβ2γT )

≤ δ(T ) + δ(T )
(
4ηdδmax + 4η2dhd

2δmax

)
· exp(−ηβ1γT )

+ δ(T )
(
8ηβ2dδmax + 12ηβ2δmax + 8η2β2dhd

2δmax

)
· exp(−ηβ2γT )

(43)

The first inequality is derived by triangle inequality. The second inequality is derived by∣∣∣b⊤i (T )bj(T )∣∣∣ ≤ δ(T ) and substituting the bounds of |β3−β1c
⊤
i (t)bi(t)|, |c⊤i (t)bj(t)|, |c⊤i (t)bi(t)|

and
∣∣∣b̄i(t)⊤b̄(t)∣∣∣. The third inequality is derived by factoring out the common factor δ(T ). The last

inequality is derived by δ(T ) ≤ δmax, exp(−ηβ1γT ) ≤ 1 and 2(β1 + β2)(d− 1) + 1 ≤ 4β2d since
β2 ≥ β1 and β2 ≥ 1.
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We next provide the upper bound for δ(T + 1).

δ(T + 1) = max{|b⊤i (T + 1)bj(T + 1)|, |c⊤i (T + 1)cj(T + 1)|, |b⊤i (T + 1)b(T + 1)|}

≤ δ(T ) + δ(T )
(
16ηdδmax + 4ηβ3 + 8ηβ1(d− 2)δmax + 8η2dhd

2δmax +
2ηδmax

β2

)
· exp(−ηβ1γT )

+ δ(T )
(
8ηβ2dδmax + 40η2β2

2dhδmax + 12ηβ2δmax + 8η2β2dhd
2δmax

)
· exp(−ηβ2γT )

(44)

This inequality can be verified by comparing with (Eq. (41)), (Eq. (42)), (Eq. (43)). To give more
precise bound, we introduce the following lemma:

Lemma C.6 If y(t+ 1) ≤ y(t) + cy(t) exp(−at) + dy(t) exp(−bt), with a, b, c, d > 0, t ≥ 0 and
a, b ≤ ln 2, then y(t) satisfies:

y(t) ≤ y(0) exp(
2c

a
+

2d

b
)

Proof of lemma C.6.

y(t+ 1) ≤ y(t) + cy(t) exp(−at) + dy(t) exp(−bt)

=⇒ y(t+ 1) ≤ y(t)(1 + c exp(−at) + d exp(−bt))

=⇒ y(t+ 1) ≤ y(0)

t∏
s=0

(1 + c exp(−as) + d exp(−bs))

=⇒ ln y(t+ 1) ≤ ln y(0) +

t∑
s=0

ln(1 + c exp(−as) + d exp(−bs))

=⇒ ln y(t+ 1) ≤ ln y(0) +

t∑
s=0

(c exp(−as) + d exp(−bs))

=⇒ ln y(t+ 1) ≤ ln y(0) +

∫ t

−1

(c exp(−as) + d exp(−bs))ds

=⇒ ln y(t+ 1) ≤ ln y(0) + (
c

a
(exp(a)− exp(−at)) +

d

b
(exp(b)− exp(−bt)))

=⇒ ln y(t+ 1) ≤ ln y(0) + (
2c

a
+

2d

b
)

=⇒ y(t+ 1) ≤ y(0) exp(
2c

a
+

2d

b
)

The fourth arrow is due to ln(1 + x) ≤ x for x ≥ 0. The fifth arrow is due to exp(−as), exp(−bs)
are monotone decreasing. the 7-th arrow is due to a, b ≤ ln 2 and − exp(−at) ≤ 0, − exp(−bt) ≤ 0.

Lemma C.6 presents the core idea of establishing property C(T +1). If a ≫ c and b ≫ d in the above
lemma, we will have y(t+1) ≤ y(0) ·O(1). Similarly, as Mamba converges quickly ( C⊤B → β3

β1
I ,

C⊤b → 0 ), we can prove that |b⊤i (t)bj(t)|, |c⊤i (t)cj(t)|, |b⊤i (t)b(t)| hold their magnitudes around
their initial states.

We next combine (Eq. (44)) and lemma C.6 to give bound for δ(T + 1).

δ(T + 1)

≤ δ(T ) + δ(T )
(
16ηdδmax + 4ηβ3 + 8ηβ1(d− 2)δmax + 8η2dhd

2δmax +
2ηδmax

β2

)
· exp(−ηβ1γT )

+ δ(T )
(
8ηβ2dδmax + 40η2β2

2dhδmax + 12ηβ2δmax + 8η2β2dhd
2δmax

)
· exp(−ηβ2γT )

≤ δ(0) · exp
(2(16ηdδmax + 4ηβ3 + 8ηβ1(d− 2)δmax + 8η2dhd

2δmax +
2ηδmax

β2

)
ηβ1γ

62



+
2
(
8ηβ2dδmax + 40η2β2

2dhδmax + 12ηβ2δmax + 8η2β2dhd
2δmax

)
ηβ2γ

)
≤ δ(0) · exp

(3√dh log(4d(2d+ 1)/δ)
1
2dh

·
(32d
β1

+
8β3

β1
+ 16(d− 2) +

16ηdhd
2

β1
+

4

β1β2

+ 16d+ 80ηβ2dh + 24 + 16ηdhd
2
))

≤ 3

2
· δ(0)

≤ 3
√
dh log(4d(2d+ 1)/δ)

The first inequality is derived by (Eq. (44)). The second inequality is derived by lemma C.6. The
third inequality is derived by γ = 1

2dh. The last inequality is derived by

dh = Ω̃(d2)

≥ 36

(ln(3/2))2
log(4d(2d+ 1)/δ)

(32d
β1

+
8β3

β1

+ 16(d− 2) +
8

β1
+

4

β1β2
+ 16d+ 80 ln 2 + 24 + 8

)2

≥ 36

(ln(3/2))2
log(4d(2d+ 1)/δ)

(32d
β1

+
8β3

β1

+ 16(d− 2) +
16ηdhd

2

β1
+

4

β1β2
+ 16d+ 80ηβ2dh + 24 + 16ηdhd

2
)2

C.7 Bounds of η2 terms

This Section presents the bounds for b̄i(t)
⊤b̄j(t), c̄i(t)⊤c̄j(t),

∥∥∥b̄(t)∥∥∥2
2
, c̄⊤i (t)b̄j(t), c̄

⊤
i (t)b̄(t),

b̄⊤i (t)b̄(t) (these terms usually appear in the Vector-coupled Dynamics equations with a η2 factor)
with i, j ∈ [1, d] under the assumption that A(t), B(t), and C(t) hold.

Lemma C.7 Under the assumption that A(t), B(t), and C(t) hold, we have the following bounds:∣∣∣b̄i(t)⊤b̄j(t)∣∣∣ ≤ 8dhd
2δ(t)2 exp(−ηβ1γt),∣∣∣c̄i(t)⊤c̄j(t)∣∣∣ ≤ 8dhd

2δ(t)2 exp(−ηβ1γt) + 24β2
2dhδ(t)

2 exp(−ηβ2γt),∥∥∥b̄(t)∥∥∥2
2
≤ 16dhβ

2
2d

2δ(t)2 exp(−ηβ2γt) + 2dhd
2δ(t)2 exp(−ηβ1γt),∣∣∣c̄⊤i (t)b̄j(t)∣∣∣ ≤ 8dhd

2δ(t)2 exp(−ηβ1γt) + 8β2dhdδ(t)
2 exp(−ηβ2γt),∣∣∣c̄⊤i (t)b̄(t)∣∣∣ ≤ 4dhd

2δ(t)2 exp(−ηβ1γt) + 28β2
2dhdδ(t)

2 exp(−2ηβ2γt),∣∣∣b̄⊤i (t)b̄(t)∣∣∣ ≤ 8β2dhd
2δ(t)2 exp(−ηβ2γt) + 4dhd

2δ(t)2 exp(−ηβ1γt)

where i, j ∈ [1, d]. Note that this lemma does not require i ̸= j.

Firstly, recall the following dynamics equation in lemma A.6:

bi(t+ 1) = bi(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
ci(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · ck(t)
)

=: bi(t) + ηb̄i(t)

ci(t+ 1) = ci(t) + η
((

β3 − β1c
⊤
i (t)bi(t)

)
bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · bk(t)
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− β2c
⊤
i (t)b(t) · b(t)

)
=: ci(t) + ηc̄i(t)

b(t+ 1) = b(t)− η
(
β2

d∑
k=1

c⊤k (t)b(t) · ck(t)
)
=: b(t) + ηb̄(t)

Thus we have

b̄i(t) =
(
β3 − β1c

⊤
i (t)bi(t)

)
ci(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · ck(t)

c̄i(t) =
(
β3 − β1c

⊤
i (t)bi(t)

)
bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · bk(t)− β2c
⊤
i (t)b(t) · b(t)

b̄(t) = β2

d∑
k=1

c⊤k (t)b(t) · ck(t)

Recalling the properties A(t) and B(t):
A(t) :

dh/2 ≤ b⊤i (t)bi(t), c
⊤
i (t)ci(t), b

⊤(t)b(t) ≤ 2dh

B(t) :
|β3/β1 − c⊤i (t)bi(t)| ≤ δ(t) exp(−ηβ1γt)

|c⊤i (t)bj(t)| ≤ 2δ(t) exp(−ηβ1γt)

|c⊤i (t)b(t)| ≤ 2δ(t) exp(−ηβ2γt) +
δ(t)

β2
exp(−ηβ1γt)

We can derive the follow bounds for the norm of b̄i(t), c̄i(t) and b̄(t):∥∥∥b̄i(t)∥∥∥ =
∥∥∥(β3 − β1c

⊤
i (t)bi(t)

)
ci(t)− β1

d∑
k ̸=i

c⊤k (t)bi(t) · ck(t)
∥∥∥

≤
∥∥∥ci(t)∥∥∥ ·

∣∣∣(β3 − β1c
⊤
i (t)bi(t)

)∣∣∣+ β1

d∑
k ̸=i

∥∥∥ck(t)∥∥∥ ·
∣∣∣c⊤k (t)bi(t)∣∣∣

≤
√
2dhδ(t) exp(−ηβ1γt) +

√
2dhβ1(d− 1) · 2δ(t) exp(−ηβ1γt)

≤ 2
√
2dhdδ(t) exp(−ηβ1γt)

The last inequality is by β1 ≤ 1.∥∥∥c̄i(t)∥∥∥ =
∥∥∥(β3 − β1c

⊤
i (t)bi(t)

)
bi(t)− β1

d∑
k ̸=i

c⊤i (t)bk(t) · bk(t)− β2c
⊤
i (t)b(t) · b(t)

∥∥∥
≤

∥∥∥bi(t)∥∥∥ ·
∣∣∣(β3 − β1c

⊤
i (t)bi(t)

)∣∣∣+ β1

d∑
k ̸=i

∥∥∥bk(t)∥∥∥ ·
∣∣∣c⊤i (t)bk(t)∣∣∣+ β2

∥∥∥b(t)∥∥∥ ·
∣∣∣c⊤i (t)b(t)∣∣∣

≤
√
2dhδ(t) exp(−ηβ1γt) +

√
2dhβ1(d− 1) · 2δ(t) exp(−ηβ1γt)

+
√
2dhβ2 ·

(
2δ(t) exp(−ηβ2γt) +

δ(t)

β2
exp(−ηβ1γt)

)
≤ 2

√
2dhdδ(t) exp(−ηβ1γt) + 2

√
2dhβ2δ(t) exp(−ηβ2γt)

The last inequality is by β1 ≤ 1.∥∥∥b̄(t)∥∥∥ =
∥∥∥β2

d∑
k=1

c⊤k (t)b(t) · ck(t)
∥∥∥
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≤ β2

d∑
k=1

∥∥∥ck(t)∥∥∥ ·
∣∣∣c⊤k (t)b(t)∣∣∣

≤
√
2dhβ2d ·

(
2δ(t) exp(−ηβ2γt) +

δ(t)

β2
exp(−ηβ1γt)

)
≤ 2

√
2dhβ2dδ(t) exp(−ηβ2γt) +

√
2dhdδ(t) exp(−ηβ1γt)

By multiplying them pairwise, we obtain:∣∣∣b̄i(t)⊤b̄j(t)∣∣∣ ≤ (
2
√

2dhdδ(t) exp(−ηβ1γt)
)2

≤ 8dhd
2δ(t)2 exp(−ηβ1γt)

The last inequality is by exp(−2ηβ1γt) ≤ exp(−ηβ1γt).∣∣∣c̄i(t)⊤c̄j(t)∣∣∣ ≤ (
2
√

2dhdδ(t) exp(−ηβ1γt) + 2
√

2dhβ2δ(t) exp(−ηβ2γt)
)2

= 8dhd
2δ(t)2 exp(−2ηβ1γt) + 8β2

2dhδ(t)
2 exp(−2ηβ2γt)

+ 16dhβ2dδ(t)
2 exp(−η(β1 + β2)γt)

≤ 8dhd
2δ(t)2 exp(−ηβ1γt) + 40β2

2dhδ(t)
2 exp(−ηβ2γt)

The last inequality is by β2d ≤ 2β2
2 because β2 = Ω(d2) ≥ d, and exp(−2ηβ1γt) ≤

exp(−ηβ1γt), exp(−2ηβ2γt) ≤ exp(−ηβ2γt), exp(−η(β1 + β2)γt) ≤ exp(−ηβ2γt).

∥∥∥b̄(t)∥∥∥2
2
≤

(
2
√
2dhβ2dδ(t) exp(−ηβ2γt) +

√
2dhdδ(t) exp(−ηβ1γt)

)2

= 8dhβ
2
2d

2δ(t)2 exp(−2ηβ2γt) + 2dhd
2δ(t)2 exp(−2ηβ1γt)

+ 8dhβ2d
2δ(t)2 exp(−η(β1 + β2)γt)

≤ 16dhβ
2
2d

2δ(t)2 exp(−ηβ2γt) + 2dhd
2δ(t)2 exp(−ηβ1γt)

The last inequality is by β2 ≤ β2
2 because β2 ≥ 1, and exp(−2ηβ1γt) ≤

exp(−ηβ1γt), exp(−2ηβ2γt) ≤ exp(−ηβ2γt), exp(−η(β1 + β2)γt) ≤ exp(−ηβ2γt).∣∣∣c̄⊤i (t)b̄j(t)∣∣∣ ≤ ∥∥∥c̄i(t)∥∥∥ ·
∥∥∥b̄j(t)∥∥∥

≤
(
2
√

2dhdδ(t) exp(−ηβ1γt) + 2
√

2dhβ2δ(t) exp(−ηβ2γt)
)
· 2
√
2dhdδ(t) exp(−ηβ1γt)

≤ 8dhd
2δ(t)2 exp(−ηβ1γt) + 8β2dhdδ(t)

2 exp(−ηβ2γt)

The last inequality is by exp(−2ηβ1γt) ≤ exp(−ηβ1γt), exp(−η(β1 + β2)γt) ≤ exp(−ηβ2γt).∣∣∣c̄⊤i (t)b̄(t)∣∣∣ ≤ ∥∥∥c̄i(t)∥∥∥ ·
∥∥∥b̄(t)∥∥∥

≤
(
2
√
2dhdδ(t) exp(−ηβ1γt) + 2

√
2dhβ2δ(t) exp(−ηβ2γt)

)
·
(
2
√
2dhβ2dδ(t) exp(−ηβ2γt) +

√
2dhdδ(t) exp(−ηβ1γt)

)
= 4dhd

2δ(t)2 exp(−2ηβ1γt) + 8β2
2dhdδ(t)

2 exp(−2ηβ2γt)

+ 8β2dhd
2δ(t)2 exp(−η(β1 + β2)γt) + 4β2dhdδ(t)

2 exp(−η(β1 + β2)γt)

≤ 4dhd
2δ(t)2 exp(−ηβ1γt) + 28β2

2dhdδ(t)
2 exp(−2ηβ2γt)

The last inequality is by β2d ≤ 2β2
2 , β2 ≤ β2

2 , and exp(−2ηβ1γt) ≤
exp(−ηβ1γt), exp(−2ηβ2γt) ≤ exp(−ηβ2γt), exp(−η(β1 + β2)γt) ≤ exp(−ηβ2γt).∣∣∣b̄⊤i (t)b̄(t)∣∣∣ ≤ ∥∥∥b̄i(t)∥∥∥ ·

∥∥∥b̄(t)∥∥∥
≤ 2

√
2dhdδ(t) exp(−ηβ1γt) ·

(
2
√
2dhβ2dδ(t) exp(−ηβ2γt) +

√
2dhdδ(t) exp(−ηβ1γt)

)
≤ 8β2dhd

2δ(t)2 exp(−ηβ2γt) + 4dhd
2δ(t)2 exp(−ηβ1γt)

The last inequality is by exp(−2ηβ1γt) ≤ exp(−ηβ1γt), exp(−η(β1+β2)γt) ≤ exp(−ηβ2γt).
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D Discussion

In this section, we show that orthogonal initialization Mamba can be trained to ICL solution, and
compare our method with some previous works.

Orthogonal Initialization Now we assume that each column of WB and WC are initialized with
orthogonal columns of unit norm. Then we have

C⊤(0)C(0) = B⊤(0)B(0) = I, B⊤(0)b(0) = C⊤(0)b(0) = 0.

Consider the following update rule as part of lemma 5.1.

B(t+ 1) = B(t) + ηβ3C(t)− ηβ1C(t)C(t)⊤B(t), (45)

C(t+ 1) = C(t) + ηβ3B(t)− ηβ1B(t)B(t)⊤C(t)− ηβ2b(t)b(t)
⊤C(t), (46)

b(t+ 1) = b(t)− ηβ2C(t)C(t)⊤b(t). (47)

By (Eq. (45)), (Eq. (46)) and (Eq. (47)), we have:

B⊤(t+ 1)b(t+ 1) = B(t)⊤b(t) + ηβ3C(t)⊤b(t)− ηβ1B(t)⊤C(t)C(t)⊤b(t)

− ηβ2B(t)⊤C(t)C(t)⊤b(t)− η2β2β3C(t)⊤C(t)C(t)⊤b(t) + η2β1β2B(t)⊤C(t)C(t)⊤C(t)C(t)⊤b(t)

C(t+ 1)⊤b(t+ 1) = C(t)⊤b(t) + ηβ3B(t)⊤b(t)− ηβ1C(t)⊤B(t)B(t)⊤b(t)− ηβ2C(t)⊤b(t)b(t)⊤b(t)

− ηβ2C(t)⊤C(t)C(t)⊤b(t)− η2β2β3B(t)⊤C(t)C(t)⊤b(t)

+ η2β1β2C(t)⊤B(t)B(t)⊤C(t)C(t)⊤b(t) + η2β2
2C(t)⊤b(t)b(t)⊤C(t)C(t)⊤b(t)

Combining B⊤(0)b(0) = C⊤(0)b(0) = 0 with induction, we can derive that B⊤(t)b(t) =
C⊤(t)b(t) = 0 for t ≥ 0. Thus we only need to consider the following dynamics.

B(t+ 1) = B(t) + ηβ3C(t)− ηβ1C(t)C(t)⊤B(t), (48)

C(t+ 1) = C(t) + ηβ3B(t)− ηβ1B(t)B(t)⊤C(t) (49)

Denote B(t)⊤B(t) = D(t), C(t)⊤C(t) = E(t) and C(t)⊤B(t) = F (t) then by (Eq. (48)) and
(Eq. (49)), we have

F (t+ 1) = F (t) + ηβ3(D(t) +E(t))− ηβ1F (t)D(t)

+ η2β2
3F (t)⊤ − 2η2β1β3F (t)F (t)⊤ − ηβ1E(t)F (t)

+ η2β2
1F (t)F (t)⊤F (t)

(50)

D(t+ 1) = D(t) + ηβ3(F (t) + F (t)⊤)− ηβ1(F (t)⊤F (t) + F (t)⊤F (t))

+ η2β2
3E(t)− η2β1β3F (t)⊤E(t)

− η2β1β3E(t)F (t) + η2β2
1F (t)⊤E(t)F (t)

(51)

E(t+ 1) = E(t) + ηβ3(F (t) + F (t)⊤)− ηβ1(F (t)⊤F (t) + F (t)⊤F (t))

+ η2β2
3D(t)− η2β1β3F (t)⊤D(t)

− η2β1β3D(t)F (t) + η2β2
1F (t)⊤D(t)F (t)

(52)

Note that D(0) = E(0) = I and F (0) = 0. By induction we can see that D(t), E(t) and F (t)
are diagonal matrix for t > 0. Because of the symmetry, we have D(t) = E(t). Now we denote
D(t) = E(t) = g(t)I and F (t) = h(t)I . Then based on (Eq. (50)), (Eq. (51)) and (Eq. (52)), we
have:

g(t+ 1) = g(t) + η(2h(t) + ηβ3g(t)− ηβ1g(t)h(t))(β3 − β1h(t)) (53)

h(t+ 1) = h(t) + ηg(t)(β3 − β1h(t)) + η2h(t)(β3 − β1h(t))
2 (54)

Since g(0) = 1 and h(0) = 0 at initialization, h(t) will converge to β3

β1
(i.e. C⊤B → β3

β1
I).

66



Compare with Other Techniques (Eq. (45)), (Eq. (46)) and (Eq. (47)) can be viewed as the
gradient descent that minimize the following target:

1

2
∥C⊤WBX − Y ∥2F (55)

where X and Y satisfy:

XX⊤ =


β1

. . .
β1

β2

 ∈ R(d+1)×(d+1),XY ⊤ =


β3

. . .
β3

01×d

 ∈ R(d+1)×(d).

To establish convergence for this problem under gaussian initialization, Arora et al. (2019) require
the standard deviation to be small enough, while Du and Hu (2019) require larger dimension dh
because their method relies on the condition number of X . Our method balances the requirements on
initialization and dimension. The fine-grained nature of our analysis (particularly the Vector-coupled
Dynamics) enables extension to various problem beyong (Eq. (55)).

E Additional Experimental Results

(a) Initialization (b) Trained parameter (c) Loss curve

Figure 2: (a) Visualization of matrix product C⊤WB before training; (b) Post-training visualization
of matrix product C⊤WB ; (c) Test loss versus token sequence length N . Blue curve: experimental
loss; orange dashed line: theoretical loss d

2

(
1− β2

3

β1

)
.

Experiments Setting We follow Section 3 to generate the dateset and initialize the model. Specifi-
cally, we set dimension d = 4, dh = 80, prompt token length N = 50, and train the Mamba model
on 3000 sequences by gradient descent. Moreover, we vary the length of the prompt token N from 4
to 80 and compare the test loss with the theoretical loss. For each N , we conduct 10 independent
experiments and report the averaged results. All experiments are performed on an NVIDIA A800
GPU.

Experiment Result Figure 2a and Figure 2b show that C⊤B can be trained to diagonal matrix
from random initialization. Figure 2c show that the experimental loss aligns with the theoretical
loss L(θ) = d

2

(
1− β2

3

β1

)
, noting that the theoretical loss

(
1− β2

3

β1

)
has an upper bound 3d(d+1)

2N that
decays linearly with N. These experimental results further verified our theoretical proof.

Mamba vs Linear Attention Optimal linear attention outperforms Mamba under our construction,
and they have O(1/N) error upper bound with different constant factors. We provide a comprarison
of loss between optimal Mamba (under our Assumption 4.1) with optimal linear attention as in Table
2 with setting d = 10, N = 10, 20, . . . , 80.

When N is smaller than d We also test the case when N ≤ d in Table 3 with setting d = 20, N =
4, 6, . . . , 20.
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Convergence of w∆ We set w∆ = 0 in the assumption. Now we show that random initializd
w∆ = 0 can converge to 0 experimental. The results is in Table 4.

Different dh Table 5 shows the mean value and standard deviation of the loss for smaller dh (in 10
repeated experiments). We set d = 4, N = 30, and the theoretical loss is 0.2954.

Table 2: Comparison of Mamba and Linear Attention
N 10 20 30 40 50 60 70 80

Mamba 2.6671 1.8189 1.3800 1.1117 0.9308 0.8005 0.7022 0.6254
Linear Attention 2.6190 1.7742 1.3415 1.0784 0.9016 0.7746 0.6790 0.6044

Table 3: Experiment for N ≤ d

N 4 6 8 10 12 14 16 18 20

Experimental Loss 8.5911 7.8292 7.7009 6.8235 6.4004 6.0612 5.9689 5.6193 5.1426
Theoretical Loss 8.4484 7.8425 7.3173 6.8579 6.4526 6.0926 5.7706 5.4810 5.2190

Table 4: Convergence of w∆

Epoch 0 10 20 30 40 50 60 70 80

∥w∆∥2 0.8883 0.7513 0.4821 0.3331 0.2444 0.2026 0.1868 0.1799 0.1773
∥w∆∥22 0.7891 0.5645 0.2324 0.1109 0.0597 0.0410 0.0349 0.0324 0.0314

Table 5: Different dh
dh 6 8 10 12 14 16 18 20

mean(loss) 0.2912 0.2933 0.2899 0.2887 0.2929 0.2951 0.2967 0.2959
std(loss) 0.0075 0.0055 0.0116 0.0052 0.0105 0.0097 0.0110 0.0142
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