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Abstract

Nowadays, many deep neural networks (DNNs) for image reconstructing tasks
are trained using a combination of pixel-wise loss functions and perceptual image
losses like learned perceptual image patch similarity (LPIPS). As these perceptual
image losses compare the features of a pre-trained DNN, it is unsurprising that
they are vulnerable to adversarial examples. It is known that: (i) DNNs can be
robustified against adversarial examples using adversarial training, and (ii) adver-
sarial examples are imperceptible by the human eye. Thus, we hypothesize that
perceptual metrics, based on a robustly trained DNN, are more aligned with human
perception than those based on non-robust models. Our extensive experiments on
an image super resolution task show, however, that this is not the case. We observe
that models trained with a robust perceptual loss tend to produce more artifacts
in the reconstructed image. Furthermore, we were unable to find reliable image
similarity metrics or evaluation methods to quantify these observations (which are
known open problems).

1 Introduction

For image reconstruction methods that involve deep neural networks (DNNs), the choice of the
loss function is crucial for good reconstruction results. Pixel-wise loss functions, like the mean
squared error (MSE) loss, are often a reasonable choice, but often do not completely align with
human perception. For example, it is well known that using the pixel-wise MSE loss leads to
blurry reconstructions over reconstructions having misplaced edges. Nowadays, modern image
reconstruction networks are usually trained to minimize a combination of different loss functions.
While pixel-wise losses are still a crucial ingredient (because they create a strong error signal), the
reconstruction quality can be greatly improved by simultaneously minimizing multiple losses, e.g.,
an adversarial loss or a perceptual loss. In this work, we focus on the latter.

1.1 Perceptual Losses

Instead of considering the error in pixel space, a perceptual loss calculates the error between the
feature maps of an already pre-trained and fixed classification DNN. This was first done by Johnson
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et al. [1] who define a perceptual loss between to images x ∈ Rc×h×w and y ∈ Rc×h×w as

LΦ,p
perceptual(x, y) =

1

cphpwp

∥∥∥Φ(p)(x)− Φ(p)(y)
∥∥∥2
F
, (1)

where Φ(p) : Rc×h×w → Rcp×(hpwp) denotes the flattened feature mapping of the VGG-19 net [2]
after the p-th layer and ∥·∥F denotes the Frobenius norm. This is motivated by the fact that the
feature maps learned by a classifier specialize on different concepts. Usually, the first layers of
a DNN detect low-level features like edges and corners, while the deeper layers detect high-level
features that represent more abstract concepts. Thus, it is common practice to combine the perceptual
loss of different layers into a single perceptual loss, e.g., the perceptual loss as a sum of perceptual
losses LΦ

perceptual(x, y) =
∑

p∈P λpLΦ,p
perceptual(x, y), where P ⊂ N is a set of layer indices and positive

weights λp > 0 for p ∈ P .

A different way of defining a perceptual loss that considers local texture information is the texture
matching loss which compares the Gram matrices of the feature maps [3]. Sajjadi et al. [4] define
this loss for k patches x(1), . . . , x(k) and y(1), . . . , y(k) of the input images x and y, respectively, as

LΦ,p
texture-matching(x, y) =

1

kc2p

k∑
i=1

∥∥∥G(p)(x(i))−G(p)(y(i))
∥∥∥2
F
, (2)

where G(p) calculates the Gram matrix of the feature map Φ(p). Again, different layers can be
added to form the total loss LΦ

texture-matching(x, y) =
∑

p∈P λpLΦ,p
texture-matching(x, y) for some P ⊂ N

and positive weights λp > 0 for p ∈ P .

1.2 Adversarial Examples and Adversarial Training

It is common knowledge that DNNs can easily be fooled by adversarial examples, i.e., manipulated
images that change the network’s prediction [5]. These adversarial examples are usually unrecogniz-
able by the human eye. Recent work has investigated how DNNs can be robustified against these
adversarial examples. A widely-used approach is adversarial training which robustifies DNNs by
including adversarial images (with the correct label) during training [6]. Usually, adversarial training
applies K steps of the projected gradient descent attack (PGD-K) [6; 7] which crafts an adversarial
image (that the model wrongly assigns the class label ctarget) by iterating

xk+1 = Pϵ

(
xk − α∇xLθ

cross-entropy(x, ctarget)
∣∣
x=xk

)
, (3)

where x0 = x is the original image x, α > 0 is the step-size, and Pϵ is a function that projects the
iterate back onto an norm-ball Bϵ(x) around x. After K iterations we obtain the adversarial example
x̄ = xK . The change made to the original image x− x̄ is usually referred to as a perturbation.

These adversarial images combined with the true label are then included in the training dataset. The
reasoning is that the DNN classifier should learn to also classify theses adversarial images correctly.
In general, the resulting robust classifiers tend to have a slightly worse accuracy, but they are, at
the same time, less susceptible to adversarial examples. To further strengthen a model’s robustness,
adversarial logit pairing (ALP) [8] can be used. The key idea of ALP is that the logits of the classifier
Fθ(x) should be invariant under adversarial perturbations. This is done by including an additional
regularization term to the loss function used to train the model that encourages logits of adversarial
examples Fθ(x̄) to be similar to those of clean examples Fθ(x). This regularization term is given as

Lθ
ALP(x, x̄) =

1

d
∥Fθ(x)− Fθ(x̄)∥22 , (4)

where d is the number of classes. In this paper, we use these two ideas to train the robust classifier
used for the perceptual losses.

Since DNNs can be affected by adversarial examples, it is unsurprising that perceptual losses are
also susceptible to them, as shown by Kettunen et al. [9]. For many attacks, the human eye is not
able to differentiate between the adversarial examples and the original images. This motivates our
hypothesis which we analyze in this paper:
Hypothesis: Feature maps produced by robust DNNs are more aligned with human perception and
should therefore be more suitable to be used in perceptual losses in image reconstruction problems.
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Table 1: Accuracies of the robust and non-robust classifiers on the ImageNet dataset. Adversarial
examples for evaluation were calculated using a (targeted) PGD-50 attack with a step-size α = 0.155.
The Euclidean norm of the adversarial perturbations was restricted to ϵ = 3.88.

Model Robust Accuracy Adversarial accuracy

VGG-19 ✗ 74.72% 0.00%
VGG-19 ✓ 64.85% 59.22%
ResNet-50 ✗ 76.63% 0.00%
ResNet-50 ✓ 66.60% 61.49%

Our hypothesis is loosely inspired by Rojas-Gomez et al. [10] who have shown that feature-inversion
for robust networks is easier than for non-robust networks. Moreover, Ross and Doshi-Velez [11]
argue that robust DNNs are more human interpretable.

2 Experimental Setup

In the following, we want to evaluate the effectiveness of robust perceptual losses for 4×-super-
resolution of images, where we use an EnhanceNet [4] as a base model that learns to upscale the
images.

Training: Similar to the original work, we train the EnhanceNet [4] on the MS COCO dataset [12]
using various loss functions: a pixel-wise MSE loss (E), a perceptual loss (P), or a texture matching
loss (T). These losses can also be combined, e.g., EP indicates an EnhanceNet trained with both the
pixel-wise MSE (E) and the perceptual (P) losses. Both the perceptual and the texture matching loss
(P and T) rely on a VGG-19 net, which is trained on the ImageNet dataset [13]. For the P loss we use
feature maps of the second (λ2 = 0.2) and the fifth (λ5 = 0.02) convolutional layer (after applying
the ReLU activation function) and for the T loss we use the feature maps of the first (λ1 = 3×10−7),
the third (λ3 = 1×10−6), and the fifth (λ5 = 1×10−6) convolutional layer. The texture matching loss
is calculated using 16-by-16-patches. These hyperparameters were taken from the original works.

We aim to test our hypothesis by comparing the performance of an EnhanceNet trained with a
perceptual loss based on a robust VGG-19 net instead of the commonly used non-robust VGG-19
net. We do the same for the texture matching loss. When we train the EnhanceNet with the P and
the T loss we use the same VGG-19 net (either robust or non-robust) for both losses. To train a
robust VGG-19 net, we use adversarial training [6] based on the PGD-5 attack with a Euclidean norm
constraint of 5.82. We combined this with ALP [8] with an ALP weight of 0.5 (see, Section 1.2).
We carefully scaled the weights and biases of both VGG-19 nets such that the feature maps are
normalized. Note, this does not change the output because of the used ReLU activation functions.

In the first two rows of Table 1, we compare the accuracies on the ImageNet dataset (with and without
adversarial perturbations) of the robust and non-robust VGG-19 networks used for the perceptual
and texture-matching loss. As expected, the robust models have a slightly lower accuracy than the
non-robust ones, but they perform drastically better on the adversarial images.

Evaluation: The EnhanceNets trained using different robust and non-robust perceptual loss func-
tions are evaluated on common super-resolution benchmark datasets: BSD100 [14], Manga109 [15],
Set14 [16], Set5 [17], and Urban100 [18]. We extensively evaluate the performance using the follow-
ing metrics: PSNR, SSIM [19], gradient magnitude similarity deviation (GMSD) [20], information
fidelity criterion (IFC) [21], and universal image quality index (UQI) [22].

Furthermore, we use the learned perceptual image patch similarity (LPIPS) [23] that is based on a
VGG-16 network [2] with additional linear layers to output a single value (the LPIPS score) for a
pair of input images. The dataset used during training is collected using a two-alternative forced
choice method and consists of images each having two transformed variants. Each of these triplets
(original image and two variants) is accompanied by a human-made decision about which of the two
variants is perceived to be more similar to the original image. The network is trained to mimic this
human-made decision based on the difference of the LPIPS scores.
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Table 2: The evaluation results of the EnhanceNets trained with different robust and non-robust
perceptual losses. Averaged across three runs and the five benchmark datasets.

Loss Robust PSNR (↑) SSIM (↑) UQI (↑) IFC (↑) GMSD (↓) LPIPS (↓) R-LPIPS (↓)
E - 26.9408 0.7475 0.9723 0.6557 0.1698 0.2558 0.2699
EP ✗ 26.3043 0.6542 0.9566 0.6488 0.1660 0.1658 0.2983
EP ✓ 25.3076 0.6709 0.9624 0.6978 0.1674 0.1721 0.2447
EPT ✗ 26.1829 0.6419 0.9545 0.7141 0.1649 0.1662 0.2783
EPT ✓ 24.4920 0.6471 0.9562 0.7141 0.1824 0.2169 0.2936
ET ✗ 24.7270 0.6790 0.9605 0.7481 0.1798 0.1794 0.3189
ET ✓ 23.5006 0.6117 0.9506 0.7073 0.2049 0.2544 0.3913
P ✗ 26.2542 0.5342 0.9351 0.6512 0.1656 0.1850 0.3096
P ✓ 25.3015 0.6669 0.9619 0.6977 0.1675 0.1736 0.2452
PT ✗ 26.1562 0.5209 0.9313 0.7148 0.1646 0.1909 0.2961
PT ✓ 24.4914 0.6462 0.9561 0.7152 0.1828 0.2210 0.2924
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(a) Classification Error (Robust Classifier)
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(b) Classification Error (Non-Robust Classifier)

Figure 1: The classification errors on sub-sampled images from the ImageNet dataset, upscaled using
the EnhanceNets trained with different robust and non-robust perceptual losses. The red dashed line
indicates the classification performance of the EnhanceNet trained using the E loss. We use an robust
classifier (a) and non-robust classifier (b). The choice of the classifier inverts the results.

As an additional evaluation metric, we propose a robust LPIPS (R-LPIPS) metric which is trained in
a similar manner but where the original image and both of its variants are perturbed using a PGD-10
attack constrained to a Euclidean norm of 1.33.

Besides these image similarity metrics we also compare the classification performance of a
ResNet-50 [24] on sub-sampled images from the ImageNet dataset, upscaled using the differently
trained EnhanceNets. On the one hand, we consider the classification performance of a robust
ResNet-50, trained in a similar manner as the VGG-19 network. On the other hand, we use a
non-robust ResNet-50.

The bottom two rows of Table 1 compare the accuracies on the ImageNet dataset of the robust and the
non-robust ResNet-50 that we use for evaluation. We observe a similar performance as the VGG-19
net.

3 Results

In Table 2, we quantitatively evaluate the differently trained EnhanceNets using the previously
introduced metrics. For each set of losses that involved a perceptual loss, we consider the robust and
the non-robust variant (indicated in the second column). We observe that the EnhanceNet trained only
with the E-loss performs the best in terms of the PSNR and SSIM metrics. This is not surprising as
the pixel-wise MSE loss (E) and the PSNR metric are strongly related. Comparing the EnhanceNets
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original E

EPT EPT (robust)

Figure 2: Reconstructions produced by the EnhanceNet for different loss functions (E: MSE, P:
Perceptual loss, T: Texture matching loss). The robust perceptual and texture matching loss introduces
many artifacts (see highlighted areas). Best viewed digitally.

trained with robust and non-robust perceptual losses, we are unable to conclude whether the robust
perceptual loss improves the performance, e.g., for the SSIM metric, the robust perceptual losses are,
in many cases, better than their non-robust counterpart, but for the GMSD metric, they are always
worse. Moreover, we observe that the EnhanceNet trained with the robust EP loss performs the best
on the R-LPIPS metric.

As previously observed, it is challenging to quantitatively conclude which EnhanceNet produces the
best images. Thus, following the reasoning of Sajjadi et al. [4], we argue that the classification error
of a DNN classifier correlates with the image quality perceived by humans. To this end, we plot the
classification errors of the robust and non-robust ResNet-50 classifiers in Figure 1. The classification
error of the restored images using the EnhanceNet-E is depicted by the red dashed line. We see in
Figure 1a that all EnchanceNets trained with a perceptual loss have a lower error than only using the
pixel-wise MSE loss. Moreover, the EnhanceNets trained with robust perceptual losses almost always
have a smaller error when compared with the non-robust perceptual losses. This trend is inverted
when we use a non-robust ResNet-50, as depicted in Figure 1b. In this case, the EnhanceNets trained
with a robust perceptual loss always perform worse than the non-robust counterpart, and even worse
than the EnhanceNet-E. Therefore, we conclude that the choice of the classifier highly influences
the outcome when evaluating the quality of images based on the classification error of a pre-trained
DNN.
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In the top left corner of Figure 2, we show a crop of the original HD image from the Urban100
dataset [18]. The other images show the reconstructions produced by the EnhanceNet trained with
different loss functions. In the top right corner, the reconstruction produced by the EnhanceNet-E
(which is trained with the pixel-wise MSE loss) is quite blurry. This is a known problem of the
MSE loss [25]. In contrast to that, the reconstruction produced by the EnhanceNet-EPT (bottom left)
shows sharper edges and finer details, e.g., the quality of the texture on the ground is superior. In the
bottom right, we show the reconstruction produced by the EnhanceNet-EPT trained with the robust
perceptual and texture matching losses. Comparing this reconstruction to that of the EnhanceNet-EPT,
we see there are many more artifacts and “echoes” in the reconstructed image. The reconstructions of
other EnhanceNet trained with robust perceptual and/or texture losses also introduce these artifacts.
More example reconstructions using all considered combinations of loss functions (as seen in Table 2)
can be found in the appendix.

4 Discussion

We hypothesized that DNNs robust to adversarial examples could provide perceptual losses that are
more aligned with human perception. We expected that these robust perceptual losses, when used to
train image reconstruction models, would improve the quality of the reconstructed images.

In this work, we evaluated this hypothesis on the task of image super-resolution. We used an
EnhanceNet [4] trained with combinations of different loss functions and compare the effectiveness
of robust and non-robust perceptual losses on multiple datasets.

Using a wide range of evaluation metrics (including the novel R-LPIPS metric) we observe that
robust perceptual losses do not perform better. Furthermore, we observe that these robust perceptual
losses lead to unnatural artifacts in the reconstructed images. Thus, our initial hypothesis was falsified
by our extensive experiments. To explain this phenomenon, we now hold the opinion that these
robust perceptual losses are not only invariant to changes in the image invisible to humans (such
as adversarial perturbations), but are also invariant to more substantial changes recognizable to the
human eye. This leads to visible artifacts when training image reconstruction models with these
robust perceptual loss functions.
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A Appendix: Additional Reconstruction Examples
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