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ABSTRACT

The ability to train Deep Neural Networks (DNNs) with constraints is instrumental
in improving the fairness of modern machine-learning models. Many algorithms
have been analysed in recent years, and yet there is no standard, widely accepted
method for the constrained training of DNNs. In this paper, we provide a chal-
lenging benchmark of real-world large-scale fairness-constrained learning tasks,
built on top of the US Census (Folktables, Ding et al. (2021)). We point out the
theoretical challenges of such tasks and review the main approaches in stochastic
approximation algorithms. Finally, we demonstrate the use of the benchmark by im-
plementing and comparing three recently proposed, but as-of-yet unimplemented,
algorithms both in terms of optimization performance, and fairness improvement.
We will release the code of the benchmark as a Python package after peer-review.

1 INTRODUCTION

There has been a considerable interest in detecting and mitigating bias in artificial intelligence (AI)
systems, recently. Multiple legislative frameworks, including the AI Act in the European Union,
require the bias to be removed, but there is no agreement on what the correct definition of bias is or
how to remove it. A natural translation of the requirement of removing bias into the formulation
of training of deep neural network (DNN) utilizes constraints bounding the difference in empirical
risk across multiple subgroups (Chen et al., 2018; Nandwani et al., 2019; Ravi et al., 2019). Over
the past five years, there have been numerous algorithms proposed to solve convex and non-convex
empirical-risk minimization (ERM) problems subject to constraints bounding the absolute value of
empirical risk (Fang et al., 2024; Berahas et al., 2021; Curtis et al., 2024a; Oztoprak et al., 2023;
Berahas et al., 2023; Na et al., 2023a;b; Bollapragada et al., 2023; Curtis et al., 2024b; Shi et al.,
2022; Facchinei & Kungurtsev, 2023; Huang et al., 2025; Huang & Lin, 2023). Numerous other
algorithms of this kind could be construed, based on a number of design choices, including:

sampling techniques for the ERM objective and the constraints, either the same or different;

use of first-order or higher-order derivatives, possibly in quasi-Newton methods;

use of globalization strategies such as filters or line search;

use of “true” globalization strategies including random initial points and random restarts in order
to reach global minimizers.
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Nevertheless, there is no single toolkit implementing the algorithms, which would allow for their
easy comparison, and there is no benchmark to test the combinations of design choices on.

In this paper, we consider the constrained ERM problem:
min E[f(z,€)] st Ele(z,¢)] <0, )

z€R

where £ and ( are random variables. Further, we provide an automated way of constructing the ERM
formulations out of a computation graph of a neural network defined by PyTorch or TensorFlow,
the choice of the constraints (see Table 1), and a definition of the protected subgroups to apply
the constraints to. Specifically, we provide means of utilizing the US Census data via the Python
package Folktables, together with definitions of up to 5.7 billion protected subgroups. This presents
a challenging benchmark in stochastic approximation for the constrained training of deep neural
networks.



Table 1: Particular formulations of the constraint function ¢ to enforce fairness.

Model Our formulation

Demographic Parity Dwork et al. (2012) |Ep(group a1[€(fo(X),Y)] — ]ED fgroup B [(fo(X),Y)]| < &

Equal opportunity Hardt et al. (2016) [Epgroup 4, v=11[£(fo(X ) Y)] - D[gloupB Y=+4] [[(fe(X) V)| <6
Equalized odds Hardt et al. (2016) ZU€{+17} [EDgroup 4,y =v] [£(fo(X),Y)] — Eplgroup B,y =u) [€(fo (X),Y)]| < 6

Our contributions. The contributions of this paper are:

* aliterature review of algorithms subject to handling (1);

* atoolbox that (i) implements four algorithms applicable in real-world situations, and (ii) provides
an easy-to-use benchmark on real-world fairness problems;

* numerical experiments that compare these algorithms on a real-world dataset, and a comparison
with alternative approaches to fairness.

Paper structure. The rest of the paper is organized as follows. Section 2 reviews related works and
presents the relevant notions of fairness. Section 3 introduces the algorithms. Section 4 reports on
our experiments. Section 5 concludes.

2 RELATED WORK, AND BACKGROUND IN FAIRNESS

In the literature on fairness, one distinguishes among pre-processing, in-processing, and post-
processing. Pre-processing methods focus on modifying the training data to mitigate biases (Tawakuli
& Engel, 2024; Du et al., 2021). In-processing methods enforce fairness during the training process
by modifying the learning algorithm itself (Wan et al., 2023). Post-processing methods adjust the
model’s predictions after training (Kim et al., 2019). The constrained ERM approach (1) belongs to
the class of in-processing methods.

In-processing methods include several approaches. One trend consists in jointly learning a predictor
function and an adversarial agent that aims to reconstitute the subgroups from the predictor (Adel
et al., 2019; Louppe et al., 2017; Madras et al., 2018; Edwards & Storkey, 2016). Another approach
consists in adding “penalization” terms to the empirical risk term. These additional penalization
terms, commonly referred to as regularizers, promote models that are a compromise between fitting
the training data, and optimizing a fairness metric. Differentiable regularizers include, among others,
HSIC (Li et al., 2022), Fairret (Buyl et al., 2024), or Prejudice Remover (Kamishima et al., 2012).

Closer to our setting, Cotter et al. (2019) consider minimizing the empirical risk subject to the so-
called rate constraints based on the model’s prediction rates on different datasets. These rates, derived
from a dataset, give rise to non-convex, non-smooth, and large-scale inequality constraints akin to
(1). Cotter et al. (2019) argue that hard constraints, although leading to a more difficult optimization
problem, offer advantages over using a weighted sum of multiple penalization terms. Indeed, while
the choice of weights for the penalization terms may depend on the dataset, specifying one constraint
for each goal is easier for practitioners. In addition, a penalization-based model provides a predictor
that balances minimizing the data-fit term and penalties in an opaque way, whereas a constraint-based
model allows for a clearer understanding of the model design: minimizing the data-fit term subject to
“hard” fairness constraints. Rate constraints differ from those in (1) in that they are piecewise-constant,
rendering first-order methods unsuitable for solving them. We refer to the recent work of Ramirez
et al. (2025) for a detailed argument on why constraining ERM problems is preferable to penalizing
the ERM with multiple terms.

Major toolboxes for evaluating the fairness of models or for training models with fairness guarantees
include AIF360 (Bellamy et al., 2018) and FairLearn (Bird et al., 2020). Delaney et al. (2024)
compute the Pareto front of accuracy and fairness metrics for high-capacity models, and Buyl et al.
(2024) provides differentiable fairness-inducing penalization terms. We also note the recent Cooper
toolbox, closest to our setting, that focuses on Lagrangian-based methods (Gallego-Posada et al.,
2025).

Le Quy et al. (2022) provides a detailed survey of fairness-oriented datasets, and Ding et al. (2021)
derives new datasets. The benchmark of Han et al. (2023) reviews the existence of biases in prominent
datasets, finding that “not all widely used fairness datasets stably exhibit fairness issues”, and assesses



the performance of a range of in-processing methods in addressing biases, focusing on differentiable
minimization only. Other benchmarks of fairness methods include Defrance et al. (2024); Fabris et al.
(2022); Pessach & Shmueli (2022); Chen et al. (2024). Statistical aspects of the fairness-constrained
Empirical Risk Minimization have only been considered recently; see e.g. Chamon et al. (2022).

The template problem (1) encompasses fairness-enforcing approaches that find applications in high-
risk domains, such as credit scoring, hiring processes, medicine and healthcare (Chen et al., 2023),
ranking and recommendation (Pitoura et al., 2022), but also in forecasting the observations of linear
dynamical systems (Zhou et al., 2023b), or in two-sided economic markets (Zhou et al., 2023a). In
addition, solving (1) is of interest in other fields, such as compression of neural networks (Chen
et al., 2018), improving statistical performance of neural networks (Nandwani et al., 2019; Ravi et al.,
2019), or the training of neural networks with constraints on the Lipschitz bound (Pauli et al., 2021).
We note that all the aforementioned methodologies feature large-scale constraints.

Deep neural networks (DNNs). Consider a dataset of N observations D = {(X;,Y;),i =
1,..., N'}. We seek some function fy such that fp(X;) = Y;. A typical formulation of this task is the
following regression problem:

1

N
min — ;f(fe(Xi), Y;) + R(6). ©)

Here, ¢ : R x R — Ris a loss function, such as the logistic loss £(y; z) = log(1 + e~¥#), the hinge
loss ¢(y; z) = max{0,1 — yz}, the absolute deviation loss ¢(y; z) = |y — z|, or the square loss
{(y; 2) = % (y — 2)%. The term R is a regularizer, and fy is a deep neural network (DNN) of depth L

2
with parameters 6. The DNN fy is defined recursively, for some input X, as
ag = X, a; = p;(Vi(0)a;—1), foreveryi=1,...,L, fo(X) =ar, 3)

where V;(-) are linear maps into the space of matrices, and p; are activation functions applied
coordinate-wise, such as ReLU max(0,¢), quadratics 2, hinge losses max{0,t}, and SoftPlus
log(1 + e'). A dataset D is described by attributes (or features), such as age, income, gender, etc.
The attribute which the DNN is trained to predict is called the class attribute. We denote the class
attribute by Y, whereas the predicted value given by the DNN is denoted by Y.BothY and Y are
binary and take values in {4, —}.

Fairness-aware learning applied to DNNs. The goal of this approach is to reduce discriminatory
behavior in the predictions of a DNN across different demographic groups (e.g., male vs. female).
The demographic groups are also reffered to as subgroups. The attributes such as race or gender
which must be handled cautiously are called protected. We denote by S the protected attribute,
$1,...,8m its possible values, and DIs;] the observations in D such that S = s;. A way to
impose fairness on the learned predictor is to equip (2) with suitable constraints. Some possible
constraint choices are shown in Table 1. Choosing loss difference bound as the constraint, denoting

5i(0) = m > xvepps;) {fo(X),Y) fori =1,...,m, and setting § > 0 yields formulation:

N
min 2 Uo(X),¥) + R(6)

m “)
s.t. fsgeSi(e)fiZm(a) <6, i=1,...,m.
m
j=1

Bounding the distance between subgroup losses yields m constraints. Other formulations are
possible, such as bounding the distance between every pair of subgroup, providing simpler individual
constraints, but in greater number (m(m + 1)/2). Formulation (4) extends to several protected
attributes by adding the corresponding set of equations; we omit this direct generalisation for clarity.

Fairness metrics. There exist tens of fairness metrics (Verma & Rubin, 2018). However, Barocas
et al. (2023, Ch. 3) pointed out that most fairness metrics are combinations of three elementary
fairness criteria: independence, separation, and sufficiency. These criteria cannot be minimized
simultaneously, and there is a trade-off between attaining the elementary fairness metrics and the



Table 2: Three elementary notions of fairness

Independence Separation Sufficiency

1 ind _ 1 ind m Sp _ 1 Sp m Sf 1 Sf
Ezz1p ijj 221e{+ }m zlP m ij,u zzueH }m zlP ij,v

prediction accuracy, i.e., the probability that the predicted value is equal to the actual value. Thus,
we seek an optimal trade-off between attaining the fairness metrics and minimizing the prediction
inaccuracy. We next recall the definitions of these three relevent metrics, following Barocas et al.
(2023), and provide the formula for computing them in Table 2.

Independence (Ind) This fairness criterion requires the prediction Y to be statistically independent
of the protected attribute S. Equivalent definitions of independence for a binary classifier Y are
referred to as statistical parity (SP), demographic parity, and group fairness. Independence is the
simplest criterion to work with, both mathematically and algorithmically. In a binary classification
task, independence implies the equality of P/"d = P(Y =4|S=s)foralli=1,...,m

Separation (Sp) Unlike independence, the separation criterion requires the prediction Y to be
statistically independent of the protected attribute .S, given the true label Y. The separation criterion
also appears under the name Equalized odds (EO). In a binary classification task, the separation
criterion requires that all groups experience the same true negative rate and the same true positive rate.
Formally, we require the equality of Pff)’ =P(Y =+|S=s;,Y =v)foreveryi=1,...,m, and
v E {+7 _}

Sufficiency (Sf) The sufficiency criterion is satisfied if the true label Y is statistically independent
of the protected attribute .S, given the prediction Y.Ina binary classification task, the sufficiency
criterion requires a parity of positive and negative predictive values across the groups. Formally, we
require the equality of P, = P(Y =+ |V =v,S = s), foreveryi = 1,...,m,and v € {+,—}.

3 ALGORITHMS

We recall that we consider the optimization problem
m]iRn F(z) st C(x) <0, 5)
zERN
where the functions F' : R™ — R and C' : R™ — R™ are defined as expectations of functions f and
¢, which depend on random variables & and (, respectively. Solving (5) has the following challenges:

* large-scale objective and constraint functions, which require sampling schemes,

* the necessity of incorporating inequality constraints, not merely equality constraints (see fairness
formulations in Table 1),

* the necessity to cope with the nonconvexity and nonsmoothness of F' and C, due to the presence
of neural networks.

In this section, we identify the algorithms that address these challenges most precisely. However, we
note that there exists currently no algorithm with guarantees for such a general setting.

Recalls and notation. We denote the projection of a point 2 onto a set X’ by proj(z) =
argmin, ¢y ||z — v||2. We denote by N ~ G(po) sampling a random variable from the geometric
distribution with a parameter po, i.e., the probability that N = n equals (1 — pg)™po for n > 0. We
distinguish between the random variable £ associated with the objective function and the random
variable ( associated with the constraint function. Their probability distributions are denoted by
P¢ and P¢. For an 1nteger J € N, aset {£;}7_, of independent and identically distributed random

variables &1, ..., &7~ 735 is called a mini-batch. Inspired by Na et al. (2023a), we use the following
notation for the stochastic estimates computed from a mini-batch of size J:

J
Vf —JZfofj EJ z%ZchJ ﬁ‘]c Z%ZVCIC] 6)
j=1

j=1 j=1
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Table 3: Assumptions on objective and constraint functions, F' and C, which allow for theoretical
convergence proofs.

Objective function F' Constraint function C'
fe=}

& v 0
> N o > N
2 E o1 s £
5 3 g 2 5 5 2
g & 3 s g & 3
2 8 2 slg 503 8 I
z = = Slg o = = 2
Algorithm 2 50O g8 T T|E 2 © 3

SGD v ) ) v |

Berahas et al. (2023) Fang et al. (2024) Curtis et al. (2024a) v v - - v - - v -
Na et al. (2023a) v - v(C?) -/ - |- - vy -
Shi et al. (2022) Curtis et al. (2024b) v - 7 -l - v Vv - v/ -
Na et al. (2023b) -/ CH -l - W) V|- - vC» -
Bollapragada et al. (2023) v - V(+cvx) - | — v - | vV - - -
Oztoprak et al. (2023) v - v -\ - |- - v -
SSL-ALM Huang et al. (2025) v - 7/ -V ) V|V - - -
Stoch. Ghost Facchinei & Kungurtsev (2023) v - v -\ ) vV |- - -
Stoch. Switch. Subg. Huang & Lin (2023) v /- -V ) vV |- v - -

3.1 REVIEW OF METHODS FOR CONSTRAINED ERM

We compare recent constrained optimization algorithms considering a stochastic objective function
in Table 3. We note that most of them do not consider the case of stochastic constraints. Among
those which do consider stochastic constraints, only three admit inequality constraints. Moreover,
with the exception of Huang & Lin (2023), all the algorithms in Table 3 assume F to be at least C*,
which makes addressing the challenge of nonsmoothness of F' infeasible. Davis et al. (2018) leads
us to conclude that assuming the objective and constraint functions to be tame and locally Lipschitz
is a suitable requirement for solving (5) with theoretical guarantees of convergence. At this point,
however, no such algorithm exists, to the best of our knowledge.

Consequently, we consider the practical performance of the algorithms that address the challenges of
solving (5) most closely: Stochastic Ghost, SSL-ALM, and Stochastic Switching Subgradient.

3.2 STOCHASTIC GHOST METHOD (STGH)

Facchinei & Kungurtsev (2023) propose the Stochastic Ghost method, that combines a deterministic
method for solving (1) (Facchinei et al., 2021) with a stochastic sampling approch for nonlinear
maps (Blanchet et al., 2019). The deterministic method of Facchinei et al. (2021) consists in solving
subproblem (7) to obtain a direction d, and then to preform a line search. Here, e € R™ is a vector
with all elements equal to one, 7 and 8 > 0 are user-prescribed constants, and xj, is defined as
a certain convex combination of optimization subproblems related to C' and VC. The definition
of xj, enables to expand the feasibility region so that (7) is always feasible. As the problem (1)
is stochastic, the subproblem (7) is modified to a stochastic version (8), using the notation in (6):

ming  VF(z)Td+ I|d|]?, ming V7 f(zy)Td + I|d|?,
st. O(zg) + VC(xy)Td < ke, (7) st @ (zp) +Ve(zp)Td <we, 8
ld]lo < B, |0 < B

In the stochastic setting (8), an unbiased estimate d(zy) of the line search direction d is computed us-
ing four particular mini-batches as follows. To facilitate comprehension, we denote X; = { X, ; }3’:1
a mini-batch of size J with the j-th element X}, ; = (V f(xk, &k 5), c(@k, Cr,j), Ve(@g, Gk ;). First,
we sample a random variable N ~ G(po) from the geometric distribution. Then we sample the mini-
batches X} and X2" " and we partition the mini-batch X2" ' of size 2V into two mini-batches

odd(X ,3”“) and even(X ,fNH) of size 2. Finally, we solve (8) for each of the four mini-batches,



denoting by d(z; X;') the solution of (8) for the corresponding mini-batch X;/. We obtain
d(mk;X,gNH) — % (d(xkgodd(X,gNH)) + d(mk;even(X,fNH)))

(1 - po)N Po
An update between the iterations z and x4 is then computed as xy 1 = x + ad(zy ), where the

deterministic stepsize cy, should be square-summable Y - | @ < oo but not summable Y~ | ay =
oo. For more details, see Algorithm 1 (Appendix A).

d(zy) = +d(zi; Xp). )

3.3 STOCHASTIC SMOOTHED AND LINEARIZED AL METHOD (SSL-ALM)

The Stochastic Smoothed and Linearized AL Method (SSL-ALM) was described in Huang et al.
(2025) for optimization problems with stochastic linear constraints. Although problem (1) has non-
linear inequality constraints, we use the SSL-ALM due to the lack of algorithms in the literature
dealing with stochastic non-linear constraints; see Table 3. The transition between equality and
inequality constraints is handled with slack variables. Following the structure of Huang et al. (2025),
we minimize over the set X = R"™ x RZY,. The method is based on the augmented Lagrangian

(AL) function L, (z,y) = F(z) +y ' C(z) + £||C(x)||*; see e.g., (Bertsekas & Rheinboldt, 2014).
Adding a smoothing term with an additional variable z € R™ yields the proximal AL function

1
vaﬂ(x?ghz) = Lp(xay> + 5”37 - 2”2

The SSL-ALM method was originally proposed in Huang et al. (2025) where it is interpreted as an
inexact gradient descent step on the Moreau envelope. An important property of the Moreau envelope
is that its stationary points coincide with those of the original function.

The strength of this method is that, as opposed to the Stochastic Ghost method, it does not use large

. . . . jid L d
mini-batch sizes. In each iteration, we sample & kS P¢ to evaluate the objective and (1, (2 [ Pe to
evaluate the constraint function and its Jacobian matrix, respectively. The function

G(x,y,2:€,C1,G2) = Vf(2,€) + Ve(z, ) "y + pVe(z, G1) Te(w, G) + p(z — 2) - (10)

is defined so that, in iteration k, E¢ ¢, ¢, [G(@k, Yr+1, 253 €, €1, (2)] = VK, . (Tk, Yt1, 2). Denot-
ing 1), 7, and § positive parameters, the update is

Yer1 = Yk +ne(z, G),
Tp+1 = projy (Te — TGk, Yr+1, 213 €, G, C2)), (1D
Zk+1 = 2k + ﬂ(l'k — Zk).

For more details, see Algorithm 2 (Appendix A).

3.4 STOCHASTIC SWITCHING SUBGRADIENT METHOD (SSwW)

The Stochastic Switching Subgradient method was described in Huang & Lin (2023) for optimization
over a closed convex set X C R which is easy to project on. It allows for weakly-convex, possibly
nonsmooth, objective and constraint functions. They consider subgradients instead of gradients.

The algorithm relies on a prescribed sequence of infeasibility tolerances €j, and of stepsizes n}; and
5. Atiteration k, we sample (1, ...,(y %PC to compute EJ(:ck). IfEJ(;vk) is smaller than e, we

sample & % P¢ and update using a stochastic estimate S F(xy, €) of a subgradient of F:
r1 = projx (zy, — 0l S7 (w1, €)).
If not, we sample ¢ %1734 and update using a stochastic estimate S°(x, ¢) of a subgradient of C":

Ti1 = Projy (wr — S (7, €))-
In either case, the updates are only saved starting from a prescribed index kg and the final output is
sampled randomly from the saved updates. The algorithm presented here is slightly more general
than the one presented in Huang & Lin (2023): we allow for different stepsizes for the objective and
the constraint update, while the original method employs equal stepsizes 17}; = 7. For more details,
see Algorithm 3 (Appendix A).



4 EXPERIMENTAL EVALUATION

In this section, we illustrate the presented algorithms on a real-world instance of the ACS dataset,
comparing how they fare with optimization and fairness metrics.

4.1 DATASET FOR FAIR ML

Ding et al. (2021) proposed a large-scale dataset for fair Machine Learning, based on the ACS PUMS
data sample (American Community Survey Public Use Microdata Sample). The ACS survey is sent
annually to approximately 3.5 million US households in order to gather information on features such
as ancestry, citizenship, education, employment, or income. Therefore, it has the potential to give rise
to large-scale learning and optimization problems.

We use the ACSIncome dataset over the state of Oklahoma, and choose the binary classification task
of predicting whether an individual’s income is over $50,000. The dataset contains 9 features and
17,917 data points, and may be accessed via the Python package Folktables. We choose race (RAC1P)
as the protected attribute. In the original dataset, it is a categorical variable with 9 values. For the
purposes of this experiment, we binarize it to obtain the non-protected group of “white” people and
the protected group of “non-white” people. The dataset is split randomly into train (80%, 14,333
points) and test (20%, 3,584 points) subsets and it is stratified with respect to the protected attribute,
i.e., the proportion of “white”” and “non-white” samples in the training and test sets is equivalent to
that in the full dataset (30.8% of positive labels in group “white”, 20.7% in the group “non-white”).
The protected attributes are then removed from the data so that the model cannot learn from them
directly. The data is normalized using Scikit-Learn StandardScaler.

Note that ACSIncome is a real-world dataset for which ERM-based predictors without fairness
safeguards are known to learn biases (Han et al., 2023). Accordingly, Table 4 (line 1) shows that an
ERM predictor without fairness safeguards has poor fairness metrics; see also Figure 4.

4.2 EXPERIMENTS

Numerical setup. Experiments are conducted on an Asus Zenbook UX535 laptop with AMD
Ryzen 7 5800H CPU, and 16GB RAM, using Python with the PyTorch package (Paszke et al., 2019).

Problems. We consider the constrained ERM problem (4) without any regularization R = 0, and,
as baselines, the ERM problem (2) without any regularization, R = 0, and with a fairness inducing
regularizer R that promotes small difference in accuracy between groups, provided by the Fairret
library (Buyl et al., 2024). In all problems, we take as loss function the Binary Cross Entropy with
Logits Loss

U(fo(X4),Y:) = =Yi-logo(fo(X;)) — (1 —Y5) -log(1 — o(fo(Xs))), (12)

where o(z) = H% is the sigmoid function, and the prediction function fy is a neural network with
2 interconnected hidden layers of sizes 64 and 32 and ReLU activation, with a total of 194 parameters.

Algorithms and parameters. We assess the performance of four algorithms for solving the
constrained problem (4): (1) Stochastic Ghost (StGh) (Sec. 3.2 - parameters py = 0.4, ap = 0.05,
p=087=106=10, A = 0.5, & = 0.05), (2) SSL-ALM (Sec. 3.3 - parameters y = 2.0,
p =107 = 001,17 =005 8 = 0.5, My, = 10), (3) plain Augmented Lagrangian Method
ALM (Sec. 3.3, smoothing term removed p = 0, otherwise the same setting as SSL-ALM), and (4)
Stochastic Switching Subgradient (SSw) (Sec. 3.4 - n,{ = 0.5, n; = 0.05, ¢, = 10~%if k < 500,
€ = 0.97¢,_; for every £ > 500 at each epoch). We also provide the behavior of SGD for solving
the ERM problem, both with no fairness safeguards (SGD), and with fairness regularization on
accuracy as provided by the Fairret library (Buyl et al., 2024) (SGD-Fairret). These methods serve
as baselines. When estimating the constraints, we sample an equal number of data points for every
subgroup.

Optimization performance. Figures 1 and 2 present the evolution of loss and constraint values over
the train and test datasets for the four algorithms addressing the constrained problem (columns 1-4),



Figure 1: Train loss and constraint values (first and second row) over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

Figure 2: Test loss and constraint (first and second row) values over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

as well as for the two baselines: SGD without fairness (col. 5), and SGD with fairness regularization
(col. 6). Each algorithm is run 10 times, and the plots display the mean, median, and quartiles values.

To a certain extent, the four algorithms (col. 1-4) succeed in minimizing the loss and satisfying the
constraints on the train set. The AL-based methods (col. 2 and 3) demonstrate a better behavior
compared to StGh and SSw; indeed, StGh exhibits higher variability in both loss and constraint
values (col. 1), while SSw fails to satisfy the constraints within the required bounds (col. 4). We
were unable to identify parameter settings for SSw that simultaneously satisfy the constraints and
minimize the objective function. The ERM baselines (col. 5 and 6) exhibit lower variability in the
trajectories, and minimize the loss in less time, but as expected, they do not satisfy the constraints.

The ALM and SSL-ALM schemes are the closest to satisfying the constraints on the train set. On the
test set, however, they are slightly biased towards negative values. Such bias is expected on unseen
data and reflects the generalization behavior of fairness-constrained estimators. This is beyond the
scope of the current work; see e.g. Chamon et al. (2022).

Fairness performance. Figure 3 presents the distribution of predictions over both groups. The
distribution of prediction without fairness guarantees (col. 5) clearly does not meet the group
fairness standard. Indeed, the “non-white” group has a significantly higher likelihood than the
“white” group of receiving small predicted values, and the converse holds for large predicted values.
The SGD-Fairret model (col. 6) lies between the four constrained models and SGD. Among the
fairness-constrained models, the ALM and SSL-ALM distributions are the closest to the distributions
of SGD without fairness, which is consistent with retaining good prediction information. The four
models that approximately solve the fairness formulation (col. 1-4) all have closer distributions
across groups. Numerically, this is expressed in Table 4 (col. Wd), which reports the value of the
Wasserstein distance between group distributions for each model.

Table 4: Fairness metrics (independence, separation, sufficiency), inaccuracy, and Wasserstein
distances between groups (Wd) for the four constrained estimators and the two baselines.

Train Test

Algname Ind Sp Ina Sf Wwd | Ind Sp Ina Sf wd

SGD 0,094+0,004 0,132-+0,007 0,201+0,001 0,115+0,006 0,008-+0,000 ‘ 0,097-+0,006 0,176+0,016 0,215+0,002 0,171+0,009 0,008+0,000
StGh 0,048+0,026 0,049+0,028  0,273+0,024 0,200+0,038 0,002+0,001 0,049+0,029 0,096+0,039  0,276+0,022 0,211+0,033 0,003=0,002
ALM 0,058-£0,007 0,061-+0,016 0,240+0,012 0,197+0,011 0,003:£0,000 0,058-0,012 0,114+0,014 0,244+0,007 0,221+0,017 0,003-0,001
SSL-ALM 0,066+0,000  0,071%0,015  0,233x0,017  0,186+0,013  0,0030,001 0,066+0,011  0,117+0,023  0,2400,012  0,215+0,022  0,004=0,001
SSw 0,077-+0,020 0,115:0,020 0,224+0,017 0,133+0,015  0,001+0,001 0,080-£0,020 0,144 0,050 0,229:+0,013 0,175+0,031  0,002+0,001
SGD-Fairret ~ 0,091+0,012 0,121+0,007  0,201+0,002 0,106+0,010  0,005:+0,001 ‘ 0,094:0,010 0,174+0,019  0,213+0,002  0,180-+0,022 0,006-£0,001




Figure 3: Distribution of predictions for each algorithm. Left to right: StGh, SSL-ALM, ALM, SSw,
SGD, SGD-Fairret. Blue and red denote “white” and “non-white” groups.
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Figure 4: Average value of the three fairness metrics (independence (Ind), separation (Sp), and
sufficiency (Sf)), along with inaccuracy (Ina). For all metrics, smaller values are better.

Table 4 displays the fairness metrics presented in Section 2: independence (Ind), separation (Sp), and
sufficiency (Sf), along with inaccuracy (Ina). The mean value and standard deviation over 10 runs are
presented for the four fairness-constrained models and the two baselines, both on train and test sets.
Figure 4 presents the mean values as spider plots. For all metrics, smaller is better.

Among the four fairness-constrained models, StGh performs best in terms of independence and
separation, but worst in terms of accuracy. SSw achieves fairness and accuracy metrics that have
intermediate values relative to those of the unconstrained SGD model, and those of the other
constrained models. This is consistent with the observation that the optimization method, with
our choice of parameters, favored minimizing the objective over satisfying the constraints. The ALM
and SSL-ALM methods provide the best compromise: they improve independence and separation
relative to the SGD model, while moderately degrading accuracy. SGD-Fairret slightly improves
sufficiency relative to the SGD model. The four models constrained in the difference of loss between
subgroups have higher values of sufficiency. Similar observations hold for metrics on the test set.

For completeness, we report in Appendix B an additional experiment with one protected attribute that
takes five values, and compare the optimization performance of the three algorithms for constrained
minimization with two baselines.

5 CONCLUSION

To the best of our knowledge, this paper provides the first benchmark for assessing the performance
of optimization methods on real-world instances of fairness constrained training of models. We
highlight the challenges of this approach, namely that objective and constraints are non-convex,
non-smooth, and large-scale, and review the performance of four practical algorithms.

LIMITATIONS

Our work identifies that there is currently no algorithm with guarantees for solving the fairness
constrained problem. Above all, we hope that this work, along with the Python toolbox for easy
benchmarking of new optimization methods, will stimulate further interest in this topic. Also,
we caution readers that the method present here is not a silver-bullet that handles all biases and
ethical issues of training ML models. In particular, care must be taken that fair ML is part of a
interdisciplinary pipeline that integrates the specifics of the use-case, and that it does not serve as an



excuse for pursuing Business-As-Usual policies that fail to tackle ethical issues (Balayn et al., 2023;
Wachter et al., 2021).

REPRODUCIBILITY

Code to reproduce the experiments is provided in the Supplementary Material. This includes a readme
file with instructions to reproduce experiments. Details on the computing environment are provided
in Section 4.
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A ALGORITHMS IN MORE DETAIL

In this section, we provide the pseudocodes of algorithms presented in Section 3 as Algorithms 1 to 3.
Recall that we denote by X/ = {Xj ;} 3]:1 a mini-batch of size J with the j-th element

Xij = (Vf(@r,&k,j)s c(@r, Crj)s Ve(r, Cr.j))- (13)

B ADDITIONAL EXPERIMENT: ONE PROTECTED ATTRIBUTE WITH FIVE
VALUES

Numerical setup. We use the same numerical setup as in section 4 (hardware and software). In this
experiment, we run the algorithm for 90 seconds instead of 30.

Dataset and problems. We consider the dataset ACSIncome, over the state of Virginia, and choose
this time Mariage as the protected attribute. This attribute takes fives values, as opposed to the
binary attribute setup of section 4.

We consider three optimization problems as approaches to tackle the learning task. First, we consider
the constrained learning problem as described in eq. (4), with m = 5. Second, we consider the
unconstrained, but penalized, problem

m

N m
min %Zg(fe(Xi%Yé) +R(O)+ A |ee(0) - % > )], (14)
i=1 j=1

OcR™
=1

where A = 0.4 is a penalization weight tuned on the validation set. Third, we consider the uncon-
strained and unpenalized problem, as described in eq. (2), for comparison.

Algorithms and parameters. We solve the constrained learning problem (4) with Stochastic Ghost,
Switching Subgradient, and SSL-ALM. We solve the baseline penalized problem (14) and the basic
unconstrained unpenalized problem (2) using SGD.

The hyperparameters for each algorithm were tuned on the validation set; we picked the values
resulting in lowest loss and constraint satisfaction after 60 seconds. Our hyperparameter choices are
listed below:

e SSL-ALM: 7 =7 =0.01,6=05,u=2,p=1.
* Stochastic Ghost: § = 1.0,v9 = 0.005,{ = 0.05,p=0.1,7 =1, A = 0.5.

¢
_ Mk—1

 SSw: ¥ = 0.05 constant, 1y, diminishing with n§ = 0.25, nf = NG

, k > 0; constraint tolerance

€ diminishing with eg = 0.01, ¢, = ef/’El k> 0.

Optimization performance. We report in Figure 5 the evolution of the mean and quartiles of the
train and test values over 10 runs. SGD on the unconstrained and unpenalized problem (2) (first row)
converges to a model such that the constraint are consistently above the constraint bound for three
values of the protected attribute (Wid, Div, and Nev). SGD on the penalized problem (second row)
manages to meet all constraints for the training set, but constraint Div on the test set is eventually
violated. The three constrained methods minimize function values while keeping with the constraint
bounds. The Stochastic Ghost does not reach convergence in 90 seconds, we report in fig. 6 its
behavior over 180 seconds. With that time budget, we see that it manages to minimize the loss
well while keeping within constraints. The performance of SGD on penalized problem and the
three constrained algorithms is comparable, especially so for SSw: the objective and constraint
value trajectories can hardly be distinguished. However, note that the penalized problem required
consequent preliminary computations in order to tune the penalization parameter A. We found that
the performance of the estimator was quite sensitive to the value of A. In contrast, the constrained
formulation does not feature a hyperparameter, and thus does not requires tuning. The algorithms
for constrained minimization do depend on hyperparameters, which control their convergence speed.
Nevertheless, they converged to feasible solutions for every (reasonable) hyperparameter value we
tried. This observation is consistent with the argument of Ramirez et al. (2025).
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Algorithm 1 Stochastic Ghost algorithm

Require: Training dataset D, constraint dataset C, initial neural network weights xg
Require: Parameters pg € (0,1), ag, &, p, 7, 8
1: for Iteration k = 0to X — 1 do

2 Sample & %1735 and ¢ P

3: Sample N ~ G(po)

4: Set J = 2N+1 -

5: Sample a mini-batch {(jj}f:l sothat {1,...,(; g P
6: Sample a mini-batch {¢; }3]:1 sothat &y, ..., &7 id Pe
7: Set X} and X2 using (13)

8: Compute d(xy) from (9)

9: Set o, = ak,1(1 — O?Ozkfl)
10: Update xpy1 = x + apd(zy)
11: end for

Algorithm 2 Stochastic Smoothed and Linearized AL Method for solving (1)

Require: Training dataset D, constraint dataset C, initial neural network weights xg
Require: Parameters pu, n, M, > 0,7,58,p >0
1: for Iteration k = 0to K — 1 do

Sample f“fvdpg and (1, (o by Pe
Yk+1 = Yr + ez, (1)
if ||yx4+1]| > M, then
Yr+1 =10
end if
ZTt1 = projy(zx — TG(k, Yk+1, 23 €, C1, (2)), where G is defined in (10)
21 = 2k + B(wr — 21)

end for

Algorithm 3 Stochastic Switching Subgradient Method

Require: Training dataset D, constraint dataset C, initial neural network weights xg € X
Require: Total number of iterations K, sequence of tolerances of infeasibility €, > 0, sequences of

stepsizes 7],’: and 7§, mini-batch size J, starting index ko for recording outputs, I = ()

1: for Iteration k = 0to K — 1 do

2: Sample a mini-batch {(; ']-]:1 sothat {1,...,(s i P

3 Sete’ () =100 ek, )

4: if@J(CL‘k) < ¢ then

5: Sample & s P¢ and generate S7 (zy, €)

6: Set 11 = projx (zx, — 1) S (xx, €)) and, if k > ko, [ = T U {k}
7: else -

8: Sample ¢ i P and generate S°(xx, ()

9: Set 41 = projy (zx — NS (xk, ¢)) and, if k > ko, I = T U {k}
10: end if

11: end for

Nk

12: Output: x, with 7 randomly sampled from [ using P(7 = k) = s
sel ’ls
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Figure 5: Train (blue) and test (orange) statistics (mean and quartiles) over time (s) on the ACS
Income dataset for each algorithm: Switching Subgradient (row 1), SSL-ALM (row 2), SGD (row
3), and Stochastic Ghost (row 4). The plots depict the mean values for loss (leftmost column) and
constraints (second to rightmost column) at each timestamp, rounded to the nearest 0.5 seconds, over
10 runs. The shaded area depicts the region between the first and third quartiles.

Figure 6: A longer run of the Stochastic Ghost algorithm in the setting of fig. 5: 180 seconds, and
rounding each second.
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