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Abstract

We introduce adaptive learn-then-test (aLTT), an
efficient hyperparameter selection procedure that
provides finite-sample statistical guarantees on
the population risk of AI models. Unlike the exist-
ing learn-then-test (LTT) technique, which relies
on conventional p-value-based multiple hypothe-
sis testing (MHT), aLTT implements sequential
data-dependent MHT with early termination by
leveraging e-processes. As a result, aLTT can re-
duce the number of testing rounds, making it par-
ticularly well-suited for scenarios in which testing
is costly or presents safety risks. Apart from main-
taining statistical validity, in applications such as
online policy selection for offline reinforcement
learning and prompt engineering, aLTT is shown
to achieve the same performance as LTT while
requiring only a fraction of the testing rounds.

1. Introduction
1.1. Context and Motivation

The safe and reliable deployment of AI applications, or apps
for short, hinges on the possibility of certifying their perfor-
mance (Seshia et al., 2022; Tegmark & Omohundro, 2023).
Depending on the problem, this may require controlling the
missed detection probability in medical imaging (Lu et al.,
2022; Mehrtash et al., 2020), ensuring safety measures for
control policies (Lindemann et al., 2023; Zecchin et al.,
2024), or verifying the correctness of the answers given by
a large language model (LLM) (Quach et al., 2023).

In practice, before deployment, AI apps can be often cali-
brated by selecting hyperparameters based on data set aside
for this purpose or based on rounds of real-world testing.
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In the current scaling-centric era of large, Internet-scale,
data sets (Xiao, 2024), hyperparameter optimization is typi-
cally modeled as a bandit problem in which the goal is the
minimization of the training loss over a set of discrete con-
figurations. The configurations may include prompt designs
for the fine-tuning of large language models (LLMs) (Zhou
et al., 2023; Quach et al., 2023; Schneider et al., 2024), ar-
chitectural choices related to model scale (Nasir et al., 2024)
or to the timing of early decisions (Schuster et al., 2022),
or policy settings for offline reinforcement learning (Paine
et al., 2020; Fujimoto & Gu, 2021).

The learn-then-test (LTT) method introduced by (An-
gelopoulos et al., 2021) has recently emerged as a formal
framework to address hyperparameter selection over a dis-
crete space. LTT treats the calibration task of hyperpa-
rameter selection as a multiple hypothesis testing (MHT)
problem. Accordingly, it associates each hyperparameter in
a candidate set to the null hypothesis that the hyperparame-
ter does not meet a reliability requirement on the population
risk. Hypotheses are tested using p-values, and the probabil-
ity of mistakenly detecting a hyperparameter as reliable is
guaranteed via family-wise error rate (FWER)-controlling
statistical procedures (Keselman & Rogan, 1977). This way,
LTT ensures finite-sample, high-probability guarantees on
the population risk of the selected hyperparameters.

To prevent p-hacking (Head et al., 2015), LTT’s guarantees
apply only to non-adaptive MHT procedures. However, re-
lated work on hyperparameter optimization has shown the
significant benefits that can be accrued by adaptive explo-
ration strategies that test hyperparameters sequentially in
a data-driven manner (Swersky et al., 2014; Rakotoarison
et al., 2024). This work aims at improving the data efficiency
of LTT by leveraging recent advances in sequential MHT
based on e-processes (Vovk & Wang, 2021; Waudby-Smith
& Ramdas, 2024; Xu et al., 2021).

1.2. Related Work

Finite-sample statistical guarantees on inferential outputs
can be obtained via conformal prediction methods (Shafer &
Vovk, 2008; Angelopoulos et al., 2023) and, more generally,
via conformal risk control and risk-controlling set-valued
predictions (Angelopoulos et al., 2022; Bates et al., 2021).
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Figure 1. An example application of aLTT to reliable prompt optimization (Zhou et al., 2023; Quach et al., 2023; Schneider et al., 2024).
A set Λ of candidate prompts for a movie recommender is generated using an LLM and/or prior experience. Prompts serve as an example
of a discrete set of hyperparameters to be optimized using aLTT. The goal is to select a subset Λ̂rel ⊆ Λ of prompts that guarantee
a sufficiently high recommendation accuracy. To this end, aLTT applies a sequence of data-dependent testing rounds with adaptive
termination. Specifically, at each testing round t, aLTT estimates the performance of a subset of hyperparameters It ⊆ Λ through
held-out data or real-world testing. The subset to be tested is selected based on prior testing outcomes, and the process stops as soon
as a sufficiently large reliable subset Λ̂rel is identified. An additional post-calibration selection step can be applied to choose a single
hyperparameter λ̂ from the selected subset Λ̂rel based on users preferences.

These methods calibrate classification or regression models
by setting a threshold hyperparameter based on held-out
data to control the size of a prediction set. Calibrated pre-
dictors can be leveraged in predict-then-optimize control
tasks to offer reliability guarantees (Vovk & Bendtsen, 2018;
Lindemann et al., 2023; Zecchin et al., 2024).

Beyond prediction sets, the problem of calibrating an AI
app via the selection of hyperparameters from a candidate
pool has been addressed through the LTT framework (An-
gelopoulos et al., 2021). For example, as illustrated in Fig-
ure 1, for the problem of prompt engineering (Zhou et al.,
2023), the initial set of candidate hyperparameters encom-
passes instruction prompt templates generated by an LLM
and/or via prior experience. Leveraging p-value-based MHT
via FWER-controlling procedures, LTT selects a subset of
candidates that come with high-probability population risk
guarantees.

FWER guarantees are often too conservative, potentially
resulting in empty calibration sets. The false discovery rate
(FDR) is an alternative and less strict criterion that is often
preferred for MHT in fields such as genetics (van den Oord
& Sullivan, 2003), neuroimaging (Genovese et al., 2002),
online advertising (Berman & Van den Bulte, 2022), and
finance (Harvey & Liu, 2020).

E-values have gained popularity in MHT due to their advan-
tages over p-values (Vovk & Wang, 2021; Shafer & Vovk,
2019; Ramdas et al., 2020). Similarly to p-values, e-values
measure the statistical plausibility of the null hypothesis.
Specifically, an e-value can be thought of as a special type
of p-value that has additional robustness properties. The
key property of interest in this paper is that, unlike p-values,
e-values can be readily combined to obtain e-processes,
making it possible to devise sequential testing strategies
with anytime safety (Wang & Ramdas, 2022; Ramdas et al.,
2023). E-processes have been applied to problems such
as sequential change detection (Shin et al., 2022), multiple

bandit testing (Xu et al., 2021), two-sample testing (Shekhar
& Ramdas, 2023), and mean estimation of bounded random
variables (Waudby-Smith & Ramdas, 2024).

Hyperparameter optimization is a vast field focused on the
optimization of the hyperparameters of training algorithms,
such as learning rate, weight decay, and dropout rate (Swer-
sky et al., 2014; Pedregosa, 2016; Maclaurin et al., 2015;
Lindauer et al., 2022). Hyperparameter optimization typi-
cally operates in continuous domains, and it can serve as a
preliminary step for the identification of candidate hyper-
parameters. While hyperparameter optimization does not
provide statistical guarantees on the population risk, the
goal of hyperparameter selection methods such as LTT is
to formally test a subset of candidate hyperparameters for
statistical validity.

1.3. Main Contributions

The main contributions of this paper are as follows.

• We introduce adaptive LTT (aLTT), a data-efficient hy-
perparameter selection method that provides finite-sample
guarantees on the population risk of AI apps. The main tech-
nical underpinning of aLTT is e-process-based MHT, which
supports statistical validity while enabling data-dependent
sequential testing (Xu et al., 2021). Unlike LTT, as illus-
trated in Figure 1, aLTT adaptively tests subsets of hyperpa-
rameters that are chosen based on the evidence accumulated
in the previous rounds, allowing also for the early termina-
tion of the calibration process. aLTT guarantees rigorous
control over FWER and FDR, while significantly reducing
the number of testing rounds.

•We study two practical scenarios requiring hyperparam-
eter selection, namely online policy selection for offline
reinforcement learning (Fujimoto & Gu, 2021) and auto-
mated prompt engineering (Zhou et al., 2023). In both cases,
aLTT is shown to deliver reliable and effective hyperparame-
ters using only a small fraction of the testing rounds required
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by LTT.

2. Problem Definition
2.1. Setting

LetMλ be an AI app whose operation is determined by a
vector of hyperparameters λ. The performance of a hyper-
parameter vector λ when tested at input data Z is measured
by a risk function R(λ, Z) ∈ [0, 1]. Accordingly, the popu-
lation risk with respect to an unknown data distribution PZ

is defined as

R(λ) = EPZ
[R(λ, Z)]. (1)

As illustrated in Figure 1, for a given discrete subset
Λ = {λ1, . . . , λN} of hyperparameters and a user-specified
reliability level α ∈ [0, 1], we aim at determining the subset
of hyperparameters in set Λ that conforms with the required
reliability level α, i.e.,

Λrel = {λ ∈ Λ : R(λ) ≤ α}. (2)

The complementary set, comprising unreliable hyperparam-
eters, is accordingly defined as

Λunrel = Λ \ Λrel = {λ ∈ Λ : R(λ) > α}. (3)

Since identifying the entire set Λrel in (2) is impossible ow-
ing to the lack of knowledge about the data distribution PZ ,
the goal is producing a subset of hyperparameters Λ̂rel ⊆ Λ
that contains as many reliable hyperparameters from subset
Λrel as possible while controlling the number of unreliable
hyperparameters from subset Λunrel mistakenly included in
subset Λ̂rel.

2.2. Performance Criteria

Definition 2.1 ((α, δ)-FWER-controlling set). For a given
reliability level α ∈ [0, 1] and an error level δ ∈ [0, 1], a hy-
perparameter subset Λ̂rel ⊆ Λ is (α, δ)-FWER-controlling
set if it satisfies the requirement

FWER(Λ̂rel) := Pr
[
|Λunrel ∩ Λ̂rel| ≥ 1

]
≤ δ. (4)

where the probability is evaluated with respect to the distri-
bution of the subset Λ̂rel.

The FWER guarantee (4) imposes that the probability that
the calibration set Λ̂rel contains an unreliable hyperparame-
ter is bounded by δ.
Definition 2.2 ((α, δ)-FDR-controlling set). For a given
reliability level α ∈ [0, 1] and an error level δ ∈ [0, 1], a
hyperparameter subset Λ̂rel ⊆ Λ is (α, δ)-FDR-controlling
set if it satisfies the inequality

FDR(Λ̂rel) := E

[
|Λunrel ∩ Λ̂rel|
|Λ̂rel|

∣∣∣∣∣|Λ̂rel| ≥ 1

]
≤ δ, (5)

with the average evaluated with respect to the distribution
of the subset Λ̂rel.

Accordingly, a testing procedure that outputs (α, δ)-FDR-
controlling sets guarantees that the expected fraction of un-
reliable hyperparameters in the predicted set Λ̂rel is bounded
by δ. Thus, ensuring the (α, δ)-FWER condition automati-
cally also guarantees the (α, δ)-FDR requirement.

Since any FWER or FDR level can be trivially satisfied by a
procedure that returns the empty set Λ̂rel = ∅, it is important
to gauge the informativeness of the testing procedure via the
true positive rate (TPR), which corresponds to the expected
fraction of reliable models in the predicted set Λ̂rel, i.e.,

TPR(Λ̂rel) = E

[
|Λrel ∩ Λ̂rel|
|Λrel|

]
. (6)

2.3. Sequential and Adaptive Hyperparameter Selection

To produce the estimated subset of reliable hyperparameters,
Λ̂rel, we adopt a general sequential testing procedure that,
at each round t ≥ 1, operates as follows.

1 Hyperparameter subset selection: A subset of
hyperparameters It ⊆ Λ is selected for testing.

2 Testing: Empirical risk estimates Rt =
{R(λi, Z

t
i )}λi∈It are obtained, one for each candi-

date hyperparameter λi in the selected subset It, us-
ing held-out data or real-world testing. The random
variable Zt

i ∼ PZ describes the data used to test hy-
perparameter λi at round t. The random variables
{Zt

i}i∈It can be arbitrarily dependent, and thus one
may reuse the same data to test all hyperparameters
λ ∈ It.

3 Evidence update: Evidence accumulated up to
time t, including both the observed risks and the sub-
set of queried models, is updated as Dt = Dt−1 ∪
{(It,Rt)}.

The testing procedure outlined above is fully specified by
the tuple Π = ({Qt}t≥1,A, T ), encompassing a family
of acquisition policies {Qt}t≥1, a decision rule A, and a
calibration horizon T , which are defined as follows.

• Acquisition policy: At each round t, the acquisition policy
Qt determines the hyperparameters It to be tested at step
1 . If the policy Qt uses the evidence Dt−1 to select the

hyperparameter set It, it is said to be adaptive; otherwise, it
is non-adaptive. Both adaptive and non-adaptive acquisition
policies can incorporate prior knowledge, which we denote
as D0.

• Decision rule: The decision rule A uses the evidence
DT available at the end of the last calibration round T to
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produce the estimated set Λ̂rel of reliable hyperparameters.

• Number of calibration rounds: The number of calibration
rounds T , is said to be adaptive, if the stopping condition
T = t is determined by the evidence Dt−1. Otherwise,
when it is predetermined based solely on prior knowledge
D0, the calibration horizon T is said to be non-adaptive.

3. (Non-Adaptive) Learn-then-Test
In this section, we review LTT, a non-adaptive hyperparam-
eter selection procedure devised to meet the (α, δ)-FWER
guarantee (Angelopoulos et al., 2021). LTT associates to
each hyperparameter λi ∈ Λ the null hypothesis

Hi : R(λi) > α (7)

that the population risk R(λi) in (1) violates the target relia-
bility level α. For each null hypothesisHi a p-value Pi is a
non-negative random variable that satisfies the inequality

Pr[Pi ≤ x|Hi] ≤ x (8)

for every x ∈ [0, 1]. By the definition (8) a p-value Pi

provides evidence for the validity of hypothesisHi. This is
in the sense that a small value of Pi is unlikely to occur if
Hi is true.

Given a pre-specified calibration horizon T and a non-
adaptive acquisition policy {Qt}t≥1, LTT queries at each
round t ≥ 1 the subset of hyperparameters Qt(D0) =
It, obtaining the corresponding risk estimates Rt =
{R(λi, Z

t
i )}λi∈It .

LTT uses the accumulated evidence at the end of the test-
ing process, DT , to compute a valid p-value for the null
hypothesis (7) using, for instance, the Hoeffding-Bentkus
concentration inequality introduced in (Bates et al., 2021).
Based on the collection of p-values P = {Pi}Ni=1, LTT
selects a subset of hyperparameters Λ̂LTT using a FWER-
controlling algorithm AFWER(P). A variant of LTT that is
FDR-controlling can be readily obtained by using an FDR-
controlling selection rule AFDR(P). Examples of FWER
and FDR controlling procedures are provided in the Supple-
mentary Material.

4. Adaptive Learn-Then-Test
In this section, we introduce adaptive LTT (aLTT), a hyper-
parameter selection scheme that supports adaptive acquisi-
tion policies and an adaptive number of calibration rounds.
The algorithmic description of aLTT is given in Algorithm
1.

4.1. Hypothesis Testing via E-Processes

The proposed aLTT scheme applies MHT based on e-values
and e-processes (Shafer, 2021; Ramdas et al., 2023). For

each null hypothesis Hi in (7), an e-value Ei is a non-
negative random variable with an expectation no larger than
1 whenHi is true, i.e.,

E[Ei|Hi] ≤ 1. (9)

By Markov’s inequality, an e-value Ei can be turned into a
p-value Pi as Pi = 1/Ei, since the inequality (8) is satisfied
as

Pr

[
1

Ei
≤ x

∣∣∣∣Hi

]
≤ E[Ei|Hi]x ≤ x, ∀x ∈ [0, 1]. (10)

For each null hypothesis Hi, given an observation Z and
a fixed µ ∈ (0, 1/(1 − α)), a valid e-value is given by
(Waudby-Smith & Ramdas, 2024)

Ei = (1 + µ(α−R(λi, Z))). (11)

The e-value (11) has the interpretation of wealth growth in
a betting setting. Accordingly, one can think of parameter µ
in (11) as the amount of the current wealth that the gambler
bets on the hypothesis Hi being false, i.e., on the validity
of the assumption R(λi) ≤ α that the hyperparameter λi

is reliable. In fact, if µ > 0, when R(λi, Z) ≤ α, the
gambler’s wealth in (11) increases; while, when R(λi, Z) >
α, the quantity (9) the gambler’s wealth (11) decreases.

An e-process for hypothesis Hi is a sequence of random
variables {Et

i}t≥1 such that, for any stopping time T , which
may depend on all previously collected evidence, the ran-
dom variable ET

i is a valid e-value. Using the e-value (11),
considering the general iterative testing framework in Sec-
tion 2.3, an e-process for the null hypothesisHi in (7) can
be obtained as the product

Et
i =

∏
τ≤t:λi∈Iτ

(1 + µτ
i (α−R(λi, Z

τ
i ))), (12)

where the betting strategy µt
i ∈ (0, 1/(1 − α)) can

be optimized as a function of the past risk estimates
{R(λi, Z

τ
i )}τ<t and E0

i = 1. Based on the discussion
above, the e-process (12) represents the wealth accumulated
up to time t by a gambler making sequential bets {µτ

i }τ<t

(Shafer & Vovk, 2019; Waudby-Smith & Ramdas, 2024).
As such, the gambler’s wealth up to time t, Et

i , provides
evidence against the null hypothesis that the hyperparameter
λi is unreliable.

In a similar way, an anytime-valid p-value for hypothesis
Hi is a sequence of random variables {P t

i }t≥1 such that,
for any stopping time T , the random variable PT

i is a valid
p-value. Given an e-process {Et

i}t≥1 for hypothesisHi, the
sequence

P t
i =

1

maxτ≤t Eτ
i

(13)

is an anytime-valid p-value for the hypothesisHi (Ramdas
et al., 2023).
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Algorithm 1 Adaptive Learn-Then-Test (aLTT)

Require: Candidate hyperparameters Λ, prior knowledge D0, reliability level α, error tolerance level δ, acquisition policy
{Qt}t≥1, FWER/FDR-controlling selection rule AFWER(·)/AFDR(·), betting strategy {µt

i}t≥1,i=1,...,N , maximum
number of iterations tmax and minimal hyperparameter set cardinality d
Ensure: (α, δ)-FWER/FDR-controlling hyperparameter set Λ̂aLTT,T

t← 1
while t ≤ tmax ∧ |Λ̂aLTT,t| ≤ d do

Select hyperparameters It = Qt(Et−1) and receive risk estimatesRt = {R(λi, Z
t
i )}λi∈It

Update evidence Dt = Dt−1 ∪ {(It,Rt)} and e-processes Et as in (14)
if FWER-control then

Compute p-values Pt as in (13)
Λ̂aLTT,t ← AFWER(Pt)

else if FDR-control then
Λ̂aLTT,t ← AFDR(Et)

end if
t← t+ 1

end while
Return: Λ̂aLTT,T

4.2. Adaptive Acquisition Policy

aLTT applies an adaptive acquisition policy {Qt}t≥1 and
an adaptive calibration horizon T . Specifically, at each
calibration round t ≥ 1, aLTT’s acquisition policy Qt uses
the e-processes Et−1 = {Et−1

i }Ni=1 in (12) to choose which
subset of hyperparameters, It, to test next. Examples of
acquisition functions It = Qt(Et−1) will be provided in
the next section.

For the selected hyperparameters in set It, aLTT obtains
the risk estimatesRt = {R(λi, Z

t
i )}λi∈It and updates the

associated e-processes using the recursive formula (12), i.e.,

Et
i =

{
(1 + µt

i(α−R(λi, Z
t
i )))E

t−1
i , if λi ∈ It

Et−1
i , otherwise.

(14)

With this information, a prediction set Λ̂aLTT,t is evalu-
ated by employing either an FWER-controlling method
AFWER(Pt) based on the p-values Pt = {P t

i }Ni=1 in (13);
or an FDR-controlling procedure AFDR(Et), such as the
e-Benjamini-Hochberg (eBH) method, reviewed in the Sup-
plementary Material (Wang & Ramdas, 2022), using directly
the e-values (14).

aLTT terminates the calibration procedure whenever there
are at least d hyperparameters in set Λ̂aLTT,t, i.e.,
|Λ̂aLTT,t| ≥ d, or a maximum number of iterations tmax

have been reached. This allows aLTT to stop the data ac-
quisition phase early when a sufficiently large number of
reliable hyperparameters have been identified. .

4.3. Hyperparameter Subset Selection

At the end of the calibration process, aLTT uses the current
e-processes ET to generate the final prediction set Λ̂aLTT,T .
By the anytime validity properties explained in Section 4.1,
if an FWER-controlling method AFWER(PT ) is used, the
resulting set Λ̂aLTT,T is (α, δ)-FWER-controlling; while
if an FDR-controlling method is used, the resulting set
Λ̂aLTT,T = AFDR(ET ) is (α, δ)-FDR-controlling.

Theorem 4.1. Given a hyperparameter set Λ, a reliability
level α ∈ [0, 1], and an error level δ ∈ [0, 1], aLTT with
an FWER or FDR-controlling selection rule returns a final
prediction set Λ̂aLTT,T that satisfies (α, δ)-FWER control
or (α, δ)-FDR control, respectively.

5. Applications
5.1. Online Policy Selection for Offline Reinforcement

Learning

Offline reinforcement learning enables the training of con-
trol policies based on a fixed data set collected by using
a possibly unknown behavior policy, without any online
interaction with the environment (Levine et al., 2020). How-
ever, the estimate of the performance of the trained policies
obtained from offline data can differ substantially from the
actual performance in the real world. This makes it prac-
tically essential to validate the policies’ performance via
online interaction with the environment (Paine et al., 2020;
Liu et al., 2023).

To reduce the cost and potential harm of online validation
procedures, the number of online interactions of the pre-
trained candidate policies with the real world must be kept
to a minimum (Garcıa & Fernández, 2015). To this end, in
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Figure 2. True positive rate of LTT and aLTT with ϵ-greedy ac-
quisition policy for ϵ ∈ {0.25, 0.5, 0.75, 0.95} and non-adaptive
acquisition. On the left panel, the prediction sets satisfy FWER
control while on the right FDR control. In both cases, the tolerance
level is δ = 0.1.

this subsection, we investigate the potential benefits of the
proposed aLTT framework as a means to select a subset of
candidate policies that enjoy performance guarantees with
respect to the real-world environment.

5.1.1. PROBLEM DEFINITION

We assume a standard Markov decision process (MDP)
E = {S,A, Ps′|s,a, Pr|s,a} specified by a state space S;
an action space A; a transition kernel Ps′|s,a, defining the
conditional distribution of the next state s′ ∈ S given the
current state s ∈ S and action a ∈ A; and a conditional re-
ward distribution Pr|s,a given state s ∈ S and action a ∈ A.
We assume that the reward r is bounded and normalized in
the [0, 1] interval.

We are given a set of pre-trained control policies Π =
{π1, . . . , πN}, mapping an observed state s ∈ S to the
random action a ∼ πi(s) ∈ A. Each policy πi is identi-
fied by a hyperparameter λi. The goal is to select a subset
Λ̂rel ⊂ Λ of hyperparameters that yield reliable policies by
using a limited amount of interactions with the real world.

Reliability is measured via the cumulative reward obtained
by a policy λ on the MDP E , which is defined as

R(λ, Z) =
1

K

K∑
k=1

rk, (15)

where K is the length of the episode, and the per-episode
random variable Z encompasses the initial state s1 ∼ Ps1

along with the sequence a1, r1, s2, a2, r2, . . . , sK , aK , rK

with actions ak ∼ πi(s
k), rewards rk ∼ Prk|sk,ak and MDP

transitions sk+1 ∼ Psk+1|sk,ak . For a user-specified reliabil-
ity level α ∈ (0, 1), the subset of reliable policies Λrel ⊆ Λ
includes all policies in Λ with average cumulative reward
larger than α, Λrel = {λ ∈ Λ : R(λ) = EPZ

[R(λ, Z)] >
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Figure 3. Comparison of the FWER and FDR levels obtained by
aLTT under FDR-control (solid lines) and FWER-control (dashed
lines) for different maximum tolerated error (FWER or FDR) levels
δ.

α}, while the complementary set Λunrel = Λ\Λrel includes
the policies that do not satisfy the given reliability require-
ment.

Control policies are tested sequentially by following the
procedure described in Section 2.3, such that at each cali-
bration round t a policy λt

i ∈ Λ is tested using online inter-
actions with the MDP E to obtain the episodic reward value
Rt

i = R(λt
i, Z

t
i ) in (15). For an error threshold δ ∈ [0, 1],

the goal of reliable online policy selection is to return a pre-
diction set Λ̂rel ⊆ Λ that is either (α, δ)-FDR controlling
or (α, δ)-FWER controlling with a TPR that is as large as
possible.

5.1.2. RESULTS

In our experiments, we consider the Half Cheetah control
problem from the OpenAI Gym MuJoCo tasks (Todorov
et al., 2012) and use control policies obtained via the offline
reinforcement learning algorithm TD3+BC (Fujimoto &
Gu, 2021). The TD3+BC algorithm leverages an offline
data set D to optimize policies by maximizing the standard
deterministic policy gradient objective (Silver et al., 2014),
combined with a behavioral cloning regularization term,
whose strength is controlled by a hyperparameter λ in [Eq.
5](Silver et al., 2014). We produce N = 20 different control
policies by setting the hyperparameter λ in the TD3+BC
training objective on an evenly spaced grid in the interval
[0.25, 5]. Unless stated otherwise, we consider a target
reliability α = 0.57 and a target FDR requirement δ = 0.1.

We evaluate aLTT with an ϵ-greedy acquisition policy Qt

that, at every calibration round t, with probability 1 − ϵ,
selects the hyperparameter λt

i not included in Λ̂aLTT,t that
is associated with the largest e-process value; otherwise, it
picks uniformly at random a hyperparameter not in Λ̂aLTT,t.
For reference, we also consider aLTT with a non-adaptive
acquisition policy that, at each round t, picks uniformly at
random the hyperparameter to be tested regardless of the

6
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prediction outcome Λ̂aLTT,t and the e-process values. As a
benchmark, we implement LTT with a random uniform ac-
quisition policy and p-values obtained from the e-processes
as in (13). Recall that LTT produces a decision at the end of
the calibration process, here at round T = 5000.

Finally, the value of the parameter µt
i in aLTT is set by

following the approximate growth rate adaptive to the par-
ticular alternative (aGRAPA) betting strategy in (Waudby-
Smith & Ramdas, 2024) with other adaptive and non-
adaptive betting strategies evaluated in the Supplementary
Material.

In Figure 2, we compare the TPR of LTT and aLTT as a
function of the calibration round t. We target FWER control
on the left and FDR control on the right. By construction,
LTT returns uninformative hyperparameter sets up until the
termination of the testing procedure. The performance of
LTT is the same as aLTT with a non-adaptive acquisition
policy, i.e. with ϵ = 1, at t = T . aLTT with an ϵ-greedy
acquisition function can benefit from the accumulated evi-
dence to adaptively determine the models to test next. As ϵ
decreases, and thus the acquisition policy becomes increas-
ingly driven by evidence, the TPR increases from 0.32 to
0.85 in the case of FWER control and from 0.4 to 0.85 in
the case of FDR control. Finally, we note that the TPR
of the schemes under FDR control is larger than that ob-
tained under FWER control, reflecting the stricter reliability
requirement of FWER control.

In Figure 3, we report the FWER and FDR of aLTT with ϵ =
0.25 as a function of the tolerated error level δ. As the error
level δ increases, the empirical FWER and FDR increase
accordingly, remaining below the maximum target level δ.
However, since FWER control is a stricter requirement, the
aLTT prediction set obtained under FWER control delivers
lower FDR and FWER levels as compared to aLTT with
FDR control.

5.2. Reliable Automated Prompt Engineering

Prompt engineering focuses on designing and refining in-
put instructions for LLMs (Reynolds & McDonell, 2021;
Shin et al., 2020). Recent studies have demonstrated the
effectiveness of methods that automate this search using
LLMs as prompt generators (Zhou et al., 2023; Zhang et al.,
2023). However, while LLMs are capable of producing
high-quality instruction templates, at a level comparable to
human annotators, supervision and testing remain essential
to filter out poorly performing prompts.

In this section, we propose applying aLTT to automated
prompt engineering (Zhou et al., 2023) to generate instruc-
tions with statistical performance guarantees. As illustrated
in Figure 1, given a set Λ of candidate instructions generated
by an LLM, we use aLTT to sequentially test the instruc-
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Figure 4. True positive rate of LTT and aLTT with ϵ-greedy ac-
quisition policy for ϵ ∈ {0.25, 0.5, 0.75, 0.95} and non-adaptive
acquisition. On the left panel, the prediction sets satisfy FWER
control, while on the right panel they meet FDR requirements. In
both cases, the tolerance level is δ = 0.1. Results are averaged
over the tasks in (Honovich et al., 2022) that yield non-empty
reliable prompts set.

tions and identify a sufficiently large number of prompts
that meet user-defined reliability requirements.

5.2.1. PROBLEM DEFINITION

Consider a target LLM f(·) that, when fed the concatenation
[λ,X] of an instruction λ and data X , produces an output
text f([λ,X]). For example, in the task of movie recommen-
dation illustrated in Figure 1, each prompt λ corresponds
to an instruction to generate movie titles similar to those
provided in the input list X; while the output f([λ,X]) rep-
resents a list of recommended movies. Following (Zhou
et al., 2023; Zhang et al., 2023), the candidate set Λ of
instructions, corresponding to the hyperparameters to be
tested, is generated using a separate LLM. In particular, we
use the Llama3 8B Instruct LLM (Dubey et al., 2024) as
the target model f(·), while the initial instruction set Λ is
generated through the Llama3.3 70B Instruct model (meta,
2025) using the forward generation mode detailed in (Zhou
et al., 2023).

For each instruction λ, the ability of the prompted model
f([λ,X]) to generate high-quality outputs for a test datum
Z = (X,Y ) is measured by a task-dependent loss function
R(λ, Z) = ℓ(f([λ,X]), Y ) ∈ [0, 1]. Focusing on tasks
from the instruction induction data set (Honovich et al.,
2022), we specifically adopt the 0-1 loss tailored to the
given task (Zhou et al., 2023). The goal is to determine a
subset Λrel ⊆ Λ that complies with the condition (2) with
a target execution error α = 0.2, and FWER and FDR
requirements given by the tolerance parameter δ = 0.1.
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Figure 5. Length of the shortest instruction in the predicted set of
reliable hyperparameter Λ̂rel returned by LTT and aLTT. Instruc-
tions are tested under different accuracy requirements and with a
fixed testing budget T = 2000.

5.2.2. RESULTS

For the outlined prompt engineering problem, we eval-
uate aLTT using an ϵ-greedy acquisition strategy with
ϵ ∈ {0.25, 0.5, 0.75, 0.95}, as well as a non-adaptive ac-
quisition strategy whereby the instruction to be tested is
selected randomly and independently from prior testing
rounds. All schemes employ an online Newton step betting
strategy (Waudby-Smith & Ramdas, 2024) for the e-value
(12).

In Figure 4, we report the TPR of LTT and aLTT as a func-
tion of the number of rounds t. Results are averaged over
tasks that yield a final non-empty set Λ̂rel. Plots for in-
dividual tasks are included in Appendix B.3. Under both
FDR and FWER control, aLTT reduces the number of test-
ing rounds, or equivalently the number of LLM executions,
required to achieve a given TPR. In particular, LTT pro-
duces a non-empty set only at the end of the testing process,
attaining a final TPR less than half of the TPR achieved
by aLTT with ϵ-greedy acquisition strategy and ϵ = 0.25.
Moreover, aLTT with ϵ = 0.25 identifies 50% of the reliable
instructions within the first 1000 testing rounds, while the
non-adaptive testing procedure identifies less than 10% of
the reliable instructions with the same number of rounds.

The improved efficiency of aLTT translates into superior
performance in downstream tasks. To illustrate this point,
we follow the described hyperparameter selection process
with a post-selection phase that identifies a single hyperpa-
rameter λ̂ from the estimated set Λ̂rel of reliable instructions
(see Figure 1). Specifically, we adopt the shortest instruction
λ ∈ Λ̂rel. This post-selection criterion is motivated by the
computational benefits of processing shorter prompts.

In Figure 5, we report the length of the selected instruction
λ̂ as a function of the target execution accuracy 1− α. Re-

sults are averaged over tasks with a final non-empty set Λ̂rel,
while plots for individual tasks are included in Appendix B.3.
Stricter accuracy requirements are seen to reduce the number
of discovered reliable instructions, leading to an increase in
the minimal instruction length within Λ̂rel. However, across
all reliability levels α, aLTT consistently delivers the short-
est instructions, outperforming alternative schemes. This
advantage is to be attributed to the data-adaptive acquisition
strategy implemented by aLTT, which enables the discovery
of a larger number of reliable instructions.

6. Conclusion
We introduced aLTT, a novel framework for hyperparameter
selection that implements data-dependent sequential test-
ing via early termination. Unlike the existing LTT, which
builds on p-value multiple hypothesis testing (MHT), aLTT
is based on sequential MHT via e-processes (Xu et al., 2021).
In practical scenarios, including the problem of prompt engi-
neering, this results in more efficient and flexible calibration
procedures that maintain statistical validity and the same
discovery power as LTT by using only a fraction of testing
rounds.

Potential extensions of the aLTT framework include the
study of scenarios characterized by distribution shift, data
reuse (Wang et al., 2025) and simulation-aided calibration.
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A. FWER and FDR-Controlling Procedures
In this section we review popular FWER and FDR-controlling strategies applied to the problem of hyperparameter selection.

A.1. FWER Control

A.1.1. BONFERRONI CORRECTION

For a set of p-values P = {Pi}Ni=1, a simple (α, δ)-FWER-controlling procedure is given by the Bonferroni correction
AFWER

Bon (P), which returns the hyperparameter set

Λ̂rel
Bon =

{
λi : Pi ≤

δ

N

}
. (16)

The hyperparameter set Λ̂rel
Bon is guaranteed to be δ-FWER-controlling (Bonferroni, 1936).

A.1.2. FIXED-SEQUENCE TESTING

If the designer has access to prior knowledge D0 about which hyperparameters are likely to be more reliable, it is possible
to increase the power of the statistical test, and thus the cardinality of the hyperparameter Λ̂rel, by using a fixed-sequence
testing procedure AFWER

FS (P,D0). In fixed sequence hypothesis testing, the hypotheses {Hi}Ni=1 are ordered based on the
prior knowledge D0 from the most likely to be reliable to the least likely to be reliable. Denote the k-th hypothesis in the
corresponding ordered sequence asH(k), and the associated p-value as P(k). With fixed-sequence testing, the hypotheses
are sequentially tested at a reliability level α until one is accepted. Accordingly, the resulting hyperparameter set contains
all hypotheses up until the first acceptance, i.e.,

Λ̂rel
FS =

{
λ(j) : P(i) ≤ δ, ∀i ≤ j

}
. (17)

For any ordering of the p-values, the hyperparameter set Λ̂rel
FS is guaranteed to be δ-FWER-controlling (Bauer, 1991).

A.2. FDR Control

A.2.1. BENJAMINI-HOCHBERG PROCEDURE

Given a set of independent p-values P , denote the k-th smallest value in the set as P(k) and the associated hyperparameter
as λ(k). For an error level δ, the Benjamini-Hochberg procedure AFDR

BH (P) returns the prediction set

Λ̂rel
BH =

{
λ(i) : P(i) ≤

iδ

N

}
. (18)

By (18), BH applies a larger threshold to hyperparameters λ ∈ Λ that have larger p-values and are thus less likely to be
reliable. If the p-values in set P are independent, the Benjamini-Hochberg (BH) procedure AFDR

BH (P) guarantees FDR
control at a level δ (Benjamini & Hochberg, 1995).

A.2.2. BENJAMINI-YEKUTIELI PROCEDURE

In case of arbitrarily dependent p-values in set P the error level δ has to be adjusted by a multiplicative factor (
∑N

n=1 1/n)
−1.

The resulting FDR-controlling procedure, also known as the Benjamini-Yekutieli (BY) procedure, yields the set

Λ̂rel
BY =

{
λ(i) : P(i) ≤

iδ∑N
n=1 N/n

}
. (19)

The BY procedure AFDR
BY (P) is δ-FDR-controlling (Benjamini & Yekutieli, 2001).
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Figure 6. True positive rate of aLTT with ϵ-greedy acquisition policy with ϵ = 0.25 under different betting strategies. On the left panel,
the prediction sets satisfy FWER control while on the right FDR control. In both cases, the tolerance level is δ = 0.1.

A.2.3. E-BENJAMINI-HOCHBERG PROCEDURE

Alternatively, given the set of e-values Et = {Et
i}Ni=1, denote by the k-th largest e-value in E as Et

(k) and the associated
hyperparameter as λ(k). For an error level δ, the e-Benjamini-Hochberg procedure AFDR

eBH (E) outputs the hyperparameter
subset

Λ̂rel
eBH =

{
λ(i) : E

t
(i) ≥

N

iδ

}
. (20)

Following the same basic principles underlying BH in (18), eBH applies a smaller threshold to hyperparameters λ ∈ Λ that
have smaller e-values and are thus less likely to be reliable. The eBH procedure returns an δ-FDR-controlling set even
for arbitrarily dependent e-values Et

(k) without the need to adjust the error level δ as in the case of the p-value-based BH
procedure (Xu et al., 2021).

B. Additional Experiments
B.1. Online Policy Selection for Offline Reinforcement Learning

B.1.1. EFFECT OF THE BETTING STRATEGY

In Section 5.1, we studied the TPR of aLTT under the approximate growth rate adaptive to the particular alternative
(aGRAPA) betting strategy. In the following, we compare its performance against non-adaptive betting strategies, specifically
the maximum bet (MaxBet) strategy, which sets the bet µt

i to the maximum allowed value of 1/α, and the unitary bet
(UnitBet) strategy, where µt

i = 1. Additionally, we evaluate two alternative adaptive online betting strategies based on
approximate wealth maximization (Waudby-Smith & Ramdas, 2024): lower-bound on the wealth (LBOW) and online
Newton step (ONS).

Under the same online policy selection for offline reinforcement learning as set up in Section 5.1, in Figure 6 we compare
the TPR of aLTT with an ϵ-greedy acquisition policy. The left panel targets FWER control, while the right focuses on FDR
control. All adaptive betting strategies exhibit similar performance, with aGRAPA showing a slight advantage. Interestingly,
in this scenario, the non-adaptive MaxBet strategy performs surprisingly well, while UnitBet achieves the lowest TPR.

B.1.2. QUANTILE RISK CONTROL

In this experiment, we consider the same set-up of Section 5.1 with the caveat that, instead of identifying policies with a
large enough average reward, we focus on policies with a small enough quantile risk — a risk definition that explicitly
captures safety (Dabney et al., 2018; Farzaneh et al., 2024). The quantile risk of a hyperparameter λ at a level q is defined as

Rq(λ) = inf
r
{r : Pr[R(λ, Z) ≤ r] > 1− q}. (21)

13



Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection

0 2000 4000 6000
Round (t)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

ε=
0.

25
ε=

0.
5

ε=0.75

FWER Control

aLTT, ε-greedy acq.

aLTT, non-adap. acq.

LTT

0 2000 4000 6000
Round (t)

0.0

0.2

0.4

0.6

0.8

1.0

ε=
0.

25
ε=

0.
5

ε=
0.

75

FDR Control

Figure 7. True positive rate of LTT and aLTT with ϵ-greedy acquisition policy for ϵ ∈ {0.25, 0.5, 0.75, 0.95} and non-adaptive acquisition.
On the left panel, the prediction sets satisfy FWER control while on the right FDR control. In both cases, a policy is considered reliable if
the quantile risk at level q = 0.1 is lower than α = 0.57, and the tolerance level is δ = 0.1.
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Figure 8. True positive rate of aLTT as a function of the number of testing rounds, using a top-K ϵ-greedy acquisition policy with ϵ = 0.25
and K ∈ {1, 2, 3, 4}.

Controlling the quantile risk ensures guarantees on the average fraction of times the policy risk exceeds the level Rq(λ). For
the RL setting, we deal with rewards, so the inequalities in the definition are reversed.

We aim to identify policies with a quantile risk at the level q = 0.1 that is smaller than α = 0.57. In Figure 7, we report the
true positive rate of aLTT using the ϵ-greedy acquisition policy and LTT. aLTT significantly outperforms LTT, identifying up
to 75% of the policies that satisfy the given reliability requirement within the maximum testing round, T . In contrast, LTT is
unable to identify any policy due to its non-adaptive testing strategy.

B.1.3. TOP-K ϵ-GREEDY ACQUISITION STRATEGY

In Figure 2, we instantiate aLTT using an ϵ-greedy acquisition strategy. With probability 1 − ϵ, the strategy selects the
hypothesis associated with the largest e-process among those that have not yet been rejected. With probability ϵ, it selects a
hypothesis at random from the remaining unrejected set. A natural generalization of this strategy is the top-K ϵ-greedy
acquisition strategy. In this variant, with probability 1− ϵ, aLTT tests the set of the K hypotheses associated with the largest
e-processes that have not yet been rejected; with probability ϵ, it tests K hypotheses selected uniformly at random from the
entire set of unrejected hypotheses.

In Figure 8, we report the FDR of aLTT using this top-K ϵ-greedy strategy with ϵ = 0.25 and varying values of K ∈
{1, 2, 3, 4}. As K increases, the TPR performance of aLTT improves. This is expected, as the effective number of evaluations
per testing round increases proportionally with K allowing aLTT to discover reliable models in less testing rounds.
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Figure 9. Size of the prediction set returned by LTT and aLTT with a top-K ϵ-greedy acquisition policy for varying reliability levels α. As
α increases, the reliability requirement becomes stricter, requiring a larger expected reward R(λ) = EPZ [R(λ,Z)] > α. For all values
of α, aLTT is able to discover a larger number of reliable policies.

B.1.4. RELIABILITY LEVEL

In the following, we compare the efficiency of aLTT and LTT under different values of the reliability level α. In Figure 9,
we vary α ∈ [0.565, 0.58] and report the expected size of the prediction set returned by LTT and aLTT after T = 5000
testing rounds.

In the context of the online policy selection problem, a higher reliability level α imposes a stricter requirement on the
expected reward of the policies, namely R(λ) = EPZ

[R(λ, Z)] > α. As a result, the size of the prediction sets decreases as
α increases. However, for all values of α, aLTT is capable of identifying a larger number of reliable policies compared to
LTT. For example, under FWER control, when α = 0.575, LTT fails to find any reliable policies, whereas aLTT discovers
up to four reliable policies.

B.2. Reliable Hyperparameter Selection for Wireless Resource Allocation

In wireless communication systems, resource allocation is an essential functionality that regulates access to the spectrum
for users and services (Stanczak et al., 2009). The performance of resource allocation policies is evaluated by using key
performance indicators (KPIs) such as throughput, delay, and energy efficiency. Despite the randomness inherent in the
network conditions, some services require strict reliability guarantees in terms of KPIs. For instance, gaming applications
must meet latency constraints (Elbamby et al., 2019), streaming connections are subject to throughput requirements (Li
et al., 2012), and battery-powered transmitters have strict energy-efficiency constraints (Mahapatra et al., 2015).

B.2.1. PROBLEM DEFINITION

As illustrated in Figure 10, we consider a downlink resource allocation problem in which, at every transmission frame
k ≥ 1, a base station serves users by communicating bits from the corresponding queues. This is done by assigning
physical resource blocks (PRBs) to users based on a descriptor sk of the network conditions that includes the state of
users’ transmission buffers, users’ priorities, and channel conditions. Following the simulation software Nokia Wireless
Suite (Nokia, 2020), we consider three different types of PRBs assignment policies: a proportional fair scheme (Baruah
et al., 1993), a knapsack allocation policy (Ferdosian et al., 2016), and a learning-based scheme based on a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) (de Sant Ana & Marchenko, 2020). Overall, a resource allocation scheme
is specified by the hyperparameters λ = {λ1, λ2}, with λ1 ∈ {proportional fair, knapsack, CMA-ES} identifying the
scheduling policy, and λ2 determining the transmit power level. We let the hyperparameter λ2 vary from 0 dB to 24 dB in 1
dB increments. This way, the set Λ contains 75 candidate hyperparameters.

An instance of the resource allocation problem is described by the random quantity Z, which encompasses channel
conditions and packet generation. Furthermore, the performance of the resource allocation hyperparameter λ is measured by
the following KPIs: (i) average transmission delay of a packet Ttx(λ, Z); (ii) overall energy efficiency, which is defined
as the ratio between the number of transmitted bits and the overall transmitted energy within the episode, ρ(λ, Z) =∑K

k=1 B
k/

∑K
k=1 E

k where Bk and Ek are the number of transmitted bits and transmit energy at slot k; (iii) average queue
length occupancy Q(λ, Z), which is normalized by the maximum queue size Qmax; (iv) average energy-delay product,

15



Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection

Figure 10. System diagram of the considered resource allocation problem. At each transmission frame k, new packets are randomly
generated and stored in the corresponding users’ buffers. A resource allocation scheme, determined by hyperparameter λ1, assigns
resources to the users, deciding whose users to schedule at round k. Packets from the scheduled users’ queues are then transmitted over a
wireless channel using a transmit power dictated by the hyperparameter λ2.
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Figure 11. Average energy-delay product of the resource allocation policy returned by LTT and aLTT with ϵ-greedy acquisition policy
with ϵ ∈ {0.25, 0.5, 0.95} under different queue occupancy efficiency requirements. The final hyperparameter is obtained by selecting
the hyperparameter in the estimated set of reliable policies Λ̂rel that is associated with the lowest empirical energy-delay product. On the
left panel, the prediction sets satisfy FWER control, while on the right FDR control, with the tolerance level δ = 0.1.

EDP(λ, Z) = Ttx(λ, Z)
∑K

k=1 E
k/K, quantifying the overall performance in terms of energy and delay (Laros III et al.,

2013).

B.2.2. RESULTS

We study a setting with differentiated service requirements. In particular, we enforce a constraint on the average queue
occupancy and energy efficiency for high-priority users, while making a best-effort attempt at minimizing the energy-
delay product for low-priority users. Writing as QHI(λ) = EPZ

[QHI(λ, Z)] the average queue occupancy of high-
priority users, and as ρHI = EPZ

[ρHI(λ, Z)] the average energy efficiency of high-priority users, and as (α1, α2) the
corresponding requirements. A hyperparameter is reliable if it meets both the queue occupancy and energy efficiency
requirements for high-priority users, i.e., Λrel = {λ ∈ Λ : QHI(λ) ≤ α1 ∩ ρHI(λ) ≥ α2}. An e-process for the
hypothesis Hi : Q

HI(λi) > α1 ∩ ρHI(λi) < α2 can be obtained as the minimum between an e-process for hypothesis
H1

i : QHI(λi) > α1, and an e-process for the hypothesis H2
i : ρHI(λi) < α2. Note that any e-merging function can be

applied to ensure validity over the joint hypothesis (see, e.g., (Vovk & Wang, 2021; Ramdas & Wang, 2024)), we choose
minimum for simplicity.

In Figure 11, we compare the performance of LTT and aLTT for a calibration horizon T = 4000 by choosing in the
estimated set of reliable hyperparameters Λ̂rel the hyperparameter λ̂ that minimizes the empirical energy-delay product
of low-priority users based on all the data DT collected across the testing steps. We vary the queue occupancy reliability
level α1 while fixing the energy-efficiency requirement α2 = 0.01 Mbit/Joule. As the queue occupancy target α1 increases,
the requirement becomes less stringent, and the energy-delay product of the low-priority users under the returned policy
decreases. In both cases—FWER control on the left and FDR control on the right—the performance of aLTT is significantly
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Figure 12. Average delay of the resource allocation policy returned by LTT and aLTT with ϵ-greedy acquisition policy with ϵ ∈
{0.25, 0.5, 0.95} under different energy efficiency requirements. The final policy is obtained by selecting the policy in the estimated set
of reliable policies Λ̂rel that is associated to the lowest empirical delay. On the left panel, the prediction sets satisfy FDR control, while on
the right FWER control, with the tolerance level δ = 0.1.

superior to that of LTT. What is more, in this example, the looser guarantees provided by FDR do not entail any reliability
loss, since the FWER of the hyperparameter λ̂ returned by FDR-controlling procedures was found to be significantly below
δ = 0.1.

B.2.3. MINIMIZING AVERAGE DELAY UNDER AN ENERGY EFFICIENCY REQUIREMENT

Now we consider the wireless resource allocation problem under a reliability requirement on the average energy efficiency.
Specifically, we consider the population risk R(λ) = EPZ

[ρ(λ, Z)], so that the set of reliable hyperparameters is given
by Λrel = {λ ∈ Λ : R(λ) ≥ α} for the given target energy efficiency α. After T = 1000 testing steps, with each step
consisting of a resource allocation episode of K = 2500 frames, the hyperparameter selection scheme selects from the
estimated subset of reliable hyperparameters Λ̂rel, the hyperparameter λ̂ that minimizes the empirical communication delay
T̂tx(λ,DT ) = 1/|DT |∑Z∈DT T̂tx(λ, Z) based on all the data DT collected across the testing steps.

In Figure 12 we report the average delay Ttx(λ̂) = EPZ
[Ttx(λ̂, Z)], estimated on hold-out data, of the selected policy λ̂ as a

function of the reliability level α for LTT and aLTT with an ϵ-greedy acquisition function, when setting the target error level
δ = 0.1. On the left panel, we consider FWER control, while the right presents the performance with FDR control.

As the reliability requirement α increases, becoming more stringent, the average delay of the selected hyperparameter
λ̂ increases. However, thanks to adaptive testing, aLTT returns a larger prediction set Λ̂rel providing hyperparameters λ̂
with lower delays as compared to LTT. Furthermore, due to the less stringent FDR requirements, FDR-controlling testing
procedures generally return policies with average delays smaller than FWER-controlling.

B.3. Reliable Prompt Selection for Natural Language Processing

In Figures 4 and 5, we report the performance averaged over ten tasks from the instruction induction dataset (Honovich
et al., 2022). Complementing the results in the main text, here we provide a breakdown of the methods’ performance across
the ten tasks. In Figure 13, we show the TPR of the schemes considered in Section 5.2.2 under FDR and FWER control with
tolerance δ = 0.1. Across all tasks, aLTT consistently outperforms LTT, which returns empty sets for many tasks.

In Figure 14, we plot the length of the shortest instruction in the predicted set Λ̂rel returned by the different hyperparameter
selection schemes as a function of the execution accuracy 1 − α. If a prediction scheme returns an empty predicted
hyperparameter set, we set the instruction length to the length of the longest instruction in the candidate set Λ. For all tasks,
aLTT can identify shorter instructions compared to LTT under the same testing budget.

B.3.1. EXAMPLE PROMPTS

A list of the tested prompts together with their accuracy levels can be found at: https://github.com/kclip/aLTT.
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Figure 13. Breakdown of the average performance of methods presented in Figure 4 across the 10 tasks in the instruction induction dataset
(Honovich et al., 2022) for which a non-empty hyperparameter sets Λ̂rel is returned. Across all tasks, aLTT delivers the highest true
positive rate.
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Figure 14. Length of the shortest instruction in Λ̂rel as a function of target execution accuracy 1 − α for each task in the instruction
induction dataset (Honovich et al., 2022) for which the methods presented in Figure 5 return non-empty hyperparameter sets Λ̂rel.
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