
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BENCHMARKING STOCHASTIC APPROXIMATION ALGO-
RITHMS FOR FAIRNESS-CONSTRAINED TRAINING OF
DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to train Deep Neural Networks (DNNs) with constraints is instrumental
in improving the fairness of modern machine-learning models. Many algorithms
have been analysed in recent years, and yet there is no standard, widely accepted
method for the constrained training of DNNs. In this paper, we provide a chal-
lenging benchmark of real-world large-scale fairness-constrained learning tasks,
built on top of the US Census (Folktables, Ding et al. (2021)). We point out the
theoretical challenges of such tasks and review the main approaches in stochastic
approximation algorithms. Finally, we demonstrate the use of the benchmark by im-
plementing and comparing three recently proposed, but as-of-yet unimplemented,
algorithms both in terms of optimization performance, and fairness improvement.
We will release the code of the benchmark as a Python package after peer-review.

1 INTRODUCTION

There has been a considerable interest in detecting and mitigating bias in artificial intelligence (AI)
systems, recently. Multiple legislative frameworks, including the AI Act in the European Union,
require the bias to be removed, but there is no agreement on what the correct definition of bias is or
how to remove it. A natural translation of the requirement of removing bias into the formulation
of training of deep neural network (DNN) utilizes constraints bounding the difference in empirical
risk across multiple subgroups (Chen et al., 2018; Nandwani et al., 2019; Ravi et al., 2019). Over
the past five years, there have been numerous algorithms proposed to solve convex and non-convex
empirical-risk minimization (ERM) problems subject to constraints bounding the absolute value of
empirical risk (Fang et al., 2024; Berahas et al., 2021; Curtis et al., 2024a; Oztoprak et al., 2023;
Berahas et al., 2023; Na et al., 2023a;b; Bollapragada et al., 2023; Curtis et al., 2024b; Shi et al.,
2022; Facchinei & Kungurtsev, 2023; Huang et al., 2025; Huang & Lin, 2023). Numerous other
algorithms of this kind could be construed, based on a number of design choices, including:

• sampling techniques for the ERM objective and the constraints, either the same or different;
• use of first-order or higher-order derivatives, possibly in quasi-Newton methods;
• use of globalization strategies such as filters or line search;
• use of “true” globalization strategies including random initial points and random restarts in order

to reach global minimizers.

Nevertheless, there is no single toolkit implementing the algorithms, which would allow for their
easy comparison, and there is no benchmark to test the combinations of design choices on.

In this paper, we consider the constrained ERM problem:

min
x∈Rn

E[f(x, ξ)] s.t. E[c(x, ζ)] ≤ 0, (1)

where ξ and ζ are random variables. Further, we provide an automated way of constructing the ERM
formulations out of a computation graph of a neural network defined by PyTorch or TensorFlow, the
choice of the constraints (see Table 1), and a definition of the protected subgroups to apply constraints
to. Specifically, we provide means of utilizing the US Census data via the Python package Folktables,
together with definitions of up to 5.7 billion protected subgroups. This presents a challenging
benchmark in stochastic approximation for the constrained training of deep neural networks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Particular formulations of the constraint function c to enforce fairness.

Model Our formulation

Accuracy equality |ED[groupA][ℓ(fθ(X), Y)]− ED[groupB][ℓ(fθ(X), Y)]| ≤ δ
Equal opportunity Hardt et al. (2016) |ED[groupA,Y =+][ℓ(fθ(X), Y)]− ED[groupB,Y =+][ℓ(fθ(X), Y)]| ≤ δ
Equalized odds Hardt et al. (2016)

∑
v∈{+,−} |ED[groupA,Y =v][ℓ(fθ(X), Y)]− ED[groupB,Y =v][ℓ(fθ(X), Y)]| ≤ δ

Our contributions. The contributions of this paper are:

• a literature review of algorithms subject to handling (1);
• a toolbox that (i) implements four algorithms applicable in real-world situations, and (ii) provides

an easy-to-use benchmark on real-world fairness problems;
• numerical experiments that compare these algorithms on a real-world dataset, and a comparison

with alternative approaches to fairness.

Paper structure. The rest of the paper is organized as follows. Section 2 reviews related works and
presents the relevant notions of fairness. Section 3 introduces the algorithms. Section 4 reports on
our experiments. Section 5 concludes.

2 RELATED WORK, AND BACKGROUND IN FAIRNESS

In the literature on fairness, one distinguishes among pre-processing, in-processing, and post-
processing. Pre-processing methods focus on modifying the training data to mitigate biases (Tawakuli
& Engel, 2024; Du et al., 2021). In-processing methods enforce fairness during the training process
by modifying the learning algorithm itself (Wan et al., 2023). Post-processing methods adjust the
model’s predictions after training (Kim et al., 2019). The constrained ERM approach (1) belongs to
the class of in-processing methods.

In-processing methods include several approaches. One trend consists in jointly learning a predictor
function and an adversarial agent that aims to reconstitute the subgroups from the predictor (Adel
et al., 2019; Louppe et al., 2017; Madras et al., 2018; Edwards & Storkey, 2016). Another approach
consists in adding “penalization” terms to the empirical risk term. These additional penalization
terms, commonly referred to as regularizers, promote models that are a compromise between fitting
the training data, and optimizing a fairness metric. Differentiable regularizers include, among others,
HSIC (Li et al., 2022), Fairret (Buyl et al., 2024), or Prejudice Remover (Kamishima et al., 2012).

Closer to our setting, Cotter et al. (2019) consider minimizing the empirical risk subject to the so-
called rate constraints based on the model’s prediction rates on different datasets. These rates, derived
from a dataset, give rise to non-convex, non-smooth, and large-scale inequality constraints akin to
(1). Cotter et al. (2019) argue that hard constraints, although leading to a more difficult optimization
problem, offer advantages over using a weighted sum of multiple penalization terms. Indeed, while
the choice of weights for the penalization terms may depend on the dataset, specifying one constraint
for each goal is easier for practitioners. In addition, a penalization-based model provides a predictor
that balances minimizing the data-fit term and penalties in an opaque way, whereas a constraint-based
model allows for a clearer understanding of the model design: minimizing the data-fit term subject to
“hard” fairness constraints. Rate constraints differ from those in (1) in that they are piecewise-constant,
rendering first-order methods unsuitable for solving them. We refer to the recent work of Ramirez
et al. (2025) for a detailed argument on why constraining ERM problems is preferable to penalizing
the ERM with multiple terms.

Major toolboxes for evaluating the fairness of models or for training models with fairness guarantees
include AIF360 (Bellamy et al., 2018) and FairLearn (Bird et al., 2020). Delaney et al. (2024)
compute the Pareto front of accuracy and fairness metrics for high-capacity models, and Buyl et al.
(2024) provides differentiable fairness-inducing penalization terms. We also note the recent Cooper
toolbox, closest to our setting, with Lagrangian-based methods focus (Gallego-Posada et al., 2025).

Le Quy et al. (2022) provides a detailed survey of fairness-oriented datasets, and Ding et al. (2021)
derives new datasets. The benchmark of Han et al. (2023) reviews the existence of biases in prominent
datasets, finding that “not all widely used fairness datasets stably exhibit fairness issues”, and assesses

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

the performance of a range of in-processing methods in addressing biases, focusing on differentiable
minimization only. Other benchmarks of fairness methods include Defrance et al. (2024); Fabris et al.
(2022); Pessach & Shmueli (2022); Chen et al. (2024). Statistical aspects of the fairness-constrained
Empirical Risk Minimization have only been considered recently; see e.g. Chamon et al. (2022).

The template problem (1) encompasses fairness-enforcing approaches that find applications in high-
risk domains, such as credit scoring, hiring processes, medicine and healthcare (Chen et al., 2023),
ranking and recommendation (Pitoura et al., 2022), but also in forecasting the observations of linear
dynamical systems (Zhou et al., 2023b), or in two-sided economic markets (Zhou et al., 2023a). In
addition, solving (1) is of interest in other fields, such as compression of neural networks (Chen
et al., 2018), improving statistical performance of neural networks (Nandwani et al., 2019; Ravi et al.,
2019), or the training of neural networks with constraints on the Lipschitz bound (Pauli et al., 2021).
We note that all the aforementioned methodologies feature large-scale constraints.

Deep neural networks (DNNs). Consider a dataset of N observations D = {(Xi, Yi), i =
1, ..., N}. We seek some function fθ such that fθ(Xi) ≈ Yi. A typical formulation of this task is the
following regression problem:

min
θ∈Rn

1

N

N∑
i=1

ℓ(fθ(Xi), Yi) +R(θ). (2)

Here, ℓ : R× R → R is a loss function, such as the logistic loss ℓ(y; z) = log(1 + e−yz), the hinge
loss ℓ(y; z) = max{0, 1 − yz}, the absolute deviation loss ℓ(y; z) = |y − z|, or the square loss
ℓ(y; z) = 1

2 (y − z)2. The term R is a regularizer, and fθ is a deep neural network (DNN) of depth L
with parameters θ. The DNN fθ is defined recursively, for some input X , as

a0 = X, ai = ρi(Vi(θ)ai−1), for every i = 1, . . . , L, fθ(X) = aL, (3)

where Vi(·) are linear maps into the space of matrices, and ρi are activation functions applied
coordinate-wise, such as ReLU max(0, t), quadratics t2, hinge losses max{0, t}, and SoftPlus
log(1 + et). A dataset D is described by attributes (or features), such as age, income, gender, etc.
The attribute which the DNN is trained to predict is called the class attribute. We denote the class
attribute by Y , whereas the predicted value given by the DNN is denoted by Ŷ . Both Y and Ŷ are
binary and take values in {+,−}.

Fairness-aware learning applied to DNNs. The goal of this approach is to reduce discriminatory
behavior in the predictions of a DNN across different demographic groups (e.g., male vs. female).
The demographic groups are also reffered to as subgroups. The attributes such as race or gender
which must be handled cautiously are called protected. We denote by S the protected attribute or more
generally the set of groups defined by multiple protected attributes, s1, . . . , sm its possible values or
the indicator of membership in the groups, and D[si] the observations in D such that S = si. A way
to impose fairness on the learned predictor is to equip (2) with suitable constraints. Some possible
constraint choices are shown in Table 1. Choosing loss difference bound as the constraint, denoting
ℓsi(θ) = 1

|D[si]|
∑

X,Y ∈D[si]
ℓ(fθ(X), Y) for i = 1, . . . ,m, and setting δ > 0 yields formulation:

min
θ∈Rn

1

N

N∑
i=1

ℓ(fθ(Xi), Yi) +R(θ)

s.t. − δ ≤ ℓsi(θ)− 1

m

m∑
j=1

ℓsj (θ) ≤ δ, i = 1, . . . ,m.

(4)

Bounding the distance between subgroup losses yields m constraints. Other formulations are
possible, such as bounding the distance between every pair of subgroup, providing simpler individual
constraints, but in greater number (m(m + 1)/2). Formulation (4) extends to several protected
attributes by adding the corresponding set of equations; we omit this direct generalisation for clarity.
Note that we employ constraints based on the loss function, as it is a continuous function, amenable
to nonsmooth nonconvex optimization. For constraints involving directly discontinuous quantities
such as accuracies and rates, see Cotter et al. (2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 2: Three elementary notions of fairness

Independence Separation Sufficiency

1
m

∑m
i=1

∣∣∣P ind
i − 1

m

∑
j P

ind
j

∣∣∣ 1
2

∑
v∈{+,−}

1
m

∑m
i=1

∣∣∣P Sp
i,v − 1

m

∑
j P

Sp
j,v

∣∣∣ 1
2

∑
v∈{+,−}

1
m

∑m
i=1

∣∣∣P Sf
i,v − 1

m

∑
j P

Sf
j,v

∣∣∣

Fairness metrics. There exist tens of fairness metrics (Verma & Rubin, 2018). However, Barocas
et al. (2023, Ch. 3) pointed out that most fairness metrics are combinations of three elementary
fairness criteria: independence, separation, and sufficiency. These criteria cannot be minimized
simultaneously, and there is a trade-off between attaining the elementary fairness metrics and the
prediction accuracy, i.e., the probability that the predicted value is equal to the actual value. Thus,
we seek an optimal trade-off between attaining the fairness metrics and minimizing the prediction
inaccuracy. We next recall the definitions of these three relevent metrics, following Barocas et al.
(2023), and provide the formula for computing them in Table 2.

Independence (Ind) This fairness criterion requires the prediction Ŷ to be statistically independent
of the protected attribute S. Equivalent definitions of independence for a binary classifier Ŷ are
referred to as statistical parity (SP), demographic parity, and group fairness. Independence is the
simplest criterion to work with, both mathematically and algorithmically. In a binary classification
task, independence implies the equality of P ind

i = P (Ŷ = + | S = si) for all i = 1, . . . ,m.

Separation (Sp) Unlike independence, the separation criterion requires the prediction Ŷ to be
statistically independent of the protected attribute S, given the true label Y . The separation criterion
also appears under the name Equalized odds (EO). In a binary classification task, the separation
criterion requires that all groups experience the same true negative rate and the same true positive rate.
Formally, we require the equality of P Sp

i,v = P (Ŷ = + | S = si, Y = v) for every i = 1, . . . ,m, and
v ∈ {+,−}.

Sufficiency (Sf) The sufficiency criterion is satisfied if the true label Y is statistically independent
of the protected attribute S, given the prediction Ŷ . In a binary classification task, the sufficiency
criterion requires a parity of positive and negative predictive values across the groups. Formally, we
require the equality of P Sf

v,s = P (Y = + | Ŷ = v, S = s), for every i = 1, . . . ,m, and v ∈ {+,−}.

3 ALGORITHMS

We recall that we consider the optimization problem

min
x∈Rn

F (x) s.t. C(x) ≤ 0, (5)

where the functions F : Rn → R and C : Rn → Rm are defined as expectations of functions f and
c, which depend on random variables ξ and ζ, respectively. Solving (5) has the following challenges:

• large-scale objective and constraint functions, which require sampling schemes,
• the necessity of incorporating inequality constraints, not merely equality constraints (see fairness

formulations in Table 1),
• the necessity to cope with the nonconvexity and nonsmoothness of F and C, due to the presence

of neural networks.

In this section, we identify the algorithms that address these challenges most precisely. However, we
note that there exists currently no algorithm with guarantees for such a general setting.

Recalls and notation. We denote the projection of a point x onto a set X by projX (x) =
argminv∈X ∥x− v∥2. We denote by N ∼ G(p0) sampling a random variable from the geometric
distribution with a parameter p0, i.e., the probability that N = n equals (1− p0)

np0 for n ≥ 0. We
distinguish between the random variable ξ associated with the objective function and the random
variable ζ associated with the constraint function. Their probability distributions are denoted by
Pξ and Pζ . For an integer J ∈ N, a set {ξj}Jj=1 of independent and identically distributed random

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 3: Assumptions on objective and constraint functions, F and C, which allow for theoretical
convergence proofs.

Objective function F Constraint function C

Algorithm st
oc

ha
st

ic

w
ea

kl
y

co
nv

ex

C1
w

ith
L

ip
sc

hi
tz
∇
F

ta
m

e
lo

c.
L

ip
sc

hi
tz

st
oc

ha
st

ic

C
(x
)
=

0

C
(x
)
=

0
an

d
C
(x
)
≤

0

lin
ea

r

w
ea

kl
y

co
nv

ex

C1
w

ith
L

ip
sc

hi
tz
∇
C

ta
m

e
lo

c.
L

ip
sc

hi
tz

SGD ✓ (✓) (✓) ✓

Berahas et al. (2023) Fang et al. (2024) Curtis et al. (2024a) ✓ – ✓ – – ✓ – – – ✓ –
Na et al. (2023a) ✓ – ✓(C3) – – ✓ – – – ✓(C3) –
Shi et al. (2022) Curtis et al. (2024b) ✓ – ✓ – – (✓) ✓ – – ✓ –
Na et al. (2023b) ✓ – ✓(C2) – – (✓) ✓ – – ✓(C2) –
Bollapragada et al. (2023) ✓ – ✓(+ cvx) – – ✓ – ✓ – – –
Oztoprak et al. (2023) ✓ – ✓ – ✓ ✓ – – – ✓ –
SSL-ALM Huang et al. (2025) ✓ – ✓ – ✓ (✓) ✓ ✓ – – –
Stoch. Ghost Facchinei & Kungurtsev (2023) ✓ – ✓ – ✓ (✓) ✓ – – ✓ –
Stoch. Switch. Subg. Huang & Lin (2023) ✓ ✓ – – ✓ (✓) ✓ – ✓ – –

variables ξ1, . . . , ξJ
iid∼ Pξ is called a mini-batch. Inspired by Na et al. (2023a), we use the following

notation for the stochastic estimates computed from a mini-batch of size J :

∇J
f(x) = 1

J

J∑
j=1

∇f(x, ξj), c
J
(x) = 1

J

J∑
j=1

c(x, ζj), ∇J
c(x) = 1

J

J∑
j=1

∇c(x, ζj). (6)

3.1 REVIEW OF METHODS FOR CONSTRAINED ERM

We compare recent constrained optimization algorithms considering a stochastic objective function
in Table 3. We note that most of them do not consider the case of stochastic constraints. Among
those which do consider stochastic constraints, only three admit inequality constraints. Moreover,
with the exception of Huang & Lin (2023), all the algorithms in Table 3 assume F to be at least C1,
which makes addressing the challenge of nonsmoothness of F infeasible. Davis et al. (2018) leads
us to conclude that assuming the objective and constraint functions to be tame and locally Lipschitz
is a suitable requirement for solving (5) with theoretical guarantees of convergence. At this point,
however, no such algorithm exists, to the best of our knowledge.

Consequently, we consider the practical performance of the algorithms that address the challenges of
solving (5) most closely: Stochastic Ghost, SSL-ALM, and Stochastic Switching Subgradient.

3.2 STOCHASTIC GHOST METHOD (STGH)

Facchinei & Kungurtsev (2023) propose the Stochastic Ghost method, that combines a deterministic
method for solving (1) (Facchinei et al., 2021) with a stochastic sampling approch for nonlinear
maps (Blanchet et al., 2019). The deterministic method of Facchinei et al. (2021) consists in solving
subproblem (7) to obtain a direction d, and then to preform a line search. Here, e ∈ Rm is a vector
with all elements equal to one, τ and β > 0 are user-prescribed constants, and κk is defined as
a certain convex combination of optimization subproblems related to C and ∇C. The definition
of κk enables to expand the feasibility region so that (7) is always feasible. As the problem (1)
is stochastic, the subproblem (7) is modified to a stochastic version (8), using the notation in (6):

mind ∇F (xk)
⊤d+ τ

2∥d∥
2,

s.t. C(xk) +∇C(xk)
⊤d ≤ κke,

∥d∥∞ ≤ β,
(7)

mind ∇J
f(xk)

⊤d+ τ
2∥d∥

2,

s.t. c
J
(xk) +∇J

c(xk)
⊤d ≤ κk

J
e,

∥d∥∞ ≤ β.

(8)

In the stochastic setting (8), an unbiased estimate d(xk) of the line search direction d is computed us-
ing four particular mini-batches as follows. To facilitate comprehension, we denote XJ

k = {Xk,j}Jj=1

a mini-batch of size J with the j-th element Xk,j = (∇f(xk, ξk,j), c(xk, ζk,j),∇c(xk, ζk,j)). First,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

we sample a random variable N ∼ G(p0) from the geometric distribution. Then we sample the mini-
batches X1

k and X2N+1

k and we partition the mini-batch X2N+1

k of size 2N+1 into two mini-batches
odd(X2N+1

k) and even(X2N+1

k) of size 2N . Finally, we solve (8) for each of the four mini-batches,
denoting by d(xk;X

J
k) the solution of (8) for the corresponding mini-batch XJ

k . We obtain

d(xk) =
d(xk;X

2N+1

k)− 1
2

(
d(xk; odd(X

2N+1

k)) + d(xk; even(X
2N+1

k))
)

(1− p0)Np0
+ d(xk;X

1
k). (9)

An update between the iterations xk and xk+1 is then computed as xk+1 = xk +αkd(xk), where the
deterministic stepsize αk should be square-summable

∑∞
k=1 α

2
k < ∞ but not summable

∑∞
k=1 αk =

∞. For more details, see Algorithm 1 (Appendix C).

3.3 STOCHASTIC SMOOTHED AND LINEARIZED AL METHOD (SSL-ALM)

The Stochastic Smoothed and Linearized AL Method (SSL-ALM) was described in Huang et al.
(2025) for optimization problems with stochastic linear constraints. Although problem (1) has non-
linear inequality constraints, we use the SSL-ALM due to the lack of algorithms in the literature
dealing with stochastic non-linear constraints; see Table 3. The transition between equality and
inequality constraints is handled with slack variables. Following the structure of Huang et al. (2025),
we minimize over the set X = Rn × Rm

≥0. The method is based on the augmented Lagrangian
(AL) function Lρ(x, y) = F (x) + y⊤C(x) + ρ

2∥C(x)∥2; see e.g., (Bertsekas & Rheinboldt, 2014).
Adding a smoothing term with an additional variable z ∈ Rn yields the proximal AL function

Kρ,µ(x, y, z) = Lρ(x, y) +
µ

2
∥x− z∥2.

The SSL-ALM method was originally proposed in Huang et al. (2025) where it is interpreted as an
inexact gradient descent step on the Moreau envelope. An important property of the Moreau envelope
is that its stationary points coincide with those of the original function.

The strength of this method is that, as opposed to the Stochastic Ghost method, it does not use large
mini-batch sizes. In each iteration, we sample ξ

iid∼ Pξ to evaluate the objective and ζ1, ζ2
iid∼ Pζ to

evaluate the constraint function and its Jacobian matrix, respectively. The function

G(x, y, z; ξ, ζ1, ζ2) = ∇f(x, ξ) +∇c(x, ζ1)
⊤y + ρ∇c(x, ζ1)

⊤c(x, ζ2) + µ(x− z) (10)

is defined so that, in iteration k, Eξ,ζ1,ζ2 [G(xk, yk+1, zk; ξ, ζ1, ζ2)] = ∇Kρ,µ(xk, yk+1, zk). Denot-
ing η, τ , and β positive parameters, the update is

yk+1 = yk + ηc(x, ζ1),

xk+1 = projX (xk − τG(xk, yk+1, zk; ξ, ζ1, ζ2)),

zk+1 = zk + β(xk − zk).

(11)

For more details, see Algorithm 2 (Appendix C).

3.4 STOCHASTIC SWITCHING SUBGRADIENT METHOD (SSW)

The Stochastic Switching Subgradient method was described in Huang & Lin (2023) for optimization
over a closed convex set X ⊂ Rd which is easy to project on. It allows for weakly-convex, possibly
nonsmooth, objective and constraint functions. They consider subgradients instead of gradients.

The algorithm relies on a prescribed sequence of infeasibility tolerances ϵk and of stepsizes ηfk and

ηck. At iteration k, we sample ζ1, . . . , ζJ
iid∼ Pζ to compute c

J
(xk). If cJ(xk) is smaller than ϵk, we

sample ξ
iid∼ Pξ and update using a stochastic estimate Sf (xk, ξ) of a subgradient of F :

xk+1 = projX (xk − ηfkS
f (xk, ξ)).

If not, we sample ζ
iid∼ Pζ and update using a stochastic estimate Sc(xk, ζ) of a subgradient of C:

xk+1 = projX (xk − ηckS
c(xk, ζ)).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

In either case, the updates are only saved starting from a prescribed index k0 and the final output is
sampled randomly from the saved updates. The algorithm presented here is slightly more general
than the one presented in Huang & Lin (2023): we allow for different stepsizes for the objective and
the constraint update, while the original method employs equal stepsizes ηfk = ηck. For more details,
see Algorithm 3 (Appendix C).

4 EXPERIMENTAL EVALUATION

In this section, we illustrate the presented algorithms on a real-world instance of the ACS dataset,
comparing how they fare with optimization and fairness metrics.

4.1 DATASET FOR FAIR ML

Ding et al. (2021) proposed a large-scale dataset for fair Machine Learning, based on the ACS PUMS
data sample (American Community Survey Public Use Microdata Sample). The ACS survey is sent
annually to approximately 3.5 million US households in order to gather information on features such
as ancestry, citizenship, education, employment, or income. Therefore, it has the potential to give rise
to large-scale learning and optimization problems.

In our experiments, we use the ACSIncome dataset, and choose the binary classification task of
predicting whether an individual’s income is over $50,000.

4.2 EXPERIMENTS

Numerical setup. Experiments are conducted on an Asus Zenbook UX535 laptop with AMD
Ryzen 7 5800H CPU, and 16GB RAM, using Python with the PyTorch package (Paszke et al., 2019).

4.2.1 BINARY PROTECTED ATTRIBUTE

Dataset and problems We use the ACSIncome dataset over the state of Oklahoma.The dataset
contains 9 features and 17,917 data points, and may be accessed via the Python package Folktables.
We choose race (RAC1P) as the protected attribute. In the original dataset, it is a categorical variable
with 9 values. For the purposes of this experiment, we binarize it to obtain the non-protected group of
“white” people and the protected group of “non-white” people. The dataset is split randomly into train
(80%, 14,333 points) validation (10%, 1,792), and test (10%, 1.792 points) subsets and it is stratified
with respect to the protected attribute, i.e., the proportion of “white” and “non-white” samples in the
training, validation, and test sets is equivalent to that in the full dataset (30.8% of positive labels in
group “white”, 20.7% in the group “non-white”). The protected attributes are then removed from the
data so that the model cannot learn from them directly. The data is normalized using Scikit-Learn
StandardScaler.

Note that ACSIncome is a real-world dataset for which ERM-based predictors without fairness
safeguards are known to learn biases (Han et al., 2023). Accordingly, Table 4 (line 1) shows that an
ERM predictor without fairness safeguards has poor fairness metrics; see also Figure 4.

Problems. We consider the constrained ERM problem (4) without any regularization R = 0. As
our data is divided into just two groups, we constrain the difference between the loss values ℓsi

directly, instead of taking the average. In addition, we consider as baselines the ERM problem (2)
without any regularization, R = 0, and with a fairness inducing regularizer R that promotes small
difference in accuracy between groups, provided by the Fairret library (Buyl et al., 2024). In all
problems, we take as loss function the Binary Cross Entropy with Logits Loss

ℓ(fθ(Xi), Yi) = −Yi · log σ(fθ(Xi))− (1− Yi) · log(1− σ(fθ(Xi))), (12)

where σ(z) = 1
1+e−z is the sigmoid function, and the prediction function fθ is a neural network with

2 interconnected hidden layers of sizes 64 and 32 and ReLU activation, with a total of 194 parameters.

Algorithms and parameters. We assess the performance of four algorithms for solving the
constrained problem (4):

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 1: Train (blue) and test (orange) statistics over time (s) on the ACS Income dataset for each
algorithm: SGD (column 1), fairret-regularized SGD (column 2), SSL-ALM (column 3), ALM
(column 4) Switching Subgradient (column 5), and Stochastic Ghost (column 6). The plots depict
the mean values for loss (first row) and the constraint at each timestamp, rounded to the nearest 0.5
seconds, over 10 runs. The shaded area depicts the region between the first and third quartiles.

• Stochastic Ghost (StGh) (Sec. 3.2 - parameters α0 = 0.05, ρ = 0.8, τ = 1, β = 20, λ = 0.5,
α̂ = 0.05)

• SSL-ALM (Sec. 3.3 - parameters µ = 2.0, ρ = 1.0, τ = 0.01, η = 0.05, β = 0.5, My = 10),
• plain Augmented Lagrangian Method ALM (Sec. 3.3, smoothing term removed µ = 0, otherwise

the same setting as SSL-ALM),
• Stochastic Switching Subgradient (SSw) (Sec. 3.4 - ηf = 0.05, ηc = 0.04, ϵ0 = 0.01, ϵk = ϵ0√

k+1

).

The hyperparameter values were chosen by grid-search on a validation set; we report the performance
of the algorithms under different hyperparameter choices in appendix B.

We also provide the behavior of SGD for solving the ERM problem, both with no fairness safeguards
(SGD), and with fairness regularization on accuracy as provided by the Fairret library (Buyl et al.,
2024) (SGD-Fairret). These methods serve as baselines. When estimating the constraints, we sample
an equal number of data points for every subgroup.

Optimization performance. Figure 1 present the evolution of loss and constraint values over the
train and test datasets for the four algorithms addressing the constrained problem (columns 3–6), as
well as for the two baselines: SGD without fairness (col. 1), and SGD with fairness regularization
(col. 2). Each algorithm is run 10 times, and the plots display the mean and quartiles values.

To a certain extent, the four algorithms (col. 3–6) succeed in minimizing the loss and satisfying the
constraints on the train set. The AL-based methods (col. 3 and 4) demonstrate a better behavior
compared to StGh (col. 5) and SSw (col. 6). Indeed, StGh exhibits higher variability in both loss
and constraint values. SSw satisfies the constraint the best out of all methods, but fails to minimize
the objective function to the extent that other algorithms do. See appendix B for exploration of the
algorithms’ behaviour under different hyperparameter choices.

SGD (col. 1) exhibits the lowest variability in the trajectory and minimizes the loss in least time,
but, as expected, does not satisfy the constraints. Fairret-regularized SGD (col. 2) minimizes the
objective function slower than some constrained algorithms, while maintaining a small, but increasing,
constraint violation. Note that the penalty parameter was optimized for constraint satisfaction; other
penalty values would allow a faster minimization of the objective at the cost of higher constraint
violation; see appendix B more for details. This observation is consistent with Ramirez et al. (2025).

The ALM and SSL-ALM schemes satisfy the constraints on the train set. On the test set, however,
they are slightly biased towards negative values. Such bias is expected on unseen data and reflects the
generalization behavior of fairness-constrained estimators. This is beyond the scope of the current
work; see e.g. Chamon et al. (2022).

Fairness performance. Table 4 displays the fairness metrics presented in Section 2: independence
(Ind), separation (Sp), and sufficiency (Sf), along with inaccuracy (Ina). The mean value and standard
deviation over 10 runs are presented for the four fairness-constrained models and the two baselines,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: Fairness metrics (independence, separation, sufficiency), inaccuracy, and Wasserstein
distances between groups (Wd) for the four constrained estimators and the two baselines.

Train Test

Algname Ind Sp Ina Sf Wd Ind Sp Ina Sf Wd

SGD 0,095±0,003 0,124±0,006 0,186±0,023 0,065±0,004 0,062±0,012 0,098±0,005 0,155±0,015 0,209±0,019 0,061±0,005 0,183±0,015

StGh 0,082±0,020 0,103±0,052 0,230±0,025 0,048±0,022 0,037±0,038 0,086±0,024 0,123±0,059 0,239±0,020 0,057±0,021 0,161±0,053

ALM 0,083±0,009 0,112±0,024 0,210±0,010 0,057±0,011 0,063±0,021 0,058±0,012 0,114±0,014 0,244±0,007 0,221±0,017 0,158±0,027

SSL-ALM 0,074±0,005 0,091±0,010 0,208±0,009 0,050±0,009 0,054±0,014 0,083±0,006 0,108±0,018 0,223±0,013 0,046±0,012 0,170±0,033

SSw 0,096±0,010 0,139±0,011 0,191±0,020 0,064±0,007 0,001±0,001 0,103±0,018 0,168±0,036 0,212±0,020 0,066±0,019 0,018±0,005

SGD-Fairret 0,091±0,011 0,128±0,016 0,190±0,020 0,059±0,010 0,004±0,003 0,091±0,016 0,141±0,028 0,211±0,019 0,056±0,014 0,059±0,021

both on train and test sets. For all metrics, smaller is better. We provide additional details in
appendices A and B.1.

Among the four fairness-constrained models, StGh performs best in terms of sufficiency, but worst in
terms of accuracy. Overall, the constrained optimization models improve on the fairness metrics of
the unconstrained SGD and the regularized SGD-Fairret models. SSw has both fairness metrics and
inaccurary comparable to that of the unconstrained SGD model. This is consistent with the observation
that the optimization method, with our choice of parameters, favored minimizing the objective over
satisfying the constraints. The ALM and SSL-ALM methods provide the best compromise: they
improve independence, separation, and sufficiency relative to the SGD model, while moderately
degrading accuracy. SGD-Fairret slightly improves sufficiency relative to the SGD model. Similar
observations hold for metrics on the test set.

4.2.2 MULTI-VALUED PROTECTED ATTRIBUTE

Dataset and problems. We again consider the dataset ACSIncome, but over the state of Virginia,
and choose Mariage as the protected attribute. This attribute takes fives values, as opposed to the
binary attribute setup of section 4.2.1.

We consider three optimization problems as approaches to tackle the learning task. First, we consider
the constrained learning problem as described in eq. (4), with m = 5. Second, we consider the
unconstrained, but penalized, problem

min
θ∈Rn

1

N

N∑
i=1

ℓ(fθ(Xi), Yi) +R(θ) + λ

m∑
i=1

∣∣∣∣∣∣ℓsi(θ)− 1

m

m∑
j=1

ℓsj (θ)

∣∣∣∣∣∣ , (13)

where λ is a penalization weight. Third, we consider the unconstrained and unpenalized problem, as
described in eq. (2), for comparison.

Algorithms and parameters. We solve the constrained learning problem (4) with Stochastic Ghost,
Switching Subgradient, and SSL-ALM. We solve the baseline penalized problem (13) and the basic
unconstrained unpenalized problem (2) using SGD.

The hyperparameters for each algorithm were tuned on the validation set; we picked the values
resulting in lowest loss and constraint satisfaction after 60 seconds. Our hyperparameter choices are:

• Regularized SGD: λ = 0.4.
• SSL-ALM: τ = η = 0.01, β = 0.5, µ = 2, ρ = 1.
• Stochastic Ghost: β = 1.0, γ0 = 0.005, ζ = 0.05, ρ = 0.1, τ = 1, λ = 0.5.
• SSw: ηf = 0.05 constant, ηck diminishing with ηc0 = 0.25, ηck =

ηc
k−1√
k
, k > 0; constraint tolerance

ϵ diminishing with ϵ0 = 0.01, ϵk = ϵk−1√
k
, k > 0.

Optimization performance. We report in Figure 2 the evolution of the mean and quartiles of the
train and test values over 10 runs. SGD on the unconstrained and unpenalized problem (2) (first row)
converges to a model such that the constraint are consistently above the constraint bound for three
values of the protected attribute (Wid, Div, and Nev). SGD on the penalized problem (second row)
manages to meet all constraints for the training set, but constraint Div on the test set is eventually
violated. The three constrained methods minimize function values while keeping with the constraint
bounds. The performance of SGD on penalized problem and the three constrained algorithms is
comparable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 2: Train (blue) and test (orange) statistics over time (s) on the ACS Income dataset for
each algorithm: SGD (column 1), regularized SGD (column 2), SSL-ALM (column 3), Switching
Subgradient (column 4), and Stochastic Ghost (column 5). The plots depict the mean values for loss
(first row) and constraints (second to last row) at each timestamp, rounded to the nearest 0.5 seconds,
over 10 runs. The shaded area depicts the region between the first and third quartiles.

Note that the penalized problem required consequent preliminary computations in order to tune the
penalization parameter λ. We found that the performance of the estimator was sensitive to the value
of λ in two aspects: (i) on the difficulty of the optimization problem for SGD, and (ii) in the trade-off
between minimization of the empirical risk and satisfaction of constraints; see appendix B.2 for
details. In contrast, the algorithms for constrained minimization showed (i) a smaller sensitivity
to their hyperparameters, particularly so for SSL-ALM, and (ii) a controllable trade-off between
minimization of the empirical risk, and constraint satisfaction; again, see appendix B.2 for details.
This observation is consistent with the argument of Ramirez et al. (2025).

5 CONCLUSION

To the best of our knowledge, this paper provides the first benchmark for assessing the performance
of optimization methods on real-world instances of fairness constrained training of models. We
highlight the challenges of this approach, namely that objective and constraints are non-convex,
non-smooth, and large-scale, and review the performance of four practical algorithms.

LIMITATIONS

Our work identifies that there is currently no algorithm with guarantees for solving the fairness
constrained problem. Above all, we hope that this work, along with the Python toolbox for easy
benchmarking of new optimization methods, will stimulate further interest in this topic. Also,
we caution readers that the method present here is not a silver-bullet that handles all biases and
ethical issues of training ML models. In particular, care must be taken that fair ML is part of a

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

interdisciplinary pipeline that integrates the specifics of the use-case, and that it does not serve as an
excuse for pursuing Business-As-Usual policies that fail to tackle ethical issues (Balayn et al., 2023;
Wachter et al., 2021).

REPRODUCIBILITY

Code to reproduce the experiments is provided in the Supplementary Material. This includes a readme
file with instructions to reproduce experiments. Details on the computing environment are provided
in Section 4.

REFERENCES

Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network adversarial
fairness. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 2412–
2420, 2019.

Agathe Balayn, Mireia Yurrita, Jie Yang, and Ujwal Gadiraju. “✓ Fairness Toolkits, A Checkbox
Culture?” On the Factors that Fragment Developer Practices in Handling Algorithmic Harms. In
Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’23, pp. 482–495,
New York, NY, USA, August 2023. Association for Computing Machinery. ISBN 9798400702310.
doi: 10.1145/3600211.3604674.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limitations
and Opportunities. MIT Press, 2023.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar,
Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder
Singh, Kush R. Varshney, and Yunfeng Zhang. AI Fairness 360: An Extensible Toolkit for
Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias, October 2018.

Albert Berahas, Frank E. Curtis, Daniel Robinson, and Baoyu Zhou. Sequential quadratic optimization
for nonlinear equality constrained stochastic optimization. SIAM Journal on Optimization, 31:
1352–1379, 05 2021. doi: 10.1137/20M1354556.

Albert S. Berahas, Frank E. Curtis, Michael J. O’Neill, and Daniel P. Robinson. A stochastic
sequential quadratic optimization algorithm for nonlinear equality constrained optimization with
rank-deficient jacobians, 2023. URL https://arxiv.org/abs/2106.13015.

D.P. Bertsekas and W. Rheinboldt. Constrained Optimization and Lagrange Multiplier Methods.
Computer science and applied mathematics. Academic Press, 2014. ISBN 9781483260471.

Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan, Mehrnoosh
Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing and improving
fairness in AI. Technical Report MSR-TR-2020-32, Microsoft, May 2020.

José H. Blanchet, Peter W. Glynn, and Yanan Pei. Unbiased multilevel monte carlo: Stochastic
optimization, steady-state simulation, quantiles, and other applications. arXiv: Statistics Theory,
2019. URL https://api.semanticscholar.org/CorpusID:127952798.

Raghu Bollapragada, Cem Karamanli, Brendan Keith, Boyan Lazarov, Socratis Petrides, and Jingyi
Wang. An adaptive sampling augmented lagrangian method for stochastic optimization with
deterministic constraints. Computers and Mathematics with Applications, 149:239–258, 2023.
ISSN 0898-1221. doi: https://doi.org/10.1016/j.camwa.2023.09.014. URL https://www.
sciencedirect.com/science/article/pii/S0898122123003991.

Maarten Buyl, Marybeth Defrance, and Tijl De Bie. fairret: a framework for differentiable fairness
regularization terms. In International Conference on Learning Representations, 2024.

Luiz FO Chamon, Santiago Paternain, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
learning with non-convex losses. IEEE Transactions on Information Theory, 69(3):1739–1760,
2022.

11

https://arxiv.org/abs/2106.13015
https://api.semanticscholar.org/CorpusID:127952798
https://www.sciencedirect.com/science/article/pii/S0898122123003991
https://www.sciencedirect.com/science/article/pii/S0898122123003991

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Changan Chen, Frederick Tung, Naveen Vedula, and Greg Mori. Constraint-aware deep neural
network compression. In Computer Vision – ECCV 2018: 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part VIII, pp. 409–424, Berlin, Heidelberg, 2018.
Springer-Verlag. ISBN 978-3-030-01236-6. doi: 10.1007/978-3-030-01237-3_25. URL https:
//doi.org/10.1007/978-3-030-01237-3_25.

Richard J. Chen, Judy J. Wang, Drew F. K. Williamson, Tiffany Y. Chen, Jana Lipkova, Ming Y. Lu,
Sharifa Sahai, and Faisal Mahmood. Algorithmic fairness in artificial intelligence for medicine and
healthcare. Nature Biomedical Engineering, 7(6):719–742, Jun 2023. ISSN 2157-846X. doi: 10.
1038/s41551-023-01056-8. URL https://doi.org/10.1038/s41551-023-01056-8.

Zhenpeng Chen, Jie M. Zhang, Max Hort, Mark Harman, and Federica Sarro. Fairness testing: A
comprehensive survey and analysis of trends. ACM Trans. Softw. Eng. Methodol., 33(5), June 2024.
ISSN 1049-331X. doi: 10.1145/3652155. URL https://doi.org/10.1145/3652155.

Andrew Cotter, Heinrich Jiang, Serena Wang, Taman Narayan, Seungil You, Karthik Sridharan, and
Maya R. Gupta. Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 20(172):1–59, 2019.

Frank E. Curtis, Michael J. O’Neill, and Daniel P. Robinson. Worst-case complexity of an sqp
method for nonlinear equality constrained stochastic optimization. Mathematical Programming,
205(1):431–483, May 2024a. ISSN 1436-4646. doi: 10.1007/s10107-023-01981-1. URL
https://doi.org/10.1007/s10107-023-01981-1.

Frank E. Curtis, Daniel P. Robinson, and Baoyu Zhou. Sequential quadratic optimization for
stochastic optimization with deterministic nonlinear inequality and equality constraints. SIAM
Journal on Optimization, 34(4):3592–3622, 2024b. doi: 10.1137/23M1556149. URL https:
//doi.org/10.1137/23M1556149.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D. Lee. Stochastic subgradient method
converges on tame functions, 2018. URL https://arxiv.org/abs/1804.07795.

MaryBeth Defrance, Maarten Buyl, and Tijl De Bie. Abcfair: an adaptable benchmark approach for
comparing fairness methods, 2024. URL https://arxiv.org/abs/2409.16965.

Eoin Delaney, Zihao Fu, Sandra Wachter, Brent Mittelstadt, and Chris Russell. OxonFair: A Flexible
Toolkit for Algorithmic Fairness, November 2024.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. Advances in Neural Information Processing Systems, 34, 2021.

Mengnan Du, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Hassan Awadallah,
and Xia Hu. Fairness via representation neutralization. In Neurips, 2021.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary, 2016. URL
https://arxiv.org/abs/1511.05897.

Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and Gian Antonio Susto. Algorithmic
fairness datasets: the story so far. Data Mining and Knowledge Discovery, 36(6):2074–2152, Nov
2022. ISSN 1573-756X. doi: 10.1007/s10618-022-00854-z. URL https://doi.org/10.
1007/s10618-022-00854-z.

Francisco Facchinei and Vyacheslav Kungurtsev. Stochastic approximation for expectation objective
and expectation inequality-constrained nonconvex optimization, 2023. URL https://arxiv.
org/abs/2307.02943.

Francisco Facchinei, Vyacheslav Kungurtsev, Lorenzo Lampariello, and Gesualdo Scutari. Ghost
penalties in nonconvex constrained optimization: Diminishing stepsizes and iteration complexity.
Mathematics of Operations Research, 46(2):595–627, 2021. doi: 10.1287/moor.2020.1079. URL
https://doi.org/10.1287/moor.2020.1079.

12

https://doi.org/10.1007/978-3-030-01237-3_25
https://doi.org/10.1007/978-3-030-01237-3_25
https://doi.org/10.1038/s41551-023-01056-8
https://doi.org/10.1145/3652155
https://doi.org/10.1007/s10107-023-01981-1
https://doi.org/10.1137/23M1556149
https://doi.org/10.1137/23M1556149
https://arxiv.org/abs/1804.07795
https://arxiv.org/abs/2409.16965
https://arxiv.org/abs/1511.05897
https://doi.org/10.1007/s10618-022-00854-z
https://doi.org/10.1007/s10618-022-00854-z
https://arxiv.org/abs/2307.02943
https://arxiv.org/abs/2307.02943
https://doi.org/10.1287/moor.2020.1079

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yuchen Fang, Sen Na, Michael W. Mahoney, and Mladen Kolar. Fully stochastic trust-region
sequential quadratic programming for equality-constrained optimization problems. SIAM Journal
on Optimization, 34(2):2007–2037, 2024. doi: 10.1137/22M1537862. URL https://doi.
org/10.1137/22M1537862.

Jose Gallego-Posada, Juan Ramirez, Meraj Hashemizadeh, and Simon Lacoste-Julien. Cooper: A
Library for Constrained Optimization in Deep Learning, April 2025.

Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han Zhao, Na Zou, and Xia Hu. FFB: A Fair
Fairness Benchmark for In-Processing Group Fairness Methods. In The Twelfth International
Conference on Learning Representations, October 2023.

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning. In Pro-
ceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16,
pp. 3323–3331, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Ruichuan Huang, Jiawei Zhang, and Ahmet Alacaoglu. Stochastic smoothed primal-dual algorithms
for nonconvex optimization with linear inequality constraints, 2025. URL https://arxiv.
org/abs/2504.07607.

Yankun Huang and Qihang Lin. Oracle complexity of single-loop switching subgradient methods for
non-smooth weakly convex functional constrained optimization, 2023. URL https://arxiv.
org/abs/2301.13314.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-Aware Classifier
with Prejudice Remover Regularizer. In Peter A. Flach, Tijl De Bie, and Nello Cristianini (eds.),
Machine Learning and Knowledge Discovery in Databases, pp. 35–50, Berlin, Heidelberg, 2012.
Springer. ISBN 978-3-642-33486-3. doi: 10.1007/978-3-642-33486-3_3.

Michael P. Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’19, pp. 247–254, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450363242. doi: 10.1145/3306618.3314287. URL https://doi.org/
10.1145/3306618.3314287.

Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey on datasets
for fairness-aware machine learning. WIREs Data Mining and Knowledge Discovery, 12(3), 03
2022. ISSN 1942-4795. doi: 10.1002/widm.1452. URL https://doi.org/10.1002/
widm.1452.

Zhu Li, Adrián Pérez-Suay, Gustau Camps-Valls, and Dino Sejdinovic. Kernel dependence regulariz-
ers and Gaussian processes with applications to algorithmic fairness. Pattern Recognition, 132:
108922, December 2022. ISSN 0031-3203. doi: 10.1016/j.patcog.2022.108922.

Gilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with adversarial networks.
Advances in neural information processing systems, 30, 2017.

David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel. Learning adversarially fair and
transferable representations. In International Conference on Machine Learning, pp. 3384–3393.
PMLR, 2018.

Sen Na, Mihai Anitescu, and Mladen Kolar. An adaptive stochastic sequential quadratic program-
ming with differentiable exact augmented lagrangians. Mathematical Programming, 199(1):
721–791, May 2023a. doi: 10.1007/s10107-022-01846-z. URL https://doi.org/10.
1007/s10107-022-01846-z.

Sen Na, Mihai Anitescu, and Mladen Kolar. Inequality constrained stochastic nonlinear optimization
via active-set sequential quadratic programming, 2023b. URL https://arxiv.org/abs/
2109.11502.

Yatin Nandwani, Abhishek Pathak, Mausam, and Parag Singla. A primal dual formulation for
deep learning with constraints. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf.

13

https://doi.org/10.1137/22M1537862
https://doi.org/10.1137/22M1537862
https://arxiv.org/abs/2504.07607
https://arxiv.org/abs/2504.07607
https://arxiv.org/abs/2301.13314
https://arxiv.org/abs/2301.13314
https://doi.org/10.1145/3306618.3314287
https://doi.org/10.1145/3306618.3314287
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002/widm.1452
https://doi.org/10.1007/s10107-022-01846-z
https://doi.org/10.1007/s10107-022-01846-z
https://arxiv.org/abs/2109.11502
https://arxiv.org/abs/2109.11502
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cf708fc1decf0337aded484f8f4519ae-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figen Oztoprak, Richard Byrd, and Jorge Nocedal. Constrained optimization in the presence of
noise. SIAM Journal on Optimization, 33(3):2118–2136, 2023. doi: 10.1137/21M1450999. URL
https://doi.org/10.1137/21M1450999.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Comput. Surv., 55
(3), February 2022. ISSN 0360-0300. doi: 10.1145/3494672. URL https://doi.org/10.
1145/3494672.

Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. Fairness in rankings and recommenda-
tions: an overview. The VLDB Journal, 31(3):431–458, May 2022. ISSN 0949-877X. doi: 10.1007/
s00778-021-00697-y. URL https://doi.org/10.1007/s00778-021-00697-y.

Juan Ramirez, Meraj Hashemizadeh, and Simon Lacoste-Julien. Position: Adopt Constraints Over
Penalties in Deep Learning, July 2025.

Sathya N. Ravi, Tuan Dinh, Vishnu Suresh Lokhande, and Vikas Singh. Explicitly imposing
constraints in deep networks via conditional gradients gives improved generalization and faster
convergence. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):4772–4779, Jul.
2019. doi: 10.1609/aaai.v33i01.33014772. URL https://ojs.aaai.org/index.php/
AAAI/article/view/4404.

Qiankun Shi, Xiao Wang, and Hao Wang. A momentum-based linearized augmented lagrangian
method for nonconvex constrained stochastic optimization. Optimization Online, 2022. URL
https://optimization-online.org/?p=19870.

Amal Tawakuli and Thomas Engel. Make your data fair: A survey of data preprocessing techniques
that address biases in data towards fair ai. Journal of Engineering Research, 2024. ISSN 2307-1877.
doi: https://doi.org/10.1016/j.jer.2024.06.016. URL https://www.sciencedirect.com/
science/article/pii/S2307187724001871.

Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the International
Workshop on Software Fairness, FairWare ’18, pp. 1–7, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450357463. doi: 10.1145/3194770.3194776. URL
https://doi.org/10.1145/3194770.3194776.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Bias Preservation in Machine Learning: The
Legality of Fairness Metrics Under EU Non-Discrimination Law, January 2021.

Mingyang Wan, Daochen Zha, Ninghao Liu, and Na Zou. In-processing modeling techniques for
machine learning fairness: A survey. ACM Trans. Knowl. Discov. Data, 17(3), March 2023. ISSN
1556-4681. doi: 10.1145/3551390. URL https://doi.org/10.1145/3551390.

Quan Zhou, Jakub Mareček, and Robert Shorten. Subgroup fairness in two-sided markets. Plos one,
18(2):e0281443, 2023a.

Quan Zhou, Jakub Mareček, and Robert Shorten. Fairness in forecasting of observations of linear
dynamical systems. Journal of Artificial Intelligence Research, 76:1247–1280, April 2023b.
ISSN 1076-9757. doi: 10.1613/jair.1.14050. URL http://dx.doi.org/10.1613/jair.
1.14050.

14

https://doi.org/10.1137/21M1450999
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3494672
https://doi.org/10.1145/3494672
https://doi.org/10.1007/s00778-021-00697-y
https://ojs.aaai.org/index.php/AAAI/article/view/4404
https://ojs.aaai.org/index.php/AAAI/article/view/4404
https://optimization-online.org/?p=19870
https://www.sciencedirect.com/science/article/pii/S2307187724001871
https://www.sciencedirect.com/science/article/pii/S2307187724001871
https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3551390
http://dx.doi.org/10.1613/jair.1.14050
http://dx.doi.org/10.1613/jair.1.14050

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A ADDITIONAL DETAILS ON THE FAIRNESS OF THE BINARY EXPERIMENT.

Figure 3 presents the distribution of predictions over both groups. The distribution of prediction
without fairness guarantees (col. 1) clearly does not meet the group fairness standard. Indeed, the
“non-white” group has a significantly higher likelihood than the “white” group of receiving small
predicted values, and the converse holds for large predicted values. Among the fairness-constrained
models, the ALM and SSL-ALM distributions are the closest to the distributions of SGD without
fairness, which is consistent with retaining good prediction information. The Fairret penalized
formulation (col. 2) and SSw (col. 5) have a center-heavy distribution, which, in this case, is evidence
of poor objective minimization.

The SSL-ALM, ALM, and Stochastic Ghost (col. 3, 4, and 6) have closer distributions across groups
than the unconstrained formulation.

Numerically, this is expressed in Table 4 (col. Wd), which reports the value of the Wasserstein
distance between group distributions for each model.

Table 4 displays the fairness metrics presented in Section 2: independence (Ind), separation (Sp), and
sufficiency (Sf), along with inaccuracy (Ina). The mean value and standard deviation over 10 runs are
presented for the four fairness-constrained models and the two baselines, both on train and test sets.
Figure 4 presents the mean values as spider plots. For all metrics, smaller is better.

Figure 3: Distribution of predictions for each algorithm. Left to right: SGD, SGD-Fairret, SSL-ALM,
ALM, SSw, StGh, Blue and red denote “white” and “non-white” groups.

(a) Train set (b) Test set

Figure 4: Average value of the three fairness metrics (independence (Ind), separation (Sp), and
sufficiency (Sf)), along with mean inaccuracy (Ina), and difference in accuracy between the two
groups (DifAcc). For all metrics, smaller values are better.

B HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we present the performance of algorithms on the validation set, justifying our
hyperparameter choices in the experimental section. For each algorithm, we provide a table of loss
and constraint violation values under different hyperparameter choices after a training run.

For each algorithm, we perform 5 runs with each hyperparameter combination. Every 100 iterations,
we save the model state (except for Stochastic Ghost, where we save every 10 iterations due to higher
iteration cost). We then pick our hyperparameters based on the average loss value and constraint

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

violation over the last 20 states over 5 runs. For algorithms that exhibit exceptionally noisy trajectories,
we also provide convergence plots.

B.1 EXPERIMENT 1 - BINARY ATTRIBUTE

We recall that the constraint bound δ was set to 0.005. With random parameter initialization, initial
loss value was ≈ 0.7.

B.1.1 STOCHASTIC SWITCHING SUBGRADIENT

Stochastic Switching Subgradient admits a choice of constant, diminishing, or adaptive stepsizes for
both objective and constraint updates (ηf and ηc, respectively). In this experiment, we were unable
to find a combination of the above that would enable the algorithm to both minimize the objective on
par with other methods and maintain the feasibility of the solution. The run results are presented in
table 5.

As suggested in the original paper, the diminishing stepsize follows the rule

ηk =
η0√
k + 1

and the adaptive stepsize follows the rule

ηk =
c(xk, ζ)

||Sc(xk, ζ)||2

We use diminishing infeasibility tolerance, with ϵ0 = 0.01, ϵk = ϵ0√
k+1

Loss Constraint violation
Hyperparameters mean std mean std

ηf adaptive, ηc adaptive 0.681 0.006 0.000 0.000
ηf = 0.05, ηc adaptive 0.679 0.006 0.000 0.000
ηf = 0.05, ηc = 0.05 0.626 0.006 0.000 0.000
ηf = 0.05, ηc = 0.045 0.589 0.01 0.0012 0.002
ηf = 0.05, ηc = 0.04 0.567 0.014 0.003 0.003
ηf = 0.05, ηc = 0.025 0.469 0.012 0.018 0.004

ηf = 0.05, ηc dimin with ηc0 = 0.05 0.409 0.001 0.025 0.004
ηf = 0.05, ηc dimin with ηc0 = 0.25 0.409 0.001 0.025 0.004
ηf = 0.05, ηc dimin with ηc0 = 0.5 0.410 0.002 0.027 0.005
ηf = 0.05, ηc dimin with ηc0 = 3.0 0.476 0.016 0.018 0.004

ηf dimin with ηf0 = 0.05, ηc dimin with ηc0 = 0.05 0.660 0.002 0.000 0.000
ηf dimin with ηf0 = 0.5, ηc dimin with ηc0 = 0.5 0.633 0.004 0.000 0.000

Table 5: Loss and constraint violation on the validation set after 5 30-second runs of the Stochastic
Switching Subgradient in the setup of Exp. 1, rounded to 3 digits.

We pick ηf = 0.05, ηc = 0.04, as it results in the best objective value with relatively low infeasibility;
we then conduct

B.1.2 SSL-ALM

SSL-ALM allows the user to tune the primal (τ) and dual (η) parameter update rate, the penalty
multiplier ρ, as well as the smoothing update rate β and multiplier µ. We consider only constant
stepsizes τ and η, and fix ρ = 1.The run results are presented in table 6.

The lowest loss value with the least constraint violation is offered by τ = 0.01, η = 0.05, µ = 0; the
second best combination is τ = 0.01, η = 0.05, µ = 2. As the original paper assumes µ ≥ 2, we test
both options as "ALM" and "SSL-ALM", respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Hyperparameters Loss Constraint violation
τ η µ mean std mean std

0.05 0.05 2 0.4376 0.0283 0.0194 0.0294
0.05 0.01 2 0.4240 0.0096 0.0112 0.0097
0.01 0.05 2 0.4465 0.0122 0.0074 0.0085
0.01 0.01 2 0.4416 0.0138 0.0133 0.0145
0.05 0.05 0 0.4560 0.0962 0.0282 0.0620
0.05 0.01 0 0.4222 0.0099 0.0111 0.0100
0.01 0.05 0 0.4448 0.0114 0.0070 0.0078
0.01 0.01 0 0.4407 0.0155 0.0157 0.0154
0.05 0.05 4 0.4377 0.0242 0.0180 0.0271
0.05 0.01 4 0.4252 0.0098 0.0121 0.0095
0.01 0.05 4 0.4471 0.0112 0.0073 0.0077
0.01 0.01 4 0.4387 0.0132 0.0143 0.0099

Table 6: Loss and constraint violation on the validation set after 5 30-second runs of the SSL-ALM
variants in the setup of Exp. 1, rounded to 4 digits.

Figure 5: Loss (top row) and constraint (bottom row) evolution of the Stochastic Ghost on the
validation dataset with different hyperparameter choices. The line corresponds to the mean value
over 5 runs, the shaded region - to the area between the 1st and 3rd quartiles over 5 runs.

B.1.3 STOCHASTIC GHOST

Among the algorithms discussed, Stochastic Ghost features the largest number of hyperparameters,
which makes the algorithm difficult to tune. We set p0, the parameter of the geometric distribution
that controls the number of samples taken at each iteration, to 0.4, as, in expectation, this matches the
batch size used for the other algorithms. As in the original paper Facchinei & Kungurtsev (2023), we
use the OSQP solver to solve the subproblems.

We attempt to tune the stepsize α0, the stepsize decay rate α̂, and two subproblem parameters β and
ρ.

The run results are presented in table 7. Due to the level of noise in the algorithm’s trajectories, we
add the plots for some of the more stable hyperparameter configurations in fig. 5.

We pick the values α0 = 0.05, α̂ = 0.05, ρ = 0.1, β = 20.

B.1.4 SGD+FAIRRET

For regularized SGD, we tune the regularization penalty multiplier; once we find a value that leads to
minimizing both loss and constraint violation, we try different stepsize values.

The run results are presented in table 8.

We pick a multiplier equal to 3 and LR of 0.05.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Hyperparameters Loss Constraint violation
α0 α̂ ρ β mean std mean std

0.0100 0.0500 0.1000 10 0.6144 0.0287 0.0135 0.0115
0.0100 0.0500 0.1000 20 0.6390 0.0461 0.0287 0.0297
0.0100 0.0500 0.1000 5 0.6007 0.0448 0.0256 0.0170
0.0250 0.0250 0.1000 10 0.4781 0.0245 0.0504 0.0183
0.0250 0.0250 0.1000 20 0.4674 0.0169 0.0381 0.0175
0.0250 0.0250 0.1000 5 0.4896 0.0371 0.0367 0.0238
0.0250 0.0500 0.1000 10 0.5041 0.0402 0.0318 0.0249
0.0250 0.0500 0.1000 20 0.5246 0.0566 0.0326 0.0236
0.0250 0.0500 0.1000 5 0.5218 0.0301 0.0343 0.0229
0.0500 0.0500 0.1000 10 0.5054 0.0295 0.0280 0.0196
0.0500 0.0500 0.1000 1 0.5020 0.0804 0.0545 0.0510
0.0500 0.0500 0.1000 20 0.4745 0.0266 0.0152 0.0154
0.0500 0.0500 0.1000 5 0.4800 0.0338 0.0442 0.0243
0.0500 0.0500 0.8000 10 0.5700 0.0432 0.0441 0.0375
0.0500 0.0500 0.8000 20 0.6124 0.1448 0.0851 0.0744
0.0500 0.0500 0.8000 5 0.6139 0.0783 0.0647 0.0618
0.0500 0.1000 0.1000 10 0.5136 0.0413 0.0486 0.0297
0.0500 0.1000 0.1000 20 0.5124 0.0620 0.0379 0.0384
0.0500 0.1000 0.1000 5 0.5131 0.0505 0.0356 0.0197

Table 7: Loss and constraint violation on the validation set after 5 30-second runs of the Stochastic
Ghost in the setup of Exp. 1, rounded to 4 digits.

Hyperparameters Loss Constraint violation
Multiplier LR mean std mean std

0 0.05 0.406 0.003 0.020 0.004
1 0.05 0.406 0.004 0.010 0.007
2 0.05 0.421 0.008 0.012 0.006
3 0.05 0.539 0.026 0.004 0.005
3 0.07 0.523 0.029 0.006 0.008
3 0.1 0.523 0.033 0.007 0.008
4 0.05 0.676 0.009 0.001 0.002

Table 8: Loss and constraint violation on the validation set after 5 30-second runs of fairret-regularized
SGD in the setup of Exp. 1, rounded to 3 digits.

B.2 EXPERIMENT 2 - MULTI-VALUED ATTRIBUTE

We recall that in this experiment, we set the constraint bound to be 0.05. We test Regularized SGD,
SSL-ALM, Stochastic Ghost, and Switching Subgradient.

B.2.1 STOCHASTIC SWITCHING SUBGRADIENT

The run results are presented in table 9. We pick ηf = 0.05 constant, ηck diminishing with ηc0 = 0.25
as it offers the lowest loss value while being close to feasibility.

B.2.2 SSL-ALM

Unlike Exp. 1, we do not tune the µ hyperparameter, setting µ = 2. The run results are presented in
appendix B.2.2. We pick τ = 0.05, η = 0.01.

B.2.3 STOCHASTIC GHOST

The run results are presented in appendix B.2.3. We pick α0 = 0.01, α̂ = 0.2, ρ = 0.1, β = 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Hyperparameters Loss Max constraint violation
ηf0 ηf rule ηc0 ηc rule mean std mean std

0.05 const 0.05 const 0.598 0.002 0.000 0.000
0.5 const 0.05 const 0.537 0.007 0.000 0.000
0.05 const 0.5 const 0.631 0.004 0.000 0.000
0.5 const 0.5 const 0.590 0.006 0.000 0.000
0.05 const 0.05 dimin 0.543 0.018 0.031 0.001

0.005 const 0.05 dimin 0.551 0.002 0.000 0.000
0.05 const 0.05 dimin 0.499 0.003 0.023 0.003
0.05 const 0.1 dimin 0.506 0.006 0.011 0.003
0.05 const 0.25 dimin 0.519 0.004 0.001 0.002

Table 9: Loss and constraint violation on the validation set after 5 60-second runs of the Switching
Subgradient in the setup of Exp. 2, rounded to 3 digits.

Hyperparameters Loss Max constraint violation
τ η mean std mean std

0.05 0.05 0.536 0.007 0.000 0.001
0.05 0.01 0.530 0.006 0.000 0.001
0.01 0.05 0.542 0.003 0.000 0.000
0.01 0.01 0.538 0.003 0.000 0.000

Table 10: Loss and constraint violation on the validation set after 5 60-second runs of the SSL-ALM
in the setup of Exp. 2, rounded to 4 digits.

Hyperparameters Loss Constraint violation
α0 α̂ ρ β mean std mean std

0.0050 0.0100 0.1000 5 0.5948 0.0218 0.0016 0.0031
0.0050 0.0100 0.1000 10 0.6149 0.0193 0.0005 0.0012
0.0050 0.0500 0.1000 5 0.6161 0.0142 0.0001 0.0006
0.0050 0.0500 0.1000 10 0.6187 0.0191 0.0016 0.0033
0.0100 0.0100 0.1000 5 0.5373 0.0243 0.0275 0.0296
0.0100 0.0100 0.1000 10 0.5321 0.0280 0.0290 0.0259
0.0100 0.0500 0.1000 5 0.5442 0.0222 0.0180 0.0196
0.0100 0.0500 0.1000 10 0.5583 0.0449 0.0099 0.0166
0.0100 0.0500 0.1000 20 0.5498 0.0311 0.0106 0.0176
0.0100 0.0500 0.8000 10 0.5716 0.0235 0.0096 0.0123
0.0100 0.0500 0.8000 20 0.5571 0.0409 0.0181 0.0184
0.0100 0.1000 0.1000 5 0.5448 0.0297 0.0197 0.0198
0.0100 0.1000 0.1000 10 0.5522 0.0213 0.0146 0.0108
0.0100 0.2000 0.1000 5 0.5868 0.0181 0.0070 0.0071
0.0100 0.2000 0.1000 10 0.5898 0.0198 0.0016 0.0035
0.0100 0.2000 0.8000 5 0.5616 0.0330 0.0121 0.0119
0.0500 0.2000 0.1000 5 0.5144 0.0296 0.0199 0.0255

Table 11: Loss and constraint violation on the validation set after 5 60-second runs of the Stochastic
Ghost in the setup of Exp. 2, rounded to 4 digits.

B.2.4 REGULARIZED SGD

The run results are presented in appendix B.2.4. We pick λ = 0.4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Loss Constraint violation
Penalty multiplier mean std mean std

0 0.432 0.001 0.075 0.004
0.3 0.475 0.002 0.030 0.003
0.4 0.512 0.002 0.001 0.002
0.5 0.550 0.002 0.000 0.000

Table 12: Loss and constraint violation on the validation set after 5 60-second runs of the Regularized
SGD in the setup of Exp. 2, rounded to 4 digits.

C ALGORITHMS IN MORE DETAIL

In this section, we provide the pseudocodes of algorithms presented in Section 3 as Algorithms 1 to 3.
Recall that we denote by XJ

k = {Xk,j}Jj=1 a mini-batch of size J with the j-th element

Xk,j = (∇f(xk, ξk,j), c(xk, ζk,j),∇c(xk, ζk,j)). (14)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Algorithm 1 Stochastic Ghost algorithm

Require: Training dataset D, constraint dataset C, initial neural network weights x0

Require: Parameters p0 ∈ (0, 1), α0, α̂, ρ, τ , β
1: for Iteration k = 0 to K − 1 do
2: Sample ξ

iid∼ Pξ and ζ
iid∼ Pζ

3: Sample N ∼ G(p0)
4: Set J = 2N+1

5: Sample a mini-batch {ζj}Jj=1 so that ζ1, . . . , ζJ
iid∼ Pζ

6: Sample a mini-batch {ξj}Jj=1 so that ξ1, . . . , ξJ
iid∼ Pξ

7: Set X1
k and X2N+1

k using (14)
8: Compute d(xk) from (9)
9: Set αk = αk−1(1− α̂αk−1)

10: Update xk+1 = xk + αkd(xk)
11: end for

Algorithm 2 Stochastic Smoothed and Linearized AL Method for solving (1)

Require: Training dataset D, constraint dataset C, initial neural network weights x0

Require: Parameters µ, η, My > 0, τ , β, ρ ≥ 0
1: for Iteration k = 0 to K − 1 do
2: Sample ξ

iid∼ Pξ and ζ1, ζ2
iid∼ Pζ

3: yk+1 = yk + ηc(x, ζ1)
4: if ||yk+1|| ≥ My then
5: yk+1 = 0
6: end if
7: xk+1 = projX (xk − τG(xk, yk+1, zk; ξ, ζ1, ζ2)), where G is defined in (10)
8: zk+1 = zk + β(xk − zk)
9: end for

Algorithm 3 Stochastic Switching Subgradient Method

Require: Training dataset D, constraint dataset C, initial neural network weights x0 ∈ X
Require: Total number of iterations K, sequence of tolerances of infeasibility ϵk ≥ 0, sequences of

stepsizes ηfk and ηck, mini-batch size J , starting index k0 for recording outputs, I = ∅
1: for Iteration k = 0 to K − 1 do
2: Sample a mini-batch {ζj}Jj=1 so that ζ1, . . . , ζJ

iid∼ Pζ

3: Set cJ(xk) =
1
J

∑J
j=1 c(xk, ζj)

4: if cJ(xk) ≤ ϵk then
5: Sample ξ

iid∼ Pξ and generate Sf (xk, ξ)

6: Set xk+1 = projX (xk − ηfkS
f (xk, ξ)) and, if k ≥ k0, I = I ∪ {k}

7: else
8: Sample ζ

iid∼ Pζ and generate Sc(xk, ζ)
9: Set xk+1 = projX (xk − ηckS

c(xk, ζ)) and, if k ≥ k0, I = I ∪ {k}
10: end if
11: end for
12: Output: xτ with τ randomly sampled from I using P (τ = k) = ηk∑

s∈I ηs
.

21

	1 Introduction
	2 Related work, and background in fairness
	3 Algorithms
	3.1 Review of methods for constrained ERM
	3.2 Stochastic Ghost Method (StGh)
	3.3 Stochastic Smoothed and Linearized AL Method (SSL-ALM)
	3.4 Stochastic Switching Subgradient Method (SSw)

	4 Experimental evaluation
	4.1 Dataset for fair ML
	4.2 Experiments
	4.2.1 Binary protected attribute
	4.2.2 Multi-valued protected attribute

	5 Conclusion
	A Additional details on the fairness of the binary experiment.
	B Hyperparameter sensitivity analysis
	B.1 Experiment 1 - Binary Attribute
	B.1.1 Stochastic Switching Subgradient
	B.1.2 SSL-ALM
	B.1.3 Stochastic Ghost
	B.1.4 SGD+Fairret

	B.2 Experiment 2 - Multi-Valued Attribute
	B.2.1 Stochastic Switching Subgradient
	B.2.2 SSL-ALM
	B.2.3 Stochastic Ghost
	B.2.4 Regularized SGD

	C Algorithms in more detail

