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Abstract

Large language models (LLMs) have shown promising performance on tasks that1

require reasoning, such as text-to-SQL translation, code generation, and debug-2

ging. However, regulatory frameworks with strict privacy requirements constrain3

their integration into sensitive systems. State-of-the-art LLMs are also proprietary,4

costly, and resource-intensive, making local deployment impractical. Consequently,5

utilizing such LLMs often requires sharing data with third-party providers, raising6

privacy concerns and risking noncompliance with regulations. Although fine-tuned7

small language models (SLMs) can outperform LLMs on certain tasks and be8

deployed locally to mitigate privacy concerns, they underperform on more complex9

tasks such as text-to-SQL translation. In this work, we introduce MaskSQL, a10

text-to-SQL framework that utilizes abstraction as a privacy protection mecha-11

nism to mask sensitive information in LLM prompts. Unlike redaction, which12

removes content entirely, or generalization, which broadens tokens, abstraction13

retains essential information while discarding unnecessary details, striking an ef-14

fective privacy–utility balance for the text-to-SQL task. Moreover, by providing15

mechanisms to control the privacy-utility tradeoff, MaskSQL facilitates adoption16

across a broader range of use cases. Our experimental results show that MaskSQL17

outperforms leading SLM-based text-to-SQL models and achieves performance18

approaching state-of-the-art LLM-based models, while preserving privacy.19

1 Introduction20

Structured databases are central to applications across science, business, healthcare, and government.21

However, retrieving information from these systems typically requires knowledge of Structured Query22

Language (SQL), creating a steep barrier for non-technical users. The text-to-SQL task bridges this23

gap by translating natural language (NL) questions into executable SQL queries, allowing users to24

interact with databases intuitively and without specialized expertise.25

Recent advances in language models (LMs) have significantly improved the accuracy and availability26

of text-to-SQL solutions, enabling deployment across diverse domains and schemas. For example,27

the most performant approaches on the text-to-SQL benchmarks Spider [54], BIRD[26], and Spider28

2.0 [22] rely on LMs as their backbone for SQL generation. An LM’s performance typically scales29

with parameter count [9], leading to a common distinction [12] between small LMs (SLMs, < 10B30

parameters), and large LMs (LLMs, 10s to 100s of billions of parameters) which require specialized31

infrastructure to run. While LLMs dominate text-to-SQL benchmarks, due to their increased hardware32

requirements they are typically accessed via remote APIs hosted by specialized inference providers.33

These hosted APIs are attractive to users as they largely eliminate infrastructure outlays, but also34

introduce severe privacy concerns; passing data through third-party APIs exposes sensitive user and35
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schema information to heightened privacy risks [35, 29, 18]. For instance, recent work demonstrated36

that databases used in a text-to-SQL system are vulnerable to schema inference, where an adversary37

can reconstruct proprietary schema details by probing the system with carefully crafted queries [21].38

These criticisms could lead to stricter standards for text-to-SQL tasks in privacy laws such as GDPR39

in Europe, HIPAA in the USA, or PIPEDA in Canada.40

Example 1. Assume a database schema with
three tables that contain sensitive informa-
tion about patients in hospitals in New York:

T1 : Patients(pid, name, hiv_status,
diagnosis, treatment)

T2 : Hospital(hid, name, address)

T3 : Admissions(aid, pid, hid, date)

A doctor with minimal database experience
wants to generate an SQL query for the
question Q: “How many patients did the
New York Hospital admit with HIV status
as positive?”. The doctor sends this query
along with the database schema S to an
LLM hosted remotely to generate the cor-
responding SQL query Y . Although the LLM
provider lacks access to the database and
cannot execute the generated query Y , the
prompt has disclosed sensitive information:
the existence of a table named “Patients”,
a column named “hiv_status”, and possible
literal values, such as “positive”.

To illustrate the dilemma, consider the text-to-41

SQL task shown in Example 1. The user has42

two options to generate this query: (i) send their43

data to a powerful but untrusted LLM hosted44

remotely, with the risk of exposing schema and45

personally identifiable information (PII); or (ii)46

rely on trusted SLMs hosted locally, which often47

fail to handle complex SQL constructs such as48

nested queries, window functions, or common49

table expressions (see Figure 3 in Appendix E).50

Notable downsides exist with either option.51

In this work, we propose a third alternative:52

MaskSQL, a privacy-preserving text-to-SQL53

framework that combines the utility of LLMs54

with the trust guarantees of local processing us-55

ing SLMs. MaskSQL achieves this through56

prompt abstraction, which systematically re-57

places sensitive schema elements (table names,58

column names, and cell values) with abstract59

symbols before sending a text-to-SQL prompt60

to a remote LLM. Upon receiving the LLM’s61

output, the SQL query is reconstructed locally62

to restore the abstracted values to their original63

values and make the query valid and executable.64

However, implementing abstraction for text-to-SQL presents unique challenges: (i) accurately65

identifying sensitive tokens in the NL question according to user-defined privacy policies; (ii)66

preserving the utility of both the NL question and database schema in the abstraction process for67

accurate SQL generation; and (iii) correcting errors introduced by abstraction noise. MaskSQL68

addresses these with a three-stage pipeline of abstraction, SQL generation, and SQL reconstruction.69

On a challenging subset of the BIRD benchmark, MaskSQL outperforms state-of-the-art SLM-based70

approaches in accuracy, while preserving the privacy of user input, unlike LLM-based approaches.71

The main contributions of this work are as follows.72

1. We formalize the problem of privacy-preserving text-to-SQL using prompt abstraction guided by73

user-defined privacy policies.74

2. We introduce MaskSQL, a framework that safeguards privacy when using untrusted remote LLMs75

by abstracting sensitive information in the question and database schema.76

3. We propose a policy-based abstraction mechanism that enables a privacy–utility tradeoff, allowing77

users to customize the level of abstraction according to their needs.78

4. We empirically evaluate MaskSQL on 300 complex queries from the BIRD benchmark, showing79

that it surpasses trusted SLM-based methods in accuracy while mitigating schema and PII leakage.80

2 Background81

In this section, we follow [57] to formalize the text-to-SQL task and provide some requisite back-82

ground on LMs. We define a database schema as a tuple S = (T , C,Φ) where T = {T1, T2, . . .} is83

the set of tables, C = {C1, C2, . . .} is the set of columns across all tables, and Φ = {ϕ1, ϕ2, . . .} is84

the set of database constraints that enforce links between tables, such as primary or foreign keys. Each85

Ci is also associated with a set of literal values, Vi, present in the database such that Vi ⊂ dom(Ci),86

where dom(Ci) is the domain of column Ci. For example, Vi could represent real numbers for a87
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numerical column, or textual categories for a categorical column. Herein, we consider access only to88

the schema S and not the values Vi ∈ V , where V is the set of all literal values in the database.89

Text-to-SQL Task Formulation. Text-to-SQL translation aims to map an NL question to its90

corresponding executable SQL code with respect to a given database schema [40]. Formally, given a91

natural language question Q and a database schema S, the task is to generate a SQL query Y , such92

that Y is executable and accurately represents the intent of Q. Q is represented as a sequence of93

tokens such that Q = w1, . . . , wn for wi ∈ W, where W is the vocabulary of permissible tokens (we94

use the English language vocabulary).95

Language Models. Language Models are neural models trained on large-scale corpora of natural96

language and structured text. They are often informally classified into two types based on the total97

number of parameters. LLMs have a very high parameter count (tens to hundreds of billions) which98

requires multiple GPUs or specialized hardware to run, and, hence, are usually accessed through a99

third-party service. In contrast, SLMs use fewer parameters (less than ten billion) and can typically be100

run on a single GPU, enabling them to be hosted locally. Due to the difference in model complexity,101

SLMs have reduced utility and ability to reason compared with LLMs [50].102

LMs are used by providing a prompt to specify the task to be performed. Hosted LLMs require the103

prompt to be passed through an API to the remote infrastructure. Once this happens, the owner loses104

control over how their data is processed, used, or stored, which is a major concern when there is an105

obligation to protect that data. Compliance with relevant laws and regulations around data privacy106

may preclude the use of hosted LLMs due to this loss of control. Thus, there is a need for solutions107

that balance the performance of LLMs with the increased control and privacy that SLMs bring.108

In the context of this paper, we use LMs for the generation of SQL queries from NL questions. Given109

question Q and schema S , we form a prompt P (Q,S) which is input to an LM denoted by fLM. The110

text-to-SQL task is represented as Y = fLM(P (Q,S)), where Y is the generated SQL query.111

3 Related Work112

Text-to-SQL translation has been extensively studied in both the NLP and database communities.113

Earlier methods relied on rule-based systems and named-entity recognition (NER) [3, 41], followed114

by neural approaches using LSTMs [48, 58, 51, 53] and transformers [23, 30]. More recently,115

prompt-based LLMs have emerged as the state-of-the-art [38, 13]. Comprehensive comparisons of116

these techniques are provided on benchmarks including Spider [54], BIRD [26], Spider 2.0 [22],117

and in recent surveys [59, 44, 10]. An alternative line of work focuses on locally served SLMs.118

Several methods [39, 25, 14, 43] improve SLM performance via fine-tuning. While using local SLMs119

eliminates the privacy concerns of sharing data with third parties, they consistently underperform120

on complex queries requiring stronger reasoning [43]. Our approach follows a hybrid strategy,121

combining SLMs and LLMs, and we evaluate it against some state-of-the-art models reported on the122

BIRD leaderboard.1123

A parallel line of work emphasizes privacy-preserving LLM inference, as user prompts often con-124

tain sensitive information. Cryptographic approaches include homomorphic encryption (HE) [6]125

and multi-party computation (MPC) [2], which protect user data during inference but incur signifi-126

cant computational overhead. Differential privacy (DP) has also been applied to preserve training127

privacy [33, 19, 17, 34] or inference privacy using noisy embeddings [32, 11] and token substitu-128

tions [47, 55]. However, such methods either do not operate well at the scale of LLMs, or degrade129

model utility [52]—a critical limitation for text-to-SQL, where precise information retrieval is re-130

quired. In contrast, we propose a practical privacy protection approach, leveraging local SLMs and131

prompt abstraction to minimize the exposure of sensitive data while preserving semantic fidelity.132

Recent work has explored prompt sanitization for LLM inference privacy [7, 56, 27, 20, 8]. For133

example, Portcullis [56] employs NER to detect sensitive entities, while PP-TS [20] and Prεεmpt [8]134

sanitize inputs by replacing PII with contextually appropriate surrogates. HaS [7] and Papillon [27]135

rely on fine-tuned local models for anonymization. Related to these are generalization-based meth-136

ods [42, 5, 4], which replace values with general terms to obscure specifics. Unlike these general-137

purpose techniques, the abstraction process we apply for text-to-SQL consistently preserves the138

alignment between the question’s logic and the database schema.139

1https://bird-bench.github.io/
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4 Problem Statement140

Consider a user with limited local compute resources who, given their database schema S and an NL141

question Q, wants to generate a SQL query Y that performs the task described in Q. The user could142

be, for example, a financial institution or a hospital that holds sensitive information about individuals143

and is prohibited from sharing that information with untrusted third parties. As such, we assume144

that any remotely hosted LLM is untrusted [49]. Specifically, we consider a privacy policy Ψ that145

defines what information in S , Q, or the database values V is considered sensitive. A privacy policy146

is determined by the user according to their needs and may contain all or a subset of the following147

information.148

• Table and Column Names: Any table or columns names from the sets of tables T and columns149

C defined in S, including words or terms in Q that refer such tables or columns.150

• Literal Values: Any words or terms in Q that might refer to any cell value from the set V in the151

database.152

By default, we use the full policy ΨF which includes the entire schema S and all values V , as153

sensitive. However, less restrictive policies can also be defined, depending on the user’s requirements.154

The problem of privacy-preserving text-to-SQL is to leverage a remote LM to accurately generate an155

SQL query Y that correctly implements the intent of Q without exposing any information defined in156

the policy Ψ.157

5 MaskSQL: Privacy-Preserving Text-to-SQL Generation158

Our proposed approach, MaskSQL, leverages LLM capabilities while protecting sensitive information.159

We identify that, for a model to generate a correct SQL query Y , the essential information in the160

prompt is the mapping between the terms used in the NL question Q and entities in the database161

schema S. Specific names or values are not crucial for the structure and syntax of the generated162

query. Thus, table names, column names, and literal values can be abstracted away in the prompt163

and later restored by using a bijective mapping between the original and abstract tokens. Consider164

Example 1: Q: “How many patients did the New York Hospital admit with HIV status as positive?”.165

An abstracted query, “How many T1 did the V1 T3 with C3 as V2?”, paired with an appropriately166

abstracted schema retains all information needed to generate Y .167

There are multiple challenges with respect to implementing such an abstraction approach in practice.168

First, the tokens in Q must be accurately linked to the corresponding elements in S . This is difficult169

because a non-technical user may enter tokens in Q that do not exactly match those used in S. For170

instance, the user may write the token admit which must be linked to the table named Admissions171

based on the semantic context. Second, the abstracted prompt is processed by an LLM, which172

generates a similarly abstracted SQL query. The abstracted SQL query then needs to be reliably173

mapped back to its concrete form. This step needs to be performed accurately, as incorrect mapping174

can lead to syntax errors (e.g. joins applied with incorrect column names). Third, Y may contain175

minor errors or issues (e.g., using the string value of positive instead of the numeric value of 1) that176

must be corrected. These errors can occur due to noisy translation during the process and must be177

corrected for error-free query execution.178

MaskSQL addresses these challenges within a three-stage pipeline: Abstraction, SQL Generation,179

and SQL Reconstruction. Altogether, this pipeline safeguards user privacy while leveraging the180

capabilities of LLMs. An overview of the pipeline is shown in Figure 1. In the first stage, Q, S , and181

Ψ are passed to the Abstraction engine which produces abstracted representations Q′ and S ′. In the182

second stage, these abstracted inputs are combined into a prompt P (Q′,S ′) and provided to the SQL183

Generation engine, which prompts a remotely hosted LLM and returns an abstracted SQL query Y ′.184

In the final stage, the SQL Reconstruction engine maps Y ′ back to its concrete form Y , applies a final185

round of corrections to fix any remaining errors, and outputs the executable SQL query. Figure 4 in186

Appendix E shows Q′, S ′, and Y ′ under the full policy, ΨF , for Example 1. The remainder of this187

section describes each stage in detail.188
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Figure 1: MaskSQL pipeline. Green dashed boxes delineate text and schema information contained
in the “trusted environment”, while red boxes denote those exposed to “untrusted third parties”.

5.1 Abstraction189

The first stage of the pipeline generates abstract versions of both Q and S. This process consists of190

three main steps.191

1. Ranking and filtering entire elements of S to drop irrelevant tables and columns based on Q.192

2. Identifying mappings between sensitive terms in Q and the retained schema elements using a193

locally hosted SLM.194

3. Replacing the identified terms in Q and the retained schema elements with abstract identifiers.195

The bijective masking procedure, combined with SLM-based schema linking, provides an effective196

approach for abstracting a text-to-SQL query. We detail each of these steps below.197

Schema Ranking and Filtering. Real-world databases often include hundreds of tables and columns,198

which can overwhelm LMs with irrelevant context. To mitigate this, we use a local cross-encoder199

model, following the methodology of RESDSQL [24], to rank and filter schema elements based on200

their relevance to Q. Specifically, RESDSQL employs a RoBERTa-based cross-encoder [28] to com-201

pute contextual embeddings for both Q and S. These embeddings are pooled using a Bidirectional202

Long Short-Term Memory [16] and scored via Multi-Layer Perceptron modules to estimate the rele-203

vance of each table and column. Based on these scores, the top-k tables and their corresponding top-j204

columns are retained. This strategy is integrated into the pipeline, as keeping too few elements may205

result in missing relevant matches, while too many can introduce noise and increase computational206

overhead. As shown in Appendix C, schema filtering has a significant impact on both accuracy and207

efficiency. In our experiments, retaining k = 4 tables and j = 5 columns per table yields strong208

performance, though these parameters can be adjusted based on specific use cases. The output of this209

step is a ranked and filtered list of relevant schema elements, which are then passed to subsequent210

stages.211

Value and Reference Linking. This step takes as input the filtered list of schema elements from the212

previous step and Q, and constructs a mapping between the two using a local SLM. This process213

is performed in three sub-steps. First, the SLM is prompted to identify tokens wi ∈ Q that may214

correspond to values in the database, V . In Example 1, the tokens New York Hospital and positive are215

identified. In the second step, the SLM is prompted to map the identified values to their corresponding216

columns and tables, from C and T in S , respectively. For Example 1, New York Hospital is mapped to217

Hospital.name and positive is mapped to Patients.hiv_status. In the final step, the SLM is prompted218
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to identify any remaining tokens wi ∈ Q that may reference any column or table names in the filtered219

schema elements. In Example 1, tokens patients, admit, and HIV status are mapped to the tables220

Patients and Admissions, and column Patients.hiv_status, respectively. These mappings are then221

passed to the next step.222

The importance of value and reference linking is two-fold. To protect privacy and abstract away223

sensitive tokens, it is essential to generate an accurate and complete linking; any token not identified224

as a value or reference remains unmasked and, therefore, may be exposed. In addition, the linking225

map must be generated precisely to preserve reference information during the abstraction process.226

Also, prior work shows that SLMs achieve accuracy comparable to LLMs for schema linking tasks227

[31], making them sufficient for this stage.228

Abstracting Concrete Tokens. The final step generates the abstracted NL question Q′ and the229

schema S ′. To generate S ′, each table, column, and value specified in Ψ and retained after the initial230

schema filtering step is assigned an abstract symbol. For example, table names are mapped to symbols231

like Ti, and columns to Ci. Tokens that are not included in the privacy policy Ψ remain unchanged.232

The mapping from S to S ′ is stored as a symbol lookup table, which is later used for both masking233

and reconstruction. Next, using this symbol table and the linking map from the previous step, all234

references to tables and columns in Q are replaced with their corresponding abstract symbols. In235

Example 1, the table name Patients is represented by the symbol T1, column Patients.pid by symbol236

C1, and column Patients.name by symbol C2, and so on.237

Finally, each literal value in Q is also replaced with a unique abstract symbol of the form Vi. As238

shown in Figure 1, the token New York Hospital is mapped to V1. An additional sentence is also239

appended to the question to specify the column associated with the value. In Example, 1, the sentence:240

“V1 is a value of the column C7.” where C7 is the abstracted symbol for column Hospital.name, is241

appended to the abstract question. This additional context helps the LLM understand the alignment242

between values and schema elements without exposing any concrete tokens.243

A key point is that, once the schema linking map is generated, abstraction reduces to simple text244

substitution. This method preserves the reference information in the question while allowing for245

accurate abstraction inversion of an LLM’s output.246

5.2 SQL Generation247

Using the abstracted question Q′ and database schema S ′ produced in the previous steps, a remotely248

hosted LLM is prompted to generate the corresponding abstracted SQL query Y ′. The generation249

prompt used in the experiments is provided in Appendix F.1. This prompt contains only Q′ and S ′,250

with no additional sensitive information. Since the LLM only sees abstract symbols, the generated251

SQL query is also expected to follow the abstract form. An example of such an abstract SQL query252

is shown in Figure 1. To address minor errors in the generated abstract SQL, a self-correction253

mechanism, commonly used in text-to-SQL pipelines, is employed [38]. In this step, the LLM is254

prompted with Q′, S ′, and Y ′ and is instructed to identify and correct any potential issues. The255

prompt used for this step is included in Appendix F.2.256

5.3 SQL Reconstruction257

In the final stage, the abstract SQL query Y ′ is mapped back to its concrete form Y . Using the symbol258

lookup table created during abstraction, all abstract symbols are replaced with their corresponding259

concrete values. The result is an executable SQL query free of abstract identifiers. To further improve260

accuracy, an additional self-correction step is applied using a local SLM. The concretized SQL query261

is executed on the target database, and its execution result, along with Q, S , and the concretized query262

Y , is passed to the SLM to correct any remaining errors. The full prompt for this step is provided in263

Appendix F.3.264

6 Experiments265

In this section, experimental results are reported comparing MaskSQL with several state-of-the-art266

text-to-SQL frameworks. We use the BIRD dataset, a widely used benchmark consisting of NL267

questions paired with ground-truth SQL queries, along with the corresponding databases that enable268
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execution-based evaluation of generated queries [26]. To demonstrate the gap between state-of-the-art269

LLM- and SLM-based text-to-SQL models on more complex queries, a challenging subset of 300270

entries is selected from the BIRD development split. In particular, we selected examples that involve271

complex SQL patterns, such as nested queries, set operations (e.g., INTERSECT), and multiple272

joins. To generate ground-truth data for privacy measurements, GPT-4.1 [37] is used to annotate273

tokens that should be abstracted, followed by human review and correction. For MaskSQL, Qwen-274

2.5-7B-Instruct [46] serves as the trusted local SLM, and GPT-4.1 is used as the untrusted LLM for275

generating SQL queries from abstracted prompts.276

We evaluate MaskSQL under two privacy policies.277

• ΨF : The full privacy policy, defined in Section 4, where the entire database schema and associated278

values are considered sensitive.279

• ΨC : A category-based policy where only tokens related to concepts of person names, occupations,280

and locations are abstracted. The formal definition is provided in Appendix A.281

6.1 Baselines282

We compare MaskSQL against several baselines, including three state-of-the-art text-to-SQL frame-283

works and direct LM prompting. The direct prompting baseline applies a simple few-shot prompt that284

asks the LM to generate a SQL query based on the given NL question and database schema. DAIL-285

SQL [13], which holds the top position on the Spider benchmark [54] for open-source solutions at the286

time of writing, builds on few-shot prompting with additional strategies to improve SQL generation287

accuracy. DIN-SQL [38], which holds the second-best ranking among open-source frameworks,288

decomposes text-to-SQL translation into smaller tasks to improve the accuracy. For direct prompting,289

DAIL-SQL, and DIN-SQL, we consider both a trusted setting, where Qwen2.5-7B-Instruct is used as290

the backbone LM and an untrusted setting, where GPT-4.1 is used. Finally, MSc-SQL [14] is designed291

specifically for SLM-only settings. It samples a few candidate SQL queries from different models and292

then selects the best candidate by prompting additional SLMs. For experiments leveraging MSc-SQL,293

we use the fine-tuned SLMs released by the authors based on Gemma-2-9B-it [45], Llama-3-8B [15],294

and Mistral-7B-Instruct-v0.2 [1].295

6.2 Metrics296

We evaluate each baseline on utility, efficiency, and privacy metrics. For utility evaluation, we use297

execution accuracy, as defined in the BIRD benchmark. Efficiency is measured by average token298

usage per query generation. For privacy, we define two metrics.299

Masking Recall (MR): This metric is defined as the ratio of correctly abstracted tokens to the total300

number of ground-truth sensitive tokens in the NL question Q. Higher values indicate more protection301

of the sensitive tokens, resulting in better privacy.302

Re-identification Score (RI): This metric captures the proportion of abstracted tokens in the NL303

question Q′ that cannot be re-identified by an adversary. Specifically, we prompt GPT-4.1 with the304

abstracted NL question Q′ and schema S ′ and instruct it to infer the original tokens. The score is305

then computed as the ratio of the tokens that cannot be recovered by the LLM to the total number of306

abstract tokens in Q′.307

Formal definitions of these metrics are provided in Appendix B.308

6.3 Results309

Accuracy. Table 1 shows the execution accuracy across baselines. Untrusted LLM-based approaches310

perform significantly better than trusted SLM-based methods, which is expected given the additional311

capacity of LLMs. However, the direct use of LLMs exposes sensitive data to privacy risks. MaskSQL312

outperforms all trusted SLM-only approaches, achieving an execution accuracy of 55.66% under313

the full privacy policy, ΨF , which is 5 percentage points higher than the next best trusted baseline,314

DIN-SQL. This improvement is primarily because MaskSQL leverages LLMs in a privacy-preserving315

manner. However, there remains a ∼20 point gap between MaskSQL and the best-performing316

untrusted baseline. We also observe in the experiments that the direct prompting GPT-4.1 outperforms317
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Framework Execution Accuracy Token Usage Trusted

Direct Prompting + Qwen-2.5-7B-Instruct 34.33% 1,380 Yes
DAIL-SQL + Qwen-2.5-7B-Instruct 44.33% 3,492 Yes
Fine-Tuned MSc-SQL 48.33% 8,342 Yes
DIN-SQL + Qwen-2.5-7B-Instruct 50.66% 24,812 Yes
MaskSQL (ΨF ) 55.66% 6,114 Yes
MaskSQL (ΨC) 62.66% 6,757 Yes
DAIL-SQL + GPT-4.1 63.33% 3,385 No
DIN-SQL + GPT-4.1 73.66% 23,036 No
Direct Prompting + GPT-4.1 75.66% 1,352 No

Table 1: Execution accuracy and token usage of MaskSQL compared to other text-to-SQL frameworks
on a subset of the BIRD development set. MaskSQL outperforms SLM-based frameworks and
achieves better token efficiency than MSc-SQL and DIN-SQL. By adopting a more permissive
privacy policy, MaskSQL (ΨC) improves execution accuracy while still preserving privacy. Pure
LLM-based methods have the best accuracy, but do not protect sensitive data.

both DIN-SQL and DAIL-SQL. This is a surprising result, as these methods are supposed to enhance318

simple LLM prompting and yield higher accuracy. We discuss this further in Appendix D.319

Efficiency. Table 1 also reports the average token usage of each framework per SQL generation.320

For frameworks that make more than one LM call, we compute the total token usage across all321

calls. As shown in the table, direct prompting with Qwen2.5 and GPT-4.1 exhibits the lowest token322

usage, followed by DAIL-SQL and MSc-SQL, while DIN-SQL consumes the most. MaskSQL uses a323

competitive number of tokens compared to SLM-based frameworks, especially when considering324

execution accuracy gains. For instance, it requires a quarter of the tokens consumed by the next325

best trusted model. The additional token usage in MaskSQL primarily comes from the intermediate326

linking steps and error corrections.327

Privacy. Figure 2 presents the privacy scores of MaskSQL measured by the masking recall and328

re-identification score metrics. In Figure 2, ground-truth masking refers to abstracting all ground-truth329

tokens, providing an upper bound for masking recall and re-identification scores. Under the full330

policy, ΨF , MaskSQL achieves a masking recall of 61.36%, demonstrating that a large portion of331

sensitive tokens are effectively abstracted. The re-identification score measures robustness against332

adversarial recovery of the abstract tokens. With GPT-4.1 acting as the attacker, MaskSQL achieves333

a re-identification score of 75.47%, indicating that three-quarters of abstracted tokens could not334

be inferred from context. With ground-truth masking, this score is ∼86%. The relatively small335

gap highlights that MaskSQL is robust to contextual information leakage despite not abstracting all336

tokens.337

We further analyze the impact of using a more permissive privacy policy. As shown in Table 1, using338

the category-based policy, ΨC , increases execution accuracy by 7 points compared to ΨF at the cost339

of a 27 point drop in masking recall, which is expected, since fewer tokens are abstracted when only340

tokens related to specific concepts (name, location, and occupation) are considered. This highlights341

the flexibility of policy-based abstraction in trading off privacy for higher accuracy, depending on342

the user’s needs. Note that for MaskSQL under the ΨC setup, masking recall is computed as the343

ratio of correctly abstracted tokens in ΨC to all ground-truth sensitive tokens, rather than restricting344

the ground-truth tokens to only those included in the policy. Additionally, the re-identification score345

decreases by only 4 points, indicating that while fewer tokens are abstracted overall, the remaining346

abstracted tokens remain difficult for the adversary to recover.347

7 Conclusion348

In this work, we introduced MaskSQL, a framework for text-to-SQL translation that employs an349

abstraction-based privacy mechanism to preserve sensitive information according to user-defined350

policies when interacting with LLMs. Rather than relying solely on either SLMs or LLMs, MaskSQL351

follows a hybrid design that combines private local processing with SLMs and leverages the reasoning352

8



Figure 2: Privacy metrics of MaskSQL compared to ground-truth masking. Higher values indicate
stronger privacy preservation.

ability of LLMs. By supporting flexible privacy policies, MaskSQL also enables a privacy-utility353

trade-off that allows users to tailor abstraction according to their needs. The experiments show that354

MaskSQL outperforms state-of-the-art SLM-based methods in terms of execution accuracy. Addition-355

ally, we implemented a category-based privacy policy that considers only sensitive tokens associated356

with specific semantic categories to be abstracted. The experimental results demonstrate that this357

more lenient policy achieves higher execution accuracy than the full privacy policy, highlighting the358

potential of controlled trade-offs between privacy and utility.359

There are several promising directions for future work to be explored. First, since only a subset of360

tokens is abstracted within the NL question, the surrounding context may be exploited to re-identify361

the abstract tokens. Currently, we quantify this privacy risk by measuring the re-identification score.362

However, additional privacy measures can be applied to mitigate such potential leakage. Next,363

while MaskSQL uses an LLM backbone for SQL generation, its accuracy still falls behind other364

LLM-based frameworks. Future work will explore fine-tuning SLMs, improved schema linking, and365

token-efficient strategies to reduce this gap. Further, we plan to consider integrating provable privacy366

mechanisms, such as differential privacy, into the MaskSQL pipeline. In addition to the privacy367

measurements leveraged in this work, provable guarantees enhance the user’s trust in the system.368

Finally, the abstraction-based approach in MaskSQL is not limited to the text-to-SQL translation task.369

We envision the abstraction approach to be applicable to tasks such as code generation, debugging,370

and data analysis, where reference and relational information are sufficient to perform the task.371

Characterizing the class of tasks to which this approach applies will be the subject of future work.372
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A Category-Based Policy Definition598

Let ΨF be the full policy under which the entire schema and database values are abstracted. Let L be599

the set of semantic categories. Each category in L is a label for a certain concept, such as “person’s600

name” or “locations”. We define the category-based policy ΨC for categories L as601

ΨC = {w ∈ ΨF | l(w) ∈ L},

where l : W → L ∪ {ε} is a labeling function that assigns a category from the set L to a token602

w ∈ W. In the case that a token does not match any category, it is mapped to ε. We assume that the603

labeling function is implemented with semantic text classification [36]. Here, we use Qwen2.5-7B to604

classify the tokens into categories based on their semantics.605

B Privacy Metrics Definitions606

B.1 Re-identification score (RI)607

This metric is calculated by simulating an attack on the masked question. More specifically, an608

LLM is prompted with the masked NL question and database schema and instructed to infer the609

masked tokens. Then, the percentage of the masked tokens that could not be re-identified is calculated610

as the score. Formally, let W be the set of all natural language tokens and S ⊆ W be the set of611

masked symbols. Let Q = w1, w2, . . . , wn be an NL question where wi ∈ W for 1 ≤ i ≤ n. We612

define Qs = {wi | 1 ≤ i ≤ n} as the set of tokens used in Q. We assume that questions do not613

include masked tokens, i.e., Qs ∩ S = ∅. For a database schema S, we define masking functions as614

f : W → W, which maps each token of a question to either a masked symbol or the token itself. Let615

f−1 denote the inverse of f , which returns the original token for a masked token. For a question616

Q, let f(Q) = f(w1), f(w2), . . . , f(wn) be its masked version. For a question Q and masking617

function f , let Q′ = f(Q) be its masked version, and G be the re-identified question generated by a618

simulated attack on Q′. Let Q′
s and Gs be the set of tokens for Q′ and G, respectively. We define the619

re-identification score as follows:620

Rf (Q′
s, Gs) = 1− |{w ∈ Qs | f(w) ∈ S} ∩Gs|

|Q′
s ∩ S|

(1)

where the set builder notation is used to denote the set of original tokens in the Qs that have been621

masked by f , and Q′
s ∩ S is the set of all masked tokens in Q′

s. A score of 1 means none of the622

masked tokens could be inferred by the attacker. Here, we use exact string matching and not semantic623

or distance-based methods.624

We calculate the re-identification score for each masked question and report the average over all625

questions as the score for the whole dataset.626

B.2 Masking Recall (MR)627

Masking recall is defined as the ratio of the masked tokens to the total number of tokens in the628

ground-truth masking. Formally, let f, fg be two masking functions where fg is the ground-truth, i.e.,629

14



a mapping that masks all ground-truth sensitive tokens. For a question Q and its set of tokens Qs, we630

define the masking recall as follows:631

Mf (Qs) =
{w ∈ Qs | fg(w) ∈ S ∧ f(w) ∈ S}

|fg(Qs)|
(2)

A score of 1 indicates that the tool successfully masked all required tokens. Similarly, we calculate632

the average of the scores to report it for a dataset.633

C Ablation Study634

To quantify the contribution of each component in the MaskSQL pipeline, we conducted an ablation635

study by removing each stage and measuring how accuracy and privacy scores are changed. The636

results, presented in Table 2, demonstrate that each component plays a crucial role in the MaskSQL637

pipeline (Figure 1).638

Stage EX RI MR

Complete Pipeline 55.66% 75.47% 61.36%
Schema Filtering 53.66% 76.49% 58.56%
Value Detection 53.33% 82.17% 64.45%
Value Linking 52.33% 74.97% 48.64%
Abstraction 47.00% 86.79% 65.45%
LLM Correction 51.33% 75.47% 61.36%
SQL Reconstruction 34.33% 75.47% 61.36%
SLM Correction 35.33% 75.47% 61.36%

Table 2: Ablation study results showing the effect of removing each component of the MaskSQL
pipeline on the final execution accuracy (EX), re-identification score (RI), and masking recall (MR).

Schema Filtering. For this experiment, we remove the schema filtering at the beginning of the639

pipeline. As a result, the whole database schema is always passed to the further stages. As shown in640

the table, removing schema linking step decreases the execution accuracy and masking recall.641

Value Detection. Here, we remove the separate stage for detecting the values in the question.642

Removing this stage slightly decreases the execution accuracy.643

Value Linking. In this experiment, we remove the separate stage for linking the values of the question.644

While value linking slightly decreases the execution accuracy, it has a significant negative impact on645

the masking recall and decreases it by ∼ 13%.646

Abstraction. In the MaskSQL pipeline, we use separate stages for schema linking and abstraction.647

To measure the effect of this separation, we removed the schema linking stage and used an SLM to648

abstract away the question with respect to the database schema. While abstraction with SLM and649

without a separate schema linking step improves the privacy measures, it decreases the execution650

accuracy by ∼ 8%.651

LLM Correction. By removing the abstract SQL correction stage, we see a slight decrease in652

execution accuracy.653

SQL Reconstruction. Similar to abstraction, to measure the effect of the deterministic unmasking654

process, we prompt SLM to unmask the SQL query and also correct the errors in the query if needed.655

As shown in the table, replacing the deterministic unmasking stage with language model prompting656

significantly reduces the execution accuracy by ∼ 21%.657

SLM correction. The final correction stage prompts the SLM to fix errors in the reconstructed SQL658

query, and, as shown in the table, it has a significant impact on the execution accuracy. Removing659

this correction step causes a ∼ 20% drop in execution accuracy.660
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D Discussion of Experimental Results661

Table 1 shows the execution accuracy of different frameworks. As shown in the figure, direct662

prompting to GPT-4.1 outperforms all evaluated models. This is a surprising result, as both DIN-663

SQLand DAIL-SQLare also utilizing GPT-4.1 as the backend LLM and performing additional664

processing and improvements to enhance accuracy. The direct method uses the prompt shown in665

Figure F.1, but with the concrete examples instead of the abstract ones shown in the figure. Note666

that the BIRD benchmark website reports DIN-SQLand DAIL-SQLsubmissions based on GPT-4,667

rather than the later version GPT-4.1. Moreover, our experiments use a different evaluation set. These668

differences explain why GPT-4.1 surpassed them in our results, even though they achieved top ranks669

on the official BIRD leaderboard.670

E Additional Figures671

-- NL Question:
-- List the power of superheroes with height greater than 80% of the average height

of all superheroes.↪→
-- Power of superheroes refers to power_name;
-- Height greater than 80% of the average height of all superheroes = height_cm >

MULTIPLY(AVG(height_cm), 0.8);↪→

-- Qwen2.5 Output (Incorrect):
SELECT

[superpower].[power_name]
FROM

[hero_power]
JOIN

[superpower] ON [hero_power].[power_id] = [superpower].[id]
JOIN

[superhero] ON [hero_power].[hero_id] = [superhero].[id]
GROUP BY

[superpower].[power_name]
HAVING

[superhero].[height_cm] > AVG([superhero].[height_cm]) * 0.8;

-- GPT-4.1 Output (Correct):
SELECT

[superpower].[power_name]
FROM

[hero_power]
JOIN

[superhero] ON [hero_power].[hero_id] = [superhero].[id]
JOIN

[superpower] ON [hero_power].[power_id] = [superpower].[id]
WHERE

[superhero].[height_cm] > (
0.8 * (SELECT AVG([superhero].[height_cm]) FROM [superhero])

);

Figure 3: An example of an SQL query that requires advanced constructs like nested queries, which
Qwen2.5-7B failed to handle properly. This example is extracted from our experiments.

F Prompt Templates672

F.1 SQL Generation Prompt673

You are a SQL generation assistant. Given
(1) NL Question: a natural-language question about a dataset and
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NL Question (Q)

How many patients did the New York
Hospital admit with HIV status as
positive?

↪→
↪→

Abstract NL Question (Q′)

How many T1 did the V1 T3 with C3 as
V2?; V1 is a value of the column C7;
V2 is a value of the column C3

↪→
↪→

SQL Query (Y)

SELECT count(P.pid)
FROM Patient AS P
JOIN Admission AS A ON P.pid = A.pid
JOIN Hospital AS H ON A.hid = H.hid
WHERE H.name = "New York Hospital"
AND P.hiv_status = 1

Abstract SQL Query (Y ′)

SELECT count(T1.C1)
FROM T1
JOIN T3 ON T1.C1 = T3.C10
JOIN T2 ON T3.C11 = T2.C6
WHERE T2.C7 = 'V1'
AND T1.C2 = 'V2';

Database Schema (S)

'Patients':
'pid':

primary_key: true
type: integer

'name': text
'hiv_status': text
'diagnosis': text
'treatment': text

'Hospital':
'hid':

primary_key: true
type: integer

'name': text
'address': text

'Admissions':
'aid':

primary_key: true
type: integer

'pid':
foreign_key: 'Patients.pid'
type: integer

'hid':
foreign_key: 'Hospital.hid'
type: integer

'date': date

Abstract Database Schema (S ′)

'T1':
'C1':

primary_key: true
type: integer

'C2': text
'C3': text
'C4': text
'C5': text

'T2':
'C6':

primary_key: true
type: integer

'C7': text
'C8': text

'T3':
'C9':

primary_key: true
type: integer

'C10':
foreign_key: 'T1.C1'
type: integer

'C11':
foreign_key: 'T2.C6'
type: integer

'C12': date

Figure 4: Abstract question, database schema, SQL query for Example 1.

(2) DB Schema: the database’s schema expressed in YAML
produce a single SQL SELECT statement that answers the question.

Input Format:
- DB Schema: given in YAML format where top-level keys are table names;

each table lists its columns and their data types.↪→

- Column names are case-sensitive exactly as shown in the schema.
- Each column might be primary key or a foreign key.
- For foreign key columns, fully qualified name of the referenced column is

given↪→

Output Rules
- Table and column names specified in the database schema already wrapped

in brackets. You should use them with the brackets.↪→
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You should not remove the brackets when using them in the SQL.
- Each reference to a table or column name should be of the form

[table_name] or [table_name].[column_name].↪→

- Output ONLY the SQL query (no extra explanation or text).
- Use fully qualified column names: table.column.
- Only reference tables/columns that exist in the provided schema.
- Do not include any comments.
- For columns names with spaces, wrap them in backticks, e.g. "WHERE `car

model` = 'bar'" instead of "WHERE car model = 'bar'".↪→

Here are some examples:

...
-----------------------------------
#### Example 2

**NL Question:**
Among the [V1] [T1], how many of them have a [C2] of [V2]? [V1] refers to

[C2] = [V1].↪→

**DB Schema:**
[T1]:

[C1]: text
[C2]: real
[C3]:

primary_key: true
type: integer

**Output:**
`SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = [V1] AND [C2] = [V2]

-----------------------------------
...

Now, generate a SQL query for the following question and database schema:
Inputs:
NL Question: {NL_QUESTION}
DB Schema: {DB_SCHEMA}

F.2 Self-Correction Prompt (Abstract)674

You are an SQL database expert tasked with debugging a SQL query.
A previous attempt to predict a SQL query given a masked NL question and DB

schema did not yield the correct results in some cases.↪→

Either due to errors in execution, or because the result returned was empty
or unexpected.↪→

Your task is to analyze the masked SQL query given the corresponding
database schema and the NL question↪→

and fix any errors in the query if they exists.
You should then provide a corrected version of the SQL query.
Note that there may be errors in how the NL question tokens were linked and

masked with the database schema elements.↪→

As a result, the masked SQL query might contain inaccuracies based on these
incorrect mappings,↪→

and part of your task is to consider these issues as well.

**Procedure:**
1. Review Database Schema:

- Examine the database schema to understand the database structure.
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- Database schema is given in YAML format, where top-level keys are
table names; each table lists its columns and their data types.↪→

- Each column might be a primary key or a foreign key.
2. Analyze Query Requirements:

- NL Question: Consider what information the query is supposed to
retrieve.↪→

- Predicted SQL Query: Review the SQL query that was previously
predicted and might have led to an error or incorrect result.↪→

3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it

correctly fetches the requested data according to the database
schema and query requirements.

↪→

↪→

**Output Format:**
Present your corrected query as a single line of SQL code.
Ensure there are no line breaks within the query.
Do not include any explanations, comments, or extra text.

Here are some examples:

-------------------------------
Example 1:

NL Question:
Among the [V1] [T1], how many of them have [C2] of zero? [V1] is a

nationality of [C1] = [V1];↪→

Database Schema:
'[T1]':

'[C1]': text
'[C2]': real
'[C3]':

primary_key: true
type: integer

The predicted SQL query was:
SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = '[V1]' AND [C2] = 0

The corrected SQL query is:
SELECT COUNT(*) FROM [T1] WHERE [T1].[C1] = '[V1]' AND [C2] = 0
-------------------------------

======= Your task =======
**************************
Database schema:
{schema}
**************************
The original question is:
NL Question: {question}
The predicted SQL query: {sql}
**************************
Based on the NL question, database schema, and the previously predicted SQL

query,↪→

Analyze the query and question, and fix the SQL query if needed.
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F.3 Self-Correction Prompt (Concrete)675

You are an SQL database expert tasked with correcting a SQL query.
A previous attempt to run a query did not yield the correct results,
either due to errors in execution or because the result returned was empty

or unexpected.↪→

Your role is to analyze the error based on the provided database schema and
the details↪→

of the failed execution, and then provide a corrected version of the SQL
query.↪→

**Procedure:**
1. Review Database Schema:

- Examine the database schema to understand the database structure.
- Iterate through each column and table name in the schema to make sure

that it is correct.↪→

- Some table or column names may have white space; you should not
change these and use a different name.↪→

- Database schema is given in YAML format, where top-level keys are
table names; each table lists its columns and their data types.↪→

- Column names are case-sensitive, exactly as shown in the schema.
- Each column might be a primary key or a foreign key.
- For foreign key columns, the fully qualified name of the referenced

column is given↪→

2. Analyze Query Requirements:
- Original Question: Consider what information the query is supposed to

retrieve.↪→

- Executed SQL Query: Review the SQL query that was previously executed
and led to an error or incorrect result.↪→

- Execution Result: Analyze the outcome of the executed query to
identify why it failed (e.g., syntax errors, incorrect column
references, logical mistakes).

↪→

↪→

3. Correct the Query:
- Modify the SQL query to address the identified issues, ensuring it

correctly fetches the requested data according to the database
schema and query requirements.

↪→

↪→

- For column names with spaces, wrap them in backticks, e.g., "WHERE
`car model` = 'bar'" instead of "WHERE car model = 'bar'".↪→

**Output Format:**
Present your corrected query as a single line of SQL code.
Ensure there are no line breaks within the query.
Do not include any explanations, comments, or extra text.

Here are some examples:

-------------------------------
Example 1:
Question:
Among the German customers, how many of the them has credit limit of zero?

German is a nationality of country = 'Germany'; CREDITLIMIT = 0↪→

Database Schema:
'[customers]':

'[country]': text
'[creditlimit]': real
'[customernumber]':

primary_key: true
type: integer
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The SQL query executed was:
SELECT COUNT(*) FROM [customers] WHERE [customers].[country] = 'German' AND

[creditlimit] = 0↪→

Output:
SELECT COUNT(*) FROM [customers] WHERE [customers].[country] = 'Germany'

AND [creditlimit] = 0↪→

The execution result:
[]
-------------------------------

======= Your task =======
**************************
Database schema:
{schema}
**************************
The original question is:
Question: {question}
The SQL query executed was: {sql}
The execution result: {exec_res}
**************************
Based on the question, table schema, and the previous query, analyze the

result try to fix the query.↪→
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