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Abstract

State-space models (SSMs), particularly Mamba, emerge as an efficient Trans-
former alternative with linear complexity for long-sequence modeling. Recent
empirical works demonstrate Mamba’s in-context learning (ICL) capabilities com-
petitive with Transformers, a critical capacity for large foundation models. How-
ever, theoretical understanding of Mamba’s ICL remains limited, restricting deeper
insights into its underlying mechanisms. Even fundamental tasks such as linear
regression ICL, widely studied as a standard theoretical benchmark for Transform-
ers, have not been thoroughly analyzed in the context of Mamba. To address this
gap, we study the training dynamics of Mamba on the linear regression ICL task.
By developing novel techniques tackling non-convex optimization with gradient
descent related to Mamba’s structure, we establish an exponential convergence
rate to ICL solution, and derive a loss bound that is comparable to Transformer’s.
Importantly, our results reveal that Mamba can perform a variant of online gradient
descent to learn the latent function in context. This mechanism is different from
that of Transformer, which is typically understood to achieve ICL through gradient
descent emulation. The theoretical results are verified by experimental simulation.

1 Introduction

State-space models (SSMs), notably Mamba (Gu and Daol [2024)), have recently emerged as com-
pelling alternatives to Transformer-based architectures (Vaswani et al., 2017). Mamba integrates
gating, convolutions, and state-space modeling with selection mechanisms, enabling linear-time
complexity. This effectively addresses the quadratic computational costs typically associated with
self-attention mechanisms in Transformers. Consequently, Mamba demonstrates superior efficiency
in processing long sequences while maintaining or even surpassing Transformer performance across
diverse benchmarks (Gu and Daol 2024} |[Dao and Gu, [2024; Patro and Agneeswaran, [2024; Liu et al.}
2024; |/ Ahamed and Cheng| [2024; |Li et al., [2024alb)).

In-context learning (ICL) (Brown et al.| [2020) is a powerful paradigm that enables models to
generalize to unseen tasks by dynamically leveraging contextual examples (such as input-output
pairs) without task-specific fine-tuning. This capability has become a defining characteristic of large
foundation models, significantly enhancing their flexibility and adaptability. While extensive research
has provided substantial insights into Transformer-based ICL mechanisms (Garg et al., 2022} |Gatmiry,
et al.| 2024} |Sander et al., 2024; [Zheng et al.| 2024} |[Zhang et al.l [2025)), the principles underlying
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Mamba’s ability to perform in-context learning remain largely unexplored, highlighting a compelling
research gap.

Recent empirical studies have examined Mamba’s (ICL) capabilities, showing it matches Trans-
formers on many standard ICL tasks, while surpassing them in specialized scenarios like sparse
parity (Park et al.| [2024; (Grazzi et al.| [2024). Bondaschi et al.| (2025) theoretically analyzed its
representational capacity for in-context learning of Markov chains, and [Li et al.| (2025a) investigated
binary classification tasks with outliers. (Yang et al., 2024} 2025} |Behrouz et al.,2025bla) leverage
the connection between SSMs and online learning to design new architectures. However, even the
linear regression model, a canonical setting widely used for theoretical analysis of Transformer-based
ICL mechanisms, remains theoretically underexplored in the context of Mamba. To fill this gap, we
analyze Mamba’s training dynamics on in-context linear regression tasks. More precisely, following
the previous ICL analysis in Transformers (Garg et al.| 2022} Zhang et al.| 2024} |Ahn et al., |2023)),
this paper focuses on a data generative model with N input-output pairs ({z;, y; };\ ;) and a query
input (z,) satisfying y = f(x) = w " x, where x denotes the input and y denotes the output, and
w is randomly sampled from Gaussian distribution, termed the context. In this work, we develop a
rigorous theoretical framework to analyze how randomly initialized Mamba models, when trained
through gradient descent, evolve to implement in-context learning. We demonstrate that the trained
Mamba architecture dynamically leverages the input context to perform implicit estimation of the
vector w. This estimation is achieved through hidden state updates that mimic online gradient descent
steps, finally implementing prediction for y, = f(xq) = wTa:q. We also provide a loss bound that
is comparable to Transformers’. Our contributions are summarized as follows:

* We construct a Mamba architecture (S6: S4 with selection) capable of ICL, establishing
its exponential convergence rate to ICL solution, and further derive the loss bound after
convergence. The loss matches that of Transformers.

 Technically, we develop novel techniques to address optimization challenges induced by
random initialization and gradient descent, rigorously characterizing Mamba’s training
dynamics when trained from scratch.

* We reveal how trained Mamba achieves in-context linear regression by progressively aligning
its hidden states with the context through sequential token processing. This finding provides
a new perspective for understanding Mamba’s ICL mechanism, distinct from Transformer-
based approaches. All the above results are verified by experiments.

2 Related Work

In-Context Learning The seminal work of Brown et al.|(2020) demonstrated the in-context learning
capability in Transformers, showing their ability to infer functional mappings from input-output
exemplars without weight updates. |Garg et al.|(2022) initiated the investigation of ICL from the
perspective of learning particular function classes. Following these, a line of research analyze this
phenomenon through the lens of algorithm imitation: Transformers can be trained to implement
various learning algorithms that can mimic the latent functions in context, including: a single step of
gradient descent (Von Oswald et al., 2023} |Akyiirek et al., [2023)), statistical algorithms (Bai et al.,
2023)), reinforcement learning algorithm (Lin et al.,2024)), multi-step gradient descent (Gatmiry et al.|
2024), mesa-optimization (Zheng et al.,2024)), Newton’s method (Giannou et al., [2025)), weighted
preconditioned gradient descent (Li et al., [2025b)), in context classification (Bu et al., 2024; |Shen
et al.,[2024; Bu et al., 2025) among others.

Recent work extends ICL analysis beyond Transformers: (Lee et al., 2024; [Park et al., 2024)
empirically compared popular architectures (e.g., RNNs, CNNs, SSMs, Transformers) on synthetic
ICL tasks, identifying capability variations across model types and task demands. Tong and Pehlevan
(2024) demonstrate that MLPs can learn in-context a series of classical tasks such as regression and
classification with less computation than Transformers. |Sushma et al.|(2024) show that state space
models augmented with local self-attention can learn linear regression in-context. Unlike existing
research on ICL, this work focuses on the ICL mechanism of Mamba (specifically S4 with selection)
and its training dynamics.

Theoretical Understanding of SSMs As|Gu et al.| (2022)) introduce structured state spaces models
in modeling long sequence and further be extended to Mamba (Gu and Dao), 2024), which gained



significant attention as alternatives to Transformers, extensive research has sought to theoretically
understand the mechanisms and capabilities of state-spaces models (SSMs). [Dao and Gu| (2024)
propose the framework of state space duality, which establishes a connection between SSMs and
attention variants through the lens of structured matrices. [Vankadara et al.| (2024) provide a scaling
analysis of signal propagation in SSMs through the lens of feature learning. |Cirone et al.| (2024)
draw the link of SSMs to linear CDEs (controlled differential equations) and use tools from rough
path theory to study their expressivity. |Chen et al.| (2025)) establish the computational limits of
SSMs and Mamba via circuit complexity analysis, questioning the prevailing belief that Mamba
possesses superior computational expressivity compared to Transformers. Nishikawa and Suzuki
(2025) demonstrate that state space models integrated with nonlinear layers achieve dynamic token
selection capabilities comparable to Transformers. Different from the above, we provide theoretical
understanding of Mamba from the perspective of ICL.

3 Problem Setup

In this section, we outline the ICL data model, the Mamba model, the prediction strategy, and the
gradient descent training algorithm.

Data Model. We consider an in-context linear regression task where each prompt corresponds to
a new function f(z) = w 'z with weights w ~ N(0, I;) and d > 1. For each task, we generate
N i.i.d. input-output pairs {(z;,y;)}Y ; and a query x,, where all inputs x;,z, ~ N(0, I,) are
independent Gaussian vectors, and the outputs satisfy y; = f(a;). The goal is to predict y, = f(xq)
for the query.

To enable sequential processing of prompts in the Mamba model, we implement an embedding
strategy where:

1. The i-th context token is encoded as e; = (x; ,y;) ", formed by concatenating input x;
with its corresponding label y;.

2. The query token is represented as e, = (a:;r, 0) T, masking the unknown target value with a
zero placeholder.

In many theoretical analyses of Transformer-based in-context learning, token embeddings are conven-
tionally concatenated into a single matrix to enable parallel computation of global attention (Zhang
et al.||2024; |Ahn et al.| 2023 \Huang et al., 2023} |Mahankali et al., 2024} (Wu et al., [2024). In contrast,
since Mamba operates as a sequential model, we feed the embeddings of context tokens one by one,
and finally the query token (e; — €3 — -+ — en — €g).

Mamba Model. We consider a S6 layer of Mamba o0;.;, = Mamba(0;wu;.;,) with selection,
discretization, and linear recurrence components, where u;, 0; € R Tt can be described as follows:

h) = Ah| + Bu” € R, (1a) A, — exp(AjA) € Ré¥dn (2a)
o’ =ch, CreR™ (1b) B, = (AA) N exp(AA) — I)AB; € R*"*1 (2b)
for i € [d.]. Here, the superscript (¢) denotes the i-th independent processing channel, where each
channel operates on a unique feature dimension of the input u; and output o; vectors (i.e., ugl) and

ol(i) correspond to the ¢-th elements of u; and oy, respectively). The hidden state hl(i) is initialized

as h(()i) = 0 and evolves according to A; € R > B; ¢ R%*! and the input ul(i). C; € Rinx1
maps the hidden state hl(l) to the output ol(l). As shown in (@), A; and B, are computed using the
zero-order hold (ZOH) discretization method applied to A € R% x4 B; ¢ R4 *1 and the timestep

A; € R. Next, we describe the selection mechanism.

B =Wpu,+bg, () Ci=Wou+bo, 4) A =softplus(wius+ba), (5)
Here, softplus(x) = log(1 + exp(z)). Wp,We € R¥*de g bo € RIWXL wp € RéeXL,

ba € R, along with A € R% > are the parameters of the Mamba model. We use 8 to denote the
collection of all the parameters.



Unlike previous work (Sushma et al.,[2024)) that introduce local self-attention component to augment
SSMs, which may inherit the Transformer’s ICL ability, our model adheres to Mamba’s original
selective state-space framework (Gu and Dao}, 2024). This alignment ensures us to mechanistically
analyze how Mamba’s architecture enables in-context learning (ICL).

Linear Regression Prediction. In this work, we set d. = d + 1, enabling the Mamba model to
process the embeddings e1.n, e4. Given the prompt (eq, ..., en, €,), the Mamba model will output
a sequence 01.x+1 = Mamba(0;e1,...,en,e,). The prediction for the linear regression target

Yy, = w ' x, is extracted from the terminal position of the output matrix (corresponding to the zero

placeholder in the query token e, = (a:qT, 0) 7). Concretely, g = o%ﬁ).

Training Algorithm. To train a Mamba model over the in-context linear regression task, we
consider minimizing the following population loss:

1.
5(0) = Ewlzw,mq,w {i(yq - yq)ﬂ . (6)
Given a Mamba model, we use gradient descent to minimize population loss £(8), and the update of
trainable parameters 8’ = {Wpg, W, bg, be} can be written as follows:

0'(t+1)=0'(t) — nVe L(O()). %)

4 Main Results

This section presents our main theoretical results that characterize the convergence state of Mamba
and its final loss. We also compare the results with other models.

Assumption 4.1 (1) Matrix A = —1,. (2) The vector wn is fixed as zero 0, and ba is fixed as
In(exp((In2)/N) — 1). (3) Matrices Wg, W¢ are initialized with entries drawn i.i.d. from the
standard Gaussian distribution N'(0, 1). (4) The hidden state dimension satisfies: dj, = S~2(d2). (5)
The learning rate satisfies: n = O(dfzdgl). (6) Bias vectors bp, bo are initialized as zero 0. (7)
Token length N = Q(d).

(1) The negative-definite matrix A = —1I4, guarantees the stable convergence of hidden states hl(i).

(2) Given the zero-mean and symmetric distribution of embeddings, wa can naturally converge to
0 during gradient descent, and we fix it as O for simplicity. We further fix ba to an appropriate
constant to maintain a suitable timestep A;, enabling us to concentrate our theoretical analysis on
Wpg, We, b, and be. In prior works on Transformer-based in-context learning, merging key-query
weights (e.g., W := Wy W) and specific initializations (e.g., W = W = I) are often adopted
to simplify optimization analysis (Zhang et al., 2024} |Ahn et al.,|2023; |Huang et al.,|2023; Mahankali
et al. 2024; 'Wu et al.| 2024). (3, 4, 5) In contrast, our Gaussian initialization of Wg and W
demonstrates more practicality, which requires a sufficiently large hidden state dimension dj, and a
sufficiently small learning rate 7 to ensure favorable loss landscape properties. Assumption (6) is
intended to simplify the analysis. (7) Token length should be larger enough than the dimension of w
to capture sufficient contextual information.

Theorem 4.1 Under Assumption if the Mamba is trained with gradient descent, and given a

new prompt (e1, . .., en, eq), then with probability at least 1 — 6 for some § € (0, 1), the trainable
parameters 0'(t) = {Wg(t), Wa(t),bp(t), be(t)} converge as t — oo to parameters that satisfies:

(a) Projected hidden state: (Wg)u;d,:] (t)hl(dH) = a(Wg(t))[lzd’:]hl(T{l) + (1 — a)Byixy,
(b) Prediction for target: §, = :ch Zf\;_ol(l —a)a T Byn TN s,
(¢) Population loss: L(0(t)) < 3d(d41)

2N

where o = eXp((fhl2)/N), ﬂ = m

4



Theorem 4.1 characterizes the in-context learning (ICL) mechanism of Mamba and establishes an
upper bound on its population loss. Specifically, (Thm[4.1|(a)) shows how the hidden state is updated
according the given prompt e; = (=, ). (Thm (b)) presents the final prediction given
prompt (e1,...,en, eq). (Thm (c)) provides the upper bound for the population loss, which is
comparable to that of the Transformer (Zhang et al.}[2024). Next, we’ll discuss it in more detail.

Update of Hidden State. If we define h; := (WJ) [1:d,:] hl(dﬂ), then (Thm(a)) can be rewritten
as follows: ~ ~ ~ ~

h; =ah;_1 + (1 — a)Byx; = hy—1 + (1 — o) (Byre; — hy—1). (®)
We observe its intrinsic connection to online gradient descent, which updates the model parameters
(hy) with only one currently arriving sample (e; = (mlT, y1) 1) at each step. Specifically, the system
gradually updates hy along the pseudo-gradient direction Sy;x;, with a fixed step size (1 — «).

For a newly defined task f(x) = w ' x, given that E[y;a;] = w, the direction of h; converges toward
w as mamba processes multiple prompts. This demonstrates mamba’s ability to internalize f(x)
through prompt processing, which ultimately ensures that predictions for query token e, = (mt—;, 0)"
closely approximate f(x,).

Previous works have shown that Transformer can mimic a single step of gradient descent to achieve in-
context learning ability (Zhang et al.|[2024; Mahankali et al.,2024). Concretely, a trained Transformer
can be described as follows

N
1
Transformer(e;,...,en,e,) = :1::1r (N Zy,a:z) ~ w;rw. )
i=1

Our theoretical analysis reveals that Mamba and Transformer have different in-context learning mech-
anisms. This divergence stems from their inherent architectural biases: Transformers process contexts
globally through self-attention, while Mamba enforces local sequential dependencies via recurrent
state transitions. These findings provide fundamental insights into the contrasting capabilities of
Transformer-based and Mamba-based models for in-context learning. As experimental work shows,
transformers can learn vector-valued MQAR tasks in the context which Mamba cannot, while Mamba
succeeds in sparse-parity in-context learning tasks where Transformers fail(Park et al., [2024).

Prediction Outcome. Comparing equations Thm 4.1 (b) and (9)), we found both similarities and
distinctions in how Transformer and Mamba implement in-context learning (ICL). Both models
leverage a weighted aggregation of y;x;, aligning with the intuition that learning f(z) = = "w
from context reduces to estimating the latent parameter w, since E[y;x;] = w. Notably, their token
weighting strategies diverge: Transformer’s global attention mechanism implicitly assigns nearly
uniform weights (~ -+, where NV is the token length) to all y;;, while Mamba’s linear recurrence
imposes position-dependent weight variations. This difference arises from Mamba’s iterative state
update rule, where the influence of prompt tokens e; on the hidden state h; depends on their sequential
placement, governed by the model’s linear recurrence dynamics.

The derived upper bound (Thm[4.1](c)) establishes an O(1/N) convergence rate for the loss (ignoring
dimension factor), demonstrating that Mamba matches the sample complexity scaling of Transformers
in linear regression ICL tasks (Zhang et al.| 2024)).

Compare with S4. Mamba extends the structured state space model (S4) (Gu et al.| [2022)) by
integrating a selection mechanism, which is critical for enabling ICL. In S4 model, the matrices
A € R¥%Xdn and B, C € R%*! are static, leading to a fixed linear combination of inputs:

!
o) =3 CcTATB, (10)

j=1
where the coefficients CTA' B are task-agnostic. This formulation inherently limits S4’s ability

to adapt to task-specific parameters w in ICL scenarios, as the model cannot adjust its inductive bias
to match distinct w across different tasks. Therefore, the S4 model cannot truly learn in-context.

In contrast, Mamba’s selection mechanism dynamically adjusts B; and C; (and optionally A;) based
on the input tokens (uq,...,ux). This allows the model to implicitly adapt its hidden state to



align with the latent w of each task, effectively transforming the linear combination weights into
context-dependent functions f(x) = «"w. Such adaptability is essential for ICL, as it enables
Mamba to reconstruct diverse w from input prompts without task-specific fine-tuning.

5 Proof Sketch

This section outlines the main technical ideas to prove Theorem .1} The complete proofs are given
in the appendix.

Linear Recurrence. To start with, we show how the hidden states update when receiving token
e, = (z/ ,y)". By (Eq. (B)) and Assumption 2), we have A; = (In2)/N. Combining it with
(Eq. (I)(2)) and get:

R = ah\™Y L (1 - a)y B, (11)

where « := exp( A;) = exp((—1In2)/N), the second equality is by discretization rule (2)), the
third equality is by Assumption [4.1(2) and exp(—A,I) = exp(—A)I.

Prediction Output. We next derive the expression of g,. By recurring (Eq.(TI)), the hidden state
after receiving the first [ context prompts ej.; is given by hl(d+1) = (1-a) Zi;é aly_iBi_;.
Receiving all the prompt tokens e;.y and the query token e, = (qu, 0)", we have:

N—-1
AT =ahf™ 4+ (1-a) 0-By=(1-0a) 3 o™ lyy_;By_:. (12)
=0
Finally, the prediction output is as follows
N—-1
" d
Jg = CNhWi = (1—a)(Weeg +b0)T Y alyy ((Wgey_; +bp).  (13)
=0

To handle Wce, and Wgen_;, we further decompose Wy = [Bb] and W¢ = [C c], where
B,C € R¥%>4 b c € R%*! Then we write another form of (Eq. (13)):

=(1—a)(Czq+bo)" Za yn—i(Bxn_; +yn—ib+bp). (14)
The loss becomes:
1 Nl 2
L(0) = 2E[<(1—a) Cx,+bo) ) Z o lyn_i(Bxy_; +yn_ib+bp) — wqu) } (15)
=0

By computing the gradient of C, bc, B, b and bp with respect to £(0(t)), we derive the following
update rule according to Eq. (7).

Lemma 5.1 (Update Rule) Let ) be the learning rate and we use gradient descent to update the
weights Wg, We,bp, be, fort > 0 we have

B(t+ 1) = B(t) + 16:C(t) —npiC(t)C(t) B(1),
C(t+1) = C(t) +npaB(t) — B B(t)B(t) C(t) —npab(t)b(t) C 1),
b(t +1) = b(t) — nfC(1)C(1) b(t), bs(t) = bo(t) =0,
where By = E[ 0 SN -0t 2y Ly ey el 6 = B[ SN SN -
}

o N _
04)2042ﬂ+23112V—¢yN—j}’ Ps = [Zizol(l — )oYy ey w .



Technical Challenges. Unlike many prior Transformer-based ICL analyses that simplify dynamics
via merged weights or special initializations, our Gaussian-initialized W, W and discrete-time
gradient descent introduces more complexity (cf. assumption[d.T)). To solve the optimization problem
described in Lemma[5.1] we have the following three questions to answer: (1) Convergence Target:
Where do the parameters converge? (2) Convergence Proof: How to rigorously establish convergence?
(3) Saddle Point Avoidance: How to avoid saddle points? To answer these three questions, we propose
two key techniques: Vector-coupled Dynamic, Negative Feedback Convergence, and apply them with
a Fine-grained Induction. We next describe them in detail.

5.1 Vector-coupled Dynamics

We can verify by Lemmathat C' B = Diag(ay,...,aq) with a; € {0, ’B—f}, C"b = 0 are the
fixed points for the parameters Wg, We.

Combining the loss function Eq. [I5|and bp(t) = be(t) = 0 in Lemmal5.1] the loss function can be
rewritten as

N-1
1 . 2
L£(0) = §EK(1 —a) E az+1(w;—CTByN,i:BN,i + y?vfia:;rCTb) - wT:Bq) }
=0
N-1

To minimize loss, the term (1 — a) ;1" ot (x] C T Byn_izn—; + yx_;x, C'b) should ap-

proximate w 'x,. Given E[yy_;xy_;] = w and E[y%_,] > 0, we derive that C'T B should
converge to %I , while C' Tb converges to 0 to minimize the loss. However, as mentioned above,

C'B= Diag(as,. .., aq) with partial a; = 0 can also enable convergence, which is an undesirable
scenario.

To analyze the convergence behavior of C'T B and C " b, we introduce the Vector-coupled Dynamics
technique, which studies the inner product dynamics between decomposed column vectors of B
and C'. Specifically, we decompose B and C' into B = [b;y ... b,], C = [c; ... ¢4]. Then we have
another form of Lemmafor B, C and b as the following lemma.

Lemma 5.2 (Vectors Update Rule) Let 7 be the learning rate and we use gradient descent to update
the weights W, W¢, bg, be, fori € [d], t > 0 we have

d
bi(t+1) = bi(t) +n( (85 = Brel (Obi(1)eilt) = B1 Y el (Obi(t) - ex(t))
ki

d
cilt+1) = ci(t) +n( (B — Bre] (B0 bit) =B Y e (i (1) - bi(t) = Bac] (B(1)-b(1) )
ki

d

b(t+1) = b(t) = (82> el (Ob(E) - ex(®)).

k=1

With Lemma we can further analyze the dynamics of the inner products ¢, (t)b;(t), ¢/ (t)b;(t)

7
and ¢ ()b(t), precisely characterizing the behavior of C'" B and C' " b. This technique helps answer
the question "Where do the parameters converge?"

5.2 Negative Feedback Convergence

As we discuss in Section to minimize loss, the following conditions must be satisfied for all
i,j € [d] with i # j: ¢] (#)b;(t) — %, ¢/ (H)b(t) — 0, ¢ (t)b(t) — 0. To establish the
convergence, we introduce the Negative Feedback Convergence technique. This technique leverages
the negative feedback terms in the dynamical equations of ¢; (t)b;(t), ¢/ (t)b;(t), and ¢ (¢)b(t) to
derive an exponential convergence rate. Taking ¢; (¢)b;(¢) as an example, we derive the following



update rule by Lemmal[5.2]
(Bs — Bre] (t+ 1)bi(t + 1)) = B3 — Bic/ (£)bi(t)
—nB1(Bs — Bic; (bi(t))b; (1)bi(t) — nB1(Bs — Bic (1)bi(t))e] (t)ei(t)

negative feedback term

d d
082> e (0)bi(t) - b (0)bi(t) + 182 Y el (Dbi(t) - ] (Hen(t)
k#i k#i
+ 1B Bac] (Db(E) - BT (1)b(t) — By (c(t + 1) — e(t) " (b(t + 1) — b(1)).

The term (35— B1¢; (t+1)b;(t+1)) decomposes into its previous state (83 —B1¢; (t)b;(t)) (marked
with underline) plus the remaining terms (increment terms). The increment terms includes a negative
feedback term, which induces a tendency to drive (85 — B1c; (£)b;(t)) to 0 (¢] (t)b;(t) — %).

(16)

Intuitively, b (¢)b;(t) and ¢, (t)c;(t) are much larger than b]] (¢)b;(t), ¢/ (t)ck(t) and b/ (£)b(2) at
Gaussian initialization with high probability. Also, as ¢; (¢)b;(t), b, (£)b(t) — 0 with i # j and n
is small enough, the effect of negative feedback term is the dominant term in the increment terms.
Therefore, denoting y(t) = B3 — B1¢; (t)b;(t) and £(t) = y(t + 1) — y(t) — negative feedback term
we can model the update rule of (Eq. [T6) as follows:

y(t+1) = (L =nBi(b] ()bi(t) + ¢l (t)ei(1))y(t) + ().

Recur this formula from O to ¢, we have:
t

y(t+1) = [T (1= n8: (6] (5)bi(5) + ] (s)es(s)) ) y(0)

s=0 (17)
+Z H (1= nB1 (6] ()il + ] ()ex(s) ) £():
s=0 s'=s+1

Denoting v = min{b, (s)b;(s), ¢/ (s)c ( )} for s € [0, ], the first term on the RHS of (Eq. (T7)
can be upper bounded by (1 — Qnﬂw)H y(0 ) if £(s’) has an exponentially decaying upper bound
(it can be proved when ¢, (t)b;(t) — 0,¢; (¢)b(t) — 0 with an exponential rate), the second
term on the RHS of (Eq. (I7)) has an exponentially decaying upper bound. Therefore, we can

establish an exponential convergence rate for ¢; ()b;(t) — % The similar method can be used

on ¢, (t)bj(t) — 0,¢] (t)b(t) — 0. This technique helps answer the question "How to rigorously
establish convergence?"

5.3 Fine-grained Induction

The exponential convergence of ¢; (¢)b;(t) — % under the Negative Feedback Convergence frame-
work requires the following two conditions for all ¢, j € [d] with ¢ # j:

(1) b/ (t)b;(t) and ¢/ (t)c;(t) dominate b, (£)b;(t), ¢; (t)c;(t) and b/ (t)b(t) in magnitude.
() ¢ (t)bj(t) — 0,¢/ (t)b(t) — 0 at an exponentially decaying rate.

On the one hand, condition (1) at initialization (¢ = 0) can be established via concentration in-
equalities, and critically, the preservation of Condition (1) for ¢ > 0 relies on the rapid decay of
c; (H)bi(t), ¢ (t)b;j(t), and ¢ (t)b(t) (condition (2)). On the other hand, under the framework of

Negative Feedback Convergence, ¢/ (t)b;(t) — 0 in Condition (2) also relies on Condition (1) and

the rapid decay of ¢, (t)b;(t) — 23 , ¢ (t)b(t) — 0. This implies mutual dependencies among the

bounds of these Vector-coupled inner products.

To handle these dependencies and establish stable bounds, we introduce the technique
Fine-grained Induction: Divide the inner products into three groups: (1) Squared norms:
bl (H)bi(t),c; (t)ei(t),bT (t)b(t). (2) Target terms: ¢ (t)b;(t), ¢/ (t)b;(t), ¢/ (t)b(t). (3) Cross-
interactions: b, (t)b;(t),¢; (t)c;(t), b/ (t)b(t). And then carefully give bounds for them with an
induction.



Specifically, denoting (¢ ( )

b (s)b(s)|} and v = 5da
lowing three properties .A( ),
(

= maxye(o,{2\/dn log(4d(2d +1)/0), b (s)b;(s)], le] (s)e; (s)],
< mlnt>0{bT( )bi(t), ¢ (t)ei(t), b7 (t)b(t)}, we establish the fol-
B(t), and C(t) simultaneously for ¢t > 0:

b

A(t) : dn/2 < b (£)bi(t), ¢] (H)ei(t), b (£)b(t) < 2dp.

B(t):  |Bs—pre] (1)bi(t)] < 6(t) exp(—nBit), e (£)b;(t)| < 26(t) exp(—npiyt),
] (06(0)] < 2000 exp(—nfart) + 25 expl—ndio).

C(t): b (1)b; (1)1, e (t)e; (1)1, [b] (£)b(1)] < 6(t) < 3v/dplog(4d(2d + 1)/6).

The initial conditions .A(0), B(0), and C(0) are estabhshed with high probability by concentration
inequalities. We also provide the following claims to establish .A(¢), B(t), and C(t) for t > 0:

Claim 5.1 A(0),..., A(T),B(0),...,B(T),C(0),...,C(T) = A(T +1).
Claim 5.2 A(0),..., A(T), B(0),...,B(T),C(0),...,C(T) = B(T +1).
Claim 5.3 A(0),..., A(T),B(0),...,B(T),C(0),...,C(T) = C(T + 1).

This induction answers the question "How to avoid saddle points?" because B(t) guarantees that
C'B— I and CTb — 0, preventing stagnation of partial diagonal entries of C'T B at zero.

Theorem [4.1|can be proved by substituting C" B = %I, C'b=0,bg = bc = 0into (Eq. (T1),

@@, [@3))

6 Experimental Results

We present simulation results on synthetic data to verify our theoretical results. More experimental
results can be found in Appendix [E]

CT(OWi(t)

—— experimental loss
5 y=3d(d+1) / (2 N)

loss

0 10 20 30 10 50 4 10 80
recurrent step [ token length N/

(a) Trained parameters (b) Similarity (c) Loss curve

Figure 1: (a) Post-training visualization of matrix product CT"Wg; (b) Cosine similarity evolution

between w and h; = (Wér )[1:d7:]hl(d+1) across recurrent steps [ (after processing prompts e .;); (c)
Test loss versus token sequence length N. Blue curve: experimental results; orange curve: theoretical
upper bound.

Experiments Setting We follow Section [3]to generate the dateset and initialize the model. Specif-
ically, we set dimension d = 4, d;, = 80, prompt token length N = 50, and train the Mamba
model on 3000 sequences by gradient descent. After training, we save the model and test it on 1000

new generated sequences, tracking the cosine similarity between hi(:= (WC )[1:d, ]h ) and w.
Moreover, we vary the length of the prompt token /N from 4 to 80 and compare the test loss with
the theoretical upper bound. For each N, we conduct 10 independent experiments and report the
averaged results. All experiments are performed on an NVIDIA A800 GPU.



Experiment Result Recalling that we denote W = B b), Figure reveals the convergence of
C'T B to a diagonal matrix and C' " b to 0, confirming the theoretical induction presented in Section
also consistent with (Thm (b)). Figure shows that the projected hidden state hy gradually aligns
with w as more prompt tokens are processed, consistent with (Thm4.1] (a)). Figure [Ic|demonstrates

that the experimental loss has an upper bound % that decays linearly with N, aligning with

(Thm . 1(c)).

7 Conclusion

This paper study Mamba’s in-context learning mechanism, and rigorously establish its convergence
and loss bound. By analysing the Vector-coupled Dynamics, we provide an exponential convergence
rate with Negative Feedback Convergence technique in a Fine-grained Induction, and finally establish
a O(1/N) loss bound. The loss bound is comparable to that of Transformer. Our theoretical results
reveal the different mechanism between Transformer and Mamba on ICL, where Mamba emulates a
variant of online gradient descent to perform in-context, while Transformers approximate a single
step of gradient descent. Furthermore, our comparison with the S4 model demonstrates that the
selection components are essential for Mamba to perform ICL.

Limitations and Social Impact Our analysis focuses on one-layer Mamba model, thus the behavior
of Mamba with multi-layer or augmented with other components such as MLP is still unclear. We
believe that our work will provide insight for those cases and can be used to study more data models
such as nonlinear features. This paper is mainly a theoretical investigation, and we do not see an
immediate social impact.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects the paper’s scope, and the introduction reflects the paper’s
contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitation in the conclusion Section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the assumptions in Assumption[d.1] In the main paper, we provide
a proof sketch (Section [5)). The detailed proofs are in the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiments follows our problem setup and assumption. We also provide
the experiments setting in this paper, and the codes are in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The codes are in the supplementary material. We also provide a readme file.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments follows our problem setup and assumption. We also provide
hyperparameters in the experiments setting.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We plot the 1-sigma error bar. Figure[Ib] the error bar for experimental loss
can be found in Figure

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources in experiments setting. All experiments are
performed on an NVIDIA A800 GPU within hours.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This work focuses on theoretical study of Mamba’s in-context learning. All the
data is synthesized. We see no ethical or potential harms of our work. We will not violate
the Code Of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in Conclusion Section. We do not see an
immediate social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is mainly a theoretical work. It poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We perform experiments on synthetic data. It does not use existing assets.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We perform experiments on synthetic data. No new assets are introduced in
the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper is mainly a theoretical work. The core method development in this
research does not involve LLMs as any important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 1: Key notations

Symbols Definitions

Ti, Tq, W, Yi, Yq x;, Ty, w are i.i.d. sampled from Gaussian distribution N'(0, I5).
T T
Yi =W Ti, Yqg=W Tq.

bi(t) = L(bi(t+1) — bs(1)),
Bi(t), & (1), B(1) &) = (it +1) - ci(t)),
b(t) = ;- (b(t +1) —b(t)).
Decompose the matrices W, W¢ into colums of vectors:
B,C,b,c, b;, c; Wg =[Bb] = [bi,...,bgb], We =[Cc|] =][ci,...,cqc]
where Wi, We € R (@D B C € R X4,
b,c,b;,c; € R™m>!

t),b(t)"b(t) inner product of the vectors b, b;, ¢; with i, j € [1,d].
),ci(t)Tb(t) e.g. bi(t)" b;(t) is the inner product of b;(t) and b; (t).

a A factor, @ := exp(—A;) = exp((—In2)/N).
The factors appearing in the gradient equation.
201 _ 2N
B1, B2, B3 Specifically, 51 = (a2 (1—a)’+ (d+1)a ((11+a02)(1 a ))
o o N2 | (2d2+6d)a%(1—a)(1-a?N)
B2 = (d2a*(1-a™)" + o ),

ﬂgza(l—aN)

The lower bound of squared norms b, (£)b;(t), ¢; (t)ci(t),
v and b' (¢)b(t).
Specifically, v = 2 dp.

The upper bound of cross-interactions: b, (£)b;(t), ¢ (t)¢;(t),
8(T) and b; (¢)b(t).

Specifically, (t) = maxe(o,4{2+/dn log(4d(2d + 1)/9),

[bi (s)b; (s)], lei' (s)e;(s)], [b) ()b(s)[}-

A Basic Calculations

This Section provide the data statistics related to gaussian distribution, and compute the expressions
for the output, loss, gradient, training dynamics (particularly Vector-coupled Dynamics) of the
Mamba model. Section[B]presents the Fine-grained Induction with Negative Feedback Convergence
technique, and finally establish the results for Theorem[4.1] Section[C]details the complete proofs for
Section[A]and Section [B] In Section[D} we discuss about orthogonal initialization and compare our
framework with other techniques. In Section [E] we give more experimental results.

A.1 Data Statistics

Lemma A.1 (Concentration Inequalities) Ler b;(0) be the i-th colum of B(0), ¢;(0) be the i-th
colum of C(0), and suppose that § > 0 and dp, = Q(log(4(2d + 1)/6)), with probability at least
1 — 6, we have:

2 < 5i(0)Bu(0), €(0) T e4(0),b(0) B(0) < 2,

ci(0)"b;(0)],

4
ci(O)Tb(O)‘ < 2/dy log(4d(2d + 1)/0),

ci(0)"b;(0)|,

ci(0) " ¢;(0)

)

b:(0) T;(0)].
Jori,j € [d],i#j.
Proof of Lemmal[A.1] By Bernstein’s inequality, with probability at least 1 — 6/2(2d + 1) we have

b:(0)Tb;(0) — dh‘ - o(mh log(4(2d + 1) /5)).

bi(O)Tb(O)‘ < 2\/dy, log(4d(2d + 1)/9)
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Therefore, as long as dj, = 2(log(4(2d+1)/6)), we have 3dy, /4 < b;(0) T b;(0) < 5dy, /4. Similarly,

we have

d \
< i(0)Tei(0),b(0) Tb(0) < 2
For i,j € [d],i # j, By Bernstein’s inequality, with probability at least 1 — 6/2d(2d + 1), we have
ci(0)"bi(0)], [€:(0) "b;(0)], Ci(O)Tb(O)’ < 24/dy log(4d(2d + 1) /5),
(0) b (0)], [es(0) T e;(0)], |bi(0) Tb(0)| < 20/ Tog(4d(2d + 1)/5).

We can apply a union bound to complete the proof.

Lemma A.2 I[fvectors x and w are iid generated from N (0, 1), y = x " w we have the following
expectations:

E {waszmea}T} = (d+2)I,
Bly] =
E[y‘*] = 3d(d +2).
The proof of lemma[A.2]is in Section [C.1]

Lemma A.3 If vectors x; and w are iid generated from N (0, 1), y = ar:;r w we have the following
expectations:

N—1N-1 2( N)2 2 2N
L a?(1—al) (d+ 1)a?(1 —a?N)
E[ 2y UN_ TN T }:( >'I
;;a YN—iYN—jTN—iTN_; (I —a)? + I—a)(i+a) ,
N—-1N-1
{ al+j+2yN_¢y12v_ij—i] =0,
i=0 j=0
2
NN d?a? (1 — aN) (2d* + 6d)a? (1 - OZQN)
E|: az J yN 1yN ]:| = 2 + ’
= (1-a) 1-a)(l+a)
N-1
1— N
]E{ a YN zﬂfN—ﬂvT} :Oé( 1 - ) )
=0 -
N-1
B[ o] 0.
N—-1N-1
E[ ZO/HHGJN (TN WT Jw} =0,
iz0 j=o N ——
YN —i YN—j
N—1N-1
i=0 j=0
—1N-1 da? (1 — azN)
a2y sy } =
[Zg J (1-a)1+a)
N-1
E[ a”lyN,iw] =0.
i=0

The proof of lemma[A3]is in Section[C.2}
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A.2 Output, Loss, Gradient

This section we derive the output of Mamba given sequence {e1.n, e,}, and establishe the loss
function formulation with its gradient expression.

Linear Recurrence. To start with, we show how the hidden states update when receiving token
e, = (z],y)". By (Eq. (3)) and Assumption [4.1(2), we have A; = softplus(In(exp((In2)/N) —
1)) = (In2)/N. Combining it with (Eq. (I)(Z)) and get:

R — AR + By,
= exp(A AR 4y (A A) " (exp(AA) — T)A B,
= exp(—A) IR — y A exp(~A)T — I)AB; (18)
= exp(—ADh{"TY + (1 — exp(—A)y By
=ah{"TV + (1 - a)y B

where a := exp(—A;) = exp((—In2)/N), the second equality is by discretization rule (2)), the third
equality is by Assumption[4.1(2) and exp(—AI) = exp(—A;)I. (Eq. (I8)) is similar to theorem 1
in|Gu and Dao| (2024))

Prediction Output. We next derive the expression of ¢,. Based on (Eq.(L1)), the hidden state after
receiving the first [ context prompts e;; is given by:

hl(d+1) = ahl(itl) + (1 — o)y B
— o®h{*5Y + (1= a)yuBi + (1 — a)ay 1 Bi 4

=... (19)
-1
=(1-0a)) 'y B,
i=0
Receiving the query token e, = (m ,0) ", we have:
N-1
ATy =ahyt +(1-a) 0-By = (1-0a) Y o™ lyy_;By_; (20)
=0
Finally, the prediction output is as follows
N-1
N d+1 ;
Yqg = CJT/HhEvL) =(1- O‘)Cl—\l;Jrl Z aMyn_;By_;
=0 1)

N-1
=(1-a)(Wece, +bc)" Z atlyn_i(Wpen_i + bp)
=0

To handle Wce, and Wiey_;, we further denote W = [Bb] and W = [C ¢, where B,C €
Rdnxd p ¢ € R *! Then we write another form of (Eq. (Z1)):

Jq = (1 —a)(Cxy+bo)" Za yn—i(BTn_i +yn_ib+ bp) (22)
The loss becomes:
1 = 2
£(6) = 51(@:[((1 —a)(Cay +bc)" Y @ yn i (Bey_i + yn—ib+bp) - waq) ] (23)
=0
The following lemma provides the gradient of B, C, b, bg, bc with respect to loss (Eq. (23)).

24



Lemma A.4 (Gradient) The gradient of trainable parameters @' = { B, C, b, bg, bc } with respect
to loss (Eq. 23)) are as follows:

vbBL(g) =0,
Ve L£(0) =0,
VBE(O) _ (Oé2(1 _ aN)Q + (d+ 1)a2(1 - Oé)(l - QQN)) coTB a(l ~ aN) c.
(1 + o N———
=P =
5 o 2d% 4+ 6d)a?(1 — a) (1 — N
VoL(8) = (#a (1= )4 246D (1(+a))( >)CCTb,
=B
a?(1—a)(1—a?N
Vcﬁ(e): (a2(1_aN)2+ (d+1) (]:'l+a))(]‘ ))BBTC
=P
2 (2d% 4+ 6d)a?(1 — ) (1 — a2V)
+ (22 (1-aM)" + it JepTC
=2
— a(l — aN) B.
=Ps3

Here, we denote 3, = <a2 (1 - aN)2 + (d+1)a2((11;(2)(1_am)), By = (d2a2 (1- aN)2 +

2 a2(1—a)(1—a2N
(26 7+64) (&a))(l )), B3 = a1 — o) for simplicity. The proof of lemmais in Sec-

tion

A.3 Training Dynamics

With the gradient in lemma[A.4] we further provide the update rule for Mamba’s parameters
and the Vector-coupled Dynamics.

Using gradient descent algorithm 0'(t + 1) = 0'(t) — nVe L(6(t)) with training rate 1), we have the
following update rule base on lemma[A.4]

Lemma A.5 (Update Rule, restatement of lemma[5.1) Let ) be the learning rate and we use gra-
dient descent to update the weights W, W, bp, be, fort > 0 we have

B(t+1) = B(t) + nB8:C(t) — np1C(t)C(t) ' B(t),
C(t+1) =C(t) +nB3B(t) —nBB(t)B(t) C(t) — nB2b(t)b(t) " C(t),
b(t+1) = b(t) — nBC(t)C(t) "b(1),
bs(t) = be(t) = 0.

We decompose B and C as B = [by ... bg], C = [c; ... ¢g4], and provide the update rule for b;, ¢;
and b with ¢ € [1 : d] as the following lemma.

Lemma A.6 (Vectors Update Rule, restatement of lemma(5.2) Lez 1) be the learning rate and we
use gradient descent to update the weights W, W, bg, be, fori € [d], t > 0 we have

d
bi(t +1) = bi(t) + (B — Bre] (Obi(t))eilt) — i D el (Obi(t) - ex(t)
ki
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= bl(t) + 7751' (t)

d
ci(t+1)=ci(t) + 77((»33 — Bref ()bi(1))bi(t) — B Z ¢ (1)br(t) - bi(t) — Bac] (£)b(t) - b(t>)
ki
=:C; (t) + 7’]61‘ (t)

d

b(t+1) = b(t) = (B2 el (D(¢) - exn(t) ) =: b(t) + nb(1)

k=1

Here, we denote nb; (t) = b;(t + 1) — b;(t), n&;(t) = c;(t +1) — ¢;(t), and nb(t) = b(t +1) — b(t)
for simplicity.

Next, we provide the dynamics for the inner products of these vectors.

Lemma A.7 (Vector-coupled Dynamics) Let 1) be the learning rate and we use gradient descent to
update the weights W, W, bp, beo, we have

b/ (t +1)b;(t +1)
d
= b/ (t)bi(t) + 277( (B3 — Bre! ()bi(1)) el (1)bi(t) =By (CE(t)bi(t))z)
ki

2
+n bi(t)H2

b (t+1)b;(t+1)

= b/ (H)b;(t) + 77(2(53 = Biel (0)bi(t)) el (8)b;(1) +2(B5 — Bie] ()b;(1))e] (1)bi?)
d

= Bs(e] (b;(t) + ¢] (bi(t)) =281 > ¢l (t)bi(t) - ¢ (t>bj(t)) +17b] ()b, (1)
ki k#j
e (t+1Dei(t+1)
d
= ¢/ (t)ei(t) + 2n((ﬂ3 — Bre] (Obi(t)) el (Dbi(t) — B D (e (1)br(t))”
ki

— Ba(e] (b)) +

wo]

¢ (t+1)ej(t+1)
= ] (t)e; (1) +1(2(8s — Bre] (bi()e] (bi(t) +2(8s — Bre] (1)b; (1)) €] (D5 (1)

d

= Bs(c] ()b (1) + ¢/ (Hbi(t)) =281 > ] (bk(t) - ¢ (£)bi(t)
ki k]

— 28] (1B(1) - ] (O(1)) +n%e] (1) (1)
c; (t+1)b;(t+1)
d
= ] (0bi(t) +n( (8 = Bre] (Dbi(1)b] (Dbi(t) = B1 Y ] (Dbi() - BL ()bi(1)
ki

= Bae] (Db(1) - b (1)b(t) + (B3 — pre] (bi(1)) e/ (t)ei(t)
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d
=61 Y el (Obi(1) - ] (D)) + '] (DBi()
ki
¢ (t+1)b;(t+1)
= (1= 081 (el (Deilt) + 5] (Db (1)) )] ()5 (1)

d

(8 = B1el (Ob0)6] (b; (1) = B1 > el (Bbult) - L (1)b; (1)

ki k]
— Bac] (£)b(t) - b (£)b(t) + (Bs — Brc; ()b (1)) e/ (t)e;(t)
d
~B Y el b1 e (Den(®)) + el (1B (1)
ki, k#j
d
bT(t+ 1)b(t+1) = b ()b(t) — 20 (82 Y (e (11b(1)*) + 2 Bt H
k=1

b/ (t +1)b(t +1)

d
= 0] (1)b(t) + 0 (8 — el (Obi(t)e] () — By S e (Hbi(t) - ] ()b

ki

d
~ B2 Y e (Db(E) - ] (bi()) +0*B] (1)B(1)
k=1

¢/ (t+1)b(t+1)
= (1= B2 (6T (B(1) + ¢ (ei(t) )] (Db(t)

d
+ n((ﬁs — Bie] (Dbi())b] (1)b(t) — B1 ) el (£)bi(t) - b (1)b(1)

ki

d
— B2 Y el (b(t) - el (Dei(t)) +n*E (DB(1)

ki

Lemma Mis derive by calculating the inner products of the vectors update rule in lemma[A6] For
example, b' (t + 1)b(t + 1) is derived as follow:

b (t+1)b(t+1) = (b(t) + nE(t))T (b(t) + nl_)(t))

= b ()b(t) — 2nb(t) "b(t) + WQHE(t)Hz

=b'(t)b(t) — 2n (52 Zd: (C;@)b@)f) + UQHB(t)Hj

k=1

The other equations are similar to it.

B Proof of Theorem [4.1]

In this section, we present the framework of Fine-grained Induction, and establish the results of
Theorem 4T after convergence.
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Fine-gained Induction  Specifically, denoting §(t) = maxse(o.4{|b; (5)b;(s)], |c] (s)c;(s)|, |b (s)b(s)[}
and v = ming>o{b; (£)b;(t), ¢ (t)ci(t),bT (t)b(t)}, we establish the following three properties

A(t), B(t), and C(¢) simultaneously for ¢ > 0:

o A(t):
dn/2 < b} (Obi(t), ] ()eilt), b (£)b(D) < 2d),
* B(t):
|Bs — Bre; (1)bi(t)] < 8(t) exp(—nBiyt)
el (1)b; ()] < 26(t) exp(—nBit)
o] (b(t)] < 28(t) exp(—nfaryt) + % exp(~nBryt)
o C(t):

6] (£)b; (1)1, e (D)e; ()], [b] ()b(1)] < 6(¢) < 3v/dp log(4d(2d + 1)/6) =: dimax

Here, i,j € [1,d],i # j. The initial conditions .A(0), 5(0), and C(0) are established with high
probability by concentration inequalities (lemma [A.I). We also provide the following claims to
establish A(t), B(t), and C(t) for t > 0:

Claim B.1 A(0),...,A(T),B(0),...,B(T),C(0),...,C(T) = A(T +1)
Claim B.2 A(0),..., A(T),B(0),...,B(T),C(0),...,C(T) = B(T +1)
Claim B.3 A(0),..., A(T),B(0),...,B(T),C(0),...,C(T) = C(T+1)
Remark. Property .A(t) establishes the stability of quadratic norms:

min {b;(¢) " b;(t), e;(t) " e;(t), b(t) Tb(t)} > dp/2.
This norm lower bound induces two critical effects:

1. Convergence Rate: As we can see in property B(t), The upper bound of ¢, (t)b;(t),
¢; (t)b;j(t) and ¢/ (t)b(t) is related to v (lower bound of the squared norms), thus the
stability of quadratic norms ensure a stable rapid convergence rate for property B(t).

2. Saddle Point Avoidance: The strict positivity (> 0) of |b;|? and |c;|? prevents the dynamics

collapse to undesirable solutions b; = ¢; = 0, which would permanently make ¢, b; = 0
(saddle points).

Property B(t) establishes a rapid exponential convergence rate:

C'B— @I, C'b—>0

f1

The rapid convergence rate ensures that the variations of Squared norms (in property A(t)) and Cross-
interactions (in property C(t)) remain bounded, thereby establishing their constraints. For example,
at initialization, b, (0)b;(0) is bounded by 3d;, /4 < b (0)b;(0) < 5d}, /4. Further, thanks to the
exponential convergence rate in property B(t), we can prove that |b; (¢)b;(t) — b (0)b;(0)| < dy, /4,
and therefore dj, /2 < b/ (t)b;(t), ¢/ (t)ci(t),bT (t)b(t) < 3dp,/2 < 2d),.

Property C(t) establishes the upper bound for the Cross-interactions. As we discuss in section
if the Squared norms ( ¢ (t)b;(t), ¢f (¢)b;(t) and ¢ (t)b(t) ) are larger enough than the Cross-

interactions (b (t)b;(t),c; (t)c;(t), and b (t)b(t) ), we can make use of the negative feedback

it

ferm to establish an exponential convergence rate. Thus property C(t) is also important.

The proof of claim [B.T] claim [B.2] and claim [B.3]are in section [C.4] section [C.3] and section [C.6|
respectively.
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Proof of Theorem After convergence (¢t — 0), we will have CT B = %I ,C"b = 0 (by
property B(t)), and bp(t) = be(t) = 0 (by lemmalA.5).
We will restate some equality for ease of reference.

Linear Recurrence (restatement of (Eq. (I8)))
R — ah() 4 (1 — @)y B, (24)

Prediction Output (restatement of (Eq. (22))))
=(1-a)(Cxy+bc)" Za yn—i(BTn_; +yn—ib+bp) (25)
Loss (restatement of (Eq. (23)))

N-1
£(6) = ;E[((l—a) (Czy+b0)" S atlyn_(Bay_; +yn—ib+bp) - meq)z] (26)
=0

Based on (Eq. (24)), we have

(W) g (DR = a(Wd) .y ORI + (1 — a)y (W) 1.4 () By
= a(W) ) R + (1 — )y CT (1)(B(t)z + yib(t) + bs(t))

= a(W)na R + (1 — )y CT (1) B(t)a + (1 — a)y?C T (1)b(1) on
— a(W)pa g (0RT + (1 - >—ym
1

2( + a)(1—a)
aB3l-a)d+4-2a

= a(Wg)[lzd, ( )h(dﬂ) + )ylel

where the second equality is by selection rule B; = Wge; + bg (Eq. (@), and Wi = [Bb),
e; = (z],y)". The third equality is by b (¢) = 0. The fourth equality is by CT B = ﬁsI and

C b = 0. (Eq. (27)) establish the first equation (Thm.(a)) of the Theorem.
Based on (Eq. (23)), we have

N—-1
=(1-a)(Cxg+bc)" > o' yy_i(Bxy_;+yn—ib+bp)
=0

N-1
=z,C" Z(l — o) Myn_i(Bxy—_; + yn—ib)
i=0
N-1 N-—1
2] Y (1-a)a™tyy i C Bay_;+x] > (1-a)™y3 ,CTb  (@28)
=0 i=0
N-1

iv1 53
=z, Z (1-a)a +1EyN7in7i
i=0

20 (14 a)(1 — )
(31— a)d+4 - 2a)

YN—iLN—i

where the second equality is by bg(t) = bo(t) = 0. The fourth equality is by CT B = %I and
C b = 0. (Eq. (28)) establish the second equation (Thm (b)) of the Theorem.
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Based on (Eq. (23))), we have

N-1
L) = ;E[((l—a) (Cay+b0)" > o™y (Boy i+ yn_ib+bp) - wqu)Q}
=0

1 B3 T i+1 2}
=5 E[(Bl x, 2 (1-a)a yN_Za:Nﬂ)
- (29)
'Y
8 N—1 A
—E {—333; (1- a)a”lyN_l-a:N_i . wTa:q}
ot
&

= d (by lemmalA.2)

We compute terms # and & as follows:

o-5[(2 ng ot yx i) |

52 N-1 N-1 .
= B%E[qu( (1— )’ yn N ) Z (1 - ) M yn_jn_;) mq}
1 i=0 i=
1—a)?p? Nopmere
- Q=ofh 62) *Eq, [%T TN W {Z Z al+j+2yN—in—ij—im—1\r/_j:|mq}
1 i=0 j=0

1-a)282 sa2(1—a")?  (d+1)a2(1—a?V)

52 - a2 T Ta-was ) JE|, I,
_ 483
A

For the fourth equality, Eg ., , 2, ]w[z ZN 1 2+g+2yN7in7j:ltN,ia3—1\r/v j} =

2
(az((ll:s;) + (dﬁla:)((lljrf)lvw - I by lemma The last equality is by 8; =
(a2(1 —aM)? 4 (d“)“z“‘a)(l—a“’))

(14a)

N-1
[ijq (1—a)a'yy oy - “’T%}
1 i=0
_ (1—a)Bs

N-1
5 Eg, {quEmN_i,w[ Z oz”lyN_ia:N_i'wT} :cq]
1

=0
- (el 1
ds3
"B
For the third equality, By .| 315" a**lyn sy —w'| = o
last equality is by 83 = a(l — aN).

11:0‘; )I by lemma The
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Substituting & and & into (Eq. (Z9)) and get:

_dpy dpy 1
E(G)—Q—Bl—ﬁ—ki

_d B3

_2( _E)

_d(d+1)a*(1 - a)(1 —a?N)

- a? (1—a2N)

fd(d+1)(lfa)~a~m

<d(d+1)_4.§

- N 8

~ 3d(d+1)

2N

Recall 8, = (a2(1 _aN)Q " (d+1)a2(17a)(17a2N) )’

TFa) (1—a®) and a = exp((—In2)/N).

3 «
In2 <

For the inequality, 1 — a = 1 — exp((—In2)/N) < 2 < L, 6(1 > a?(1— aN)2 = 1a?,
N _ 1_3 d(d+1) o2 1-a?" 3 3
1—042 = 1—1 = Z,thus d(d+1)(1-0{) < - N Br _4, 2(1+a) < 8(1+a) < g(Eq

(30)) establish the third equation (Thm[4.1](c)) of the Theorem.

C Complete Proof

This section presents the complete proof for the above results. To begin with, we provide the exact
assumptions for N, 1 and d}, as part of Assumption

Assumption
2In2  3(d+1)In2
= >
N Q(d)7max{lnﬁ—ln57 2 }
1 In2
=0(d %< —— < ——
1= O S 52, = By
dh == ﬁ(dQ) Z max{)\h ey All}
where

A = (1728log(4d(2d + 1)/8) + 576(d — 1)1 log(4d(2d + 1)/5)) /B
A2 = (576log(4d(2d + 1)/8) + 192log(4d(2d + 1)/3)) /B
A3 = (1728log(4d(2d + 1)/8) + (576d + 1872)B; log(4d(2d + 1)/6)) / B1
Ay = 5761log(4d(2d + 1)/0)/B1 + 192(d — 1) log(4d(2d + 1) /5)
+ 384log(4d(2d + 1)/6) /61 + 38401n 2log(4d(2d + 1) /)
A5 = 2448d log(4d(2d 4 1)/0)
¢ = 816dlog(4d(2d + 1)/8) + 7681n 2d* log(4d(2d + 1)/8) + 481log(4d(2d + 1)/8) /1

1 2
AT = (\/1og(4d(2d 75 24y/log(4d(2d +1)/0) (8B1(d — 1) + 10+ 661 + 1201/d) )
s = 36log(4d(2d + 1)/5)(% 8- 2464 %2)2

o = 36 log(4d(2d + 1)/9) (4(d —1) + 56d1n 2)2

Ao = 36log(4d(2d + 1)/8) (6 F4B(d—1) +2(d — 1))2
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36 32d 885 8 4
TEIP log(4d(2d + 1) /5) (ﬁ bR o o

Note that under the assumption of N > max{y
exp((—1In2)/N), we have the following:

2
Ay = +80In 2)

21n2 3(d+1)In2
2

o } and combining @ =

5 9 5 3

- < 45, < — < < -

6_aa 61_527 24_B1_45
These condition will be use to prove some bounds.
C.1 Proof of Lemmal[A.2]

Lemma C.1 (restatement of lemmal[A.2)) If vectors x and w are iid generated from N'(0, 1), y =

x " w we have the following expectations:

]E[a::vawTa:wT} =(d+2)I,
E[ﬂ —d,

E [yﬂ = 3d(d +2).

Proof. For (i, j)-th element of E [wawawa] , we have:

d d
E {mewawa} - =K {w[i] Z (w[k]w[k]) Z (w[l]ac[l])a:[j]}
’ k=1

o= =1
d d
=> > E [w[i]w[k]w[llwm} - [wmw[ﬂ
According to the distribution of w, we have E [w[k]wm} = 0y, where dy; is the Kronecker delta

defined as:
5o (1 ifk=1,
M0 ifk £1,
By Isserlis Theorem, we have:
E[w[i]ﬂc[k]ﬂfu]xm]
=E {m[ilm[kﬂE[mm%‘l} + E[m[i]w[l]}E[m[k]‘”[a‘]} +E {m[ﬂm[a‘]}E[m[k]m[l]}
= 01015 + 010k; + 055011
Then we have:

E

—

:chwa:ch} N
[4,5]

[
M=
M~

E [m[i]m[k]m[l]x[j]} E [w[’“]wm}

>
&l

I
M=~

,_.
Il
-

(66015 + 6i10kj + 8550kt O

b

a |
=
Il
—

(]

(20:10k; + 6:50kk)

=

I
—_
Ul
+
[\
~—
(=]
N
<
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Then we have:

E {.’BCCT'U}’U}T:BSCT =(d+2)I

—

d d
—E| Y (@) Y (@gwy)]
i=1 j=1
d d
= ; Z}E[wmw[ ]}E{w[z]wm}
W
- Z Z 5%
i=1 j=1
—d
E {yﬂ = E[mT'w ' w-ox w- mTw}
d d d d
=E[ Y (@pw) Y (@gwp) Y (@wwm) Y (@gwy)]
i=1 j=1 k=1 =1

[
M=~
M= L

d
Z]E {:E[Z]:”[J]"‘c }} {w[i}w[j]w[k]w[l]}

@
I
I
.
i
I
Eal
Q| Q
—
=
M& I
I

(6015 + 0iudrj + 5ij5kl)2
1

>
Il
—

l

.
Il

M=
M-

Il
—

1y

( + 3+ Y + Y )-(5ik61j+6ﬂakj+6ij6kl)2

i=j=k=l i=j#k=l i=k#j=l i=k#j=l
N——
=d =3.d(d—1)
=d-3*+3-dd—1)-1?
= 3d(d +2)

C.2 Proof of Lemmal[A.J|

Lemma C.2 (restatement of lemmal[A3) If vectors x; and w are iid generated from N (0, 1),

y = x] w we have the following expectations:

N—-1N-1 ’
i+ _e?(1=aM)’  (d+1)a?(1-a?N)
{ o't +2yN7infij*iw—1\r7*J} - ( 1-—a? ' (I-a)i+a) ) o

2

=0 g

<
I
o

N— —1
{ al+]+2

=0 g

Z

nyiyJQ\[fijfz} =0,

<
I
o

N-1N-1 Ty d2a2<1—aN>2 (2d2+6d)a2<1—a2N)
| TR ] = (=P " (-aita

i=0 j=0

.

N-1
1—a¥

IE{ o/“yN,i:cN,in} = a( ) -,
= l—«

33



N—

,_.

=0
N-1N-1
[ a”+]+2wN,¢m;7iwwE7jw} =0,
=0 5=0
N-1N-1
2
|: O‘l+7+ yN YN — ]:| = 07
i=0 j=0
—1N-1 ) daz(l—(xQN)
E[Z > iy =
== (1-a)(l+a)
N-1
E[ a”lyN_iw] =0.
i=0
Proof.
N-1N-1
i+j+2 T
E[ Z ot yN—in—ij—imN_j:|
=0 ]:0
~1N-1
i+j+2 T T T
= [ Za’+]+ TN TN_WW TN_; wN,J}
=0 j— —— ——
YN—i YN—j
= ZaiHHE{mN_im;_i] E{wwq E[ch_jzc;_J}
i#] —
=1 =1 =1

i+i+2 T T T
—&—E ot E[a:N_in_iww :cN_ij_j}

= (d+2) I, by lemma
N-1 N-1

(o) - (Z )

i=0 =0

+(Za2i+2)(d+2)1

1=

0
a2(1—a™)?  (d+1)a2(1 - a2V)
( 1-a? "ot )1

1=

o . 2 .
Here, 37, a' %2 = (ZNBl oﬂ“) - (Ef\;l a2z+2) for the third equality.

N-1N-1
i+j+2 2
]E{ o™ nyinfijfz}
i=0 j=0
N-1N-1
- IE[ ot Prn il way w a:;'\—,fj'w}
=0 =0 ——— — — ——
YN—i YN—j YN-—j

Notice that w appears three (odd) times in the second equality, if we define a function g(w) =

TN TN WEY wEy w, we can see that g(—w) = —g(w), and further E,, {g(w)} = 0.

Therefore, the above expectation equals to 0. We will use the similar property in some of the
following equations.
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N—-1N-1

B[ Y a2 ]

i=0 j=0
= Zai+j+2]E [yQ }E[yN J} =+ ZCVH_H_QE [y 71}
Héijl - o » =Jj . B
= att — a2t o2t
((i—o ) (i_o ))& (Z ) -3d(d +2)
_ d2a2(1—aN> . (2d2+6d)a2<1—a21\/)
(1—a)? =it

where the second equality is by E [y]z\,ﬂ} =E [3/12\/73} =dand E {yjl\,ﬂ} = 3d(d + 2) (lemma .
E{ aiHyN—iIEN—in}

= E aME [mN_,; TN w wT]
i=0 —

YN —i

= § o't E[waifB]—\rzﬂ} E[ww—r}
=0 N — ——
=1 =1

=0
N-1

<.

=0

=0
Notice that w appears three (odd) times in the second equality, thus this expectation equals to 0.

N—-1N-—
z+'+2 T T
[E g J wN_iar:N_iwacN_jw}
=0 =0

:Z ZMHE[S”N%"EE#waV%w}

i=j

+ Z QIR [mN,ia:Eﬂ} E [ww;ﬂ»'w}
i#]
=0+4+0=0

Notice that & _; appears three (odd) times in E {:c N_im}_iwmﬁ_iw} and z , appears once

(odd) in E {ww;_ jw} , thus this expectation equals to O.
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z
L
=z
L

@
Il
<
<.
I
<

i
=

itj+2 T T T
«@ ]E{acNﬂ-wwNﬂ-w:vajw

@
I
<
.
I
=

YN —i YN —i YN—j

I
o

Notice that w appears three (odd) times in the second equality, thus this expectation equals to 0.

N-1N-1
]E[ al+]+2yN7in7j:|
i=0 j=0
= o' TR [nyin—]} + Z o' TITR |:y12\[71}
i#] i=j
N—-1
= azﬂﬁE[m}_iw m}_jw} + z O‘QZH]E{Q?V_J
its ——— —— iz
YN —i YN —j
do? (1 - a2N)
T l-a)(l+ta)

Notice that w;_i appears once (odd) in E[m},_iwa}?\,_jw} where i # j, thus

D s o tIT2E {yN_ZvyN_j} = 0. Moreover, E[y?V_L] =dby lemma

C.3 Proof of Lemmal[A.4

Lemma C.3 (restatement of lemma[A.d) The gradient of trainable parameters 6 — =
{B,C,b,bg,bc} with respect to loss (Eq. 23)) are as follows:

Vi, L£(0) =0,
Vb L(0) =0,
VB»C(G) — (a2(1 _ aN)Z + (d+ 1)0[2(1 — O[)(l - QQN)) CCTB B a(l B a]\/‘) C’
(1 + o —_———
=B, =3
o (22 +6d)a?(1—a)(1 —a?N
VoL (0) = (42a2(1—o/v) 4 2 +6d) (1(+a))< ))CCTb,

=p2
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VeL(8) = <a2(1 _ aN)2 i (d+ 1)042(1112)(1 _ a2N)) BETC
=p1
202 2 (2d% +6d)a*(1 —a)(1 - a®N)
+(do‘ (1=a™)"+ (1+a) )bch
=P
—a(l- aN) B
=3

Proof of lemma|[C.3] Recalling the loss:
L(0) = 1IE (1—a)(Cxy,+bo)" Z o Myn i(Bxy_i +yn_ib+bp) —w'x, ’
2

We will compute the gradient of { B, C, b, b B, bc} with respect to £(0). Some expectation calcula-
tion are detailed in Section[C3.1]

N-1
Voo £(6) =E[(1 - a)((1 = a)(Cy +bo)" Y a™lyy i(Bay i +yn—ib+bp) —w ' z,)
=0

=v

N-1
: Z " yy_i(Ben—i +yn—ib+ bB)}

=0

=v

=(1- a)QIE {'va(Cqu + bc)} —(1-a)E [”wT‘Eq]

=(1- a)2]E{vaC}E[:Bq] + (1 - a)’E [vv—r} be—(1- a)E{va}E{wq}

It is clear that E[wq} = 0. Thus, if bc = 0, then Vy,, £(0) = 0. Notice that we assume b (0) = 0

at initialization, so by induction, bc(t) = 0 and Vy, L£(6(t)) = 0 for ¢ > 0. We will consider
b = 0 when computing other gradients.

N—-1
VbBE(O) :E[(l —a)((l —Oé) Cﬁcq—FbC T Z at yN l B:I:N i T YN— lb—|—b3) wT:cq>
=0

N-1
(Cxg+bo) - Z o nyi]
i=0

N-1
:E[(l—a)((l—a (Cxy) TZa _i(Bexy_; +yn—_ib+bp)— wqu>

N—1
:(1—a [TC’T( ol yNZB:BNZ—&—yN Zb—l—bB)-C:cq,-z:oziJrl
=0 L
N—-1
—(1— a)E[wTscq -Czx, - Z oz”lyN_,}
i=0
do®(1 — a) (1 - a2N>

— CcC'b
1+ a) B
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The last equality follows from lemmawhere we have: E {w;CT ( ZZ Laitlyy i(Boy_; +

do? | 1—a2N

yN_ib + bB)) . Cﬁcq . 27{\;61 Oéi+1yN_i:| = WCCTbB, and E[meq . Cﬁcq .
va 01 « HyN_qv} = 0. Similar to bc, notice that b is initialized as 0, thus by induction, b (t) = 0
and Vp, £(0(t)) = 0 for t > 0. We will consider by = be = 0 when computing other gradients.

N—-1
VoL(8) =E[(1-a)((1-a)(Cay+b0)T > a™yyi(Bay i +yv-ib+bp) —w'a,)
=0

N-1
" yn_i(Bxy_; +yn_ib+bp)z }
=0
N-1
=(1-a)? [ TCT( aMyn_i(Bxy_i+yn— zb))
=0

( Nil ayn_i(Bzn_i + yN—ib)) mﬂ

=0

—(1-a)E [w g Za yNZBwNz—i—yN b)x T}

2 d aZ(1—a)(1 = a2V

_ (az(l—aN) +( +1) ((1+a))( )>BBTC
=p1
2 201 — a)(1 — a2N

n <d2a2(1—aN)2+ (2d +6d)04(1(1+a))(1 )>bbTC

=P
—a(l—aN)B
=03

The last equality follows from lemma[C.4] where we have:

{ TCT(ZO& YN—i(BEN_; +YN—i ) (Za yn—i(Ben_;+ yn— 1b))wq

q

_ (a (1—aN)2 (d+1)a?(1 —a®N)
- (1 - a)? 1-a)(1+a)
2
2a2(1 - oy 2 21— a2V
N (1 ) +(2d + 60) (1 )
(1-a)? (1-a)(l+«)

)BBTC

)bbTC

andE[w T Yirg' aHlZUN—z‘(B-’ﬂN—H—yN—ib)OSH =a(717’1N)B

N—-1
VBL(0) =E[(1-a)((1 - a)(Cay +b0)T > a™yyi(Bay i +yv-ib+bp) —w'a,)
1=0

N-1
- (Cxq+bo) Za YN 2}
=0
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N-1 N-1
=(1-a)’E [ar:qTC’T Z o yn_i(Bxy_; +yn_ib) - Cx, Z o lyn

i=0 i=0
N-1
—(1- a)E[wT:cq -Cux, Z ai+1yN,in7i}
i=0
(s a2 (d+1)a?(1—a)(1—a?) T
—(a (l—a ) + (+a) )CCB
=01
— a(l — aN) C
B
:=PB3

The last equality follows from lemma[C.4] where we have:

N-1 N—-1
E[2,CT Y o' lyy i(Bay-i+yn-ib) - Cay Y o' lyy il
=0 =0

_ (a2(1—aN)2 (d+1)a?(1 —a®N)

TE T Jec's

and E[wTasq Cxy YN oty x| = a( 1’QN>C.

l—o

=

VuL(0) = ]E[(l —a) ((1 —a)(Cxy+bc)" S ot lyn_i(Bxy_i +yn_ib+bp) — meq)

i

Il
o

N-1
(Czy+bo) - Za’“ 3 }
i=0

N-1

= E[(l — a)((l —a)(Cz,)" Z o Tryn_i(Bxy_; +yn_ib) —'wTacq>
=0
N-1
Cz, - Z aitly? _Z}
i=0

:(l—a [( TCTZQ yn—i(Bxn_i +yn—ib )-Cwq-]ilai+ly%i}

N-1

- (1- a)E{wT:cq -Cx, - Z a”ly?\,_i}
i=0
2 201 _ _ 2N
_ (d2a2(1 B aN)g N (2d® + 6d)a?(1 — ) (1 — « )) cCTh
1+ )
=0

The last equality follows from lemma|C.4] where we have:

N-1
|:( TCTZOZ YN — z BwN z+yN i )Cwq Zai-i_ly?\lfi}

d*a? (1 - aN)2 (2d? + 6d)a> (1 - a2N)
= ( i-a? 7 (-a(+o

)CCTb
and E[“’qu Cy - ZfV:Bl O‘iﬂy?\/—i} =0.
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C.3.1 Auxiliary Lemma for Lemma[A.4]

Lemma C.4 If vectors z;, x, and w are iid generated from N(0,1,), y = =,

following expectations:

w we have the

N-1
E{fBZCT( Z aMyn_i(Ben_i +yn—i ) (Z atMyn_i(Ben_; + yn— zb))wﬂ
i=0

B (042(1—0/\’)2 (d+1)a?(1—a?Y)
N (1—-a)? (1-a)(1+a)
(242 + 6d)a? (1 - a2N)
(1-a)? (1-a)(1+«)

)BBTC

)bbTC

1—aV
{w g Za yn—i(Bxn_i +yn-ib)z T}:a( 170[)3

N-1 N-1
]E{a::;CT Z OziHyN—i(BCCN—z' +yn_ib) - Cz, Z OéiHyN—im;—z}
i=0 i=0
a2(1—aN)2 (d+1)a?(1 —a?N) T
= ( i-a2 " -aita Jec's
" Ni +1 T (1 - aN)
Elw z,-Czx YNy | = @ C
q q — 1—a

N-1
K iell Z alyy i((Ben i +yn— ) Cag - Z O‘H_ly]Qsz}

d?a? (1 - aN>2 (2d? + 6d)a? (1 - ozzN)

= i-a? ' (-ai+ta JecTs
N-1
E{meq Cxy- Y a”lyfv_i} =0
=0

N-1
[ TCT(ZQ yn—i(Bxn—i +yn—ib+bp) ) Cayg - Zai+1yN7i:|

do?(1—o®N
= MCCT@

N-1
E{wTa}q -Cxy - Z oz”lyzv_y‘} =0

=0

Proof of lemma|[C.4] We will use the results of lemma[A.3]to prove the above equation.
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N-1

[ TCT( o Myn_i(Ben_i +yn— zb)>
i=0

L)
1

|

K2

o yn_i(Bxy_i+ yn- %b)> H

=0
N—
= E[ a”'lyN,i(Bwai +yN7’Lb)
=0
N-1

(:chTCT Z o yn_i(Bzn_; + yN—ib))T :cﬂ

=0

[u

L)

=2

—1N-1

— E[ ai“*z((Bnyin—i +yzz\77ib)
i=0

(iv—szl BT + i b7)) | CE[,2]
N

i

I
o
<

I1N-1

_ BE[ Z Z ai“”yN,infijfifBij}BTC

2

i=0 j=0
N-1N-1
+ BE{ Z Z al+]+2nyiy]2V7ijfz} b'C
i=0 j=0
N-1N-1
+ bE[ ozZ+J+2yN_jy12V_ia:N_j} B'C
i=0 j=0
N-1N-1
-HE[ a2+7+2y]2\,_iy12\,_j} bb'C
i=0 j=0
2 1— N2 d 1 2 1— 2N
:(Oé( Oé) (+)a( @ ))BBTC
(1-a)? (1-a)(l+«)
d*a? (1 - aN) (2d? + 6d)a* (1 - CUQN) .
bb' C
+( I-a? | (-al+a )
The last equality follows from lemma A3] where we have:
N— 1 i a?(1-a™)? (d+1)a?(1-a?N
[Z P ﬂ”yN—in—WN—in—j} - ( ((1 ay? Ly = oz)((l—i-oz) ))I’

[Z Do z+g+2yN7iy]2V_ij7i] — 0 and ]E{Z P ettty _1y12v—j] =

d%ﬁ( aN) (2d2+6d>a2(17a”)
Gy A i ¢ oy | g By

®
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N-1

Za yN_imN_in}E{mqqu]
_1 .

+bE{ a My -wT}E[:vqa:H

= BE

<.

2

—1

[=)

=

1— N

11—«
The last equality follows from lemma where we have: E{Zf\; —01 ai+1yN_imN_in} _
a<1f—a;)I’E[Zﬁ61 Oéiﬂy?v_,-w} =0, and]E[a:qa;H =T

N-1 N—-1

]E{a:qTCT Z o lyy_i(Bxy_; +yn—ib) -Cz, Z oz”lyN_imL_i]
i=0 i=0
L)
N-1 N-1
= E[Cwq (-’EqTCT Z aMyn_i(Ben_i +yn—i ) o lyn_ie Z}
=0 1=0
P’
N—1N-1
=CE [a:qccﬂ CTBIE[ oz’ﬂHyN—in_ij_iw;_j}
=0 7=0
a?(1-aM)? +1Da2(1 - a2V
(1—-a)? (1—a)(1+a)
The last equality follows from lemma where we have:
N— 1 i+ T a? (l—aN) (d+1)a? (1—a2N)
[Z Z J nyinijBNfin_j} = ( (=) + =a)(1Ta) )I, and
E [wqmﬂ =1.
N-1
E[wT:cq Cz, Z a”lyN,iw}\—,fi}
S—— i—0
a
-
[:cqacqw Z o ryn e Z}
L)
N—1
=CE [wqac;r E[ a’+1yN,iwac;7i}
i=0
1— N
= a( a )C
-«

The last equality follows from lemma where we have: E[va:gl a”lyN,in,in} =
o )I, and E [wqmﬂ —I

1—
ok

N-1
|:( TCTZOZ YN — 1 BwN it YN—i )Ca:q Zai+1y12V7i:|

®
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N-1 N_1
= E[Cmq (-'B:]FCT Z aiJrlyN_l‘(BiI}N_i +Yn_i; ) az+1 2 i|
1=0

1=0

L)
—1N-1
=CE [azqwﬂ CTB]E[ Z a’+3+2yN,iy]2\,7j:cN,i}
=0 5=0

N—-1N

+ CE [wqwﬂ CTb]E[ Z al”” 2 ]

,_.

YN 7zyN J
i=0 j=

2

d*a? (1 - aN) (2d? + 6d)a> (1 - onN)
= ( + JecTo

1—ap T-a)i+a)

equality ~ follows  from  lemma @ where  we

[Z ZN 1 Z+]+2yN—iy12v,ij—i] S ]E[Z ZN Loitit2g2 g2 J}
2
d?a? (1—aN> (2d*4-6d)a? (1—a2N T

(o e ) mdElme] | =1

The last

have:

N—1
]E{w z,-Cxy - Z oty Z}
S—— i—0
L)
N-1
= E{Cxq :L';—w Z o ty3 72]
Py
N-1
~CE {mq ]]E[ ity _,w}
=0
=0
The last equality follows from lemma | where we have E [ ZN 01 i+1y?\,_iw} =0.
N-1
E[m;CT< a yN 1, BmN it YN- zb+ bB ) 'Cmq : Z O‘l+1yN—i:|
=0
L)
N-1 N-1
- E{C:L'q . mJCT( o lyn_i(Bey_i + yn_ib+ bB)) Z a]+1yN7j:|
i=0 §=0
P’
N-1N 1
=CE [mqmﬂ CTB]E[ OZZ+]+2yN—in—jZCN—i:|
=0
N—1N-1
+ CE [:Eqwﬂ CTbE[ QI N J}
i=0 j=0
1IN-1
+ CE [a:qwﬂ CTbBE{ a’+3+2yN,in,j}
i=0 j=0
da? (1 — a2N) .
= ———-=CC'b
1-a)1+a) o
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The last equality  follows  from  lemma @ where ~ we  have:
N
[Zz 0 Z ey ay_ wey ;W } =0, ]E[Zz 0 Z] 0 al+]+292 Yn—j| =0,
YN —i YN —j

do? | 1—a2N

Nt
[Z Z +]+2yN—in—]} = (i—ayaral - and E[wqazﬂ =1

N-1

]E{'w—ra:q Cz,- Z ai+1yN—z}
SN—— i—0

The last equality follows from lemma where we have E [ ZNB a”lyNﬂ-w} =0.

C.4 Proof of claim[B.1l

This Section presents the bounds for terms b, (7' + 1)b;(T + 1), ¢] (Tt + 1)c;(T + 1) and b" (T +
1)b(T + 1), establishing the property A(T + 1).

Recurring the Vector-coupled Dynamics equations of b/ (t + 1)b;(t + 1), ¢/ (t + 1)¢;(t + 1) and
b"(t+1)b(t + 1) in lemmal|A.7, we have:

b (T + 1)bi(T + 1) = b] (T)bi(T) + 20( (85 — Bre] (T)bi(T)) e (T)bi(T)

7

a3 (b)) |
ki
+i( n((8s = Brel ()bi(s))e] ()bis) —Bli@%)bz‘(s)f)
s=0 ki

‘ 8>\L)

T d T
= b/ (0)b;(0) + 20> (B3 — Brc (s)bi(s)) e/ (s)bi(s) =201 > > (ef (s)bi(s

s=0 k#i s=0

term I term II

+7

\—,_./
term III

el (T +1)ei(T +1) = & (T)ei(T) + 2n( (85 — Bre] (T)bi(T)) ] (T)b(T)

K2

4 2
= B (e (BT = B (e (BT ) + 2 ()
ki
T d
- )+ (20((8 = Brel ()b(s) ] ()bils) — r D (e] (5)bu(s))?
5=0 ki
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a],)
T d T
= ¢l (0)ei(0) +21)  (Bs = Bre] ()bils))el ()bi(s) —2nB1 ) Y (e

~ Ba(e] ()b(s)") +

s=0 k#i s=0
term [ =term I
T ) T
— 28 Y (] (3)b(s) 402 Y o)
s=0 s=0
term IV term V

bT (T +1)b(T +1) = b (T)b(T) — 29 (5, zd: (el (T)B(T))*) + rIQHI_)(T)Hz
k=1

d T T
— b7 (0)5(0) + 2082 33 (ef ()b(s))* +0° S HB(S)

k=1 s=0 s=0

2

2

=term IV term VI

To bound terms I - VI, we will use some inequalities from property B(t) and lemmaas following
with i, 5,k € [1,d],i # j:
|85 — Bref (s)bi(s)| < 8(t) exp(—nBiyt)
el (£)b;(1)] < 28(t) exp(—nBi1)

el (0b(8)] < 28(t) exp(—nfaryt) + % exp(—nfirt)

Bi(t) "B ()| < 8dhd6(1)? exp(—nfint),

Ei(t)TEk(t)’ < 8dp,d*8(t)” exp(—nfivyt) +4083dnd(t)* exp(—nBart),
_ 2

[B0)[, < 16d83026(0)? exp(—nBt) + 2dnd6(t)? exp(—nBiD),

Next we begin bounding terms I - V1.

< 4(s) exp(—nB17s), we have:

(s) exp(=nB1vs) + B3

Bound of term I: By ’53 — Bic] (s)bi(s)

’ fr
46(s) + 2
o2
50(s)
2
< 66(s)

The third inequality is by 6(s) > 21/dp log(4d(2d + 1)/8) > 2a = 2a = 2exp((—In2)/N). For

the last inequality, as long as N > 22 we have 5 < 6.
T
\Z — el (5)bi(s))e] (5)bi(s)
s=0

< 65( )? exp(—np17s)
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< 65r2nax / eXP(_TIﬂl’YS)dS
—1

< 6612nax eXp(nﬁl ’7)
- np1y

The second inequality is due to exp(—n/31ys) is monotone decreasing.

Bound of term II:

T
Z s) exp(—117s))”

o0
< 45r2nax/ exp(—2nB1ys)ds
-1

262, exp(2n517)
np1y

The second inequality is due to exp(—2n/31ys) is monotone decreasing.

IN

Bound of term III:

0
T
<) 8dnd®s(t)* exp(—nBit)

< 8dpd* 02 o / exp(—np1vs)ds
-1

_ 8dyd?62,,. . exp(nf17y)
- nB1y

The second inequality is due to exp(—nS;7ys) is monotone decreasing.

Bound of term IV:
T

L (5)b(s))”

w

(e
0
d 6(s) :
= 3 (26(s) exp(—nBys) + % exp(—nBras))
s=0

< Opax ( Zexp —2Ba7s) + — ZeXp 1(Br+ B2)vs) + 52 Zexp 2776178))

-1
+ /8% /_ 1 eXp(—2775178)d8)

— 261211ax exp(QTIBQV) + 46r2nax eXP(n(Bl + 62)’7/) max eXp(Qnﬁer)
npB2y nB2(B1 + B2)y 2016837
< 1700

nBay

< 5r2nax . (4/ exp(—2nBavys)ds + —/ exp(—n(B1 + B2)ys)ds
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The second inequality is due to exp(—2n827s), exp(—n(B1 + B2)7vs) and exp(—2nF;1ys) are

monotone decreasing. The last inequality is by % < 2 and %ﬁﬁmﬂ < 7 since

exp(2nB1y) < exp(n(Br + B2)y) < 2and By + B2 > 1, B1f2 > 1.

Bound of term V:

T ~ 2
el
T
(8dhd25 (t)? exp(—nBivt) + 4085d),6(t)> eXP(—Uﬂﬂt)>
s=0
8dnd* 07 / exp(—nB1ys)ds + 4085dp07%, / exp(—nfays)ds
-1 -1
8dhd §r2nax exp(nﬁll\/) + 4052dh5r2nax eXP(n527)
nB1y ny
< 16dn @050 xp(nf1y) | 8082dndia exp(nB27)
nB1y ny

The second inequality is due to exp(—n327s) and exp(—nS;17ys) are monotone decreasing.

Bound of term VI:
T o 2
> [
T
Z (16dhﬁ2d 8(t)% exp(—nf2t) +2dhd25(t)2€xp(—nﬂwt))

< 16dp85d% 07 / exp(—nB2ys)ds + 2dpd> 630y / exp(—npPr1ys)ds
-1 —1

16d, B2d?62,,. exp(nS2) N 2dy,d? 02, exp(nf17)
Yy nB1y

The second inequality is due to exp(—n327s) and exp(—nS17ys) are monotone decreasing.

We next use the bounds of I - VI to bound b, (T'+ 1)b;(T + 1), ¢] (T + 1)e;(T + 1) and b' (T +
1)b(T + 1).

Lower bound of b, (T + 1)b;(T + 1)
b/ (T +1)by(T +1)

T d T
= b/ (0)b;(0)+2n > (B3 — frc] (s)bi(s))e] ()bi(s) =201 > > (ef (s)bi(s
T 5=0 ki s=0
=71 term 1 term 11
_ 2
D
s=0
>0
3d 602 _ex 262 exp(2
> O0h _ 2,'7 . max P(Uﬁﬂ) _ Qnﬁl(d _ 1) . max p( 77517)
4 nB1y nB1y
S 3dn 1200, exp(nf1y) _ A(d — )35 exp(2017)
4 By vy
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< 3dp, 212 9dy log(4d(2d +1)/6) 2% 4(d — 1) x 9dj, log(4d(2d + 1)/9)

=74 By Ldy, Ldy

> &

-2
The third inequality is by dpax = 31/dj log(4d(2d + 1)/6), exp(nB17y) < exp(2nB17y) < 2 and
v = 3dy. The last inequality follows from d;, = Q(d?) > (1728log(4d(2d + 1)/8) + 576(d —

1)1 log(4d(2d +1)/5)) / 1.

Upper bound of b (T + 1)b;(T + 1)
b (T 4+ 1)by(T + 1)

T d T
= b/ (0)b;(0) =20 > (83 — Brc/ (s)bi(s))e] (s)bi(s) —2nB1 > > (ef ()bi(s) ’

s=0 ki s=0

term I term 1I

+1 H
term III

< By 607 xXP(1517) 7. 8dpd* 5 x exp(1517)

4 np1y np1y
< Bdn | 1203, exp(nf1y) | Bndnd?03,.. exp(nB1y)
<2k +

4 By By

5dp, 2% 12 % 9dy, log(4d(2d +1)/8) 2 8ndpd? x 9dy, log(4d(2d + 1)/6)

<Xk - + -

4 B1ydn Bizdn
< 2dy

The third inequality is by Smax = 31/dj, log(4d(2d + 1) /5), exp(nB1y) < 2 and v = 1d),. The last
inequality follows from

dp = Q(d?)
> (5761og(4d(2d + 1)/6) + 192log(4d(2d + 1)/6)) /1
> (576log(4d(2d + 1) /6) + 384ndyd* log(4d(2d + 1) /5)) / By

Lower bound of ¢ (T + 1)c;(T + 1)
¢ (T +1)e(T+1)

T d T
= ciT(O)ci(O) +2772 (63 — Blcj(s)bi(s))cj(s)bi(s) —2n5 Z Z (cT(s)bk(s))2
T s=0 k+#i s=0
> 2%
- term [ = term II
T 2
— 2B Y (e] (98(s)" +0° Y ||es)|
s=0 S=!
term IV >0
3dy, 652 exp(nS17) 262 exp(2nB17) 1752
> 2%h 2 max —9 d— max —9 ~"“max
4 nb1y nhid=1)- nB1y b nB2y
S 3dn,  2%12%9dplog(4d(2d +1)/6)  2x4(d — 1) % 9dp log(4d(2d + 1)/4)
-4 BiLld, B 14,
2Ch 2
34 %9d log(4d(2d +1)/6)

1
2dn
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dn

2

The second inequality is by Smax = 3+/dj, log(4d(2d + 1)/0), exp(nB17y) < exp(2nB17) < 2 and
v = idy. The last inequality follows from dj, = Q(d?) > (17281og(4d(2d + 1) /6) + (576d +
1872) 3 log(4d(2d + 1) /5)) / B

>

Upper bound of ¢, (T + 1)c;(T + 1)
¢ (T+1)ei(T+1)

T d T

T T T T 2
= ¢/ (0)e;(0)+2n > (83 — Bie/ (s)bi(s))e] ()bi(s) —2nB1 Y > (e (5)bi(s))

<5dy 5=0 k#i s=0
= term 1 =term II
T , T 9
— 2B Y (el (9)8()" +0* Y ||es)|
s=0 s=0
>0 term V
2 252 2

< % + 277 . 66max eXp(UﬁlV) + Qnﬁl(d _ 1) . 6max eXp( 77617)

4 nB1y nB1y

o 16d,d?62, exp(nBiy)  80B2dnd2,.. exp(nBay)
+7° - ( + )

npry Y
5dp, = 2x12%9dplog(4d(2d+1)/6) = 2x4(d— 1) % 9dp, log(4d(2d + 1)/6)

<=ty 2 + :

4 B1 §dh §dh
N 2 % 16ndpd? * 9dj, log(4d(2d + 1)/9) N 2 % 80nBady, * 9dy, log(4d(2d + 1)/6)

Bridn 1dy,

< 2dy,

The second inequality is by dmax = 31/d, log(4d(2d + 1) /3), exp(nB17y) < exp(2nB17y) < 2 and
v = %dh. The last inequality follows from

dp = Q(d?)

> 5761log(4d(2d + 1)/8)/B1 + 192(d — 1) log(4d(2d + 1) /9)

+ 384log(4d(2d +1)/8) /51 + 38401n 2log(4d(2d + 1) /6)

> 5761log(4d(2d + 1)/6)/B1 + 192(d — 1) log(4d(2d + 1) /9)

+ 768ndyd” log(4d(2d + 1) /) / 81 + 3840n82d), log(4d(2d + 1) /6)

Lower bound of b™ (7' + 1)b(T + 1)

— k=1 5=0 o= 2
> 2%
- =term IV >0
3dp, 1752
> 2% 9p8,q. —Omax
=T nB2y
3, 34d62,.
> _
=7 ~
_ 3dy  34dx9dy log(4d(2d +1)/9)
- 4 %dh
5 dn
- 2

The third inequality iS by 0pax = 3\/ dplog(4d(2d 4+ 1)/6) and v = %dh. The last inequality

follows from dj, = Q(d?) > 2448d log(4d(2d + 1)/6).
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Upper bound of b (T + 1)b(T + 1)

d T T
2
BT (T + 1)B(T +1) = b (0)b(0) <2082 > D" (¢ (5)b(s))* 7> > ||Bs)
\T/ k=1 s=0 s=0 2
<3
=term IV term VI
5d 1762 16dy, fod?62 2d;,d? 5>
< Q0 + 277B2d . max 7]2 . ( i ﬂQ max eXP(Uﬁz’Y) + h max eXP(nﬁl’Y))
4 nBay m nby
< Sdp N 34d62 .. n 2% 16ndp B2d?62 . 2 * 2ndpd?62 .
4 v ¥ By
< 5dp n 34d % 9dp, log(4d(2d + 1) /9) n 32ndy, B2d? * 9dy, log(4d(2d + 1)/6)
- 4 %dh %dh
dndpd? * 9dy, log(4d(2d + 1)/6)
+ 1
B15dn
< 2d,

The second inequality is by exp(nf17y) < exp(nf2y) < 2 The third inequality is by dmax =

3v/dplog(4d(2d + 1)/6) and v = 1d,. The last inequality follows from
dp = Q(d?)
> 816dlog(4d(2d + 1)/8) + 7681n 2d log(4d(2d + 1)/8) + 48 log(4d(2d + 1)/5)/B1
> 816d log(4d(2d + 1)/8) + 768nBadyd? log(4d(2d + 1) /8) 4 96nd,d* log(4d(2d + 1)/5) /A1

C.5 Proof of claim

This Section presents the exponential decay bounds for terms (83 — fi¢; (T + 1)b;(T + 1)),
¢/ (T +1)bj(T + 1) and ¢ (T + 1)b(T + 1), establishing the property B(T + 1).
Bound of (85 — Brc; (T + 1)by(T + 1))
Recall the following equation from lemma[A.7]
d
e/ (t+1)bi(t+1) = ¢ (£)bi(t) + 77((53 — Bre] (1)bi(t))b] (1)bi(t) — B Y e] (1)br(t) - b (H)bi(t)
ki
— Bacl (1)b(t) - b (1)b(t) + (B3 — Bre] (1)bi(1)) e (t)eil?)
d
=By el (i) - o] (ex(t)) +n2e] (Bi(1)
ki
Based on the above equation, we have:
[(Bs = Bre] (T + 1)bi(T + 1)) | = |85 = Bre] (1)bu(T)

d
— 0 ((Bs = Bre] ()BT (T)bi(T) = 81 Y e (T)bi(T) - b (T)bi(T)
ki
— e (T)B(T) - b] (T)B(T) + (85 = Bre] (1)bi(T))e] (T)ei(T)

d
= B3 el (DBT) - o] (T)en(T) ) = 1281 (T)Bi(T)| G1)
ki

= ’(1 —nB1 (b (T)b;(T) + ciT(T)Ci(T))) (B3 = Bre/ (T)bi(T))

d d
+08E Y el (T)br(T) - b (T)bi(T) +nB7 > el (T)bi(T) - ¢} (T)ew(T)
ki ki

+ 0 pac] (T)B(T) - b] (TB(T) = 612] (T)Bi(T)|
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The term B3 — fi¢; (T)b;(T) is highlighted with underline, and we collect its negative feedback
terms together. The factor (1 —nB1 (b (T)bi(T) + ¢ (T)cl(T))> < 1 will drive (85 — B¢ (T +
1)b;(T + 1)) to converge to zero.

By Recurring (Eq. (1)) from 0 to 7', we have:

(8 = Bre] (T + Dbu(T + 1))

=0
30 TT (1=n8 (6] (bl + e (s)euls)) )

s=0s'=s+1 (32)
d d
(087 Y el ()buls) - B (5)bils) + 082 Y ef (5)bils) - € (s)en(s)
ki ki
L)
+ i Bac] ()b(s) - b] (s)b(s) 11 (5)Bi(s) )|
* <&

Here []7_, (1 — 0By (b7 (s)bils) + cj(s)cq;(s))) < (1 — BT since 4 <
b/ (s)bi(s), ¢/ (s)ci(s). Besides, from property B(0),...,B(T) and lemma [C.7| we know that
¢/ (s)bi(s), ¢/ (s)b(s) and &/ (s)b;(s) have bounds with exponential decreasing rate. Therefore, it
is easy to derive an exponential decreasing upper bound for ‘ (Bs — Brc (T +1)b;(T + 1)) ‘

By substituting the bounds of ¢; (s)bx(s), ¢/ (s)b(s), €/ (s)bi(s), bj (s)bi(s), ¢/ (s)ck(s) and
b/ (s)b(s), we have:

(Bs — Bie] (T + 1)bi(T + 1))’
< (1= 2087 |8 = Brc] (0):(0)|
T
+ (= 20817)" - (2083(d = 1) - 20(5)° exp(—nBi7s)
s=0

, . (33)
5
+1B1B2 - (26(s)? exp(—nBays) + (;2) exp(—nB1vs))

&
+ 181 (84d5(1)? exp(—nBi7t) + 8Badnd(t)? exp(—npart) )
¢

The notations #, & and <> highlight the corresponding terms between (Eq. (32)) and (Eq. (33)) for
refference.
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We further have the following:
(8 = Bre] (T + Dbu(T + 1))

< (1= 28i7) ™+ |8 — Bre] 0)b:(0)]

T
+ (1—2n8y)" (%ﬁf(d —1) - 26(5)* exp(—nf17s)
s=0

[y
2 5(5)2
+ BBz - (26(s)? exp(—npays) + 5 exp(—np17ys))
&
+ 1?81 (8dnd*5(t)? exp(—nBivt) + 8B2dndd(t)? exp(—nBart)) )

<&
< exp(—20819(T +1))| 8 — re] (0)b:(0)

+ ) exp(2nBiy(s = T)) - ((‘Wﬁf(d — 1)8(5)* + nB16(s)? + 8n*Brdyd?5(t)?) exp(—npB1ys)

+ (2081826()? + 80 B1 Badndd(s)?) exp(—nfs) )
< (B3 + £16(0)) exp(=2n517(T + 1))

+ (4083 (d = DS(T) + 1B 6(T)? + 8172 51dnd?6(T)? ) -

775217 exp(—nf1y(T + 1))
+ (208 B23(T)2 + 51 o dB(T)2) - 2 explnfhy (T + 1)

< ( B3 . 8B1(d —1)6(T) n 20(T) n 16nd,d?6(T) n 6510(T) n 247751dhd5(T))

4(0) g Y Y Y v
~0(T) - exp(—=nB1y(T + 1))
< (T) exp(—nBiy(T + 1))

(34)
The second inequality is derived by factoring out the factors exp(—nS1ys) and exp(—nf27s). The
third inequality is due to Z;F:O exp(2nB1v(s — T)) - exp(—nB1ys) < n/321'y exp(—nfiy(T + 1))
and ZST:o exp(2nB1v(s — 1)) - exp(—nPays) < % exp(—np1y(T + 1)) in lemmaﬁ The
fourth inequality is by §(0) < §(T), exp(—2nS81v(T + 1)) < exp(—nS1y(T + 1)), and we consider
B3 = %.6(0) < 5/28) 0(T). The fifth inequality is by proving (5(0 1B+ 71)6(T) + 25(T) +
16nd,d?8(T) + 6816(T) + 2477[51?[15(’[))

< 1 as follows:

¥ v
Ba g 8HE=DND) | (D) | 160dudT) | 6810(T) | HUnfrdndd(T)
5(0) Y v gl v v
5?3) L2 M (8{31( — 1) + 2 + 16ndypd® + 6531 + 2477/31dhd)
53

= 2./dp, log(4d(2d + 1)/0) "1
3y/dp log(4d(2d + 1)/6)
+ T4,
2

: (SBl(d — 1) + 2+ 16ndpd?® + 68, + 2477B1dhd)

<1

The first inequality is by 81 < 2. The second inequality is by §(0) > 21/dj, log(4d(2d + 1)/6),
§(T) < 3+/dylog(4d(2d + 1)/6) and v = 2d,. The last 1nequahty hold as long as d;, =
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~ 2
) > (Vmwzxwog(wew 1)/3) (8ﬁl(d—1)+2+8+661+127761/d)) >

2
(\/m + 24\/10g(4d(2d + 1)/5) (Sﬂl(d - ].) + 2+ 1677dhd2 + 661 + 247]51dhd)> .
Therefore, we have
|(Bs = Bre] (T+Dbi(T+1))| < 8(T) exp(=nBiy(T+1)) < (T +1) exp(-nry(T+1)) (35)
where the last inequality is by §(T) < 6(T + 1).

The proof for the bounds of ¢ (T'+ 1)b; (T + 1) and ¢ (T + 1)b(T + 1) are similar to that of
(Bs — Bre] (T + )b (T + 1)) We presents the calculatlon as follows.

Bound of ¢ (T + 1)b;(T + 1)

] (T +1)b;(T + 1)‘

d
e (1)b;(T) + 1 (85 = Brel (T)bi(T))b] (T)b;(T) = 81 e (T)bi(T) - bl ()b, (T)

ki
~ Bac] (T)B(T) - b] (T)B(T) + (B — fre] (T)b,(T))e] (T)ey(T)
d
= B> el ()b (T) - e] (T)ew(T)) + e ()b (T)|
k#j
= |(1=nB1 (e] (T)ei(T) + ] (T)b5(T)) )] (7)b;(T)

d
+1(Bs — Bre] (T)by(T))b] (T)b;(T) =By > ¢/ (T)bi(T) - by (T)b;(T)
k#i,k#j
—npac] (T)B(T) - b] (T)b(T) + (B3 — Bic, (T)b;(T))e] (T)e; (T)
d
—nf1 Y el (T)b;(T) - ¢ (T)ex(T) + nel (T)b;(T)
k#i,k#j

= | 1 (1= 81 (€] (s)eils) + b] (5)b5(s)) )] (0)b;(0)

S

=0
T
2

s=0 s’

,’:]ﬂ

(1 —nBi(e] (sei(s') + bjT(Sl)bj(Sl)))

s+1

' (77(33 — Bic] ()bi(s))b] (s)b;(s) +n(Bs — Bic; (s)bj(s))c] (s)e;(s)

L)
d d
—up Y el (5)bu() bl ()bi(s) —mBr D el (5)bs(s) -] (s)ex(s)
ki, k] ki k#j
L)
—nfe] (5)b(s) - b] (5)b(s) + 1% ()b (5) )|
& V]
< (1= 208i9) " [e] (0)5,(0)|
T
+ ) (1= 2n817)"* (200(s)? exp(—nB17s)
s=0 -
+ 2061 (d — 2) - 26(s)? exp(—nB1ys)

L)
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2 5(3)2
+ B2 - (26(s)? exp(—nBays) + 5 exp(—nB1vs))

&
7> (Sdhd26(t)2 exp(—nBit) + 8B2dydd(t)? exp(—nB27t)) )
N

] (0)b;(0)|

< exp(—2np1y(T + 1))

T
+ Y exp(2nBiy(s — T)) ((2775(5)2 + 4B (d — 2)6(s)* 4+ 16(s)* + 8n*dpd®3(s)?) exp(—nP1ys)

+ (21820(s)? 4 8n° Badpdd(s)?) exp(—anS))
< (T) exp(—nBiy(T + 1))

+ (208(T)? + nBu(d = 2)8(T)? + nd(T)? + 8n*dpd®5(T)?) -

nﬁw exp(—nB1y(T + 1))

+ (20B23(T)? + 807 BaddB(T) - —— expl=nfhy(T +1)

1+ 45(T) | S(d=2)3(T)  20(T)  169dnd?(T) | 63(T) 24ndhd6(T))
By g By By g v

~0(T) exp(—np1y(T + 1))

26(T) exp(—nBy(T + 1))

< 20(T + 1) exp(—np1y(T + 1)) (36)

IN

This bound requires @ (;—1 +8(d—2)+ /3 + lﬁndhd + 6 + 2477dhd> < 1, which can be

~ 2
verified by d, = Q(d?) > 36log(4d(2d + 1)/5)(— +8d—-2)+ £+ & +6+ 12) >
36 log(4d(2d + 1) /) (i +8(d—2) + 2 + 0t 46y 2477dhd)

Bound of ¢ (T + 1)b(T + 1)

e (T+1)b(T + 1)‘

= el (T)6(T) + 1 ((Bs — Bre] (T)bi(T))b] )~ 3 el (T)B(T) - BT (T)0(T)
k#i
d
— Bae] (T)B(T) - bT(T)B(T) = B2 Y e (T)B(T) - €] (T)ei(T)) + €] (T)B(T)

=

= |(1= 186" (@)(T) + & (T <T>>)czT (T)b(T)

+ (B3 — Bre] (T)bi(T))b, — b Z c; ) - by, (T)b(T)
k#i

d
— 02y el (TB(T) - ¢ (Te(T) + & (T)B(T)|
ki
T
IT (1= nB2(67(5)(s) + €] (s)ei(s) ) e (0)B(0)
T
3 T (1987 b) + el (5)els)))
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d
- (n(8s = Bre] (5)b:(5))b] ()b(s) ~nB1 Y ] (5)bi(s) - b] ()b(s)

) ki

d
— 082y el (5)b(s) - o] (s)eils) + e (s)b(s) ) |

ki S
)3
< (1= 2089) ™[] (0)(0)
T
+ D (1= 20827)" " (nd(s)” exp(—npi7s)
s=0 -
+npi(d —1) - 25(s)” exp(—nS17ys)
&
2 d(s)*
+nBa(d — 1) - (26(5)* exp(—nf2ys) + 5, exp(—n/17s))
)3
+ 1 (4dnd®5(s)* exp(—nB1ys) + 28B3dpdd(s)* exp(—nB2vs)) )
Q
< exp(~21821(T + 1)) [e] (0)b(0)|

T
+ > exp(2nB2y(s = 1)) ((16(T)? + 2081 (d — 1) (T)*
s=0

+n(d — 1)8(T)? + 4n*dpd®5(T)?) exp(—nB1vs)
+ (2nBa2(d — 1)8(T)? + 280> B2dndd(s)?) exp(*??ﬂz%))
< 0(T) exp(—nB2y(T + 1))

+ (03(T)? + 2081 (d — VAT 4 n(d — )FT) + 4ndndS(T)) - —— exp(—niy(T + 1)

nBay
+ (%Bz(d —1)§(T)* + 28nzﬁ§dhd5(T)2) 2 exp(—nBy(T + 1))

nB27y
= o(r) (1 -+ 2D SIRBBD) e (7 + )

L o) (26(T) L ABd=DI(T) | 2d—1)3(T)  Sndnd’5(T)
B2 Y Y Y

< 26(T) exp(—nPay(T + 1)) + 5;?

< 20(T + 1) exp(—nfay(T + 1)) +

) exp(—np1y(T + 1))

exp(—nbiy(T + 1))

§(T +1)
B2

This bound requires D) (4(d—1 +56m82dpd) < 1and 2@ 24461 (d—1)+2(d—1)+8ndyd? | <
¥

exp(—nf1y(T + 1)) (37)

ol
~ 2
1, which can be verified by d, = (d?) > 36log(4d(2d + 1)/) (4(d — 1) + 56dIn 2) >

36 log(4d(2d + 1)/6) (4(d — 1)+ 561752dhd>2
and
dp, = O(d?) > 36log(4d(2d+1)/5) (2+451(d— 1)+2(d—1) +4)2 > 36log(4d(2d +1)/6) (2+

4B1(d 1) + 2(d — 1) + Sndyd?)
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Property B(T + 1) is established by (Eq. (33)), (Eq. (36)) and (Eq. (37)).
C.5.1 Auxiliary lemma

Lemma C.5 As long as 2np1y < In2, and 2nPsy < In2, we have

T
> exp(2np1y(s — T)) - exp(—nprys) <

2
B exp(—nfiy(T + 1))
s=0

exp(—nBiy(T + 1))

T
;eXp(Qnﬁw(s —1T)) - exp(—nBays) < nﬁ;

T
> exp(2nfa(s = T)) - exp(—nBrvs) < exp(—nB1y(T +1))

2
= nB2y

> exp(2nBay(s — T)) - exp(—nfays) < exp(—nBay(T + 1))
s=0

2
NP2y
Proof of lemmal[C.3l

T
Z exp(2nf1y(s — T)) - exp(—nS17$)
s=0

T
= "exp(nBiys — 2nB1T)
s=0

T+1
< / exp(nprys — 2nB1yT)ds
0

< nﬁlw (exp(—nBiy(T — 1)) — exp(—2np1yT))
< e exp(—nfy(T — 1))

< &p(21517)
- By

exp(—nBy(T + 1))

exp(—np1y(T + 1))

2
<
nb1y
The first inequality is due to exp(nS31-ys) is monotone increasing. The last inequality is due to

2By < In2.

T
> exp(2nBiy(s — T)) - exp(—nBays)
s=0

T
= exp(—n(B> — 261)ys — 2By T)
s=0

T
< /1 exp(—n (B2 — 2B1)vs — 2np1yT)ds

< m(QXP(n(ﬂQ - 251)’}/ — 2?7/61’YT) — eXP(*UﬂQVT))

1
< 0B — 2610 exp(n(B2 — 251)y — 2BV T)

< m exp(—2n51y(T + 1))
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< 2exp(nfBa27)
- nBay

exp(—nBiy(T + 1))

exp(—2nS1y(T + 1))

3
<
nBa7y

The first inequality is due to exp(—n (B2 — 251)7s) is monotone decreasing. The fourth inequality is
due to By > 434, thus m < % The last inequality is due to 732y < (In2)/2 < In(3/2).

T
> " exp(2n2y(s — 1) - exp(—nB17s)
s=0

T
= exp(n(282 — B1)vs — 2nBaT)

=0
< /O o exp(n(262 — B1)vs — 2nB2T)ds

< m(em(%ﬂw —0B1y(T + 1)) — exp(—2n6277T))
< m exp(2nfB2y — np1y(T + 1))

< m exp(—nB1y(T +1))

< nﬂiv exp(—nf1y(T + 1))

The first inequality is due to exp(7(282 — f1)7s) is monotone increasing. The last inequality is due
to B2 > B1 and 2nByy < In2.
The proof of ZZ:O exp(2nBay(s — T)) - exp(—nfays) < ﬁ exp(—npPay(T + 1)) is similar to

ZZ:O exp(2nf1y(s — T)) - exp(—nPiys) < 17521’v exp(—nB1y(T + 1)). Just replace 51 with Ba,
and consider 2nf2y < In 2.

C.6 Proof of claim

This Section presents the bounds for terms b, (T + 1)b;(T + 1), ¢/ (T + 1)c;(T + 1) and b/ (T +
1)b(T + 1) with ¢, 5 € [1,d], i # j, establishing the property C(T + 1).

Recall the Vector-coupled Dynamics equations of b, (t + 1)b;(t + 1), ¢/ (t + 1)c;(t + 1) and

b (t +1)b(t + 1) in lemma[A.7}
b/ (t+ 1)bj(t +1)
= b (t)b;(1) + 77(2 (Bs = Bre (Dbi(1)) el ()b (1) +2(Bs — Bre] ()b;(t))e] (Hbi(t)

(38)
d
= Bs(e] (B)b;(t) + ¢/ (Hbi(1)) =281 > ¢l ()bi(t) - ¢f (t)b; (t)) +1°b; (4);(1)
k#i,k#j
¢ (t+ e;(t+1)
= e (1)e; (1) +n(2(8s — Bre] (b)) e] (i) +2(8s — Bre] ()b, (1)) <] (Db (1)
d (39)

— Bs(e/ ()b (t) + CjT(t)bz‘(t)) - 25 Z e (t)by(t) - C;(t)bk(t)
ki k]

= 285e] (Db(1) - ] (Db(1)) + 2] (12 (1)
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b/ (t+ 1)b(t +1)

= b/ (0b(0) +n( (85 — Bre] (bi(r)) el (b(D) — 1 Y el ()bilt) - ] (1)b(1)

d
B2 el (Db(1) - ¢ (Dbi(1)) + 1B (1B()
k=1

To give bounds for the above three terms, we will use the following bounds from property B(t) and
lemma

|Bs — Bre (t)bi(t)] < 8(t) exp(—nBiyt)

el (£)b;(t)] < 25(t) exp(—nBivt)

le] ()b(1)] < 25(t) exp(—nft) + % exp(—nBit)

Bi(t) By (1)| < 8dnd?5(t)* exp(—nB1t),

Ci(t)TEj(t)‘ < 8d),d*5(t)? exp(—nBivt) + 40B5d15(t)? exp(—nBat),

b/ (t)E(t)‘ < 8B2dnd®5(t)? exp(—nBayt) + 4dpd>5(t)? exp(—nBit)

Besides, by ’63 — Bic] (t)bi(t)‘ < 6(t) exp(—nBi7t), we have:

cT(t)bi(t)‘ < 6(t) exp(—nBivt) + B3

%

B
< 46(t) :— 2a
[0
56(t
<80
<60(t)

The third inequality is by 6(s) > 21/dp log(4d(2d + 1)/8) > 2a = 2a = 2 exp((—In2)/N). For

the last inequality, as long as N > 2122 we have % < 6.

We will provide the upper bounds for ‘b: (T+1)b;(T+1)

el (T + e (T + 1)( and ’bJ(T +
1)b(T + 1)| by substituting the above bounds into (Eq. , (Eq. and (Eq. respectively.
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Bound of b (T + 1)b;(T + 1)

b (T + 1)b; (T + 1)‘

b7 (T)b;(T) +0(2(Bs — i (T)bi()) el (T)B;(T) +2(Bs — fre] (T)by(T))e] (T)bi(T)

d
~ (el (Tb(T) ] (T)i(T)) =261 D~ e ()bi(T) - e (T)by(T) ) + 1B (1) (T)|
k#i,k#j

b (T)b; (1) | + 20| (8 — Bre] (Dbu(T)) <] (T)b;(T) | + 20| (B — Bre] (T)b;(T) ] (T)bi(T)|

J

<

d
s (] (T)by(T) + & (T)B(T)) |+ 2081 " |el (T)bu(T) - & (T)b;(T)| +
ki, k4]
< (T) +4n - 0(T) exp(—np1yT) - 20(T) exp(—npiyT) + 2B - 26(T") exp(—nSyT)

+2nB1(d —2) - (25 (1) exp(—nﬁwT))2 + 07 - 8dpd*5(T)? exp(—nBinT)

b7 (1)b,(T)|

< 8(T) + 8(T) (316(T) exp(~nBiyT) + 4nfs + Snfi (d — 2)5(T) exp(~nB17T)
+8ndpd®s (T)) ~exp(=nfiT)

<o(T) +6(T) (8775max + 4nB3 + 8nBi(d — 2)dmax + 8n2dhd25max) exp(—npinT)
41)

The first inequality is derived by triangle inequality. The second inequality is derived by
biT(T)bj(T)‘ < §(T) and substituting the bounds of |35 — B¢/ (t)bi(t)], |c; (t)b;(t)| and

Bi(t)—rl_)j(t)‘. The third inequality is derived by factoring out the common factor §(7). The
last inequality is derived by §(7) < dmax and exp(—nS17T) < 1.
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Bound of |¢] (T + 1)c;(T + 1)

] (T + )¢ (T + 1))

¢! (T)e;(T) + 77(2(53 = Bie] (T)bi(T))e; (T)bi(T) + 2(8s — fre,] (T)b;(T)) e, (T)b;(T)
d

— B3 (e (T)b;(T) + CjT(T)bz'(T)) - 25 Z e (T)by(T) - CjT(T)bk(T)

ki k]

= 2B5¢] (T)B(T) - ] (T)B(T)) + 0°] (T)5;(T)|

J

<

3

o] (T)ey ()| + 20| (85 = Bre] (Tbi(T)) ] (T)bi(T) | + 20| (B = re] (T)b;(T))e
d
s (e] (T)b;(T) + ] (Tb(T) |+ 2080 Y |el (T)bi(T) - e (T)bu(T))

k#i,k#]
+ 20|l (T)B(T) - ] (DB(T) | + 72 [e] (1) (7))

< 6(T) +4n - §(T) exp(=npiT) - 20(T) exp(=nSnT) + 2nfBs - 20(T) exp(—nSinT)
+2081(d — 2) - (20(T) exp(-nBinT))

5;? exp(—npiyT ))2

+ 772 . <8alhal2(5(T)2 exp(—nBiyT) + 4OB§dh5(T)2 exp(—nﬁgvT))

< 6(T) + 8(T) (316(T) exp(~nBryT) + 415 + 801 (d — 2)(T) exp(~nBiyT) + S dnd?5(T)

2n6(T)
B2

+4(T) (Snﬂgé(T) exp(—nB2nT) + 40n25§dh5(T)> - exp(—n BT

T ()b (1),

+2nBs (25(T ) exp(—nB2yT) +

<
+ exp(—nB17T) + 893(T) exp(—nB2yT) ) - exp(—nBiyT)

2 5II1'(1X
< 6(T) =+ 5(T) (16776max + 47]63 + 877/81 (d - 2)5rnax + 8772dhd25max + nﬁz ) : eXP(—U/BWT)

+ 3(T) (81520max + 4072 B3dhSunax ) - exp(—1B27T)
“2)

The first inequality is derived by triangle inequality. The second inequality is derived by
biT(T)bj(T)‘ < §(T) and substituting the bounds of |35 — B¢/ (t)bi(t)], |c; (t)b;(t)| and

ci(t)'e; (t)‘ The third inequality is derived by factoring out the common factor 6(7"). The
last inequality is derived by §(T) < dmax> €xp(—nS17T) < 1 and exp(—nP2nT) < 1.
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Bound of

T(T+1)b(T + 1)’

T(T +1)b(T + 1)‘

d
i (T)6(T) + 77((53 — Bre] (D)bi(T))e] (T)B(T) = p1 Y e[ (T)bi(T) - ¢ (T)b(T)

ki

d
— 623 el (T)B(T) - e (TB(T) ) + 78] (T)B(T)|
d
T()B(T) + n((Bs = Brel (Tb(T)e] (T)BT) — B> e (T)bi(T) - ¢ (T)b(T)
k#i

d
= 523 el (TBT) - e (TIB(T) = e (TIB(T) - ] (T)bi(T)) + 1B (T)B(T)|

ki

d
T+ | (85 = Bre] (T)b:(T)) ] (TB(T)| + 0By Y |ef (T)b(T) - e (T)(T)|
ki

¢/ (T)b(T) - ¢

(3

d
02y |el (DB(T) - e (T)6:(T)| + s
k#i

(T)bi(T)|

5(T)
B2

+ (81 + B2)(d = 1) - 20(T) exp(~nBiT) - (20(T) exp( = T) +

+ 182 - 60(T) - (25(T) exp(—nfaT) + 6(5? exp(—=n/nT ))

+n?- (8ﬁzdhd25(T)2 exp(—nBeT) + 4dpd>5(T)? exp(—anT))

< 8(r) + 5(0) (n(20651+ )l = 1) + 1) - D exp(ni)

< 8(T) + - 5(T) exp(~nBinT) - (26(7) exp(-nfayT) + == exp(-—nBiT))

5(5? eXp(*nﬂwT))

U0 b 4 anS(1)) - exp(-nio)

8(T) (20(2(81 + B2)(d = 1) + 1)8(T) exp(~nBiyT)
+120626(T) + 811 62dhd26<T)) exp(~nfT)
<o(T) +0(T) (4nd5max + 4n2dhd25max) ~exp(—np1yT)

+ 6(T) <8nﬁ2d6max + 1277ﬂ25max + 8n2ﬁ2dhd25max> ‘ exp(_TIﬁQ’YT)

+ 6083 -

(43)

The first inequality is derived by triangle inequality. The second inequality is derived by
) (T)bj(T)‘ < §(T) and substituting the bounds of |33 — B1¢; (£)bi(t)], |e] ()b; (1), |e] (£)bi(t)]

and ‘Ei(t)TB(t) ‘ The third inequality is derived by factoring out the common factor (7). The last

inequality is derived by 6(T") < dmax, exp(—nB17T) < 1and 2(8; + B2)(d — 1) + 1 < 482d since
P2 = P and B2 > 1.
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We next provide the upper bound for §(7" + 1).
5(T +1) = max{[b] (T'+ )by (T + 1|, e] (I'+ 1)e; (T + 1)], [b] (T + 1)b(T + 1)}

2 5max
7752 )-exp(—nﬁwT)

+ 6(T) (8n62d5max + 407]2,822dh5max + 127]626max + 877252dhd26max) . exp(_nBQ’YT)

< 6(T) + 6(T) (1677d6max + 477ﬁ3 + 8"761 (d - 2)61‘116,)( + 8n2dhd26max +

(44)

This inequality can be verified by comparing with (Eq. @1)), (Eq. @2)), (Eq. @3)). To give more
precise bound, we introduce the following lemma:

Lemma C.6 Ify(t+ 1) < y(t) + cy(t) exp(—at) + dy(t) exp(—bt), with a,b,c,d > 0,t > 0 and
a,b < 1n 2, then y(t) satisfies:

2c¢ 2d

y(t) < y(0) exp(— + ?)

Proof of lemma

y(t+1) <y(t) + cy(t) exp(—at) + dy(t) exp(—bt)
= y(t+1) < y(t)(1 4 cexp(—at) + dexp(—bt))

=yt +1) <y(0) H(l + cexp(—as) + dexp(—bs))
s=0

= Iny(t+1) <Iny(0)+ Zln(l + cexp(—as) + dexp(—bs))
s=0

= Iny(t+1) <Iny(0)+ Z(c exp(—as) + dexp(—bs))
s=0

= Iny(t+1) <Iny(0) + [l(cexp(—as) + dexp(—bs))ds

= Iny(t+1) <Iny(0)+ (g(exp(a) —exp(—at)) + %(exp(b) — exp(—bt)))
= lny(t+1) <lny(0) + (% + %)
=yt +1) < y(0) exp( e 1 20

The fourth arrow is due to In(1 + z) < x for x > 0. The fifth arrow is due to exp(—as), exp(—bs)
are monotone decreasing. the 7-th arrow is due to a, b < In 2 and — exp(—at) < 0, — exp(—bt) < 0.

Lemmapresents the core idea of establishing property C(T'+1). If a > cand b > d in the above
lemma, we will have y(t +1) < »(0)-O(1). Similarly, as Mamba converges quickly (C T B — %I ,
C b — 0), we can prove that |b; (t)b; (t)], |¢] (t)c;(t)], |b] (t)b(t)| hold their magnitudes around
their initial states.

We next combine (Eq. (#4)) and lemma|C.6|to give bound for 6(7" + 1).

5(T+1)

S 5(T) + 5(T) (16nd5max + 47763 + 87)B1 (d - 2)5max + 8n2dhd25max + ) : eXP(*Tlﬂl’YT)

+6(T) (87;62d5max 4002 B2dp O + 127P20max + 817 52dhd25max) - exp(—nBonT)
1677d5max + 477/83 + 87761 (d - 2)5max + 8772dhd25max + 277/53[:“)
nB1y

2775max
p

§5(0)~6Xp<2(
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+ 2(8n62d6max + 40n26§dh6max + 127]625max + 8n252dhd25max) )
NP2y
3+v/dp log(4d(2d + 1) /6 2d
Vn Og(ld( /). (3—+8—53+16(d72)+
3dn

B1 B1
+16d + 800 Bady, + 24 + 16ndhd2>>

16ndyd | 4
B1 B152

<4(0) 'eXp(

3
< - 8(0)

< 3+/dp log(4d(2d + 1)/)

The first inequality is derived by (Eq. (@4)). The second inequality is derived by lemma|[C.6] The
third inequality is derived by v = %dh. The last inequality is derived by

dp, = Q(d?)

> TR (:‘3?2))2 log(4d(2d + 1)/5) (‘%l + 8%

8 2
+16(d —2) + — + +16d+80In2+24+ 8
( ) 81 BiPe )
36 32d 8B
> ——log(4d(2d + 1)/6) | — + —=
> (e s+ 1/0) (G5 + S
1677dhd2 4

2
+16(d —2) + + = 4 16d + 80nSBady, + 24 + 16ndhd2)
B1 B152

C.7 Bounds of 7 terms

&l (0B (1), & (1B(0),

K3

This Section presents the bounds for b;(t) "b;(t), &(t)"€;(t), ||b(t)

b (t)b(t) (these terms usually appear in the Vector-coupled Dynamics equations with a 1> factor)
with ¢, j € [1, d] under the assumption that .A(¢), 5(¢), and C(¢) hold.

Lemma C.7 Under the assumption that A(t), B(t), and C(t) hold, we have the following bounds:

Ei(t)TBj(t)‘ < 8dpd?*6(t)? exp(—nBit),

ci(t)'e (t)‘ < 8d,d*5(t)* exp(—nBiyt) + 24B5d16(t) exp(—nPat),

< 16d),83d*5(t)? exp(—nBat) + 2dpd?5(t)? exp(—np17t),

_ 2
o,
&7 (1B, (1)] < 8dnd?3(1)? exp(—nB1yt) + 85adndd(t)? exp(—nBat),

&) (0B(1)| < 4dnd?5(1)? exp(—nBit) + 2863dndd(t)? exp(~2n ),

b/ (t)E(t)’ < 8B2dnd®5(t)? exp(—nBayt) + 4dpd®5(t)? exp(—nBit)

where i,j € [1,d). Note that this lemma does not require i # j.

Firstly, recall the following dynamics equation in lemma[A-6}

d
bi(t +1) = bi(t) + (B — Bre] (Hbi(t)eilt) = B> el (Dbilt) - ex(t))
ki

=: by (t) + nby(t)

d
ci(t+1)=ci(t) + n((ﬂg — Bre] (1)bi(1))bi(t) — B1 Y ] ()bi(t) - be(t)
k#i
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~ Bae] (1B(1) - b(1))
=1 ¢i(t) +n&i(t)

d
bt +1) = b(t) = (B2 Y el (b(E) - ex(t)) = blt) + nb(t)

Thus we have

bi(t) = (Bs — Pre] (t)b; chk 0!

&i(t) = (B3 — bref (1)b; 6120 k(t) = Bac] (£)b(2) - b(1)

k#i

Recalling the properties A(t) and B(t):
A(t)
di/2 < bf (t)bi(t), ¢ (t)ei(t),bT (H)b(t) < 2dy,
B(t) :
B3/ B1 — e ()bi(t)] < 8(t) exp(—nBiyt)
el (£)b;(1)] < 28(t) exp(—nBi1)

e (0b(8)] < 26(t) exp(—nfaryt) + % exp(—nBirt)

We can derive the follow bounds for the norm of b;(t), &;(t) and b(t):

Bi(t)|| = | (8 — el (b )= 5>l ()|
ki

< o] |- e \wzu% |- etono

< V/2d,6(t) exp(—nBiyt) + \/2dn 1 (d — 1) - 25(t) exp(—nBiyt)

< 24/2dp,dé(t) exp(—npit)
The last inequality is by 81 < 1.

&i(t)]| = || (8 = rcl @, )5S el (t) = Bac] (D(1) - ()
k#i
b0 - e wzubk e oma] o] [ om
< /2d36(t) exp(—nBiyvt) + /2dn 1 (d — 1) - 25(t) exp(—nprt)

+1/2dn B2 - ( (t) exp(—nB2t) + 5;2) exp(—nﬁwt))

< 24/2d,d5(t) exp(—nBivt) + 2/ 2dp B20(t) exp(—nP2rt)
The last inequality is by 51 < 1.

Be)| = Hﬁzfjcz<t>b<t> en(t)|
k=1
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cmY x| -|el )
k=1
5(t)

< \/2dp,Psd - (25 (t) exp(—nfart) + Texp(—nﬂwt))

< 24/2dy, B2dd(t) exp(—nPayt) + v/ 2dpdd(t) exp(—nSi7t)

By multiplying them pairwise, we obtain:

_ 2
i(t)" ’ (2\/ 2dp,do(t) exp( nﬁwﬂ) < 8dpd*5(t)* exp(—nBint)
The last inequality is by exp(—2nB1vt) < exp(—nBi7t).
2
ACH ‘ (2\/ 2dydé(t) exp(—nB1t) + 24/ 2dp B26(t) exp(—nﬁgfyt))

= 8dhd26( ) exp(—2n017t) + 862dh5(t)2 exp(—2nP27t)
+ 16d),82d5(t)? exp(—n(B1 + B2)7t)
< 8dyd*3(t)? exp(—npBiyt) + 4085 dnd(t)? exp(—nfat)

The last inequality is by Bod < 232 because B2 = Q(d?) > d, and exp(—2nBivyt) <
exp(—nfiyt), exp(—2nBayt) < exp(—nBat), exp(—n(B1 + B2)vt) < exp(—nPart).

- 2 2

Hb(t)H2 (2\/2d Badd(t) exp(—nfayt) + /2dpdd(t) exp( nﬁwt))

= 8d5,53d°5(t)? exp(—2nf2yt) + 2dnd*5(t)” exp(—2nfi7t)

+ 8dp Bod?S()? exp(—n(B1 + B2)7t)

< 16dy,B2d*5(t)? exp(—nBayt) + 2dpd?6(t)? exp(—npiyt)
The last inequality is by (B2 < 32 because (2 > 1, and exp(—2nBiyt) <

exp(—nPivt), exp(—2nPayt) < exp(—nfBat), exp(—n(B1 + B2)vt) < exp(—nf2rt).

& (1B, (1)) <

o] [
(2\/2dhd6 exp(—nB17t) + 2/2dp B20(t) exp( nﬁgvt) 2+/2dpdé(t) exp(—nBivt)

< 8dhd25( ) exp(—npfi7t) + 852dhd§(t)2 exp(—nPat)
The last inequality is by exp(—2n517t) < exp(—nBfiyt), exp(—n(B1 + B2)7t) < exp(—nfat).

=) - [

(2\/ﬁd5 exp(—npB1vt) + 2+/2dpPB26(t) eXP(—TIBQ’yt)>

(2\/2dh62d5 ) exp(—nBat) + v/ 2dpdé(t) exp( nﬂwt))
= 4dyd*3(1)” exp(—2nB17t) + 863 dndd(t)? exp(—2nf2yt)
+ 82 d®5(t)? exp(—n(B1 + B2)vt) + 4B2dndd(t)? exp(—n(B1 + B2)71)
< Adpd?5(t)? exp(—nfint) + 2883dds(t)? exp(—2nfB27t)
The last inequality is by Bod < 282, By < B2, and exp(—2nBiyt) <

exp(—nPivt), exp(—2nPayt) < exp(—nBat), exp(—n(B1 + B2)vt) < exp(—nB27t).
‘BTtBt’< b; tH-HBtH

< 24/2dpdé(t) exp(—nBi7t) - (2\/2d B2dd(t) exp(—nBayt) + \/2dpdd () exp( nﬁyyt))

< 802dyd*5(t)? exp(—nf2yt) + 4dnd®5(t)? exp(—nS17t)
The last inequality is by exp(—2n517t) < exp(—nBiyt), exp(—n(B1+ B2)7t) < exp(—nBayt).

—T ’
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D Discussion

In this section, we show that orthogonal initialization Mamba can be trained to ICL solution, and
compare our method with some previous works.

Orthogonal Initialization Now we assume that each column of W and W are initialized with
orthogonal columns of unit norm. Then we have

CT(0)C(0)=B"(0)B(0)=1, B'(0)b(0)=C"(0)b(0)=0.

Consider the following update rule as part of lemma[5.1}

B(t+1) = B(t) + 185C(t) —nfC(t)C(t) T B(t), 45)
C(t+1) = C(t) +nBsB(t) — np1B(t)B(t) C(t) — nBab(t)b(t) ' C(1), (46)
bt +1) = b(t) —BC(H)C(t) Tb(1). (47)

By (Eq. @3)), (Eq. (46)) and (Eq. @7)), we have:
BT (t+1)b(t +1) = B(t) 'b(t) + 18sC(t) "b(t) — 1 B(t) T C(H)C(t) " b(t)
—1B2B(t) " C()C(1) "b(t) — 1*B28:C (1) "C()C(1) "b(t) +1n*B15:B(1) ' C(H)C (1) C(1)C(t) " b(t)

C(t+1)"b(t+1) = C(t)"b(t) +nBsB(t) T b(t) — nBiC(t) " B(t)B(t) "b(t) — nB2C () "b(t)b(t) T b(t)
—nBC(t)TC(#)C(t)Tb(t) — n*BBsB(t) ' C(t)C(t) " b(t)
+n?B1B82C() T B(t)B(t)TC(t)C(t) b(t) + n*B3C(t) Tb(t)b(t) ' C(t)C(t) Tb(t)

Combining BT (0)b(0) = CT(0)b(0) = 0 with induction, we can derive that BT (t)b(t) =
C T (t)b(t) = 0 for t > 0. Thus we only need to consider the following dynamics.
B(t+1) = B(t) + nfC(t) - nhC(H)C (1) ' B(t), (48)

C(t+1) = C(t) +nBsB(t) — nf1 B(t)B(t) ' C() (49)
Denote B(t)" B(t) = D(t), C(t)"C(t) = E(t) and C(t)" B(t) = F(t) then by (Eq. (48)) and
(Eq. (@9)), we have
F(t+1)=F(t)+npBs(D(t) + E(t)) —np1F(t)D(t)
+n?B3F ()" — 2P 1B F(OF ()" — np1 E(t)F (1) (50)
+?BiF () F(t) " F(t)
D(t+1) = D(t) +nB3(F(t) + F(t)") = np1(F(t) F(t) + F(t) F(t))
+ P B3E(t) — BB F(t) T E(t) 5D
— BB E()F(t) +* B F(t) ' E(t)F(t)
E(t+1)=E(t)+nbs(F(t) + F()") = nbi(F(t) F(t) + F(t)  F(t))
+n?B3D(t) —n* BB F (1) D(t) (52)
— 0’8183 D(t)F(t) + n*BiF(t) " D(t)F(t)

Note that D(0) = E(0) = I and F(0) = 0. By induction we can see that D(t), E(t) and F(t)
are diagonal matrix for ¢ > 0. Because of the symmetry, we have D(t) = E(t). Now we denote
D(t) = E(t) = g(t)I and F'(t) = h(t)I. Then based on (Eq. (30)), (Eq. (5I)) and (Eq. (52)), we

have:
g(t+1) = g(t) +n(2h(t) + nPsg(t) — nBrg(t)h(t))(Bs — Brh(t)) (53)
h(t+1) = h(t) +ng(t)(Bs — fih(t)) + 1*h(t)(B3 — Bih(t))? (54)
Since g(0) = 1 and ~(0) = 0 at initialization, h(t) will converge to % (ie.C"B — %I).
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Compare with Other Techniques (Eq. @3)), (Eq. @6)) and (Eq. (@7)) can be viewed as the
gradient descent that minimize the following target:

1
SICTWEX Y| (55)

where X and Y satisfy:

B1 B3

xXxT = € RUEHDX(d+1) xy T — c RE+Dx(d).
b1 B3
B2 01xd

To establish convergence for this problem under gaussian initialization, [Arora et al|(2019) require
the standard deviation to be small enough, while |Du and Hu! (2019)) require larger dimension dj,
because their method relies on the condition number of X. Our method balances the requirements on
initialization and dimension. The fine-grained nature of our analysis (particularly the Vector-coupled
Dynamics) enables extension to various problem beyong (Eq. (33)).

E Additional Experimental Results

g

(a) Initialization (b) Trained parameter (c) Loss curve

—— experimental loss
1.2 4 ~ =~ theoretical loss

104 4

loss

0.6 4

0.4 4

0.24

2'1! -1’() ()IU SVU
token length N

Figure 2: (a) Visualization of matrix product C'" Wp before training; (b) Post-training visualization
of matrix product C " Wg; (c) Test loss versus token sequence length N. Blue curve: experimental

2
loss; orange dashed line: theoretical loss % ( — %)

Experiments Setting We follow Section [3|to generate the dateset and initialize the model. Specifi-
cally, we set dimension d = 4, d;, = 80, prompt token length N = 50, and train the Mamba model
on 3000 sequences by gradient descent. Moreover, we vary the length of the prompt token N from 4
to 80 and compare the test loss with the theoretical loss. For each N, we conduct 10 independent
experiments and report the averaged results. All experiments are performed on an NVIDIA A800
GPU.

Experiment Result Figure 2a|and Figure [2b|show that C " B can be trained to diagonal matrix
from random initialization. Figure [2c|show that the experimental loss aligns with the theoretical

loss L(0) = g( - %%), noting that the theoretical loss (1 — g—%) has an upper bound % that

decays linearly with N. These experimental results further verified our theoretical proof.

Mamba vs Linear Attention Optimal linear attention outperforms Mamba under our construction,
and they have O(1/N) error upper bound with different constant factors. We provide a comprarison
of loss between optimal Mamba (under our Assumption 4.1) with optimal linear attention as in Table
2] with setting d = 10, N = 10, 20, .. ., 80.

When N is smaller thand We also test the case when N < d in TableElwith setting d = 20, N =
4,6,...,20.
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Convergence of wan We set wa = 0 in the assumption. Now we show that random initializd
wa = 0 can converge to 0 experimental. The results is in Table [4]

Different d;, Table[5]shows the mean value and standard deviation of the loss for smaller dj, (in 10
repeated experiments). We set d = 4, N = 30, and the theoretical loss is 0.2954.

Table 2: Comparison of Mamba and Linear Attention
N 10 20 30 40 50 60 70 80

Mamba 2.6671 1.8189 13800 1.1117 0.9308 0.8005 0.7022 0.6254
Linear Attention 2.6190 1.7742 13415 1.0784 0.9016 0.7746 0.6790 0.6044

Table 3: Experiment for N < d

N 4 6 8 10 12 14 16 18

20

Experimental Loss 8.5911 7.8292 7.7009 6.8235 6.4004 6.0612 5.9689 5.6193
Theoretical Loss 8.4484 7.8425 7.3173 6.8579 6.4526 6.0926 5.7706 5.4810

5.1426
5.2190

Table 4: Convergence of wa
Epoch 0 10 20 30 40 50 60 70 80

lwall. 08883 0.7513 04821 03331 02444 02026 0.1868 0.1799 0.1773
lwal2 07891 05645 02324 0.1109 0.0597 0.0410 0.0349 0.0324 0.0314

Table 5: Different d;,
dp, 6 8 10 12 14 16 18 20

mean(loss) 0.2912 0.2933 0.2899 0.2887 0.2929 0.2951 0.2967 0.2959
std(loss) 0.0075 0.0055 0.0116 0.0052 0.0105 0.0097 0.0110 0.0142
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