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Abstract

Large language models (LLMs) have shown promising performance on tasks that
require reasoning, such as text-to-SQL translation, code generation, and debug-
ging. However, regulatory frameworks with strict privacy requirements constrain
their integration into sensitive systems. State-of-the-art LLMs are also proprietary,
costly, and resource-intensive, making local deployment impractical. Consequently,
utilizing such LLMs often requires sharing data with third-party providers, raising
privacy concerns and risking noncompliance with regulations. Although fine-tuned
small language models (SLMs) can outperform LLMs on certain tasks and be
deployed locally to mitigate privacy concerns, they underperform on more complex
tasks such as text-to-SQL translation. In this work, we introduce MaskSQL, a text-
to-SQL framework that utilizes abstraction as a privacy protection mechanism to
mask sensitive information in LLM prompts. Unlike redaction, which removes con-
tent entirely, or generalization, which broadens tokens, abstraction retains essential
information while discarding unnecessary details, strikes an effective privacy–utility
balance for the text-to-SQL task. Moreover, by providing mechanisms to control
the privacy-utility tradeoff, MaskSQL facilitates adoption across a broader range of
use cases. Our experimental results show that MaskSQL outperforms leading SLM-
based text-to-SQL models and achieves performance approaching state-of-the-art
LLM-based models, while preserving privacy. Our implementation of MaskSQL is
available at https://github.com/sepideh-abedini/MaskSQL.

1 Introduction

Structured databases are central to applications across science, business, healthcare, and government.
However, retrieving information from these systems typically requires knowledge of Structured Query
Language (SQL), creating a steep barrier for non-technical users. The text-to-SQL task bridges this
gap by translating natural language (NL) questions into executable SQL queries, allowing users to
interact with databases intuitively and without specialized expertise.

Recent advances in language models (LMs) have significantly improved the accuracy and availability
of text-to-SQL solutions, enabling deployment across diverse domains and schemas. For example,
the most performant approaches on the text-to-SQL benchmarks Spider [54], BIRD [26], and Spider
2.0 [22] rely on LMs as their backbone for SQL generation. An LM’s performance typically scales
with parameter count [9], leading to a common distinction [12] between small LMs (SLMs, < 10B
parameters), and large LMs (LLMs, 10s to 100s of billions of parameters) which require specialized
infrastructure to run. While LLMs dominate text-to-SQL benchmarks, due to their increased hardware
requirements they are typically accessed via remote APIs hosted by specialized inference providers.
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These hosted APIs are attractive to users as they eliminate infrastructure outlays, but also introduce
severe privacy concerns; passing data through third-party APIs exposes sensitive user and schema
information to heightened privacy risks [35, 29, 18]. For instance, recent work demonstrated that
databases used in a text-to-SQL system are vulnerable to schema inference, where an adversary can
reconstruct proprietary schema details by probing the system with carefully crafted queries [21].
These criticisms could lead to stricter standards for text-to-SQL tasks in privacy laws such as GDPR
in Europe, HIPAA in the USA, or PIPEDA in Canada.

Example 1. Assume a database schema with
three tables that contain sensitive informa-
tion about patients in hospitals in New York:

T1 : Patients(pid, name, hiv_status,
diagnosis, treatment)

T2 : Hospital(hid, name, address)

T3 : Admissions(aid, pid, hid, date)

A doctor with minimal database experience
wants to generate an SQL query for the
question Q: “How many patients did the
New York Hospital admit with HIV status
as positive?”. The doctor sends this query
along with the database schema S to an
LLM hosted remotely to generate the cor-
responding SQL query Y . Although the LLM
provider lacks access to the database and
cannot execute the generated query Y , the
prompt has disclosed sensitive information:
the existence of a table named “Patients”,
a column named “hiv_status”, and possible
literal values, such as “positive”.

To illustrate the dilemma, consider the text-to-
SQL task shown in Example 1. The user has
two options to generate this query: (i) send their
data to a powerful but untrusted LLM hosted
remotely, with the risk of exposing schema and
personally identifiable information (PII); or (ii)
rely on trusted SLMs hosted locally, which often
fail to handle complex SQL constructs such as
nested queries, window functions, or common
table expressions (see Figure 3 in Appendix E).
Notable downsides exist with either option.

In this work, we propose a third alternative:
MaskSQL, a privacy-preserving text-to-SQL
framework that combines the utility of LLMs
with the trust guarantees of local processing us-
ing SLMs. MaskSQL achieves this through
prompt abstraction, which systematically re-
places sensitive schema elements (table names,
column names, and cell values) with abstract
symbols before sending a text-to-SQL prompt
to a remote LLM. Upon receiving the LLM’s
output, the SQL query is reconstructed locally
to restore the abstracted values to their original
values and make the query valid and executable.

However, implementing abstraction for text-to-SQL presents unique challenges: (i) accurately
identifying sensitive tokens in the NL question according to user-defined privacy policies; (ii)
preserving the utility of both the NL question and database schema in the abstraction process for
accurate SQL generation; and (iii) correcting errors introduced by abstraction noise. MaskSQL
addresses these with a three-stage pipeline of abstraction, SQL generation, and SQL reconstruction.
On a challenging subset of the BIRD benchmark, MaskSQL outperforms state-of-the-art SLM-based
approaches in accuracy, while preserving the privacy of user input, unlike LLM-based approaches.

The main contributions of this work are as follows.

1. We formalize the problem of privacy-preserving text-to-SQL using prompt abstraction guided by
user-defined privacy policies.

2. We introduce MaskSQL, a framework that safeguards privacy when using untrusted remote LLMs
by abstracting sensitive information in the question and database schema.

3. We propose a policy-based abstraction mechanism that enables a privacy–utility tradeoff, allowing
users to customize the level of abstraction according to their needs.

4. We empirically evaluate MaskSQL on 300 complex queries from the BIRD benchmark, showing
that it surpasses trusted SLM-based methods in accuracy while preserving privacy.

2 Background

In this section, we follow [57] to formalize the text-to-SQL task and provide some requisite back-
ground on LMs. We define a database schema as a tuple S = (T , C,Φ) where T = {T1, T2, . . .} is
the set of tables, C = {C1, C2, . . .} is the set of columns across all tables, and Φ = {ϕ1, ϕ2, . . .} is
the set of database constraints that enforce links between tables, such as primary or foreign keys. Each
Ci is also associated with a set of literal values, Vi, present in the database such that Vi ⊂ dom(Ci),
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where dom(Ci) is the domain of column Ci. For example, Vi could represent real numbers for a
numerical column, or textual categories for a categorical column. Herein, we consider access only to
the schema S and not the values Vi ∈ V , where V is the set of all literal values in the database.

Text-to-SQL Task Formulation. Text-to-SQL translation aims to map an NL question to its
corresponding executable SQL code with respect to a given database schema [40]. Formally, given a
natural language question Q and a database schema S, the task is to generate a SQL query Y , such
that Y is executable and accurately represents the intent of Q. Q is represented as a sequence of
tokens such that Q = w1, . . . , wn for wi ∈ W, where W is the vocabulary of permissible tokens (we
use the English language vocabulary).

Language Models. Language Models are neural models trained on large-scale corpora of natural
language and structured text. They are often informally classified into two types based on the total
number of parameters. LLMs have a very high parameter count (tens to hundreds of billions) which
requires multiple GPUs or specialized hardware to run, and, hence, are usually accessed through a
third-party service. In contrast, SLMs use fewer parameters (less than ten billion) and can typically be
run on a single GPU, enabling them to be hosted locally. Due to the difference in model complexity,
SLMs have reduced utility and ability to reason compared with LLMs [50].

LMs are used by providing a prompt to specify the task to be performed. Hosted LLMs require the
prompt to be passed through an API to the remote server. Once this happens, the owner loses control
over how their data is processed, used, or stored, which is a major concern when there is an obligation
to protect that data. Compliance with relevant laws and regulations around data privacy may preclude
the use of hosted LLMs due to this loss of control. Thus, there is a need for solutions that balance the
performance of LLMs with the increased control and privacy that SLMs bring.

In the context of this paper, we use LMs for the generation of SQL queries from NL questions. Given
question Q and schema S , we form a prompt P (Q,S) which is input to an LM denoted by fLM. The
text-to-SQL task is represented as Y = fLM(P (Q,S)), where Y is the generated SQL query.

3 Related Work

Text-to-SQL translation has been extensively studied in both the NLP and database communities.
Earlier methods relied on rule-based systems and named-entity recognition (NER) [3, 41], followed
by neural approaches using LSTMs [48, 58, 51, 53] and transformers [23, 30]. More recently,
prompt-based LLMs have emerged as the state-of-the-art [38, 13]. Comprehensive comparisons of
these techniques are provided on benchmarks including Spider [54], BIRD [26], Spider 2.0 [22],
and in recent surveys [59, 44, 10]. An alternative line of work focuses on locally served SLMs.
Several methods [39, 25, 14, 43] improve SLM performance via fine-tuning. While using local SLMs
eliminates the privacy concerns of sharing data with third parties, they consistently underperform
on complex queries requiring stronger reasoning [43]. Our approach follows a hybrid strategy,
combining SLMs and LLMs, and we evaluate it against some state-of-the-art models reported on the
BIRD leaderboard.1

A parallel line of work emphasizes privacy-preserving LLM inference, as user prompts often con-
tain sensitive information. Cryptographic approaches include homomorphic encryption (HE) [6]
and multi-party computation (MPC) [2], which protect user data during inference but incur signifi-
cant computational overhead. Differential privacy (DP) has also been applied to preserve training
privacy [33, 19, 17, 34] or inference privacy using noisy embeddings [32, 11] and token substitu-
tions [47, 55]. However, such methods either do not operate well at the scale of LLMs, or degrade
model utility [52]—a critical limitation for text-to-SQL, where precise information retrieval is re-
quired. In contrast, we propose a practical privacy protection approach, leveraging local SLMs and
prompt abstraction to minimize the exposure of sensitive data while preserving semantic fidelity.

Recent work has explored prompt sanitization for LLM inference privacy [7, 56, 27, 20, 8]. For
example, Portcullis [56] employs NER to detect sensitive entities, while PP-TS [20] and Prεεmpt [8]
sanitize inputs by replacing PII with contextually appropriate surrogates. HaS [7] and Papillon [27]
rely on fine-tuned local models for anonymization. Related to these are generalization-based meth-
ods [42, 5, 4], which replace values with general terms to obscure specifics. Unlike these general-

1https://bird-bench.github.io/

3



purpose techniques, the abstraction process we apply for text-to-SQL consistently preserves the
alignment between the question’s logic and the database schema.

4 Problem Statement

Consider a user with limited local compute resources who, given their database schema S and an NL
question Q, wants to generate a SQL query Y that performs the task described in Q. The user could
be, for example, a financial institution or a hospital that holds sensitive information about individuals
and is prohibited from sharing that information with untrusted third parties. As such, we assume
that any remotely hosted LLM is untrusted [49]. Specifically, we consider a privacy policy Ψ that
defines what information in S , Q, or the database values V is considered sensitive. A privacy policy
is determined by the user according to their needs and may contain all or a subset of the following
information.

• Table and Column Names: Any table or columns names from the sets of tables T and columns
C defined in S, including words or terms in Q that refer such tables or columns.

• Literal Values: Any words or terms in Q that might refer to any cell value from the set V in the
database.

By default, we use the full policy ΨF which includes the entire schema S and all values V , as
sensitive. However, less restrictive policies can also be defined, depending on the user’s requirements.
The problem of privacy-preserving text-to-SQL is to leverage a LM to accurately generate an SQL
query Y that correctly implements the intent of Q without exposing any information defined in the
policy Ψ.

5 MaskSQL: Privacy-Preserving Text-to-SQL Generation

Our proposed approach, MaskSQL, leverages LLM capabilities while protecting sensitive information.
We identify that, for a model to generate a correct SQL query Y , the essential information in the
prompt is the mapping between the terms used in the NL question Q and entities in the database
schema S. Specific names or values are not crucial for the structure and syntax of the generated
query. Thus, table names, column names, and literal values can be abstracted away in the prompt
and later restored by using a bijective mapping between the original and abstract tokens. Consider
Example 1: Q: “How many patients did the New York Hospital admit with HIV status as positive?”.
An abstracted query, “How many T1 did the V1 T3 with C3 as V2?”, paired with an appropriately
abstracted schema retains all information needed to generate Y .

There are multiple challenges with respect to implementing such an abstraction approach in practice.
First, the tokens in Q must be accurately linked to the corresponding elements in S . This is difficult
because a non-technical user may use tokens in Q that do not exactly match those used in S. For
instance, the user may write the token admit, which must be linked to the table named Admissions.
Second, the abstracted prompt is processed by an LLM, which generates a similarly abstracted SQL
query. The abstracted SQL query then needs to be reliably mapped back to its concrete form. This
step needs to be performed accurately, as incorrect mapping can lead to syntax errors (e.g. joins
applied with incorrect column names). Third, Y may contain minor errors or issues (e.g., using the
string value of positive instead of the numeric value of 1) that must be corrected. These errors can
occur due to noisy translation during the process and must be corrected before returning the query to
the user.

MaskSQL addresses these challenges using a three-stage pipeline: Abstraction, SQL Generation,
and SQL Reconstruction. Altogether, this pipeline safeguards user privacy while leveraging the
capabilities of LLMs. An overview of the pipeline is shown in Figure 1. In the first stage, Q, S , and
Ψ are passed to the Abstraction engine which produces abstracted representations Q′ and S ′. In the
second stage, these abstracted inputs are combined into a prompt P (Q′,S ′) and provided to the SQL
Generation engine, which uses a remotely hosted LLM and returns an abstracted SQL query Y ′. In
the final stage, the SQL Reconstruction engine maps Y ′ back to its concrete form Y , applies a final
round of corrections to fix any remaining errors, and outputs the executable SQL query. Figure 4 in
Appendix E shows Q′, S ′, and Y ′ under the full policy, ΨF , for Example 1. The remainder of this
section describes each stage in detail.
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Figure 1: MaskSQL pipeline. Green dashed boxes delineate text and schema information contained
in the “trusted environment”, while red boxes denote those exposed to “untrusted third parties”.

5.1 Abstraction

The first stage of the pipeline generates abstract versions of both Q and S. This process consists of
three main steps.

1. Ranking and filtering entire elements of S to drop irrelevant tables and columns based on Q.
2. Identifying mappings between sensitive terms in Q and the retained schema elements using a

locally hosted SLM.
3. Replacing the identified terms in Q and the retained schema elements with abstract identifiers.

The bijective masking procedure, combined with SLM-based schema linking, provides an effective
approach for abstracting a text-to-SQL query. We detail each of these steps below.

Schema Ranking and Filtering. Real-world databases often include hundreds of tables and columns,
which can overwhelm LMs with irrelevant context. To mitigate this, we use a local cross-encoder
model, following the methodology of RESDSQL [24], to rank and filter schema elements based
on their relevance to Q. Specifically, RESDSQL employs a RoBERTa-based cross-encoder [28] to
compute contextual embeddings for both Q and S . These embeddings are pooled using a Bidirectional
Long Short-Term Memory [16] and scored via Multi-Layer Perceptron modules to estimate the
relevance of each table and column. Based on these scores, the top-k tables and their corresponding
top-j columns are retained. This strategy is integrated into the pipeline, as keeping too few elements
may result in missing relevant matches, while too many can introduce noise that affects the SQL
generation accuracy. As shown in Appendix C, schema filtering has a significant impact on both
accuracy and efficiency. In our experiments, retaining k = 4 tables and j = 5 columns per table
yields strong performance, though these parameters can be adjusted based on specific use cases. The
output of this step is a ranked and filtered list of relevant schema elements, which are then passed to
subsequent stages.

Value and Reference Linking. This step takes as input the filtered list of schema elements from the
previous step and Q, and constructs a mapping between the two using a local SLM. This process
is performed in three sub-steps. First, the SLM is prompted to identify tokens wi ∈ Q that may
correspond to values in the database, V . In Example 1, the tokens New York Hospital and positive are
identified. In the second step, the SLM is prompted to map each identified value to its corresponding
table.column pair from T and C in S . For Example 1, New York Hospital is mapped to Hospital.name
and positive is mapped to Patients.hiv_status. In the final step, the SLM is prompted to identify
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any remaining tokens wi ∈ Q that may reference any column or table names in the filtered schema
elements. In Example 1, tokens patients, admit, and HIV status are mapped to the tables Patients and
Admissions, and column Patients.hiv_status, respectively. These mappings are then passed to the next
step.

The importance of value and reference linking is two-fold. To protect privacy and abstract away
sensitive tokens, it is essential to generate an accurate and complete linking; any token not identified
as a value or reference remains unmasked and, therefore, may be exposed. In addition, the linking
map must be generated precisely to preserve reference information essential for SQL generation
during the abstraction process. Also, prior work shows that SLMs achieve accuracy comparable to
LLMs for schema linking tasks [31], making them sufficient for this stage.

Abstracting Concrete Tokens. The final step generates the abstracted NL question Q′ and the
schema S ′. To generate S ′, each table, column, and value specified in Ψ and retained after the initial
schema filtering step is assigned an abstract symbol. For example, table names are mapped to symbols
like Ti, and columns to Ci. Tokens that are not included in the privacy policy Ψ remain unchanged.
The mapping from S to S ′ is stored as a symbol lookup table, which is later used for both masking
and reconstruction. Next, using this symbol table and the linking map from the previous step, all
references to tables and columns in Q are replaced with their corresponding abstract symbols. In
Example 1, the table name Patients is represented by the symbol T1, column Patients.pid by symbol
C1, and column Patients.name by symbol C2, and so on.

Finally, each literal value in Q is also replaced with a unique abstract symbol of the form Vi. As
shown in Figure 1, the token New York Hospital is mapped to V1. An additional sentence is also
appended to the question to specify the column associated with the value. In Example, 1, the sentence:
“V1 is a value of the column C7.” where C7 is the abstracted symbol for column Hospital.name, is
appended to the abstract question. This additional context helps the LLM understand the alignment
between values and schema elements without exposing any concrete tokens.

A key point is that, once the schema linking map is generated, abstraction reduces to simple text
substitution. This method preserves the reference information in the question while allowing for
accurate abstraction inversion of an LLM’s output.

5.2 SQL Generation

Using the abstracted question Q′ and database schema S ′ produced in the previous steps, a remotely
hosted LLM is prompted to generate the corresponding abstracted SQL query Y ′. The generation
prompt used in the experiments is provided in Appendix F.1. This prompt contains only Q′ and S ′,
with no additional sensitive information. Since the LLM only sees abstract symbols, the generated
SQL query is also expected to follow the abstract form. An example of such an abstract SQL query
is shown in Figure 1. To address minor errors in the generated abstract SQL, a self-correction
mechanism, commonly used in text-to-SQL pipelines, is employed [38]. In this step, the LLM is
prompted with Q′, S ′, and Y ′ and is instructed to identify and correct any potential issues. The
prompt used for this step is included in Appendix F.2.

5.3 SQL Reconstruction

In the final stage, the abstract SQL query Y ′ is mapped back to its concrete form Y . Using the symbol
lookup table created during abstraction, all abstract symbols are replaced with their corresponding
concrete values. The result is an executable SQL query free of abstract identifiers. To further improve
accuracy, an additional self-correction step is applied using a local SLM. This final correction step
uses the concrete SQL query and its execution result on the target database, along with Q and S to
correct any remaining errors. The full prompt for this step is provided in Appendix F.3.

6 Experiments

In this section, experimental results are reported comparing MaskSQL with several state-of-the-art
text-to-SQL frameworks. We use the BIRD dataset, a widely used benchmark consisting of NL
questions paired with ground-truth SQL queries, along with the corresponding databases that enable
execution-based evaluation of generated queries [26]. To demonstrate the gap between state-of-the-art
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LLM- and SLM-based text-to-SQL models on more complex queries, a challenging subset of 300
entries is selected from the BIRD development split. In particular, we selected examples that involve
complex SQL patterns, such as nested queries, set operations (e.g., INTERSECT), and multiple
joins. To generate ground-truth data for privacy measurements, GPT-4.1 [37] is used to annotate
tokens that should be abstracted, followed by human review and correction. For MaskSQL, Qwen-
2.5-7B-Instruct [46] serves as the trusted local SLM, and GPT-4.1 is used as the untrusted LLM for
generating SQL queries from abstracted prompts.

We evaluate MaskSQL under two privacy policies.

• ΨF : The full privacy policy, defined in Section 4, where the entire database schema and associated
values are considered sensitive.

• ΨC : A category-based policy where only tokens related to concepts of person names, occupations,
and locations are abstracted. The formal definition is provided in Appendix A.

6.1 Baselines

We compare MaskSQL against several baselines, including three state-of-the-art text-to-SQL frame-
works and direct LM prompting. The direct prompting baseline utilize a simple few-shot prompt
asking the LM to generate an SQL query based on the given NL question and database schema.
DAIL-SQL [13], which holds the top position on the Spider benchmark [54] for open-source solu-
tions at the time of writing, builds on few-shot prompting with additional strategies to improve SQL
generation accuracy. DIN-SQL [38], which holds the second-best ranking among open-source frame-
works, decomposes text-to-SQL translation into smaller tasks to improve the accuracy. MSc-SQL
[14] is designed specifically for SLM-only settings. It samples a few candidate SQL queries from
different models and then selects the best candidate by prompting additional SLMs. For experiments
leveraging MSc-SQL, we use the fine-tuned SLMs released by the authors based on Gemma-2-9B-it
[45], Llama-3-8B [15], and Mistral-7B-Instruct-v0.2 [1]. For direct prompting, DAIL-SQL, and
DIN-SQL, we consider both a trusted setting using a Qwen2.5-7B-Instruct and an untrusted setting
using GPT-4.1.

6.2 Metrics

We evaluate each baseline on utility, efficiency, and privacy metrics. For utility evaluation, we use
execution accuracy, as defined in the BIRD benchmark. Efficiency is measured by average token
usage per query generation. For privacy, we define the following metrics:

Masking Recall (MR): This metric is defined as the ratio of correctly abstracted tokens to the total
number of ground-truth sensitive tokens in the NL question Q. Higher values indicate more protection
of the sensitive tokens, resulting in better privacy.

Re-identification Score (RI): This metric captures the proportion of abstracted tokens in the NL
question Q′ that cannot be re-identified by an adversary. Specifically, we prompt GPT-4.1 with the
abstracted question Q′ and schema S ′ and instruct it to infer the original tokens. The score is then
computed as the ratio of the tokens that cannot be recovered by the LLM to the total number of
abstract tokens in Q′.

Formal definitions of these metrics are provided in Appendix B.

6.3 Results

Accuracy. Table 1 shows the execution accuracy across baselines. Untrusted LLM-based approaches
perform significantly better than trusted SLM-based methods, showing a 25% gap, which is expected
given the additional capacity of LLMs. However, the direct use of remote LLMs exposes sensitive data
and introduces privacy risks. MaskSQL outperforms all trusted SLM-only approaches, achieving an
execution accuracy of 55.66% under the full privacy policy, ΨF , which is 5 percentage points higher
than the next best trusted baseline, DIN-SQL. This improvement is primarily because MaskSQL
leverages LLMs in a privacy-preserving manner. However, there remains a ∼20% gap between
MaskSQL and the best-performing untrusted baseline. We also observe in the experiments that the
direct prompting GPT-4.1 outperforms both DIN-SQL and DAIL-SQL. This is a surprising result,
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Framework Execution Accuracy Token Usage Trusted

Direct Prompting + Qwen-2.5-7B-Instruct 34.33% 1,380 Yes
DAIL-SQL + Qwen-2.5-7B-Instruct 44.33% 3,492 Yes
Fine-Tuned MSc-SQL 48.33% 8,342 Yes
DIN-SQL + Qwen-2.5-7B-Instruct 50.66% 24,812 Yes
MaskSQL (ΨF ) 55.66% 6,114 Yes
MaskSQL (ΨC) 62.66% 6,757 Yes
DAIL-SQL + GPT-4.1 63.33% 3,385 No
DIN-SQL + GPT-4.1 73.66% 23,036 No
Direct Prompting + GPT-4.1 75.66% 1,352 No

Table 1: Execution accuracy and token usage of MaskSQL compared to other text-to-SQL frameworks
on a subset of the BIRD development set. MaskSQL outperforms SLM-based frameworks and
achieves better token efficiency than MSc-SQL and DIN-SQL. By adopting a more permissive
privacy policy, MaskSQL (ΨC) improves execution accuracy while still preserving privacy. Pure
LLM-based methods have the best accuracy, but do not protect sensitive data.

as these methods are supposed to enhance simple LLM prompting and yield higher accuracy. We
discuss this further in Appendix D.

Efficiency. Table 1 also reports the average token usage of each framework per SQL generation.
For frameworks that make more than one LM call, we compute the total token usage across all
calls. As shown in the table, direct prompting with Qwen2.5 and GPT-4.1 exhibits the lowest token
usage, followed by DAIL-SQL and MSc-SQL, while DIN-SQL consumes the most. MaskSQL uses
fewer tokens than the MSc-SQL and DIN-SQL while having a better accuracy and preserving the
privacy. For instance, it requires a quarter of the tokens consumed by the next best trusted model.
The additional token usage in MaskSQL primarily comes from the intermediate linking steps and
error corrections.

Privacy. Figure 2 presents the privacy scores of MaskSQL measured by the masking recall and
re-identification score metrics. In Figure 2, ground-truth masking refers to abstracting all ground-truth
tokens, providing an upper bound for masking recall and re-identification scores. Under the full policy,
ΨF , MaskSQL achieves a masking recall of 61.36%, demonstrating that a large portion of sensitive
tokens are abstracted. The re-identification score measures robustness against adversarial inference of
the abstract tokens. With GPT-4.1 acting as the attacker, MaskSQL achieves a re-identification score
of 75.47%, indicating that three-quarters of abstracted tokens could not be inferred from context.
With ground-truth masking, this score is ∼86%. The relatively small gap highlights that MaskSQL is
robust to contextual information leakage despite not abstracting all tokens.

We further analyze the impact of using a more permissive privacy policy. As shown in Table 1, using
the category-based policy, ΨC , increases execution accuracy by 7 points compared to ΨF at the cost
of a 27 point drop in masking recall, which is expected, since fewer tokens are abstracted when only
tokens related to specific concepts (name, location, and occupation) are considered. This highlights
the flexibility of policy-based abstraction in trading off privacy for higher accuracy, depending on
the user’s needs. Note that for MaskSQL under the ΨC setup, masking recall is computed as the
ratio of correctly abstracted tokens in ΨC to all ground-truth sensitive tokens, rather than restricting
the ground-truth tokens to only those included in the policy. Additionally, the re-identification score
decreases by only 4 points, indicating that while fewer tokens are abstracted overall, the remaining
abstracted tokens remain difficult for the adversary to recover.

7 Conclusion

In this work, we introduced MaskSQL, a framework for text-to-SQL translation that employs an
abstraction-based privacy mechanism to preserve sensitive information according to user-defined
policies when interacting with LLMs. Rather than relying solely on either SLMs or LLMs, MaskSQL
follows a hybrid design that combines private local processing with SLMs and leverages the reasoning
ability of LLMs. By supporting flexible privacy policies, MaskSQL also enables a privacy-utility
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Figure 2: Privacy metrics of MaskSQL compared to ground-truth masking. Higher values indicate
stronger privacy preservation.

trade-off that allows users to tailor abstraction according to their needs. The experiments show that
MaskSQL outperforms state-of-the-art SLM-based methods in terms of execution accuracy. Addition-
ally, we implemented a category-based privacy policy that considers only sensitive tokens associated
with specific semantic categories to be abstracted. The experimental results demonstrate that this
more lenient policy achieves higher execution accuracy than the full privacy policy, highlighting the
potential of controlled trade-offs between privacy and utility.

There are several promising directions for future work to be explored. First, since only a subset of
tokens is abstracted within the NL question, the surrounding context may be exploited to re-identify
the abstract tokens. Currently, we quantify this privacy risk by measuring the re-identification score.
However, additional privacy measures can be applied to mitigate such potential leakage. Next,
while MaskSQL uses an LLM for SQL generation, its accuracy still falls behind other LLM-based
frameworks. Future work will explore fine-tuning SLMs, improved schema linking, and token-
efficient strategies to reduce this gap. Further, we plan to consider integrating provable privacy
mechanisms, such as differential privacy, into the MaskSQL pipeline. In addition to the privacy
measurements leveraged in this work, provable guarantees enhance the user’s trust in the system.
Finally, the abstraction-based approach in MaskSQL is not limited to the text-to-SQL translation task.
We envision the abstraction approach to be applicable to tasks such as code generation, debugging, and
analysis, where reference and relational information are sufficient to perform the task. Characterizing
the class of tasks to which this approach applies will be the subject of future work.
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A Category-Based Policy Definition

Let ΨF be the full policy under which the entire schema and database values are abstracted. Let L be
the set of semantic categories. Each category in L is a label for a certain concept, such as “person’s
name” or “locations”. We define the category-based policy ΨC for categories L as

ΨC = {w ∈ ΨF | l(w) ∈ L},

where l : W → L ∪ {ε} is a labeling function that assigns a category from the set L to a token
w ∈ W. In the case that a token does not match any category, it is mapped to ε. We assume that the
labeling function is implemented with semantic text classification [36]. Here, we use Qwen2.5-7B to
classify the tokens into categories based on their semantics.
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B Privacy Metrics Definitions

B.1 Re-identification score (RI)

This metric is calculated by simulating an attack on the masked question. More specifically, an
LLM is prompted with the masked NL question and database schema and instructed to infer the
masked tokens. Then, the percentage of the masked tokens that could not be re-identified is calculated
as the score. Formally, let W be the set of all natural language tokens and S ⊆ W be the set of
masked symbols. Let Q = w1, w2, . . . , wn be an NL question where wi ∈ W for 1 ≤ i ≤ n. We
define Qs = {wi | 1 ≤ i ≤ n} as the set of tokens used in Q. We assume that questions do not
include masked tokens, i.e., Qs ∩ S = ∅. For a database schema S, we define masking functions as
f : W → W, which maps each token of a question to either a masked symbol or the token itself. Let
f−1 denote the inverse of f , which returns the original token for a masked token. For a question
Q, let f(Q) = f(w1), f(w2), . . . , f(wn) be its masked version. For a question Q and masking
function f , let Q′ = f(Q) be its masked version, and G be the re-identified question generated by a
simulated attack on Q′. Let Q′

s and Gs be the set of tokens for Q′ and G, respectively. We define the
re-identification score as follows:

Rf (Q′
s, Gs) = 1− |{w ∈ Qs | f(w) ∈ S} ∩Gs|

|Q′
s ∩ S|

(1)

where the set builder notation is used to denote the set of original tokens in the Qs that have been
masked by f , and Q′

s ∩ S is the set of all masked tokens in Q′
s. A score of 1 means none of the

masked tokens could be inferred by the attacker. Here, we use exact string matching and not semantic
or distance-based methods.

We calculate the re-identification score for each masked question and report the average over all
questions as the score for the whole dataset.

B.2 Masking Recall (MR)

Masking recall is defined as the ratio of the masked tokens to the total number of tokens in the
ground-truth masking. Formally, let f, fg be two masking functions where fg is the ground-truth, i.e.,
a mapping that masks all ground-truth sensitive tokens. For a question Q and its set of tokens Qs, we
define the masking recall as follows:

Mf (Qs) =
{w ∈ Qs | fg(w) ∈ S ∧ f(w) ∈ S}

|fg(Qs)|
(2)

A score of 1 indicates that the tool successfully masked all required tokens. Similarly, we calculate
the average of the scores to report it for a dataset.

C Ablation Study

To quantify the contribution of each component in the MaskSQL pipeline, we conducted an ablation
study by removing each stage and measuring how accuracy and privacy scores are changed. The
results, presented in Table 2, demonstrate that each component plays a crucial role in the MaskSQL
pipeline (Figure 1).
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Stage EX RI MR

Complete Pipeline 55.66% 75.47% 61.36%
Schema Filtering 53.66% 76.49% 58.56%
Value Detection 53.33% 82.17% 64.45%
Value Linking 52.33% 74.97% 48.64%
Abstraction 47.00% 86.79% 65.45%
LLM Correction 51.33% 75.47% 61.36%
SQL Reconstruction 34.33% 75.47% 61.36%
SLM Correction 35.33% 75.47% 61.36%

Table 2: Ablation study results showing the effect of removing each component of the MaskSQL
pipeline on the final execution accuracy (EX), re-identification score (RI), and masking recall (MR).

Schema Filtering. For this experiment, we remove the schema filtering at the beginning of the
pipeline. As a result, the whole database schema is always passed to the further stages. As shown in
the table, removing schema linking step decreases the execution accuracy and masking recall.

Value Detection. Here, we remove the separate stage for detecting the values in the question.
Removing this stage slightly decreases the execution accuracy.

Value Linking. In this experiment, we remove the separate stage for linking the values of the question.
While value linking slightly decreases the execution accuracy, it has a significant negative impact on
the masking recall and decreases it by ∼ 13%.

Abstraction. In the MaskSQL pipeline, we use separate stages for schema linking and abstraction.
To measure the effect of this separation, we removed the schema linking stage and used an SLM to
abstract away the question with respect to the database schema. While abstraction with SLM and
without a separate schema linking step improves the privacy measures, it decreases the execution
accuracy by ∼ 8%.

LLM Correction. By removing the abstract SQL correction stage, we see a slight decrease in
execution accuracy.

SQL Reconstruction. Similar to abstraction, to measure the effect of the deterministic unmasking
process, we prompt SLM to unmask the SQL query and also correct the errors in the query if needed.
As shown in the table, replacing the deterministic unmasking stage with language model prompting
significantly reduces the execution accuracy by ∼ 21%.

SLM correction. The final correction stage prompts the SLM to fix errors in the reconstructed SQL
query, and, as shown in the table, it has a significant impact on the execution accuracy. Removing
this correction step causes a ∼ 20% drop in execution accuracy.

D Discussion of Experimental Results

Table 1 shows the execution accuracy of different frameworks. As shown in the figure, direct
prompting to GPT-4.1 outperforms all evaluated models. This is a surprising result, as both DIN-SQL
and DAIL-SQL are also utilizing GPT-4.1 as the backend LLM and performing additional processing
and improvements to enhance accuracy. The direct method uses the prompt shown in Figure F.1,
but with the concrete examples instead of the abstract ones shown in the figure. Note that the BIRD
benchmark website reports DIN-SQLand DAIL-SQLsubmissions based on GPT-4, rather than the
later version GPT-4.1. Moreover, our experiments use a different evaluation set. These differences
explain why GPT-4.1 surpassed them in our results, even though they achieved top ranks on the
official BIRD leaderboard.
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E Additional Figures

-- NL Question:
-- List the power of superheroes with height greater than 80% of the average height

of all superheroes.↪→
-- Power of superheroes refers to power_name;
-- Height greater than 80% of the average height of all superheroes = height_cm >

MULTIPLY(AVG(height_cm), 0.8);↪→

-- Qwen2.5 Output (Incorrect):
SELECT

[superpower].[power_name]
FROM

[hero_power]
JOIN

[superpower] ON [hero_power].[power_id] = [superpower].[id]
JOIN

[superhero] ON [hero_power].[hero_id] = [superhero].[id]
GROUP BY

[superpower].[power_name]
HAVING

[superhero].[height_cm] > AVG([superhero].[height_cm]) * 0.8;

-- GPT-4.1 Output (Correct):
SELECT

[superpower].[power_name]
FROM

[hero_power]
JOIN

[superhero] ON [hero_power].[hero_id] = [superhero].[id]
JOIN

[superpower] ON [hero_power].[power_id] = [superpower].[id]
WHERE

[superhero].[height_cm] > (
0.8 * (SELECT AVG([superhero].[height_cm]) FROM [superhero])

);

Figure 3: An example of an SQL query that requires advanced constructs like nested queries, which
Qwen2.5-7B failed to handle properly. This example is extracted from our experiments.

F Prompt Templates

F.1 SQL Generation Prompt

You are an SQL generation assistant. Given

(1) NL Question: a natural-language question about a dataset and

(2) DB Schema: the database’s schema expressed in YAML

produce a single SQL SELECT statement that answers the question.

Input Format:
- DB Schema: given in YAML format, where top-level keys are table names;

each table lists its columns and their data types.↪→

- Column names are case-sensitive exactly as shown in the schema.
- Each column might be a primary key or a foreign key.
- For foreign key columns, the fully qualified name of the referenced

column is given.↪→
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NL Question (Q)

How many patients did the New York
Hospital admit with HIV status as
positive?

↪→
↪→

Abstract NL Question (Q′)

How many T1 did the V1 T3 with C3 as
V2?; V1 is a value of the column C7;
V2 is a value of the column C3

↪→
↪→

SQL Query (Y)

SELECT count(P.pid)
FROM Patient AS P
JOIN Admission AS A ON P.pid = A.pid
JOIN Hospital AS H ON A.hid = H.hid
WHERE H.name = "New York Hospital"
AND P.hiv_status = 1

Abstract SQL Query (Y ′)

SELECT count(T1.C1)
FROM T1
JOIN T3 ON T1.C1 = T3.C10
JOIN T2 ON T3.C11 = T2.C6
WHERE T2.C7 = 'V1'
AND T1.C3 = 'V2';

Database Schema (S)

'Patients':
'pid':

primary_key: true
type: integer

'name': text
'hiv_status': integer
'diagnosis': text
'treatment': text

'Hospital':
'hid':

primary_key: true
type: integer

'name': text
'address': text

'Admissions':
'aid':

primary_key: true
type: integer

'pid':
foreign_key: 'Patients.pid'
type: integer

'hid':
foreign_key: 'Hospital.hid'
type: integer

'date': date

Abstract Database Schema (S ′)

'T1':
'C1':

primary_key: true
type: integer

'C2': text
'C3': integer
'C4': text
'C5': text

'T2':
'C6':

primary_key: true
type: integer

'C7': text
'C8': text

'T3':
'C9':

primary_key: true
type: integer

'C10':
foreign_key: 'T1.C1'
type: integer

'C11':
foreign_key: 'T2.C6'
type: integer

'C12': date

Figure 4: Abstract question, database schema, SQL query for Example 1.

Output Rules:
- Table and column names specified in the database schema are already

wrapped in brackets. You should use them with the brackets.↪→

You should not remove the brackets when using them in the SQL.
- Each reference to a table or column name should be of the form

[table_name] or [table_name].[column_name].↪→

- Output ONLY the SQL query (no extra explanation or text).
- Use fully qualified column names: table.column.
- Only reference tables/columns that exist in the provided schema.
- Do not include any comments.
- For column names with spaces, wrap them in backticks, e.g., "WHERE `car

model` = 'bar'" instead of "WHERE car model = 'bar'".↪→

Here are some examples:
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...
-----------------------------------
#### Example 2

**NL Question:**
Among the [V1] [T1], how many of them have a [C2] of [V2]? [V1] refers to

[C2] = [V1].↪→

**DB Schema:**
[T1]:

[C1]: text
[C2]: real
[C3]:

primary_key: true
type: integer

**Output:**
`SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = [V1] AND [C2] = [V2]

-----------------------------------
...

Now, generate an SQL query for the following question and database schema:
Inputs:
NL Question: {NL_QUESTION}
DB Schema: {DB_SCHEMA}

F.2 Self-Correction Prompt (Abstract)

You are an SQL database expert tasked with debugging an SQL query.
A previous attempt to predict an SQL query given a masked NL question and

DB schema did not yield the correct results in some cases.↪→

Either due to errors in execution or because the result returned was empty
or unexpected.↪→

Your task is to analyze the masked SQL query given the corresponding
database schema and the NL question.↪→

and fix any errors in the query if they exist.
You should then provide a corrected version of the SQL query.
Note that there may be errors in how the NL question tokens were linked and

masked with the database schema elements.↪→

As a result, the masked SQL query might contain inaccuracies based on these
incorrect mappings,↪→

and part of your task is to consider these issues as well.

**Procedure:**
1. Review Database Schema:

- Examine the database schema to understand the database structure.
- Database schema is given in YAML format, where top-level keys are

table names; each table lists its columns and their data types.↪→

- Each column might be a primary key or a foreign key.
2. Analyze Query Requirements:

- NL Question: Consider what information the query is supposed to
retrieve.↪→

- Predicted SQL Query: Review the SQL query that was previously
predicted and might have led to an error or incorrect result.↪→

3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it

correctly fetches the requested data according to the database
schema and query requirements.

↪→

↪→
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**Output Format:**
Present your corrected query as a single line of SQL code.
Ensure there are no line breaks within the query.
Do not include any explanations, comments, or extra text.

Here are some examples:

-------------------------------
Example 1:

NL Question:
Among the [V1] [T1], how many of them have [C2] of zero? [V1] is a

nationality of [C1] = [V1];↪→

Database Schema:
'[T1]':

'[C1]': text
'[C2]': real
'[C3]':

primary_key: true
type: integer

The predicted SQL query was:
SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = '[V1]' AND [C2] = 0

The corrected SQL query is:
SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = '[V1]' AND [C2] = 0
-------------------------------

======= Your task =======
**************************
Database schema:
{schema}
**************************
The original question is:
NL Question: {question}
The predicted SQL query: {sql}
**************************
Based on the NL question, database schema, and the previously predicted SQL

query,↪→

Analyze the query and question, and fix the SQL query if needed.

F.3 Self-Correction Prompt (Concrete)

You are an SQL database expert tasked with correcting an SQL query.
A previous attempt to run a query did not yield the correct results,
either due to errors in execution or because the result returned was empty

or unexpected.↪→

Your role is to analyze the error based on the provided database schema and
the details↪→

of the failed execution, and then provide a corrected version of the SQL
query.↪→

**Procedure:**
1. Review Database Schema:

- Examine the database schema to understand the database structure.
- Iterate through each column and table name in the schema to make sure

that it is correct.↪→
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- Some table or column names may have white space; you should not
change these and use a different name.↪→

- Database schema is given in YAML format, where top-level keys are
table names; each table lists its columns and their data types.↪→

- Column names are case-sensitive, exactly as shown in the schema.
- Each column might be a primary key or a foreign key.
- For foreign key columns, the fully qualified name of the referenced

column is given.↪→

2. Analyze Query Requirements:
- Original Question: Consider what information the query is supposed to

retrieve.↪→

- Executed SQL Query: Review the SQL query that was previously executed
and led to an error or incorrect result.↪→

- Execution Result: Analyze the outcome of the executed query to
identify why it failed (e.g., syntax errors, incorrect column
references, logical mistakes).

↪→

↪→

3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it

correctly fetches the requested data according to the database
schema and query requirements.

↪→

↪→

- For column names with spaces, wrap them in backticks, e.g., "WHERE
`car model` = 'bar'" instead of "WHERE car model = 'bar'".↪→

**Output Format:**
Present your corrected query as a single line of SQL code.
Ensure there are no line breaks within the query.
Do not include any explanations, comments, or extra text.

Here are some examples:

-------------------------------
Example 1:
Question:
Among the German customers, how many of them have a credit limit of zero?

German is a nationality of the country = 'Germany'; CREDITLIMIT = 0.↪→

Database Schema:
'[customers]':

'[country]': text
'[creditlimit]': real
'[customernumber]':

primary_key: true
type: integer

The SQL query executed was:
SELECT COUNT(*) FROM [customers] WHERE [customers].[country] = 'German' AND

[creditlimit] = 0↪→

Output:
SELECT COUNT(*) FROM [customers] WHERE [customers].[country] = 'Germany'

AND [creditlimit] = 0↪→

The execution result:
[]
-------------------------------

======= Your task =======
**************************
Database schema:
{schema}
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**************************
The original question is:
Question: {question}
The SQL query executed was: {sql}
The execution result: {exec_res}
**************************
Based on the question, table schema, and the previous query, analyze the

result and try to fix the query.↪→
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