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Abstract

Emotion recognition from physiological signals has substantial potential for ap-
plications in mental health and emotion-aware systems. However, the lack of
standardized, large-scale evaluations across heterogeneous datasets limits progress
and model generalization. We introduce FEEL (Framework for Emotion Eval-
uation), the first large-scale benchmarking study of emotion recognition using
electrodermal activity (EDA) and photoplethysmography (PPG) signals across
19 publicly available datasets. We evaluate 16 architectures spanning traditional
machine learning, deep learning, and self-supervised pretraining approaches, struc-
tured into four representative modeling paradigms. Our study includes both within-
dataset and cross-dataset evaluations, analyzing generalization across variations
in experimental settings, device types, and labeling strategies. Our results showed
that fine-tuned contrastive signal-language pretraining (CLSP) models (71/114)
achieve the highest F1 across arousal and valence classification tasks, while simpler
models like Random Forests, LDA, and MLP remain competitive (36/114). Models
leveraging handcrafted features (107/114) consistently outperform those trained on
raw signal segments, underscoring the value of domain knowledge in low-resource,
noisy settings. Further cross-dataset analyses reveal that models trained on real-life
setting data generalize well to lab (F1 = 0.79) and constraint-based settings (F1
= 0.78). Similarly, models trained on expert-annotated data transfer effectively
to stimulus-labeled (F1 = 0.72) and self-reported datasets (F1 = 0.76). Moreover,
models trained on lab-based devices also demonstrated high transferability to both
custom wearable devices (F1 = 0.81) and the Empatica E4 (F1 = 0.73), underscor-
ing the influence of heterogeneity. Overall, FEEL provides a unified framework for
benchmarking physiological emotion recognition, delivering insights to guide the
development of generalizable emotion-aware technologies. Code implementation
is available here. More information about FEEL can be found on our website.

1 Introduction

Emotion recognition is an increasingly important area of research with broad applications in mental
health, behavior understanding, and human-computer interaction (HCI) (Thieme et al. [2020]).
Recent advances in artificial intelligence have significantly improved our ability to infer emotional
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states from multimodal data sources, including speech, facial expressions, and physiological signals
(Abbaspourazad et al. [2024], Heimerl et al. [2023], Ma et al. [2023]). Among these, physiological
signals, such as EDA and PPG, offer a unique advantage as they provide a direct, involuntary window
into emotional states, less prone to conscious control or social masking than behavioral cues like
facial expressions (Yang et al. [2018]) or vocal features (Ma et al. [2023]). Combined with the
growing ubiquity of wearable devices, this makes physiological signals a promising foundation for
real-world emotion-aware applications (Saganowski et al. [2023], Wang et al. [2014]).

However, the field remains limited in its ability to deliver large-scale, generalizable machine learning
models, unlike fields such as computer vision or natural language processing, where major break-
throughs have been driven by massive, unified datasets. In physiological emotion recognition, data
collection is fundamentally more constrained due to reliance on human participants, specialized
sensors, and ethical considerations (Singh et al. [2025a,b], Saganowski et al. [2023]). As a result, most
publicly available datasets are small and diverse in their structure, collected under different protocols,
sensor settings, and labeling schemes, making it difficult to combine or use them effectively. While a
large number of small-scale datasets have been released, their potential remains largely untapped due
to the lack of standardization across datasets, which introduces heterogeneity that leads to domain
shifts, preventing models trained on one dataset from generalizing to others (Zhang et al. [2024],
Mishra et al. [2020], Han et al. [2024]). This fragmentation impedes progress, as it discourages data
harmonization, hinders reproducibility, and limits the ability to train robust, cross-domain models.

To move toward scalable, high-impact physiological signal-based emotion recognition systems, the
field must begin to treat data as a “shared resource” and should work towards harmonizing datasets
across key dimensions such as signal representations and labeling strategies. This is vital not only
for enabling large-scale training and effective domain adaptation but also for establishing fair and
reproducible benchmarks. In the absence of such coordination, research remains fragmented, and
findings from one dataset may fail to generalize to others. Furthermore, the field currently lacks
a systematic, dataset-level benchmark for evaluating emotion recognition models across widely
used physiological signals, particularly EDA and PPG signals, which are increasingly common in
wearable sensing platforms (Singh et al. [2024]). Such a benchmark would enable standardized model
evaluation, facilitate signal-specific insights, and support assessment of generalization across datasets.
By providing consistent pre-processing and labeling protocols, it promotes fairness, reproducibility,
and meaningful comparison. This foundation is essential for accelerating progress toward deployable
emotion recognition systems in real-world, wearable contexts.

To address the lack of standardized evaluation for heterogeneity and its impact on model performance,
in this work, we curated a diverse collection of 19 publicly available datasets covering a wide range
of experimental conditions and labeling strategies (as detailed in appendix A.1). We performed a
meta-analysis of data quality and benchmarked this dataset suite using four representative mod-
eling approaches commonly employed in prior studies (Han et al. [2024], Zhang et al. [2024],
Singh et al. [2024]): (i) traditional machine learning using handcrafted features, (ii) deep learning
applied to handcrafted features, (iii) deep learning directly on segments of raw physiological signals,
and (iv) pre-trained representation learning methods that leverage signal embeddings learned from
external tasks or domains, and presented comprehensive performance comparisons to highlight the
challenges and opportunities posed by heterogeneous data. In addition to performance evaluation, we
also present a comprehensive cross-dataset analysis to examine key dimensions of dataset hetero-
geneity that impact model generalization, with the goal of addressing fundamental questions about
which modeling paradigms are effective under varying conditions. Specifically, we examined three
harmonization dimensions: Experimental Setting, Device Type, and Labeling Method. In addition,
we conducted transferability experiments focusing on participants’ demographic characteristics.
By systematically analyzing these dimensions, we uncovered how design choices across datasets
contribute to performance variability in cross-data models.

We present FEEL, the first unified cross-dataset evaluation framework for emotion recognition from
physiological signals, enabling a systematic analysis of model generalizability and transferability
across diverse data collection scenarios. By moving beyond isolated dataset evaluations, FEEL
facilitates a holistic assessment of model performance under varying experimental conditions. Our
contributions include: (1) a comprehensive benchmark of 19 publicly available emotion recognition
datasets based on physiological signals; (2) a unified binning strategy for data harmonization; (3)
a novel fine-tuning strategy for contrastive language-signal pretraining (CLSP) applied to datasets
lacking textual modalities; and (4) extensive cross-dataset analyses to evaluate model transferability

2



across variations in labeling strategies, devices, and settings, as well as transferability across de-
mographic groups. Together, FEEL lays the groundwork for developing scalable, robust emotion
recognition models for real-world affective computing applications.

2 Related Work

The core concept of physiological emotion recognition is to investigate how emotional states can be
inferred from measurable bodily signals. Its development intertwines with advances in psychology,
neuroscience, biomedical engineering, and computer science. Early theoretical foundations were laid
by the James-Lange theory of emotion, which posited a direct link between physiological states and
emotional experience (James [1948]). Subsequent research in psychophysiology provided empirical
evidence that specific emotional states correlate with autonomic nervous system activity, such as
heart rate variability (HRV), electrodermal activity (EDA), and respiration patterns (Kreibig [2010]).
With the emergence of affective computing, researchers began leveraging machine learning to model
emotion from physiological signals. Picard’s foundational work introduced the concept of machines
capable of recognizing and responding to human emotions (Picard [2000]), catalyzing interest in using
computational proxies for emotion recognition. In the following years, various supervised learning
approaches were proposed to classify emotions using multimodal physiological data, including EEG,
ECG, PPG, EDA, and skin temperature (Chanel et al. [2006], Kim and André [2008], Shukla et al.
[2021]). Recently, the focus has shifted to utilizing deep learning models to capture complex, non-
linear relationships in physiological data. Recurrent neural networks (RNNs) and convolutional neural
networks (CNNs) have demonstrated promising performance in end-to-end emotion classification
tasks (Zitouni et al. [2022]). Additionally, attention-based models and contrastive learning have been
explored to address challenges in subject variability and generalization (Singh et al. [2025a], Tripathi
et al. [2017], Matton et al. [2023]).

While early emotion recognition systems were primarily developed and evaluated in controlled
laboratory environments (Koelstra et al. [2012], Subramanian et al. [2018], Schmidt et al. [2018]),
recent research has shifted toward recognizing emotions in real-world settings. This transition is
motivated by the growing demand for emotion-aware systems in domains such as mobile health
monitoring, human-robot interaction, and affect-aware virtual agents. Wearable and mobile devices
have enabled continuous, unobtrusive monitoring of physiological signals, making it potentially
feasible to infer emotional states during daily activities (Gjoreski et al. [2016]). Despite technical
advances, emotion recognition from physiological signals faces ongoing challenges, including
increased signal noise, environmental variability, high inter-subject variability, and a lack of large-
scale, standardized datasets (Saganowski et al. [2023]). Recent works have begun to explore self-
supervised and contrastive learning paradigms to reduce reliance on labeled data and develop pre-
trained models (Pillai et al. [2024], Abbaspourazad et al. [2024], Narayanswamy et al. [2024]).
However, data availability remains a major bottleneck, as many emotion recognition datasets are not
publicly released due to ethical and privacy concerns. Even when datasets are accessible, they often
require direct communication with the authors, creating logistical barriers that slow research progress
and contribute to fragmentation, hindering consistent benchmarking and cross-study comparability
(Mishra et al. [2020], Han et al. [2024]). Despite their limitations, these small-scale datasets are an
indispensable resource. When appropriately aggregated and evaluated, they offer a unique opportunity
to benchmark models across heterogeneous settings, fostering more transparent, comparative research.
To address this gap, in this work, we propose the first multi-dataset evaluation framework designed
to maximize the utility of existing public datasets (with PPG and EDA signals) and advance the
development of more generalizable and deployable emotion recognition models.

3 Methods

3.1 Data Curation

To enable a comprehensive evaluation of heterogeneity in emotion recognition, we curated a collection
of 19 datasets comprising PPG and EDA. All datasets are either publicly accessible through research
repositories or available upon request from the authors. These datasets collectively represent diverse
demographic populations, recording environments, and experiment protocols, providing a basis for
evaluating heterogeneity and its influences. PPG and EDA signals were specifically chosen due to their
non-invasive nature, widespread implementation in commercial wearable devices, and demonstrated
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Dataset #Participants Devices Settings Task Descriptions Labeling
WESAD 15 E4 Lab Neutral Reading, Funny Video Clips, Trier

Social Stress Test (TSST), Meditation
Stimulus-

Label
NURSE 15 E4 Real Stress in a Work Environment (Hospital) Self-report
EMOGNITION 43 E4 Lab Short Film Clips Stimulus-

Label
UBFC_PHYS 56 E4 Lab Speech Task - Interview/Holiday

description, Arithmetic Task - Countdown
Stimulus-

Label
VERBIO 49 E4 Lab Public speaking anxiety in real and virtual

environments
Self-report

PhyMER 30 E4 Lab Video Stimuli Self-report
EmoWear 48 E4 Lab Video Stimuli Self-report
MAUS 22 Procomp

Infinit
Lab N-Back Task Stimulus-

Label
CLAS 62 Shimmer3

GSR+
Lab Video Stimuli, Math Problems, Logic

Problems, and Stroop Test
Stimulus-

Label
CASE 30 ThoughtTech

SA9309M,
SA9308M

Lab Video Clips Self-report

Unobtrusive 24 E4 Lab+Real Lab: Mental Arithmetic, Sudoku, N-back,
Stroop, Eye-Closing, Relaxation; Real Life:
Work from Home

Stimulus-
Label

CEAP-
360VR

32 E4 Lab VR Video Clips Self-report

ScientISST
MOVE

15 E4 Constraint Lift a Chair, Greetings, Gesticulate, Jumps,
Walk, Run

Stimulus-
Label

LAUREATE 44 E4 Real 13-Week Study in University Settings Self-report
ForDigitStress 38 IOMbiofeedback Constraint Digital Job Interviews Expert-

Annotation
Dapper 88 Custom

Wristband
Real Emotional Experiences in Daily Life Over

Five Days
Self-reports

ADARP 11 E4 Real Daily Diary Study (4 Times/14 Days) –
Individuals with Alcohol Use Disorders

Self-report

MOCAS 21 E4 Lab CCTV Monitoring Task Scenario Self-report
Exercise 36, 31, 30 E4 Constraint Stroop, Trier Mental Challenge, Debate,

Counting, Anaerobic/Aerobic Exercise,
Rest

Stimulus-
Label

Table 1: Overview of our 19 Emotion Datasets: Participant Count, Devices Used, Experimental Settings, Task
Descriptions, and Labeling Methods. More information added in the appendix A.1.

utility for detecting emotional states in ecological settings relevant to real-world applications. The
detailed list of our selected datasets, participant counts, devices used, experimental settings, task
descriptions, and labeling methods is provided in Table 1 and Appendix A.1.

3.2 Data Preprocessing and Standardization

To ensure consistency across the heterogeneous formats of the 19 datasets, we developed a unified
preprocessing pipeline. For each dataset, we generated standardized CSV files containing (i) extracted
features along with participant ID (PID), arousal, and valence labels, and (ii) raw physiological signal
data with corresponding metadata. Separate files were created for EDA, PPG, and their combined
modalities. We first segmented the data on a per-participant, task-wise basis for the dataset collected
in lab or constraint settings with fixed stimuli or tasks. In datasets with no task-specific segments
(real-world datasets), we subdivided the signals into hourly segments (Han et al. [2024]) as per
self-reports. Each segment was labeled using a unified binary scheme where all data was mapped to
arousal and valence dimensions (Tian et al. [2022]). For datasets where self-reported arousal-valence
labels were available, we used them directly; otherwise, we inferred arousal and valence levels
based on stimulus type, task metadata, or other self-report data available. This approach harmonized
the labeling schemes across datasets and enabled consistent categorization of our data into binary
categories. Additional dataset-specific information and binning procedures are documented in the
appendix A.1. Following binning, the signal segments were preprocessed to remove artifacts. We then
extracted features (see appendix A.4.1) separately for EDA and PPG, followed by their concatenation
to form a combined feature set. To account for inter-individual variability and prevent dominance of
any single feature due to scale differences, participant-wise min-max normalization was applied to the
extracted features (Singh et al. [2024]). Feature selection was guided by prior work (Han et al. [2024],
Singh et al. [2024]). Additionally, on raw signal segments, we applied z-score normalization on a
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per-participant basis to standardize signal distributions, ensuring comparability across datasets while
preserving temporal structure and within-participant variability (Mishra et al. [2020]). To visualize
the data-wise distribution of our features after unification, see figure 2. Additionally, to enable more
nuanced emotion classification experiments, we performed a four-class binning based on the widely
accepted circumplex model of affect (Russell [1980]). Each segment was further labeled into the
following four classes: High Arousal Positive Valence (HAPV), High Arousal Negative Valence
(HANV), Low Arousal Positive Valence (LAPV), and Low Arousal Negative Valence (LANV), based
on the available arousal and valence labels. This four-class approach was chosen for the following
reasons: i) Theoretical grounding and granularity – it is widely used in the emotion recognition
and affective computing community and captures more fine-grained emotional distinctions than
binary labels. ii) Practical feasibility - arousal and valence annotations are the most commonly
available labels across our benchmark datasets, enabling consistent application of this scheme. iii)
Alignment with cross-dataset harmonization – it maintains our experimental setting and label
unification strategy while better reflecting the complexity of human emotions.

3.3 Datasets Benchmarking

We benchmarked our 19 physiological emotion datasets (Table 1) across four representative modeling
paradigms to evaluate the performance of different signal modalities.

1) Traditional Machine Learning (ML): In this paradigm, we used our extracted handcrafted
statistical features fHC directly to train classical ML classifiers - RF and LDA. This paradigm was
chosen because it serves as a strong baseline and remains prevalent in prior literature (Schmidt
et al. [2018], Subramanian et al. [2018], Zhou et al. [2025]), especially for small-sized datasets.
Implementation details are provided in the appendix A.4.2.

2) Deep Learning with Handcrafted Features: In this paradigm we used our extracted handcrafted
features fHC as input to deep learning architectures - MLP (fHC+MLP), ResNet (fHC+ResNet), LSTM
(fHC+LSTM+MLP), and Attention-based model (fHC+Attention+MLP). This paradigm was chosen
because it combines domain knowledge embedded in engineered features with non-linear learning
capabilities, representing practical scenarios where interpretability and complex pattern recognition
are both required (Ali et al. [2018], Lee et al. [2020], Zhao et al. [2023], Ehiabhi and Wang [2023]).
Implementation details are provided in appendix A.4.3.

3) Deep Learning on Raw Signals: In this paradigm we used raw time-series signals x(t) directly as
input to deep learning architectures - ResNet, LSTM+MLP, and CNN + Transformer Encoder Block.
This paradigm was chosen because it enables end-to-end learning without manual feature extraction,
allowing models to autonomously discover novel representations and potentially capture subtle signal
characteristics overlooked in traditional feature engineering (Dzieżyc et al. [2020]). Implementation
details are provided in Appendix A.4.4.

4) Pretrained Representation Learning: In this paradigm, we evaluated the zero-shot and fine-tuned
performance of each of our datasets using models based on Contrastive Language-Signal Pretraining
(CLSP) (Singh et al. [2024]). This paradigm was chosen to evaluate how each of our datasets performs
when utilizing pre-trained models with or without dataset-specific training. We selected CLSP models
because, to the best of our knowledge, they are the only available pre-trained models specifically
developed for physiological emotion recognition, trained on the EEVR dataset, and incorporating both
PPG and EDA modalities. Moreover, CLSP models have been shown to exhibit strong cross-dataset
generalization, which motivated our selection. We first performed Zero-shot inference without any
dataset-specific adaptation to assess the direct transferability of pretrained representations. Then we
performed Dataset-specific fine-tuning to examine how well these representations can be adapted
to each dataset’s characteristics and influence their classification performance. For fine-tuning,
we split the dataset into participant-wise 50-50 train and test sets, and then we employed three
progressively increasing data efficiency regimes: few-shot (5%), low-resource (25%), and partial-
participant (50%) of samples per class from the training set. This systematic approach enables us
to comprehensively benchmark not only the baseline zero-shot performance but also the adaptation
potential of pre-trained physiological representations across our diverse dataset collection.

For fine-tuning, we adopted Conditional Context Optimization (CoCoOp) (Zhou et al. [2022]) (figure
1) with two CoCoOp MetaNet-inspired modulation networks to condition textual prompts based on
physiological input signals. This approach was chosen because it enables adaptation of pretrained
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Figure 1: Our CLSP Fine-Tuning Approach, consists of lightweight neural network (Meta-Net) that generates
for each signal segment an input-conditional context token.

representations without requiring ground-truth text annotations in the target datasets. The modulation
networks were designed in two architectural variants: one using two linear layers, and another
employing two stacked 1D convolutional layers applied to the signal embedding sequence. In our
implementation, we expanded beyond basic class text labels ("high arousal," "low arousal," "positive
valence," or "negative valence") to incorporate more nuanced emotion-specific textual descriptions
(detailed in appendix A.4.5) processed through the CLSP text-encoder. These enriched descriptions,
along with context tokens, function as context-adaptive textual prompts tailored to each physiological
input, facilitating more precise mapping between signal patterns and emotional states. Complete
implementation specifications are in Appendix A.4.5.

3.4 Cross-Dataset Generalization Analysis

We conducted a systematic cross-dataset analysis to quantify the impacts of contextual heterogeneity.
We grouped our datasets (see A.6) based on three dimensions chosen for their potential to introduce
systematic variability in data and modeling outcomes. The dimensions include: 1) Experimental
Setting: to capture the influence of differences in ecological validity on model performance. Our
dataset collection included three settings: the lab, a semi-realistic constraint setting, and a real-life
setting. 2) Device Type: to account for variation in sensor hardware. Our collection included
wrist-worn research-grade wearables (Empatica E4), custom-designed wearables, and lab-based
devices. 3) Labeling Method: to reflect the influence of emotion labeling technique. Our collection
includes three annotation strategies: stimulus-based labels (assigned based on predefined stimulus-
response assumptions), self-reported labels (reflecting participants’ subjective emotional states),
and expert annotations (provided by trained observers based on behavioral cues and self-reports).
Together, these harmonization dimensions offer a structured approach to assessing the contextual
factors. To examine the influence of demographic factors on model transferability, we conducted
supplementary experiments across two demographic attributes. For gender-based analysis, we utilized
binary male/female labels available across 8 datasets. For age-based analysis, we partitioned subjects
into two groups: Young (18–25 years) and Old (25+ years) across 7 datasets, based on data availability.
More details are provided in Section A.6.

4 Experiments

We conducted separate experiments for arousal, valence, and four-class classification using three
input configurations: EDA only, PPG only, and EDA+PPG. For four-class classification, CLSP fine-
tuning benchmarking could not be performed on several datasets: NURSE, UBFC_PHYS, MAUS,
Unobtrusive, VERBIO, and ADARP lacked samples from one or more classes, while MOCAS and
ScientISST MOVE had insufficient samples for 5% fine-tuning. Additionally, we did not benchmark
DL-based models for four-class classification (except HC+MLP) due to their poor performance
in binary classification. Overall, this set of experiments enabled a systematic comparison of the
standalone utility of each modality and its combined contribution across various modeling paradigms.

ML and DL Paradigm: We evaluated the performance of our ML and DL models using Leave-
One-Subject-Out Cross-Validation (LOSO-CV), to ensure subject-independent evaluation and reflect
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real-world deployment conditions. Performance was measured using average accuracy and F1 scores,
standard metrics in physiological emotion recognition (Schmidt et al. [2018], Singh et al. [2024])
computed across all LOSO folds. For raw signal-based DL models, we used a sliding window
approach with a window size of 60 samples and 50% overlap between consecutive windows. To
mitigate class imbalance in both arousal and valence classification, we applied random oversampling
to all datasets and SMOTE (Synthetic Minority Over-sampling Technique) to datasets with significant
imbalance (defined as a class size difference exceeding one-third). We did not apply oversampling
for CLSP fine-tuning except in case of significant imbalance. Additional architectural and training
details are provided in Appendix A.4.

Pretraining Paradigm: We evaluated pretrained models under subject-independent conditions using
three data efficiency regimes: 5%, 25%, and 50% of training data per class. Each dataset was split
participant-wise into 50% training and 50% testing sets. To ensure robustness, we repeated the
experiment with the train and test splits swapped and computed the average accuracy and F1 score
across both folds. For additional details, see Appendix A.4.5.

Benchmarking Analysis: To evaluate performance variations across datasets, we conducted a
comprehensive meta-analysis, examining the impact of data quality factors (see A.2), sensor modality
(EDA, PPG, EDA+PPG), and task (Arousal and Valence) on model effectiveness. We further
ranked overall dataset performances and performed a qualitative analysis to interpret the observed
trends. This involved assessing model behavior across different modalities and tasks, and attributing
performance differences to underlying factors in the data collection pipeline, specifically, the recording
environment, labeling methodology, elicitation task, and sensing devices used.

Cross-Dataset Analysis: To evaluate generalization performance, we first identified the top three per-
forming models for each dataset. Through majority voting across these top models, we observed that
classical machine learning approaches (LDA, RF), the hybrid handcrafted feature-based HC+MLP
architecture, and CLSP models with MLP and CNN meta-learners consistently outperformed more
complex signal-based deep learning models. Based on this analysis, we selected LDA, RF, HC+MLP,
and all CLSP variants for cross-dataset evaluation. To specifically assess cross-domain transfer-
ability, each selected model was retrained on its corresponding training partition and evaluated on
non-overlapping dataset groups. These results were then compared against two key baselines: 1)
the leave-one-dataset-out (LODO) performance, representing in-domain transferability within the
training cohort, and 2) the CLSP zero-shot performance, which served as a pretrained, no-adaptation
baseline for out-of-domain generalization. Where the LODO evaluation was conducted using RF and
HC+MLP models to examine within-cohort generalization, i.e., how well models trained on all but
one dataset performed when applied to the held-out dataset from the same domain. This comparison
enabled a comprehensive analysis of the generalization capabilities of both traditional and pre-trained
models when applied to unseen datasets (see more details in Appendix A.5).

Computation: For our benchmarking experiment, the computational cost varied by dataset com-
plexity and size. The five largest datasets, including CLAS, CASE, Unobtrusive, DAPPER, and
LAUREATE, required approximately 600–720 GPU hours (5–6 days) each. While the remaining 14
datasets required 24–30 hours each, totaling approximately 336–420 GPU hours. Raw signal-based
deep learning models were the most computationally intensive, whereas traditional ML models were
significantly faster. Fine-tuning CLSP models was highly efficient, requiring only 1–30 minutes of
GPU training time, depending on dataset size. All experiments were conducted on 4 NVIDIA A100,
2 H100, and 2 H200 GPUs; more information about the compute resources is provided in Appendix
A.3.

5 Results

We summarize the main results in this section, with full details provided in Appendix A.8. We begin
by outlining the performance trends observed across the individual datasets, followed by a detailed
explanation of benchmarking performance and cross-dataset evaluation.

5.1 Benchmarking Performance across Modeling Paradigms

Overall Comparision: We summarize the overall benchmarking results in Tables 2, 3, and 10.
On average, pretrained models, particularly various CLSP variants, consistently outperformed other
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DataSet EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

WESAD Signal + Resnet 0.83 HC+MLP 0.8 HC+MLP 0.91
NURSE CLSP+CNN (5%) 0.62 CLSP+MLP (50%) 0.52 CLSP+CNN (5%) 0.62

EMOGNITION CLSP+MLP (5%) 0.68 CLSP+MLP (50%) 0.62 CLSP+CNN (5%) 0.57
UBFC_PHYS CLSP+MLP (5%) 0.45 CLSP+CNN (25%) 0.34 CLSP+MLP (5%) 0.41

PhyMER CLSP - Zero Shot 0.51 LDA 0.42 LDA 0.42
EmoWear RF 0.64 RF 0.64 CLSP+MLP (50%) 0.67

MAUS Signal + Resnet 0.83 RF 0.82 RF 0.82
CLAS RF 0.69 RF 0.66 RF 0.70
CASE Signal+CNN+Transformer 0.47 HC+MLP 0.30 CLSP+MLP (5%)* 0.40

Unobtrusive RF 0.88 RF 0.87 CLSP+MLP (50%) 0.86
CEAP-360VR CLSP+CNN (5%) 0.56 CLSP+CNN (5%) 0.43 CLSP+MLP (5%) 0.45

ScientISST MOVE HC+Attention+MLP 0.77 RF † 0.81 HC+MLP 0.88
Dapper CLSP+CNN (50%) 0.77 CLSP+CNN (5%) 0.70 CLSP+MLP (5%) 0.81

ForDigitStress CLSP+MLP (25%) 0.94 RF † 0.99 RF † 0.99
ADARP CLSP+MLP (25%) 0.83 CLSP+CNN (50%) 0.80 CLSP+MLP (25%) 0.62
Exercise CLSP - Zero Shot 0.63 CLSP+CNN (25%) 0.57 CLSP+MLP (5%) 0.54
MOCAS CLSP+CNN (5%) 0.65 CLSP+MLP (5%) 0.62 CLSP+MLP (25%) 0.63

LAUREATE RF† 0.69 CLSP+MLP (50%) 0.77 CLSP Zero-Shot 0.82
VERBIO CLSP+CNN (50%) 0.83 CLSP+CNN (50%) 0.77 CLSP+CNN (50%) 0.72

Table 2: Best-performing model and corresponding F1 score for arousal classification across all datasets and
modalities (EDA, PPG, EDA+PPG). The table lists, for each dataset and modality, the model that achieved the
highest F1 score. * : reflects results that are achieved after applying random sampling before CLSP fine-tuning.
†: reflects results achieved after applying SMOTE.

approaches across datasets for binary classification, contributing to 71 of the 114 top-performing
model instances for binary classification. Among classical machine learning techniques, RF and LDA
followed, with 17 and 8 top-performing entries, respectively. Within the deep learning category, the
handcrafted feature-based MLP achieved 11 top results, while signal-based deep models accounted
for 3, and handcrafted features combined with attention mechanisms contributed 2 best-performing
instances. Within the CLSP model family, we observed that fine-tuning played a crucial role in
achieving strong cross-dataset performance. In 29 out of 73 top-performing instances, models
required fine-tuning on up to 50% of the target dataset, indicating that while CLSP models offer
transferability, moderate domain adaptation is often necessary. Notably, 21 instances achieved
competitive results with only 5% of the data used for fine-tuning, suggesting that CLSP models can
exhibit effective few-shot generalization. A smaller subset (9 instances) performed best with 25%
fine-tuning, reinforcing the spectrum of adaptation needs across datasets. Among CLSP variants,
CLSP+CNN demonstrated the highest overall performance, contributing to 37 top-performing cases,
followed by CLSP+MLP with 22. Zero-shot variants of CLSP, which require no fine-tuning, were
top performers in 14 cases, highlighting the generalizability of the CLSP baseline. Collectively,
these findings suggest that while zero-shot CLSP offers a useful starting point, performance can
be significantly improved through lightweight dataset-specific fine-tuning, particularly with a CNN
metanet that better captures transferable patterns in physiological signals. Detailed comparison of
all modeling paradigms and their performances across our datasuite for both recognition tasks and
all three modality variations are shown in Figures 5, 6, 7, 8, 9, and 10. For four-class classification,
machine learning models (RF and LDA) dominate with 54% of best-performing cases. CLSP-based
models appear in 35% of instances, while deep learning models (HC+MLP) account for only 11% of
the best-performing outcomes (see Table 10).

Dataset Specific Performance Variations: Model performance for binary classification exhibited
significant variability across datasets, ranging from a minimum F1 score of 0.30 (e.g., in CASE and
ADARP) to a maximum of 0.98 (WESAD), as detailed in Table 11. Our qualitative analysis of dataset
collection methodologies (summarized in Table 12 and visualized in Figures 11, 12, and 13 revealed
that high-performing datasets generally shared key characteristics: well-balanced experimental setups,
ecologically valid elicitation protocols, and robust labeling techniques that accounted for participants’
perspectives (Singh et al. [2025a]). In contrast, suboptimal performance was often linked to weak
elicitation strategies, misaligned labels, the absence of stimuli covering the full emotional spectrum,
and the presence of signal artifacts. Overall, models utilizing EDA consistently outperformed those
based on other modalities, as shown in Figure 3. EDA-based models achieved top performance in 12
out of 19 datasets for arousal classification and in 13 out of 19 for valence classification, highlighting
the robustness of EDA signals in emotion recognition tasks. Notably, EDA+PPG also showed strong
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performance, particularly in real-life and constrained task settings, where multimodal input helped
mitigate signal noise. While models based solely on PPG performed comparably in some cases,
they generally yielded lower performance than EDA-based approaches, suggesting that PPG may
be less sensitive to subtle emotional variations. Overall, our results highlight the critical importance
of thoughtfully designing data collection protocols to effectively capture meaningful emotional
variations and of aligning labeling strategies that accurately reflect these underlying physiological
changes. The four-class classification results varied considerably across datasets, with F1 scores
ranging from 0.987 (WESAD) to 0.269 (ADARP). Among the lowest-performing datasets were
EmoWear and CLAS, which, despite being lab-based, relied solely on video stimuli, suggesting
that limited or low-arousal stimuli can constrain physiological differentiation. ADARP, collected in
real-life daily settings, exhibited low performance primarily due to the imbalance in samples across
four classes (as shown in Table 4). Meanwhile, CEAP-360VR, CASE, and MOCAS, which combined
lab and semi-realistic stimuli, also led to overall poor performance compared to other datasets. These
patterns suggest that dataset quality, stimulus richness, and ecological validity collectively influence
classification outcomes, beyond simple distinctions between laboratory and real-world environments.
Consistent with the binary classification results, models using EDA+PPG or EDA alone achieved
relatively high performance across 15 datasets (see figure 4), highlighting the robustness and central
role of EDA signals in physiological emotion recognition.

DataSet EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

WESAD CLSP+CNN (50%) 0.83 CLSP+CNN (50%) 0.83 HC+MLP 0.98
NURSE CLSP - Zero Shot 0.62 CLSP+CNN (5%) † 0.39 CLSP Zero-Shot 0.38

EMOGNITION CLSP - Zero Shot 0.53 CLSP+MLP (5%) 0.50 CLSP+CNN (5%) 0.39
UBFC_PHYS RF 0.76 LDA 0.68 RF 0.72

PhyMER CLSP - Zero Shot 0.72 CLSP+CNN (50%) 0.69 CLSP+MLP (50%) 0.70
EmoWear CLSP+CNN (50%) 0.78 CLSP+CNN (50%) 0.77 RF 0.77

MAUS HC+MLP 0.58 LDA 0.56 LDA 0.59
CLAS CLSP - Zero Shot 0.64 CLSP+CNN (25%) 0.61 HC+Attention+MLP 0.63
CASE CLSP+MLP (5%) 0.54 LDA 0.48 LDA 0.49

Unobtrusive CLSP - Zero Shot 0.71 RF 0.71 CLSP+CNN (25%) 0.70
CEAP-360VR CLSP+CNN (5%) 0.62 CLSP+CNN (5%) 0.61 LDA 0.50

ScientISST MOVE CLSP+MLP (50%) 0.82 CLSP+CNN (50%) 0.80 CLSP+CNN (50%) 0.82
Dapper CLSP+CNN (50%) 0.87 CLSP+CNN (50%) 0.85 CLSP+CNN (50%) 0.94

ForDigitStress CLSP+CNN (5%) 0.87 RF† 0.92 RF† 0.92
ADARP CLSP - Zero Shot 0.30 CLSP Zero-Shot 0.40 HC+MLP 0.47
Exercise CLSP - Zero Shot 0.75 CLSP+CNN (50%) 0.72 CLSP+MLP (50%) 0.71
MOCAS CLSP - Zero Shot 0.89 CLSP+CNN (50%) 0.87 CLSP+CNN (25%) 0.82

LAUREATE HC+MLP 0.36 HC+MLP 0.41 CLSP+MLP (50%)* 0.40
VERBIO HC+MLP 0.40 HC+MLP 0.38 CLSP+MLP (5%) 0.34

Table 3: Best-performing model and corresponding F1 score for valence classification across all datasets and
modalities (EDA, PPG, EDA+PPG). The table lists, for each dataset and modality, the model that achieved the
highest F1 score. * : reflects results that are achieved after applying random sampling before CLSP fine-tuning.
†: reflects results achieved after applying SMOTE.

5.2 Performances Across Harmonizing Dimensions

Experiment Setting: Our experiments reveal how training environments impact cross-domain
generalization. Models trained on real-world data exhibited good transferability to both lab (max F1
= 0.79 with CLSP MLP at 5%) and constraint-based settings (max F1 = 0.78 with RF). However, their
intra-domain performance was notably poor (max F1 = 0.49), reflecting high variability within real-
world data. In contrast, models trained in constraint-based settings showed exceptional transferability
to real-life data (best F1 = 0.88 with RF), yet only moderate success in lab settings and within their
own domain, especially struggling with arousal prediction compared to valence. Further lab-trained
models demonstrated a similar pattern, performing well when tested on real-life and constraint-based
data (max F1 = 0.76), but underperformed within their own dataset (F1 ≈ 0.5), possibly due to
cohort-specific biases. Detailed results are added in Table 13, 14, and figure 16.

Device: Our analysis further revealed significant variability in cross-cohort transferability. Models
trained on the wearable (Empatica E4) based data exhibited good generalization to the custom
wearable (best F1 = 0.82 with CLSP MLP 50%), but transferred poorly to lab-based datasets (min F1
= 0.45), suggesting limited modality alignment. Conversely, models trained on lab-based devices
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showed strong generalization to both the custom wearable (best F1 = 0.81 with LDA) and E4 (best F1
= 0.73 with CLSP CNN 50%). Moreover, custom wearable models transferred poorly overall, with
slightly better performance for arousal detection, particularly when tested on lab-based data (best F1
= 0.64). Zero-shot models (CLSP) using EDA demonstrated promising results, achieving up to 0.83
F1 on the custom wearable, and showing moderate generalizability to other cohorts. Detailed results
are added in Table 15, 16, and Figure 15.

Labeling: Labeling strategy emerged as a major factor influencing model generalization. Expert-
annotated datasets produced models that transferred well to both stimulus-labeled (best F1 = 0.72)
and self-reported data (best F1 = 0.76), underscoring the robustness of expert-generated labels.
Interestingly, stimulus-labeled models also performed strongly on expert-annotated data (best F1 =
0.87 with LDA). However, stimulus-labeled models showed weak generalization to self-reported
data (best F1 = 0.63), suggesting limitations in capturing personal emotional nuance. Similarly,
self-report trained models were inconsistent, performing well when tested on expert data (best F1 =
0.87 with CLSP CNN 5%) but poorly on stimulus-label. Once again, zero-shot CLSP models using
EDA demonstrated outstanding results, achieving the highest F1 overall (0.91) on expert-labeled data.
Detailed results are added in Table 17, 18, and figure 14.

Age and Gender: For arousal classification, results indicate moderate generalization both within
and across gender groups (F1 ≈ 0.50–0.56), whereas in zero-shot CLSP transfer, EDA consistently
outperformed PPG and EDA+PPG, often by a substantial margin. In contrast, valence classification
exhibits an opposite trend: cross-gender transfer achieves notably higher performance (F1 ≈ 0.69–0.71
using CLSP fine-tuned models) than within-gender evaluation, where F1 drops to 0.47–0.55. A similar
pattern emerges in age-wise transfer experiments, with cross-age-group generalization for valence (F1
≈ 0.67–0.73 using CLSP fine-tuned models) outperforming within-age-group performance. These
findings suggest that valence representations are more transferable across demographic groups, while
arousal models are more sensitive to participant-specific physiological variability.

Overall, CLSP-based architectures consistently outperformed others, with MLP and RF emerging as
weaker baselines, underscoring the importance of model choice and cohort harmonization for robust
cross-domain emotion recognition. Collectively, our findings underscore the importance of carefully
selecting device and labeling techniques, the potential of constraint-based training for real-world
deployment, and the clear advantages of zero-shot and CLSP-based models for cross-domain emotion
recognition. Detailed discussion added in A.7.

6 Conclusion

FEEL presents a comprehensive framework for benchmarking physiological signal-based emotion
data, serving as a foundation for developing robust emotion recognition systems. Beyond identifying
high-performing models, our findings underscore the nuanced trade-offs between model complexity,
performance, and generalizability. For instance, the strong performance of handcrafted feature-based
models suggests that signal-specific priors remain essential for high-performing physiological emotion
recognition. Meanwhile, the success of fine-tuning CLSP methods indicates the untapped potential
of leveraging cross-modal supervision, even in the absence of explicit textual inputs. Importantly,
our cross-dataset analyses showed the potential for harmonizing small-scale models for large-scale
pretraining. As emotion-aware systems move toward deployment in health, education, and HCI,
FEEL serves as a vital step toward reproducible, scalable, and ethically grounded modela. In the
future, we aim to expand FEEL by incorporating a broader set of publicly available datasets and
encourage community participation in benchmarking and dataset standardization.

Limitations and Social Impact This work focuses on benchmarking a representative set of modeling
paradigms to establish a broad baseline, primarily using traditional and general-purpose architectures.
However, more advanced or domain-specific models tailored to physiological signals were not
included and remain an important direction for future benchmarking. Additionally, our current
harmonization strategy is limited due to a lack of a common labeling technique. Moreover, our
analysis does not account for key sources of heterogeneity, including cultural context and health status;
we plan to incorporate them in the future. By systematically studying these limitations, we hope
to contribute to the development of responsible, generalizable, and impactful emotion recognition
technologies for applications in HCI, affective computing, and mental health support.

10



7 Acknowledgment

We would like to acknowledge the valuable contributions of all the researchers and institutions who
made these nineteen datasets available for further research. We emphasize that our work focuses solely
on benchmarking; therefore, anyone wishing to use these datasets must follow the access procedures
established by the respective dataset owners to ensure privacy and data protection. Additionally, this
research work described in this paper made use of the LAUREATE Database, which is owned by
the Università della Svizzera italiana (USI), Switzerland. Other datasets are sourced from publicly
available repositories, as detailed on our project website. We claim no ownership or rights over any
of these datasets, and we will not be able to share any derived features or data. All dataset access
requests must be directed to the respective owners. Further, we want to acknowledge the support
from the Center of Excellence Human Centered Computing, Infosys Center for Artificial Intelligence,
iHub-Anubhuti-IIITD Foundation, established under the NM-ICPS scheme of the DST, and the
Center of Excellence in Healthcare (CoEHe) at IIIT-Delhi

References
Salar Abbaspourazad, Oussama Elachqar, Andrew C. Miller, Saba Emrani, Udhyakumar Nallasamy,

and Ian Shapiro. Large-scale Training of Foundation Models for Wearable Biosignals, March 2024.
URL http://arxiv.org/abs/2312.05409. arXiv:2312.05409 [cs].

Mouhannad Ali, Fadi Al Machot, Ahmad Haj Mosa, Midhat Jdeed, Elyan Al Machot, and Kyan-
doghere Kyamakya. A globally generalized emotion recognition system involving different
physiological signals. Sensors, 18(6):1905, 2018.

Parastoo Alinia, Ramesh Kumar Sah, Michael McDonell, Patricia Pendry, Sara Parent, Hassan
Ghasemzadeh, and Michael John Cleveland. Associations between physiological signals captured
using wearable sensors and self-reported outcomes among adults in alcohol use disorder recovery:
development and usability study. JMIR Formative Research, 5(7):e27891, 2021.

Christoph Anders, Sidratul Moontaha, Samik Real, and Bert Arnrich. Unobtrusive measurement
of cognitive load and physiological signals in uncontrolled environments. Scientific Data, 11
(1):1000, September 2024. ISSN 2052-4463. doi: 10.1038/s41597-024-03738-7. URL https:
//www.nature.com/articles/s41597-024-03738-7. Publisher: Nature Publishing Group.

Linda Becker, Alexander Heimerl, and Elisabeth André. Fordigitstress: presentation and evaluation
of a new laboratory stressor using a digital job interview-scenario. Frontiers in Psychology, 14:
1182959, 2023.

Win-Ken Beh, Yi-Hsuan Wu, An-Yeu, and Wu. MAUS: A Dataset for Mental Workload Assessmenton
N-back Task Using Wearable Sensor, November 2021. URL http://arxiv.org/abs/2111.
02561. arXiv:2111.02561 [eess].

Guillaume Chanel, Julien Kronegg, Didier Grandjean, and Thierry Pun. Emotion assessment:
Arousal evaluation using eeg’s and peripheral physiological signals. In International workshop on
multimedia content representation, classification and security, pages 530–537. Springer, 2006.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper outlines a systematic approach for conducting within-dataset and
cross-dataset benchmarking across various model paradigms. The results and observations
are organized to emphasize the key insights about the stated claims clearly. Additionally,
the code has been made available to ensure reproducibility.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:We have acknowledged several limitations, including the focus on traditional
and general-purpose architectures and not including certain sources of heterogeneity, such
as participant demographics, cultural context, and differences in physical and mental health.
Additionally, we have outlined directions for future work and the broader scope of this study.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is empirical in nature. It focuses on benchmarking 19 datasets across
different model paradigms. We have made claims using trends in the model performances.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have added an anonymized GitHub in our submission, including all the
necessary code. Further, all the datasets used in this paper are publicly available and are
cited alongside details on preprocessing and binning.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have provided access to an anonymized GitHub (to be made public
upon submission) and have included details in the Technical appendix and supplementary
material.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details are added in the Experiment section and the Technical appendix.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: All the experiments were performed in participant-wise folds to ensure robust-
ness, and final results are reported as average, and detailed results with error bars are added
in the supplementary materials.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the details are provided in the experiment section.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: For benchmarking purposes, all 19 datasets were collected in accordance
with the ethical licensing terms associated with each dataset. Datasets requiring permission
were obtained directly from the authors after signing the necessary license agreements, and
are used strictly for research purposes, with appropriate ethical approval. For open-source
datasets, access was granted after submitting the required End-User License Agreement
(EULA) forms. No participant information is revealed in our experiments.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have added the social impact section in conclusion.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the datasets are cited.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All the details are added in a git repository and in the paper necessary.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification:

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
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A Technical Appendices

A.1 Individual Dataset Binning Details

This section outlines the summary of the dataset and information about the binning scheme applied
to harmonize our 19 physiological signal-based emotion datasets, facilitating both benchmarking and
cross-dataset evaluation. To ensure consistency in labeling across datasets, emotion elicitation tasks
or available self-reports were mapped to binary arousal and valence categories when direct arousal
and valence self-reports were not provided. Detailed descriptions for each dataset are presented
below.

A.1.1 WESAD

The WESAD dataset (Schmidt et al. [2018]) is a multimodal dataset containing physiological and
motion data from 15 participants recorded via wrist- and chest-worn sensors during a lab study. We
utilize the wrist data (gathered using Empatica E4 wristbands) for our experiments, as it includes our
target modalities: electrodermal activity (EDA) and photoplethysmogram (PPG). The dataset consists
of four affective conditions: baseline (neutral reading task), amusement (viewing humorous videos),
stress (Trier Social Stress Test), and meditation (guided breathing). For binary arousal labeling,
baseline and meditation are grouped as low arousal, while stress and amusement are labeled as high
arousal. For valence, baseline and stress are treated as negative valence due to potential anticipatory
anxiety or stress induction, and amusement and meditation are labeled as positive valence.

A.1.2 NURSE

The Nurse dataset (Hosseini et al. [2022], Xiang et al. [2025]) is a multimodal collection of physio-
logical data obtained from 15 nurses working in real-world hospital settings during the COVID-19
pandemic. The data were recorded using Empatica E4 wristbands, capturing signals such as electroder-
mal activity (EDA), heart rate (HR), skin temperature (TEMP), blood volume pulse (BVP), inter-beat
intervals (IBI), and three-axis acceleration (ACC). In addition, periodic smartphone-administered
surveys were used to gather context, documenting self-reported stress events and their contributing
factors. For our analysis, we focused on the EDA and PPG signals. The labeling mechanism was
based on self-reported stress events, where periods labeled as ’stress events’ were assigned high
arousal and negative valence, while all other periods were categorized as low arousal and positive
valence. This dataset was highly imbalanced, as most of the data consisted of periods of high stress,
given the challenging hospital environment during the COVID-19 pandemic. This resulted in an
overrepresentation of high arousal and negative valence labels, with fewer periods of low stress.

A.1.3 EMOGNITION

The Emognition dataset (Saganowski et al. [2022]) comprises multimodal physiological and facial
expression data collected from 43 participants. Participants viewed short film clips designed to
elicit nine discrete emotions: amusement, awe, enthusiasm, liking, surprise, anger, disgust, fear,
and sadness. Physiological signals were recorded using three wearable devices: Muse 2 (EEG,
ACC, GYRO), Empatica E4 (BVP, EDA, SKT, ACC), and Samsung Galaxy Watch (BVP, HR, ACC,
GYRO). Upper-body videos were simultaneously captured to analyze facial expressions. For our
analysis, we focus on EDA and PPG signals collected from E4. Emotional states were annotated using
elicitation task labels that were subsequently mapped to arousal and valence dimensions: high arousal
includes amusement, surprise, anger, enthusiasm, fear, and awe, while low arousal includes sadness,
disgust, baseline, neutral, and liking. Positive valence includes amusement, liking, enthusiasm, and
awe, while negative valence includes sadness, disgust, baseline, surprise, anger, neutral, and fear.

A.1.4 UBFC_PHYS

The UBFC-Phys dataset (Sabour et al. [2023]) is a multimodal dataset comprising physiological and
video data collected from 56 participants during a three-phase protocol inspired by the Trier Social
Stress Test (TSST). Participants underwent a rest phase (T1), a speech task (T2), and an arithmetic
task (T3), with each phase designed to elicit varying levels of stress. Physiological signals, including
blood volume pulse (BVP) and electrodermal activity (EDA), were recorded using Empatica E4
wristbands. For our analysis, we focus on the PPG and EDA signals. Labeling was performed by
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categorizing the rest phase (T1) as low arousal and positive valence, while the speech (T2) and
arithmetic (T3) tasks were labeled as high arousal and negative valence, reflecting the increased stress
levels associated with these tasks.

A.1.5 VERBIO

The VerBIO dataset (Nirjhar and Chaspari [2024]) is a multimodal bio-behavioral dataset comprising
physiological and audio data collected from 49 participants (originally 55 participants, but data was
only available for 49) during 344 public speaking sessions in both real-life and virtual environments.
Participants delivered short speeches on assigned topics, with physiological signals recorded using
Empatica E4 and Actiwave devices. The original version of the dataset included audio recordings,
physiological signals, and self-reported anxiety measures. An updated version incorporates time-
continuous stress annotations provided by four annotators, enabling the analysis of moment-to-
moment stress levels. For our study, we focus on wrist-derived physiological signals, specifically
EDA and PPG. Labeling was performed by categorizing the self-reported measures into periods with
high stress annotations as high arousal and negative valence, while periods with low stress annotations
were labeled as low arousal and positive valence.

A.1.6 PhyMER

The PhyMER dataset (Pant et al. [2023]) is a multimodal physiological dataset designed for emotion
recognition, incorporating personality traits as contextual information. It comprises physiological
signals and personality assessments collected from 30 participants (15 male and 15 female). The
physiological data were recorded using two wearable devices: the Emotiv Epoc X headset for EEG
signals and the Empatica E4 wristband for EDA, BVP, and peripheral skin temperature. Participants
self-reported their emotional responses using a web-based annotation tool, providing ratings on
arousal and valence on the SAM scale and categorizing their emotions into seven basic categories:
anger, disgust, fear, happiness, neutral, sadness, and surprise on a Likert scale of 1-9. For our study,
we focus on wrist-derived physiological signals, specifically EDA and BVP. Labeling was performed
by binarizing the self-reported SAM ratings.

A.1.7 EmoWear

The EmoWear dataset (Rahmani et al. [2024]) is a multimodal physiological and motion dataset
designed for emotion recognition and context awareness. It comprises data from 48 participants (21
females, 27 males) who engaged in a series of tasks, including watching 38 emotionally eliciting video
clips, walking a predefined route, reading sentences aloud, and drinking water. Physiological signals
were recorded using the Empatica E4 wristband (capturing BVP, EDA, SKT, and accelerometry) and
the Zephyr BioHarness (recording ECG, respiration, SKT, and accelerometry). Additionally, three ST
SensorTile.box devices were employed to collect accelerometer and gyroscope data. Participants self-
assessed their emotional states using the circumplex model of affect, providing ratings on valence,
arousal, and dominance scales. For our study, we focus on wrist-derived physiological signals,
specifically EDA and BVP. Labeling was performed by binarizing the self-reported arousal valence
ratings.

A.1.8 MAUS

The MAUS dataset (Beh et al. [2021]) is a multimodal physiological dataset designed for mental
workload assessment using wearable sensors. It comprises physiological signals collected from 22
participants (2 females) during N-back tasks of varying difficulty levels. The PixArt Watch was used
to download the photoplethysmogram (PPG) data. Additionally, a clinical procomp Infinit device was
used to record electrocardiography (ECG), galvanic skin response (GSR), and fingertip PPG signals.
Participants completed the Pittsburgh Sleep Quality Index (PSQI) questionnaire at the beginning
of the experiment and the NASA Task Load Index (NASA-TLX) questionnaire after each N-back
task to provide subjective assessments of their sleep quality and perceived workload. For our study,
we focus on Procomp data, specifically EDA and PPG. Labeling was performed by categorizing
n-back tasks into periods with high workload as high arousal and negative valence, while periods
with low workload were labeled as low arousal and positive valence. Specifically, tasks labeled
as "0_back" were considered low in cognitive demand and thus assigned low arousal and positive

20



valence. Conversely, tasks labeled as "2_back" or "3_back" were deemed higher in cognitive load,
leading to their classification as high arousal and negative valence.

A.1.9 CLAS

The CLAS (Cognitive Load, Affect, and Stress) dataset (Markova et al. [2019]) is a multimodal
physiological dataset designed to support research on the automated assessment of mental states,
including cognitive load, affect, and stress. It comprises synchronized recordings of physiological
signals—electrocardiography (ECG), photoplethysmography (PPG), electrodermal activity (EDA),
and accelerometer data—from 62 healthy volunteers engaged in five tasks: three interactive tasks
(math problems, logic problems, and the Stroop test) aimed at eliciting different types of cognitive
effort, and two perceptive tasks involving images and videos selected to evoke emotions. For our
study, we focus specifically EDA and PPG collected using Shimmer3 GSR+ unit. We applied a binary
labeling scheme for valence and arousal based on task types and stimuli. Tasks such as math tests,
Stroop tests, and IQ tests were labeled as high arousal and negative valence, reflecting high cognitive
load. Emotion-eliciting videos and images were categorized accordingly: stimuli like videos 2.mp4,
5.mp4, and image set "pics1" were labeled as high arousal and positive valence, while others like
videos 13.mp4, 14.mp4, and image set "pics2" were labeled as low arousal and negative valence.

A.1.10 CASE

The CASE (Continuously Annotated Signals of Emotion) (Sharma et al. [2019]) dataset is a multi-
modal physiological dataset designed for emotion analysis. It comprises physiological signals and
continuous affect annotations collected from 30 participants (15 male and 15 female) while watching
various video stimuli. Physiological data were recorded using ThoughtTech sensors measuring ECG,
BVP, EMG, EDA, respiration, and skin temperature. Participants provided real-time continuous
annotations of their emotional experiences using a joystick-based interface, simultaneously reporting
valence and arousal levels. Labeling was performed by calculating the mean of participants’ con-
tinuous self-reported annotations for each video segment. Segments with mean valence above the
overall average were labeled as positive valence, while those below were labeled as negative valence.
Similarly, segments with mean arousal above the average were labeled as high arousal, and those
below as low arousal.

A.1.11 Unobtrusive

The Unobtrusive dataset (Anders et al. [2024]) is a multimodal physiological dataset designed
for cognitive load assessment in both controlled (lab) and uncontrolled (real-life) environments.
It comprises approximately 315 hours of data collected from 24 participants during a four-hour
cognitive load elicitation with self-chosen tasks in the real-life setting and a four-hour mental
workload elicitation in a lab setting. Physiological signals were recorded using consumer-grade
wearable devices, including the Muse S headband and the Empatica E4 wristband, capturing EEG,
EDA, PPG, and accelerometer data. Participants performed office-like tasks such as mental arithmetic,
Stroop, N-Back, and Sudoku with two defined difficulty levels in the lab, and tasks like researching,
programming, and writing emails in the uncontrolled environments. Each task was labeled by
participants using two 5-point Likert scales of mental workload and stress, as well as the pairwise
NASA-TLX questionnaire. For our study, we focus on wrist-derived physiological signals, specifically
EDA and PPG. Labeling was performed by categorizing tasks containing keywords such as ’hig’,
’nor’, ’stroop’, ’n_back’, ’arithmetix’, or ’sudoku’ as high arousal and rest tasks as low arousal.
Similarly, tasks with keywords like ’hig_mw’, ’vhg_mw’, or ’hard’ were labelled as negative valence,
while the rest were labeled as positive valence.

A.1.12 CEAP-360VR

The CEAP-360VR (Xue et al. [2023]) is a multimodal dataset designed to study emotional responses
within immersive virtual reality (VR) environments. It comprises data from 32 participants who
each viewed eight one-minute 360° video clips using an HTC Vive Pro Eye head-mounted display.
During the viewing sessions, participants provided continuous valence and arousal annotations via
a joystick interface. Physiological signals, including electrodermal activity (EDA), blood volume
pulse (BVP), heart rate (HR), inter-beat interval (IBI), and skin temperature (SKT), were recorded
using the Empatica E4 wristband. Additionally, behavioral data such as head and eye movements and
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pupil diameter were collected. The dataset also includes responses to questionnaires assessing motion
sickness (SSQ), presence (IPQ), and workload (NASA-TLX). For our study, we focus on wrist-
derived physiological signals, specifically EDA and BVP. Labeling was performed by calculating the
mean of participants’ continuous self-reported annotations for each video segment. Segments with
mean valence above the overall average were labeled as positive valence, while those below were
labeled as negative valence. Similarly, segments with mean arousal above the average were labeled
as high arousal, and those below as low arousal.

A.1.13 ScientISST MOVE

The ScientISST MOVE dataset (Saraiva et al. [2023], Goldberger et al. [2000]) is a multimodal
physiological dataset designed to study the effects of natural everyday activities on biosignal acquisi-
tion. It comprises synchronized recordings from 15 healthy participants (originally 17, but the data
only included 15 participants) performing activities such as lifting a chair, greeting, gesticulating,
walking, and running. Data were collected using three wearable devices: a chestband, an armband,
and the Empatica E4 wristband, capturing signals including Electrodermal Activity (EDA), Photo-
plethysmography (PPG), Electrocardiography (ECG), Electromyography (EMG), skin temperature,
and actigraphy. For our study, we focus on wrist-derived physiological signals, specifically EDA
and PPG. Labeling was performed by categorizing activities based on their physical intensity and
associated emotional valence. High-energy activities such as ’jumps’ and ’run’ were labeled as
high arousal and negative valence, while low-energy activities like ’walk_before_downstairs’ and
’baseline’ were labeled as low arousal and positive valence. Similarly, activities perceived as positive,
such as ’greetings’ and ’gesticulate’, were labeled as high arousal and positive valence, whereas more
strenuous or repetitive tasks like ’lift’ were labeled as low arousal and negative valence.

A.1.14 LAUREATE

The LAUREATE dataset (Laporte et al. [2023]) is a comprehensive multimodal dataset designed
to facilitate research into the relationship between physiological responses, affective states, and
academic performance in real-world educational settings. It comprises physiological data collected
from 42 students and 2 lecturers over a 13-week university semester, encompassing 52 sessions that
include classes, quizzes, and exams. Participants wore Empatica E4 wristband devices to record
physiological signals such as electrodermal activity (EDA), photoplethysmography (PPG), skin
temperature, and acceleration signal data. Additionally, daily post-lecture self-reports were gathered
using the PANAVA-KS scale and additional custom-designed questions to capture information on
lifestyle habits (e.g., study hours, physical activity, sleep quality), perceived engagement, attention,
and emotional states of the students. Similarly, the lecturers’ post-class survey included similar
questions. For our study, we focus on EDA and PPG data of students and lecturers collected during
classes/lecture sessions. The survey items for both students and lecturers included assessments of
lecture engagement, such as enthusiasm, motivation, stress, tiredness, peacefulness, happiness, and
calmness. These self-reported measures were used to compute composite scores for arousal and
valence during lectures. The composite scores were then utilized to determine arousal and valence
classes for each physiological data segment collected during lectures.

A.1.15 ForDigitStress

The ForDigitStress dataset (Heimerl et al. [2023], Becker et al. [2023]) is a multimodal dataset
designed to facilitate automatic stress recognition. It comprises data from 38 participants (originally
40 participants, but we could not find self-report files for 2 participants) who engaged in simulated
digital job interviews, a scenario chosen to elicit psychosocial stress in a controlled yet realistic
environment. Each session included a preparatory phase, an interview session conducted via video call,
and a post-interview assessment. During the interviews, participants were subjected to challenging
questions regarding their strengths and weaknesses, salary expectations, and hypothetical job-related
situations, aimed at inducing stress. The dataset encompasses multiple modalities, including audio
recordings, video data capturing facial expressions and body movements, eye-tracking information,
and physiological signals, including PPG and EDA signals. To annotate the data, participants provided
self-reports on their stress levels and emotions experienced during the interviews. Furthermore, two
trained psychologists conducted frame-by-frame annotations of stress and emotions such as shame,
anger, anxiety, and surprise, with high inter-rater reliability (Cohen’s k > 0.7). For our study, we
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focus on EDA and PPG data and binary arousal and valence annotations provided by experts after
analyzing self-reports and participants’ behavior.

A.1.16 Dapper

The DAPPER dataset (Shui et al. [2021]) is a comprehensive multimodal dataset designed to study
emotional experiences in real-world settings. It includes data from 142 participants, with 88 of them
providing physiological recordings over five consecutive days. Participants wore custom-designed
wrist-worn devices to collect physiological signals such as heart rate (via photoplethysmography),
galvanic skin response (GSR), and three-axis acceleration during daytime hours. To capture psy-
chological states, the study employed both the Experience Sampling Method (ESM) and the Day
Reconstruction Method (DRM). The ESM involved prompting participants six times daily to report
their momentary emotional states, while the DRM required them to recall and describe at least six
significant events each day, providing associated emotional ratings. This dual-method approach
offered a nuanced view of participants’ emotional state in their natural environments. In our experi-
ments, we focused on participants’ self-reported arousal and valence levels obtained through ESM.
To align physiological data with these self-reports, we extracted GSR and PPG signals recorded
within a specific time window, two hours preceding and fifteen minutes following each ESM prompt.
This approach enabled us to examine the temporal relationship between physiological responses and
reported emotional states in real-world settings.

A.1.17 ADARP

The ADARP (Alcohol and Drug Abuse Research Program) dataset (Sah et al. [2022], Alinia et al.
[2021], Sah et al. [2022]) is a comprehensive multimodal dataset developed to facilitate research
on stress detection and alcohol relapse quantification in real-world settings. It encompasses data
from 11 individuals (10 females) diagnosed with alcohol use disorder (AUD), collected through
a combination of physiological monitoring, self-reported assessments, and structured interviews.
Participants in the study wore Empatica E4 wristbands, which continuously recorded physiological
signals. In parallel, participants completed ecological momentary assessments (EMA) four times
daily over a period of up to 14 days. These EMA surveys captured self-reported data on emotions,
including stress, feeling overwhelmed, and anxiety, using the Positive and Negative Affect Schedule
(PANAS) scale. For our study, we focused on the EDA and PPG data and performed binning based
on the self-reports provided in the dataset. Segments where participants reported no experiences of
stress, feeling overwhelmed, or anxiety were treated as positive valence, while all other segments
were treated as negative valence. Regarding arousal, the presence of anxiety was classified as high
arousal, whereas reports of stress and feeling overwhelmed were classified as low arousal to balance
the dataset. We labeled the physiological data segments within a specific time window: two hours
preceding and fifteen minutes following each EMA prompt. This dataset exhibited a significant class
imbalance due to all participants being diagnosed with Alcohol Use Disorder (AUD), which led to
a predominance of negative affective states such as stress, anxiety, and feeling overwhelmed in the
self-reports.

A.1.18 MOCAS

The MOCAS (Jo et al. [2024]) dataset is a comprehensive resource to facilitate research on human
cognitive workload (CWL) assessment in real-world settings. Unlike existing datasets that rely on
virtual game stimuli, MOCAS data were collected from realistic closed-circuit television (CCTV)
monitoring tasks, enhancing its applicability to practical scenarios. The dataset comprises data
from 21 human subjects who performed simultaneous tasks while monitoring CCTV footage. An
Empatica E4 wearable watch, Emotive Insight, and a webcam were used to collect data. Physiological
signals, including electroencephalography (EEG), BVP, EDA, Skin Temperature, and Accelerometer
data, alongside behavioral features such as facial expressions, eye movements, and mouse activity.
After each task, participants reported their CWL by completing the NASA-Task Load Index (NASA-
TLX) and Instantaneous Self-Assessment (ISA). Additionally arousal and valence self-reported were
obtained from the Self-Assessment Manikin (SAM) scale. We directly used the SAM scale rating for
our labeling by categorizing them into two classes, alongside and EDA and PPG signal data segments.
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A.1.19 Exercise

The Exercise dataset (Hongn et al. [2025]) provides a comprehensive collection of non-invasive physi-
ological data aimed at advancing research in stress detection and physical activity classification. Data
were recorded using the Empatica E4 wearable device, which captures electrodermal activity (EDA),
skin temperature, three-axis accelerometry, and blood volume pulse (BVP). The dataset encompasses
records from 36 healthy individuals during a structured stress induction protocol, 30 during aerobic
exercise, and 31 during anaerobic exercise. The stress induction protocol involved Stroop Test,
Trier Mental Challenge Test which included mathematical tasks (with annoying background audio),
vocalize their opinion about for and against a controversial topics, and counting backward from 1022
in decrements of 13, each designed to elicit negative physiological responses, while a stationary
cycling routine was developed to distinguish between aerobic and anaerobic activities where anaero-
bic activity has cool-down periods in between cycling sprints and aerobic has increasing resistance
cycling with cool-down at the end. For this study we used EDA and PPG data and we labeled the
physiological data based on the specific tasks performed and the associated stress levels. For the
stress induction protocol we have used stress-self reports where high stress scores were mapped to
high arousal negative valence. In contrast, the low stress scores were labeled as low arousal and
positive valence. Regarding the exercise sessions, for both aerobic and anaerobic activities initial
baseline, warm-up, and later cool-down, and rest is labeled as low arousal, while the cycling period
were treated as high arousal. For valence label in aerobic exercise data until 85 rpm of speed was
taken as positive valence, while rest of the data is taken as negative valence. For anaerobic exercise
the data of initial two sprints is taken as positive valence while later sprints are taken as negative
valence.

A.1.20 EEVR

The EEVR dataset (Singh et al. [2024]) is a multimodal dataset designed to advance emotion recogni-
tion research by integrating physiological signals with textual descriptions of emotional experiences.
It includes data from 37 participants who were exposed to various emotional stimuli presented through
360° virtual reality (VR) videos. The physiological signals, including electrodermal activity (EDA)
and photoplethysmography (PPG), were recorded using a 4-channel Biopac MP36. The dataset
encompasses a range of emotional experiences, covering all four quadrants of Russell’s circumplex
model of emotion. To facilitate emotion classification tasks, the dataset includes annotations for
valence and arousal, as well as individual emotions, collected using the SAM and PANAS surveys,
along with self-reported textual descriptions of emotions gathered through qualitative interviews.
For our experiments, we have directly used the pre-trained models (available here) provided by the
authors, which were trained on the EEVR datasets.

A.2 Meta Analysis

In this section, we present our meta-analysis that included computing the number of high and low
arousal and positive and negative valence samples in each dataset to assess class balance and artifact
percentages in our datasets. This was done as part of our qualitative analysis of benchmarking
performances to understand if these factors could have impacted the overall performance. We
begin by explaining the definition of artifacts as per prior literature, their impact on data quality
and performance, and then we explain our artifact detection methods. Finally, we presented our
comprehensive dataset-wise analysis in Table 4.

Artifact Detection

Definitions: Artifacts in biosignals (EDA, PPG) are "non-avoidable distortions which get superim-
posed on the signals representing emotional changes that originate from external (e.g., movement,
ambient light) or internal (e.g., electrode-skin impedance changes) sources" ( Islam et al. [2020]).
Artifacts in electrodermal activity (EDA) are "transient, non-sweat-gland–related perturbations
of the skin conductance signal that do not reflect sympathetic nervous system activity. Common
sources of these perturbations are abrupt motions, unstable electrode contact, or environmental factors
like humidity or temperature fluctuations Gashi et al. [2020]." Similarly, photoplethysmography
(PPG) artifacts are "distortions in the optical pulse waveform not caused by pulsatile blood-volume
changes, degrading the actual cardiac-related component. Limb motion and sensor contact pressure
are significant sources of these distortions (Islam et al. [2020])."
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Impact of Artifacts: Artifacts in EDA signals impact the quality of emotion-representation in
the data by inflating noise relative to true sympathetic responses. In-the-wild studies show that
including artifact-contaminated segments can reduce arousal–valence classification accuracy by up
to 20 percentage points compared to manually cleaned data, directly undermining the reliability of
affective state. Moreover, unfiltered motion and contact artifacts bias tonic–phasic decomposition
methods, misestimating key features like mean SCR amplitude, thereby impacting machine-learning
emotion classifiers that rely on these features ( Venkatachalam et al. [2011]). In PPG signals, motion
artifacts interrupt the detection of valid inter-beat intervals, leading to heart-rate variability (HRV)
metrics with mean absolute errors exceeding 30 ms and impacting arousal prediction models ( Zheng
et al. [2023]).

Artifact Detection Methods

EDA Artifacts: For our artifact detection, we have used the EDA artifact detection pipeline proposed
in EDArtifact ( Gashi et al. [2020]), which involves a structured sequence of preprocessing, feature
extraction, and classification. The raw EDA signals are initially sampled at 4 Hz and segmented into
non-overlapping windows of 60 samples (equivalent to 15 seconds). Each segment undergoes Haar
wavelet decomposition up to level 3 to capture multi-resolution signal characteristics. A comprehen-
sive set of 36 features is extracted from each segment, encompassing statistical properties (e.g., mean,
variance), first- and second-order derivative statistics, wavelet coefficients, and characteristics of
skin conductance response (SCR) peaks. The SCR peaks are identified using a minimum amplitude
threshold of 0.01 µS, with an onset validation offset of 1 sample, a pre-apex search window of 3
seconds, and a post-apex half-amplitude decay window of 10 seconds. The extracted features are then
normalised and input into a pre-trained XGBoost classifier, which has been trained to distinguish
between clean and artifact-contaminated segments.

PPG Artifacts: We used the Tiny-PPG motion artifact detection pipeline for PPG signals, leveraging
a lightweight pre-trained 1d convolutional neural network designed for real-time deployment on
edge devices ( Zheng et al. [2023]). Raw PPG time series data is loaded and, for each subject (PID),
segmented into non-overlapping windows of 60 samples. Each window is reshaped to the model’s
expected input tensor shape [batch, channel, length] = [1, 1, 60]. Inference is performed window-
wise, where each segment is passed through the model to obtain a segmentation mask representing
the likelihood of motion artifact presence. A sigmoid activation is applied to convert logits into
probabilities, followed by binarisation using a threshold of 0.5. The prediction for the entire signal is
aggregated using a mean-based criterion. If the average probability of artifact presence exceeds 0.5,
the segment is labelled as containing a motion artifact.

Dataset Name High
Arousal

Low
Arousal

Positive
Valence

Negative
Valence

EDA Artifacts
(%)

PPG Artifacts
(%)

WESAD 120 120 120 120 11.34 ± 21.22 91.84 ± 7.56
NURSE 130 162 248 44 18.76 ± 14.99 100 ± 0
EMOGNITION 252 212 295 169 33.75 ± 36.92 94.09 ± 5.08
UBFC_PHYS 208 464 328 344 8.3 ± 19.18 0 ± 0
VERBIO 254 115 288 81 24.7 ± 33.37 53.45 ± 10.35
PhyMER 1036 1684 1128 1592 2.89 ± 10.09 0 ± 0
EmoWear 1950 1602 1216 2336 7.70 ± 14.03 0.03 ± 1.68
MAUS 352 176 352 176 0.64 ± 1.52 100 ± 0
CLAS 1560 1440 1560 1440 70.82 ± 27.5 0 ± 0
CASE 332 988 816 504 98.67 ± 1.9 100 ± 0
Unobtrusive 707 213 359 561 12.6 ± 4.5 3.80 ± 19.13
CEAP-360VR 98 158 135 121 13.41 ± 9.67 6.67 ± 3.5
ScientISST MOVE 30 60 31 59 59.81 ± 10.9 96.67 ± 17.95
LAUREATE 718 254 703 269 18.92 ± 18.42 92.01 ± 4.67
ForDigitStress 505 82 154 433 0 ± 0 11.83 ± 10.02
Dapper 2244 757 307 2694 7.28 ± 2.94 37.6 ± 2.48
ADARP 13 4 14 3 68.7 ± 14.47 100 ± 0
MOCAS 98 98 36 160 33.67 ± 10.3 31.9 ± 14.03
Exercise 427 455 347 535 50.55 ± 7.47 95.08 ± 1.17

Table 4: Data quality statistics across datasets. Bold values in the Arousal and Valence columns
indicate near-balanced class distributions (min/max ≥ 0.9). Bold values in the artifact columns
denote cases where over 90% of the data across participants is affected by artifacts.

Meta Analysis Observations
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Model Data Type FLOPS Parameters Latency (ms)

RF
EDA - - 15.01
PPG - - 14.78
EDA+PPG - - 15.59

LDA
EDA 59 16 0.34
PPG 143 37 0.38
EDA+PPG 203 52 0.42

HC+MLP
EDA 3200 1701 0.33
PPG 7400 3801 0.38
EDA+PPG 10400 5301 0.43

HC+RESNET
EDA 6225029 414082 0.61
PPG 14939525 414082 0.62
EDA+PPG 21164165 414082 0.61

HC+LSTM+NN
EDA 3084037 265346 0.25
PPG 7309573 265346 0.32
EDA+PPG 10327813 265346 0.37

HC+Attention+NN
EDA 67717 68226 0.20
PPG 70405 265346 0.21
EDA+PPG 72325 72834 0.21

Signal+CNN+Transformer
EDA 5589888 2203086 1.45
PPG 5589888 2203086 1.43
EDA+PPG - - -

Signal+LSTM+NN
EDA 12138757 265346 0.41
PPG 12138757 265346 0.40
EDA+PPG - - -

Signal+RESNET
EDA 24898949 414082 0.60
PPG 24898949 414082 0.61
EDA+PPG - - -

CLSP
EDA 850.51 66.0932 M 3.8492
PPG 850.51 66.0943 M 3.8977
EDA+PPG 850.51 66.095 M 3.8676

CLSP-Finetune
EDA 3230.91 66.1247 M 13.0432
PPG 3230.91 66.1257 M 12.9931
EDA+PPG 3230.91 66.1265 M 12.9105

Table 5: Comparison of model performance across data types (EDA, PPG, and EDA+PPG). Here,
“M” denotes millions. Missing entries indicate that no experiment was conducted for those cases. For
the Random Forest (RF) model, FLOPS and parameter counts are not directly applicable.

Artifact analysis was conducted prior to the pre-processing or standardization step. The results are
presented in Table 4, where artifact presence is reported as the mean artifact percentage ± standard
deviation across participants. Our artifact detection results showed that the datasets collected in
real-life settings (such as Nurse, ADARP, and Laurate) or using physical stressors as an emotion
elicitation task (like Exercise and Scientisst_MOVE) tend to exhibit more EDA artifacts and PPG
motion artifacts. We further observed that datasets including WESAD and CLAS have a balanced
class distribution across arousal and valence, whereas datasets like ForDigitStress, Nurse, and
VERBIO show a high imbalance, skewing toward negative samples. Moreover, we identified that data
collected “in the wild” settings generally featured more negative-valence instances, while video-based
elicitation datasets have a higher proportion of high-arousal samples. Further analysis is added in
Table 12.

A.3 Computation Cost

In this section, we present our computation cost across all modeling paradigms; see Table 5 for
details.
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A.4 Benchmarking Models

In this section, we present a detailed discussion of the feature extraction, model architecture, and
hyperparameters of the models employed in our benchmarking experiments. All models were initial-
ized with a seed value of 42. We selected all the model’s hyperparameters based on hyperparameter
tuning to identify the optimal configuration.

A.4.1 Feature Extraction

(a) EDA Features (b) PPG Features 

UMAP Projection of  Feature Embeddings Across Datasets

Figure 2: UMAP projection of Electrodermal Activity (EDA) and Photoplethysmography (PPG)
signals across 19 physiological datasets. Each point represents EDA and PPG features from the
dataset, color-coded by dataset source.

EDA: To extract meaningful statistical and physiological features from the EDA signal, we first
decompose the raw signal using NeuroKit2’s eda_phasic function, which separates it into tonic
(slow-changing baseline) and phasic (fast, event-related) components. The phasic signal captures
skin conductance responses (SCRs), while the tonic signal represents the baseline skin conductance
level (SCL). Following this, the basic statistical features are computed from the raw EDA signal.

PPG: To extract physiological features from the PPG signal, we first iterate over each windowed
segment in the raw_ppg_window dataset. Each segment signal is then cleaned using NeuroKit2’s
ppg_clean function to remove noise and artifacts. The cleaned PPG signal is processed using
ppg_process, which extracts key features such as heart rate and waveform characteristics. Then,
ppg_analyze is applied to compute PPG-specific features. Table 6 outlines the handcrafted statistical
features chosen for training our models.

A.4.2 ML Models

Random Forest: We used a Random Forest Classifier from the scikit-learn library with the primary
hyperparameters set as n_estimators=100, and n_jobs=5, while keeping all other parameters at their
default values.

LDA: We used a Linear Discriminant Analysis (LDA) model from the scikit-learn library with the
hyperparameter n_components=1, solver = svd, while keeping all other parameters at their default
values. The n_components=1 setting indicates that the model projects the input data onto a single
linear discriminant axis, which is used because it is generally useful for binary classification problems
and for reducing the feature space to a single dimension while preserving class separability.
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Signal Features Selected
EDA ku_eda, sk_eda, dynrange, slope, variance, entropy, insc, first_derivative_mean, max_scr, min_scr,

nSCR, meanAmpSCR, meanRespSCR, sumAmpSCR, sumRespSCR
PPG BPM, PPG_Rate_Mean, HRV_MedianNN, HRV_Prc20NN, HRV_MinNN, HRV_HTI,

HRV_TINN, HRV_LF, HRV_VHF, HRV_LFn, HRV_HFn, HRV_LnHF, HRV_SD1SD2,
HRV_CVI, HRV_PSS, HRV_PAS, HRV_PI, HRV_C1d, HRV_C1a, HRV_DFA_alpha1,
HRV_MFDFA_alpha1_Width, HRV_MFDFA_alpha1_Peak, HRV_MFDFA_alpha1_Mean,
HRV_MFDFA_alpha1_Max, HRV_MFDFA_alpha1_Delta, HRV_MFDFA_alpha1_Asymmetry,
HRV_ApEn, HRV_ShanEn, HRV_FuzzyEn, HRV_MSEn, HRV_CMSEn, HRV_RCMSEn,
HRV_CD, HRV_HFD, HRV_KFD, HRV_LZC

EDA+PPG ku_eda, sk_eda, dynrange, slope, variance, entropy, insc, first_derivative_mean, max_scr, min_scr,
nSCR, meanAmpSCR, meanRespSCR, sumAmpSCR, sumRespSCR, BPM, PPG_Rate_Mean,
HRV_MedianNN, HRV_Prc20NN, HRV_MinNN, HRV_HTI, HRV_TINN, HRV_LF,
HRV_VHF, HRV_LFn, HRV_HFn, HRV_LnHF, HRV_SD1SD2, HRV_CVI, HRV_PSS,
HRV_PAS, HRV_PI, HRV_C1d, HRV_C1a, HRV_DFA_alpha1, HRV_MFDFA_alpha1_Width,
HRV_MFDFA_alpha1_Peak, HRV_MFDFA_alpha1_Mean, HRV_MFDFA_alpha1_Max,
HRV_MFDFA_alpha1_Delta, HRV_MFDFA_alpha1_Asymmetry, HRV_ApEn, HRV_ShanEn,
HRV_FuzzyEn, HRV_MSEn, HRV_CMSEn, HRV_RCMSEn, HRV_CD, HRV_HFD,
HRV_KFD, HRV_LZC

Table 6: Handcrafted Features Selected for EDA, PPG, and Combined (EDA+PPG) Signals

A.4.3 Handcrafted Features + DL Models

MLP: We trained a Multi-Layer Perceptron (MLP) classifier using scikit-learn’s MLPClassifier with
the hyperparameters hidden_layer_sizes=(100,) while leaving all other parameters at their default
values such as the activation function (relu), solver (adam), learning rate strategy (constant), and
maximum iterations (200).

RESNET: We used a 1D ResNet-based architecture tailored for temporal classification tasks. The
core building block is a residual module comprising three sequential Conv1D layers with kernel
sizes [8, 5, 3], each followed by BatchNorm and ReLU activations except final layer. A shortcut
connection using a 1×1 Conv1D aligns input-output dimensions, enabling residual learning. The
network stacks two such blocks, followed by an adaptive average pooling layer that compresses the
temporal dimension. The pooled features are passed through a fully connected layer and softmax
activation for classification. The model is optimized using Adam (lr=0.001) with cross-entropy loss
and trained end-to-end with mini-batch gradient descent. We ran for epoch 100 with a batch size of
16.

LSTM+MLP: We implement a sequence classification model based on Long Short-Term Memory
(LSTM) networks, followed by a multi-layer perceptron (MLP). The model begins with a two-layer
LSTM configured with a hidden size of 128 and a dropout rate of 0.3 to mitigate overfitting. The
LSTM operates on univariate time series data and captures temporal dependencies in the input. The
output from the final time step of the LSTM is passed through an MLP consisting of two fully
connected layers. The first layer maps the hidden representation to 256 dimensions, applies a ReLU
activation, and includes a dropout of 0.4. The second layer reduces the dimensionality to 128, again
followed by ReLU and a dropout of 0.3. A final linear layer maps the features to the number of output
classes, and a softmax activation is applied to obtain class probabilities. The model is trained using
the Adam optimizer with a learning rate of 0.001 and cross-entropy loss. Training is conducted over
100 epochs with a batch size of 16, using shuffled data and GPU acceleration when available.

Attention Layer + MLP: We implement an attention-based neural network classifier designed
to operate directly on handcrafted statistical features extracted from physiological signals. These
features, computed as summary statistics from time-series data, are treated as a single flat input vector
without any temporal or sequential structure. The input vector is first projected into a 128-dimensional
representation using a linear layer. A 4-head self-attention mechanism is then applied to model
inter-feature dependencies, allowing the model to dynamically weight the contribution of different
features during learning. Unlike a full Transformer, our approach does not involve positional encoding
or stacked attention layers; rather, it uses a single self-attention block to enhance feature interactions
before passing the output through a two-layer MLP with dimensions of 256 and 128, incorporating
dropout rates of 0.4 and 0.3 respectively. The final output is produced via a softmax layer, and the
model is trained using the Adam optimizer with a learning rate of 0.001 and cross-entropy loss,
processing data in batches of 16 samples over 100 epochs.
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A.4.4 Signal Segments + DL Models

Resnet: We implemented a deep residual convolutional neural network tailored for classifying
physiological time-series signals. First, the raw signals were segmented into fixed-length overlapping
windows using a sliding window approach. To ensure all windows had consistent length, we applied
zero-padding to the right when segments were shorter than the desired size. These segments were
then converted into padded tensors suitable for batched input to the model. Our network comprises
two stacked ResNetBlock modules, each engineered to extract hierarchical temporal features. Within
each block, the input passes through a sequence of three 1D convolutional layers with kernel sizes of
8, 5, and 3, respectively. Each convolution uses ’same’ padding to preserve the temporal dimension,
followed by batch normalization and ReLU activation to improve training stability and non-linearity.
Each block includes a shortcut connection implemented via a 1×1 convolution to facilitate gradient
flow. The number of filters is fixed at 128 throughout the network, allowing for rich intermediate
representations. After the convolutional layers, an adaptive average pooling layer was included to
reduce the output to a fixed-length vector, regardless of the input window size. This vector is passed
through a fully connected linear layer for classification, followed by a softmax activation to produce
probability distributions over the target classes. The model is trained using the Adam optimizer with
a learning rate of 0.001, and cross-entropy loss is used to guide optimization. We ran for epoch 100
with a batch size of 16.

LSTM+MLP: We implemented a hybrid LSTM-MLP classifier to model temporal dependencies
in univariate physiological time-series data. Prior to modeling, we segmented each signal into
overlapping fixed-size windows using a sliding window mechanism. This ensured that even signals
of varying lengths could be represented as uniform tensors, with shorter segments padded using
zeros. Each windowed sequence was treated as a 1D time series and passed to a multi-layer LSTM
module consisting of two stacked layers, each with 128 hidden units and dropout regularization to
reduce overfitting. The final hidden state from the LSTM was used as a condensed summary of the
temporal dynamics within each window. This representation was then passed through a multi-layer
perceptron (MLP) with two hidden layers (256 and 128 units), ReLU activations, and dropout layers.
The final classification was performed using a fully connected layer followed by a softmax activation
to produce class probabilities. The model was optimized using the Adam optimizer with a learning
rate of 0.001 and trained using the cross-entropy loss. We ran for epoch 100 with a batch size of 8.

CNN+ Transformer Encoder Block: We implemented a hybrid neural architecture combining a
convolutional and a Transformer encoder block for 1D physiological signals. The Feature Extractor
module uses three parallel 1D convolutional blocks, each with kernel sizes of 5, 9, and 13, respectively,
to capture temporal patterns at multiple receptive fields. Each block consists of two convolutional
layers: the first maps from 1 input channel to 32 filters, and the second expands from 32 to 64 filters,
both with padding="same". Each convolutional layer is followed by batch normalization, ReLU
activation, and dropout (rate = 0.2). Outputs from all three branches are concatenated, resulting
in a feature map with 192 channels (3 blocks × 64 filters). To adaptively reweight these feature
channels, we incorporated a Squeeze-and-Excitation (SE) block with a reduction ratio of 16. This
mechanism reduces the channel dimensionality from 192 to 12 via a fully connected layer, then
projects it back to 192 using a second linear layer followed by a sigmoid activation, generating
channel-wise attention weights. The aggregated feature representation is passed through a global
average pooling layer and projected into a 128-dimensional embedding space using a linear layer
followed by Layer Normalization and dropout (rate = 0.1). We employed a Transformer encoder
with 4 layers, each using 8 attention heads, a model dimension (d_model) of 128, and feedforward
sublayers with hidden dimensions of 512. The encoder is preceded by sinusoidal positional encodings
added to the input sequence to provide temporal order information. Each encoder layer includes
multi-head self-attention, residual connections, layer normalization, and a dropout rate of 0.1. The
Transformer output is globally pooled (mean over sequence dimension) and passed to a two-layer
MLP classifier: the first layer maps from 128 to 64 units with ReLU and dropout (0.1), and the second
maps from 64 to the two emotion classes. The entire architecture is trained using the Adam optimizer
with a learning rate of 0.001 and cross-entropy loss, over 50 epochs with a batch size of 16.

A.4.5 Fine-tuned CLSP Models

MLP-based MetaNet: For the linear variant of the MetaNet modulation network, we employ a
simple yet effective two-layer multilayer perceptron (MLP) to generate instance-conditioned prompts.
The network first projects the input signal features into a hidden representation of dimension 32
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using a fully connected layer, followed by a ReLU nonlinearity. This intermediate representation is
then passed through a second linear layer to produce output vectors in the same dimensionality as
the CLSP text embedding space. These outputs are reshaped into instance-specific bias vectors and
added to a set of 16 learnable context tokens, resulting in dynamically modulated prompts tailored
to each input sample. The overall system is optimized using Adam optimizer with a batch size of 4
and a learning rate of 5e-5 for 15 epoch, enabling efficient fine-tuning. This design facilitates task
adaptation by conditioning the text encoder on input signal characteristics, without requiring access
to class labels or ground-truth text data during training.

1D-CNN-based MetaNet: For training our model based on 1D-CNN metanet adoption of CoCoOp,
we used a batch size of 4 and optimized with the Adam optimizer using a learning rate of 5e-5
for 15 epochs. For prompt learning, we set the number of learnable context tokens to 24, each
embedded in a 768-dimensional space aligned with the text encoder. The Meta network comprises
two stacked 1D convolutional layers. The first convolution uses an input channel of 1 and outputs 24
hidden channels (with kernel size 3, stride 1, and padding 1), followed by a ReLU activation, and
a second convolution compresses the representation back to a single output (with kernel size of 3
and padding 1) channel, maintaining the temporal dimension. This network transforms the signal
features into instance-specific context bias vectors, which are added to a set of 24 learnable context
tokens, forming dynamic prompts. These prompts are prepended to tokenized class descriptions and
passed to a frozen DistilBERT encoder, enabling adaptive conditioning of text embeddings based
solely on input signals. This 1D-CNN modulation strategy provides a computationally efficient and
effective means of aligning physiological data with textual semantics in the absence of ground-truth
annotations.

For our fine-tuned CLSP experiments, we employed a set of carefully constructed textual prompts
corresponding to each emotional category. These prompts were designed to provide richer semantic
grounding for the text encoder, enabling the model to better capture the conceptual meaning of each
class even in the absence of explicit textual supervision. Each prompt describes general physiological
and affective cues, such as variations in energy or bodily reactions, that are broadly recognized across
cultures, thereby reflecting universal aspects of emotional experience rather than culture-specific
expressions. Importantly, our approach also extends beyond static textual class definitions, since in our
fine-tuning approach, each prompt is augmented with context tokens that are learned for every input
segment. These adaptive tokens enable the model to dynamically refine the prompt representation
based on the input, thereby mitigating potential rigidity and bias that may arise from the nature
of textual prompts. The complete set of textual prompts used for our fine-tuning experiments is
presented below:

1) Textual Prompts for Arousal Classification:

• High Arousal: "The participant felt a strong physical reaction, like a racing heart or tense
body, and experienced high-energy emotions such as excitement, enthusiasm, surprise, anger,
and nervousness."

• Low Arousal: "The participant felt low energy and relaxed, with calm emotions like
peacefulness, relaxation, neutral, boredom, and lack of interest."

2) Textual Prompts for Valence Classification:

• Negative Valence: "The participant felt bad and was in a negative mood, with emotions like
sadness, fear, anger, worry, hopelessness, and frustration."

• Positive Valence: "The participant experienced a positive mood characterized by emotions
such as happiness, joy, gratitude, serenity, interest, hope, pride, amusement, inspiration,
awe, and love."

3) Textual Prompts for Four Class Classification:

• High Arousal Negative Valence: "Strong physical reaction with intense negative emotions
like anger, fear, frustration, anxiety, or panic."

• High Arousal Positive Valence: "Strong physical activation with energizing positive
emotions like joy, enthusiasm, exhilaration, or amusement."

• Low Arousal Negative Valence: "Low energy with subdued negative emotions like sadness,
boredom, tiredness, disappointment, or hopelessness."
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• Low Arousal Positive Valence: "Calm and relaxed with subtle positive emotions like
contentment, peace, satisfaction, and mild happiness."

Table 7: Dataset Categorization by Experimental Setting
Setting Group Datasets

Lab
WESAD, EMOGNITION, UBFC_PHYS, VERBIO,
PhyMER, EmoWear, CEAP-360VR, CASE, MOCAS,
MAUS, CLAS

Constraint ForDigitStress, ScientISST MOVE, Exercise
Lab+Real Unobtrusive
Real ADARP, Dapper, NURSE, LAUREATE

Table 8: Dataset Categorization by Device Type
Device Group Datasets

Wearable (Empatica E4)
WESAD, NURSE, EMOGNITION, UBFC_PHYS, VERBIO,
PhyMER, EmoWear, Unobtrusive, CEAP-360VR,
ScientISST MOVE, LAUREATE, MOCAS, Exercise, ADARP

Lab Based Device

CASE (ThoughtTech SA9309M, ThoughtTech SA9308M)
CLAS (Shimmer3 GSR+ Unit)
MAUS (Procomp Infinit)
ForDigitStress (IOMbiofeedback sensor)

Custom Wearable Dapper (Custom Designed Wristband)

A.5 Cross-Dataset Analysis

The cross-data models were run using the same set of parameters as in the benchmarking stage, with
the seed of 42 and the same number of epochs as defined model-wise in A.4.

A.6 Dataset Grouping

The dataset grouping across different harmonizing dimensions - Experimental Setting, Device
Type, and Labeling Method is added in Table 7, 8, and 9. Furthermore, to evaluate gender-based
transferability, we selected nine datasets containing gender metadata: WESAD, ScientISST MOVE,
UBFC_PHYS, Exercise, PhyMER, EmoWear, CASE, CEAP-360VR, and NURSE (female subjects
only). For age-based transferability analysis, we employed seven datasets: WESAD, ScientISST
MOVE, Exercise, PhyMER, EmoWear, CASE, and CEAP-360VR.

Table 9: Dataset Categorization by Labeling Method
Label Group Datasets

Stimulus-Label WESAD, EMOGNITION, UBFC_PHYS, MAUS,
CLAS, ScientISST MOVE, Exercise

Self-report
VERBIO, PhyMER, EmoWear, CASE, Unobtrusive,
NURSE, CEAP-360VR, LAUREATE, Dapper,
ADARP, MOCAS

Expert-Annotated ForDigitStress

A.7 Results Discussion

A.7.1 Benchmarking Results

Overall, our benchmarking results reveal several key insights for the physiological signal–based
emotion recognition community. Below, we summarize our reflections:

• Evaluating Meaningful Performance: In our benchmarking experiments, we observed
that datasets collected under well-designed laboratory conditions, such as ForDigitStress,
WESAD, and MOCAS, tend to yield high classification performance. This is likely due to
the high degree of experimental control during data collection, which ensures consistent
labeling and minimizes noise. However, it is important to note that model performance on
such datasets may not accurately reflect real-world behavior. We encourage the emotion
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recognition and affective computing community to complement lab-based evaluations with
studies using more naturalistic, diverse, and ecologically valid datasets. Doing so will enable
the development of models that generalize better to everyday contexts and support fairer
and more meaningful comparisons across methods.

• Variability in Valence and Arousal Performance: Across datasets, we observed that
arousal classification often outperformed valence and vice versa in some cases, while four-
class emotion classification remained relatively low. This highlights that physiological
responses may reflect certain dimensions of emotional states (e.g., arousal) more reliably
than others and this might vary as per the experiment settings and labeling techniques used,
but it also reflect that our inferences are heavily dependent on how we interpret these signals.
It raises fundamental questions about whether current approaches to labeling and bench-
marking truly capture the nuances of emotion (Singh et al. [2025b]). For benchmarking, we
mapped diverse emotion labels into arousal and valence dimensions, but this simplification
may obscure important distinctions and assumptions about what physiological changes
represent. These observations suggest a need for more precise labeling paradigms, better
theoretical grounding, and careful consideration of whether our models and evaluation
frameworks are aligned with the actual phenomena we aim to study.

• Data Quality and Its Impact on Inference: Our benchmarking results highlight that the
quality of labels, task design, class balance, and stimulus strength all critically influence
model performance and the reliability of inferences from physiological data. Datasets with
expert annotations or experience sampling (e.g., ForDigitStress, Dapper) consistently outper-
form those relying on post-hoc or abstract self-reports, demonstrating the value of accurate
and temporally aligned labels. Realistic, ecologically valid tasks (e.g., Unobtrusive, LAU-
REATE) elicit more meaningful physiological responses, supporting better generalization,
while datasets with class imbalance or limited emotional diversity (e.g., NURSE, ADARP)
hinder learning and reduce robustness. Similarly, weak or immersive-limited stimuli, such
as VR or mild emotion elicitation (e.g., CEAP-360VR, EMOGNITION), lead to lower
performance, highlighting the importance of strong and contextually relevant emotional
triggers. Together, these findings suggest that our inferences from physiological signals
depend not only on model architecture but fundamentally on the quality and design of the
underlying data, emphasizing the need for balanced, realistic, and carefully labeled datasets
to improve generalization and the interpretability of emotion recognition systems.

In summary, future research should integrate ecologically valid elicitation methods, temporally
precise annotation, and balanced multimodal datasets to strengthen model robustness and real-world
transferability. As illustrated in Table 12, our qualitative data-wise evaluation emphasizes that
rigorous study design, balancing sample representation, participant diversity, ecological realism,
and alignment of labels with physiological responses, is fundamental for building reliable emotion
recognition systems.

A.7.2 Cross-Dataset Generalization Analysis

We evaluate generalization across settings, annotation types, devices, and demographics to understand
the robustness and transferability of our best-performing models. Below, we share our findings:

1. Cross-Setting Generalization is Asymmetric but Promising

• Real → Lab/Constraint: Models trained on real-world data generalized well to lab and
constraint-based settings (F1 up to 0.79 for valence), particularly with CLSP-based models
and EDA input.

• Constraint → Real: Constraint-trained models showed strong transferability to real-world
data, achieving the highest overall F1 score (0.88) for valence with RF, indicating that
well-structured elicitation with moderate variability helps bridge domain gaps.

• Lab → Real/Constraint: Lab-trained models yielded moderate transfer (F1 up to 0.76),
but lacked consistency, possibly due to overfitting to controlled conditions that limit general-
izability.

Detailed results for cross-setting are added in Table 14, 13, and visualized figure 16.

2. Cross-Label Generalization Benefits from High-Quality Annotations
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• Expert-Annotated → Self/Stimulus: Expert-annotated training led to strong generalization
across label types (F1 up to 0.76 for valence), showing that high-quality temporal labels
help bridge subjective and task-derived annotations.

• Self-report → Expert/Stimulus: Surprisingly strong performance was observed when
self-report-trained models were tested on expert labels (F1 up to 0.87), suggesting alignment
between subjective awareness and physiological signals when well-labeled.

• Stimulus → Others: Stimulus-labeled training underperformed when generalized to self-
report or expert data (F1 as low as 0.52), likely due to weak alignment between stimuli and
experienced emotions.

Detailed results for cross-label are added in Table 17, 18, and visualized figure 14.

3. Cross-Device Generalization is Strongest with High-Fidelity Sensors

• Wearable → Custom: Training on commercial wearable devices transferred well to custom
wearables (F1 up to 0.82 for valence), especially using CLSP models, suggesting sensor
fidelity supports robust feature learning.

• Wearable → Lab-Based Device: Transfer from Wearable (E4) to lab-based devices showed
poor to moderate results (F1 mostly below 0.62), suggesting limited compatibility due to
differing device characteristics and signal quality.

• Lab-Based Device → Custom Wearable/Wearable: Models trained on lab-based devices
generalized well to both custom wearables and Wearable E4 devices, achieving strong
valence performance (F1 up to 0.81 with LDA on EDA+PPG for custom wearables, and
around 0.73 with CLSP CNN for Wearable E4), demonstrating that high-quality lab data
can effectively support cross-device generalization using advanced models.

• Custom → Lab/Wearable: Models trained on custom devices generalized poorly to other
hardware (F1 often < 0.66), likely due to noise, motion artifacts, and inconsistent signal
quality.

Detailed results for cross-device are added in Table 15, 16, and visualized figure 15.

4. Influence of Demographics on Generalization: Cross-demographic evaluations indicate strong
transferability across gender and age for valence classification (F1 = 0.71 and 0.73, respectively).
In contrast, arousal transfer remains weak, nearing random performance, implying that arousal-
related physiological patterns are more susceptible to individual variability than those associated with
valence. Detailed results for gender-wise transferability experiments are added in Tables 19, 20, and
for age-wise transferability are added in Tables 21, 22.

In summary, cross-setting evaluations reveal that models trained on real-world data generalize well
to lab and constraint environments, especially for valence detection. This suggests that diverse,
in-the-wild datasets enhance model robustness. Similarly, training on constraint-based data transfers
effectively to real-world scenarios, whereas models trained solely on lab data tend to overfit and show
limited generalization due to the controlled nature of those settings. For Cross-Label evaluations,
transferability between different annotation types is generally promising. Models trained on expert
annotations perform well when tested on stimulus-based and self-reported labels, indicating common
underlying emotional features across labeling methods. In contrast, models trained on self-reports
transfer well to expert annotations but struggle to generalize within self-report targets themselves,
reflecting the inherent subjectivity and complexity of self-reported emotions. Regarding Cross-
Device evaluations, models trained on high-quality lab-based devices serve as strong foundations,
demonstrating effective transfer to both custom and commercial wearable devices, particularly
when leveraging advanced CLSP architectures and combined EDA+PPG inputs. However, models
trained on custom wearable devices tend to generalize poorly due to sensor variability and noise.
Encouragingly, zero-shot CLSP models exhibit robust, device-agnostic performance, underscoring
their potential for flexible deployment across diverse hardware platforms. Overall, models trained
across different settings, labels, and devices demonstrate varying degrees of generalization, with
real-world data, expert annotations, and high-quality lab devices offering strong transfer potential.
Notably, CLSP-based models consistently show robust performance across all evaluation scenarios,
highlighting their adaptability and effectiveness for cross-domain affective computing applications.
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A.8 All Results

In this section, we present our detailed summary of our results for data benchmarking and cross-
dataset experiments. Check out the supplementary material for more detailed results.

0.00

0.25

0.50

0.75

1.00

W
ESAD

NURSE

EMOGNITIO
N

UBFC_P
HYS

Phy
MER

EmoW
ea

r
MAUS

CLA
S 

CASE 

Uno
btr

us
ive

CEAP-36
0V

R

Scie
ntI

SST M
OVE

Dap
pe

r

ForD
igi

tS
tre

ss

ADARP

Exe
rci

se

MOCAS

LA
UREATE

VERBIO

EDA PPG EDA+PPG

0.00

0.25

0.50

0.75

1.00

W
ESAD

NURSE

EMOGNITIO
N

UBFC_P
HYS

Phy
MER

EmoW
ea

r
MAUS

CLA
S 

CASE 

Uno
btr

us
ive

CEAP-36
0V

R

Scie
ntI

SST M
OVE

Dap
pe

r

ForD
igi

tS
tre

ss

ADARP

Exe
rci

se

MOCAS

LA
UREATE

VERBIO

EDA PPG EDA+PPG

Figure 3: Comparative performance (F1 score) of the best-performing models per dataset across three
physiological modalities (EDA, PPG, EDA+PPG) for emotion recognition. Each line represents a
modality, showing how its top-performing model varies in effectiveness across the 19 datasets. Left:
For arousal classification. Right: For valence classification.

A.8.1 Benchmarking Results

In this section, we present the benchmarking results for valence, arousal, and four-class classification.
Table 10 presents the best-performing models and their F1 scores for four-class classification across
all datasets. We then show dataset-wise results across all 16 modeling paradigms in Figures 5, 6, 7, 8,
9, and 10 using radar plots for both arousal and valence classification across three modalities: EDA,
PPG and EDA+PPG. In Figures 11, 12, and 13, we present dataset-wise performance visualizations
to compare datasets and their relative positioning with respect to each other.
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Figure 4: Comparative performance (F1 score) of the best-performing models for four-class clas-
sification per dataset across three physiological modalities (EDA, PPG, EDA+PPG) for emotion
recognition. Each line represents a modality, showing how its top-performing model varies in effec-
tiveness across the 19 datasets.
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EDA PPG EDA+PPGDataset Best Model F1 Best Model F1 Best Model F1
WESAD RF 0.987 RF 0.794 LDA 0.987
NURSE CLSP Zero Shot 0.433 CLSP Zero Shot 0.667 CLSP Zero Shot 0.52

EMOGNITION RF 0.572 CLSP+CNN (50%) 0.601 RF 0.513
UBFC_PHYS CLSP Zero Shot 0.705 LDA 0.551 LDA 0.622

PhyMER CLSP+CNN (50%) 0.723 RF 0.3 RF 0.342
EmoWear CLSP+CNN (50%) 0.293 HC+MLP 0.27 HC+MLP 0.282

MAUS HC+MLP 0.7 RF 0.705 RF 0.728
CLAS RF 0.43 HC+MLP 0.408 RF 0.459
CASE RF 0.476 RF 0.397 RF 0.498

Unobtrusive RF 0.402 CLSP Zero Shot 0.409 HC+MLP 0.393
CEAP-360VR CLSP+MLP (25%) 0.285 RF 0.307 RF 0.314

ScientISST MOVE CLSP+MLP (25%) 0.701 CLSP+CNN (50%) 0.74 CLSP+CNN (50%) 0.8
Dapper RF 0.434 RF 0.426 RF 0.555

ForDigitStress LDA 0.682 RF 0.821 RF 0.826
ADARP CLSP Zero Shot 0.269 CLSP Zero Shot 0.433 CLSP Zero Shot 0.354
Exercise CLSP+CNN (25%) 0.552 HC+MLP 0.438 RF 0.48
MOCAS RF 0.412 RF 0.357 RF 0.366

LAUREATE CLSP+MLP (5%) 0.527 RF 0.46 RF 0.461
VERBIO CLSP Zero Shot 0.48 CLSP Zero Shot 0.582 CLSP Zero Shot 0.436

Table 10: Best-performing model and corresponding F1 score for four class classification across all
datasets and modalities (EDA, PPG, EDA+PPG). The table lists, for each dataset and modality, the
model that achieved the highest F1 score.

Arousal Valence
Statistic EDA PPG EDA+PPG EDA PPG EDA+PPG
MIN 0.33 0.30 0.36 0.30 0.33 0.34
MAX 0.94 0.93 0.97 0.89 0.88 0.98
AVG 0.68 0.65 0.67 0.66 0.67 0.64
STD 0.16 0.18 0.18 0.18 0.18 0.20

Arousal Valence
Rank EDA PPG EDA+PPG EDA PPG EDA+PPG
1 ForDigitStress ForDigitStress ForDigitStress MOCAS ForDigitStress WESAD
2 Unobtrusive Unobtrusive WESAD Dapper MOCAS Dapper
3 ADARP MAUS ScientISST MOVE ForDigitStress Dapper ForDigitStress
4 MAUS ADARP Unobtrusive WESAD WESAD MOCAS
5 VERBIO WESAD LAUREATE ScientISST MOVE ScientISST MOVE ScientISST MOVE
6 WESAD LAUREATE MAUS EmoWear EmoWear EmoWear
7 Dapper ScientISST MOVE Dapper UBFC_PHYS Exercise UBFC_PHYS
8 ScientISST MOVE VERBIO VERBIO Exercise Unobtrusive Exercise
9 CLAS Dapper CLAS PhyMER PhyMER Unobtrusive
10 EMOGNITION CLAS EmoWear Unobtrusive UBFC_PHYS PhyMER
11 MOCAS EmoWear MOCAS CLAS CEAP-360VR CLAS
12 EmoWear MOCAS ADARP CEAP-360VR CLAS MAUS
13 Exercise EMOGNITION NURSE NURSE MAUS CEAP-360VR
14 NURSE Exercise EMOGNITION MAUS EMOGNITION CASE
15 CEAP-360VR NURSE Exercise CASE CASE ADARP
16 PhyMER CEAP-360VR CEAP-360VR EMOGNITION LAUREATE EMOGNITION
17 CASE PhyMER PhyMER VERBIO ADARP NURSE
18 UBFC_PHYS UBFC_PHYS UBFC_PHYS LAUREATE VERBIO LAUREATE
19 LAUREATE CASE CASE ADARP NURSE VERBIO

Table 11: F1 score statistics (MIN, MAX, AVG, STD) and rankings of our 19 datasets according
to their performance for arousal and valence prediction using EDA, PPG, and their combination
(EDA+PPG).
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Figure 5: Benchmarking results for Arousal Classification on EDA signal Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 6: Benchmarking results for Valence Classification on EDA signal Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 7: Benchmarking results for Arousal Classification on PPG signal Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 8: Benchmarking results for Valence Classification on PPG signal Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 9: Benchmarking results for Arousal Classification on EDA+PPG Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 10: Benchmarking results for Valence Classification on EDA+PPG Data across 19 datasets for
4 modeling paradigms and 16 model variants.
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Figure 11: Benchmarking results: EDA only. This bubble plot illustrates the impact of EDA signals
on F1 performance (best model) for arousal and valence classification across 19 datasets.
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Figure 12: Benchmarking results: PPG only. This bubble plot illustrates the impact of PPG signals
on F1 performance (best model) for arousal and valence classification across 19 datasets.
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Table 12: Performance summary highlights the strengths and limitations of each dataset in supporting
effective arousal and valence classification. We have divided the table based on overall high perform-
ing dataset, and datasets with poor or contrasting performances across arousal and valence tasks.

Dataset Context and Elicitation Details Performance Summary (with Interpretation)
ForDigitStress Lab-based, semi-controlled digital

interview tasks with expert annota-
tion.

Top-performing for arousal and strong for valence,
due to ecologically valid stressors and high-quality
expert labels that align well with physiological
responses.

WESAD Lab setting with diverse elicitation
(videos, stress tasks, meditation).

High performance for both stimulus labeled
arousal and valence, particularly with EDA+PPG,
attributed to the well-designed and emotionally
rich elicitation protocol.

MOCAS CCTV-based monitoring task with
SAM self-reports.

Strong valence classification as participants found
it easier to self-report valence; arousal performance
was weaker due to less intense stimuli.

ScientISST MOVE Physical tasks (e.g., handshake,
jumping) with self-report.

Best arousal classification with EDA+PPG due to
physical exertion eliciting strong signals; valence
performance also high despite motion artifacts.

Unobtrusive Office-like cognitive tasks in lab and
real-life with Likert-scale labels.

High performance in arousal classification, driven
by realistic work scenarios; valence classification
was moderate due to complexity of labeling subtle
emotions.

Dapper Real-life setting with ESM and cus-
tom wearable devices.

Strong valence classification, as ESM allowed
timely and accurate self-reporting of naturally oc-
curring emotions.

MAUS N-Back cognitive task targeting
mental workload.

Strong arousal classification, as task reliably in-
duced measurable physiological changes linked to
cognitive load.

NURSE Real-world data from nurses, with
reports focused on stressful events.

Poor performance for both arousal and valence,
largely due to class imbalance and lack of positive
emotion coverage.

Emowear Lab-based audiovisual stimuli with
self-report.

Weak overall performance; elicitation was too mild
and may have led to participant bias due to artificial
lab setting.

UBFC_PHYS Constrained speech and arithmetic
tasks with stimulus labels.

Slightly better performance for valence, but overall
limited by labeling that may not reflect true emo-
tional states.

VERBIO Public speaking in VR and real-
world environments.

Arousal classification slightly better, as anxiety-
inducing tasks aligned with arousal; valence per-
formance limited by mild emotional variability.

EMOGNITION Short film clips in lab setting with
self-report.

Weak performance overall; limited emotional
range in stimuli and potential response bias due
to lab-based setting.

CEAP-360VR VR video clips with self-report. Valence classification marginally better, though
weak stimuli and VR setting may not have trig-
gered strong emotional variation.

Exercise Lab-based cognitive and physical
stress tasks with stimulus labels.

Valence better captured much than arousal, possi-
bly due to mixed-task setup diluting arousal sig-
nals.

PhyMER Lab-based video clips with self-
reports.

Slightly better valence classification, though per-
formance overall limited by lack of emotionally
intense stimuli.

CLAS Lab-based logic, math, video tasks
with self-reports.

Near-random performance due to weak elicitation
tasks and low-quality labels that failed to capture
real emotion.

CASE Lab-based video stimuli with
joystick-based self-reporting.

Poor performance across both tasks; continuous
labeling may have distracted participants and re-
duced emotional immersion.

LAUREATE Real-life classroom setting with self-
reports on engagement and atten-
tion.

Strong arousal classification with PPG and
EDA+PPG, reflecting real-world physiological pat-
terns; poor valence performance due to abstract
labeling not directly tied to emotion.

ADARP Real-life setting with AUD partici-
pants; self-report labels.

Strong arousal performance for EDA and PPG sep-
arately; combined signal underperformed. Valence
results were poor due to label imbalance (stress-
heavy dataset).
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Figure 13: Benchmarking results: EDA + PPG combined. This bubble plot illustrates the impact
of combining EDA and PPG signals on F1 performance (best model) for arousal and valence
classification across 19 datasets.

A.8.2 Cross-Data Analysis Results

In this section, we present our results for cross-dataset analysis as detailed in Tables 15, 16 for device
dimension, Tables 13, 14 for setting dimension, and Tables 17, 18 for labeling dimension. We further
visualized the impact of these dimensions on the EDA and PPG features using UMAP as shown
in figures 14, 15, 16. Moreover, the summarized results for gender-wise transferability is added in
Tables 19 and 20 and age-wise transferability is added in Tables 21 and 22.

Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Lab Real CLSP CNN 5% 0.72 CLSP MLP 5% 0.57 CLSP MLP 5% 0.71
Lab Constraint CLSP MLP 50% 0.56 RF 0.61 RF 0.60
Lab Lab RF 0.50 RF 0.50 RF 0.52
Lab CLSP ZeroShot - 0.58 - 0.15 - 0.29
Constraint Real RF 0.68 RF 0.51 CLSP MLP 5% 0.64
Constraint Lab HC+MLP 0.44 LDA 0.67 LDA 0.64
Constraint Constraint HC+MLP 0.48 RF 0.48 RF 0.48
Constraint CLSP ZeroShot - 0.74 - 0.27 - 0.40
Real Constraint CLSP MLP 5% 0.65 RF 0.59 CLSP MLP 5% 0.73
Real Lab HC+MLP 0.59 LDA 0.69 CLSP MLP 25% 0.72
Real Real HC+MLP 0.49 RF 0.48 RF 0.46
Real CLSP ZeroShot - 0.65 - 0.31 - 0.52

Table 13: For each data-collection setting category (Lab, Constraint, and Real) and modality (EDA,
PPG, and EDA+PPG), the table identifies the top-performing model and its F1 score for arousal
classification.
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Figure 14: UMPA Visualization of EDA and PPG Features color coded by Labeling Techniques
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Figure 15: UMPA Visualization of EDA and PPG Features color coded by Device Type. Note: e4
here is wearable cohort, since all wristworn wearable devices were empatice e4.
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Figure 16: UMPA Visualization of EDA and PPG Features color coded by Experiment Collection
Setting
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Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Lab Real CLSP MLP 5% 0.79 RF 0.69 CLSP MLP 25% 0.79
Lab Constraint CLSP MLP 25% 0.66 CLSP CNN 5% 0.67 CLSP MLP 25% 0.68
Lab Lab RF 0.54 HC+MLP 0.50 HC+MLP 0.51
Lab CLSP ZeroShot - 0.67 - 0.28 - 0.36
Constraint Real RF 0.76 RF 0.78 RF 0.77
Constraint Lab RF 0.76 RF 0.72 RF 0.74
Constraint Constraint RF 0.63 RF 0.64 RF 0.65
Constraint CLSP ZeroShot - 0.79 - 0.55 - 0.52
Real Constraint RF 0.76 RF 0.70 RF 0.88
Real Lab RF 0.72 CLSP MLP 25% 0.64 RF 0.76
Real Real HC+MLP 0.41 HC+MLP 0.41 HC+MLP 0.42
Real CLSP ZeroShot - 0.77 - 0.50 - 0.49

Table 14: For each data-collection setting category (Lab, Constraint, and Real) and modality (EDA,
PPG, and EDA+PPG), the table identifies the top-performing model and its F1 score for valence
classification.

Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Custom Wearable Wearable LDA 0.69 LDA 0.69 CLSP MLP 50% 0.73
Custom Wearable Lab Based Device RF 0.72 HC+MLP 0.65 CLSP CNN 25% 0.78
Custom Wearable Custom Wearable HC+MLP 0.57 HC+MLP 0.40 HC+MLP 0.50
Custom Wearable CLSP ZeroShot - 0.72 - 0.44 - 0.58
Lab Based Device Wearable LDA 0.58 HC+MLP 0.45 CLSP CNN 50% 0.50
Lab Based Device Custom Wearable CLSP CNN 5% 0.67 RF 0.62 CLSP CNN 5% 0.65
Lab Based Device Lab Based Device RF 0.54 RF 0.54 RF 0.56
Lab Based Device CLSP ZeroShot - 0.63 - 0.35 - 0.50
Wearable Custom Wearable CLSP MLP 5% 0.65 CLSP CNN 5% 0.60 CLSP CNN 25% 0.66
Wearable Lab Based Device CLSP MLP 25% 0.68 HC+MLP 0.60 CLSP CNN 25% 0.59
Wearable Wearable HC+MLP 0.49 HC+MLP 0.48 HC+MLP 0.52
Wearable CLSP ZeroShot - 0.59 - 0.43 - 0.52

Table 15: For each device category (Wearables, Custom Wearable, and Lab-Based Device) and
modality (EDA, PPG, and EDA+PPG), the table identifies the top-performing model and its F1 score
for arousal classification. Here wearable is Empatica E4.
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Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Custom Wearable Wearable CLSP MLP 50% 0.82 CLSP CNN 5% 0.72 CLSP MLP 5% 0.78
Custom Wearable Lab Based Device LDA 0.67 CLSP MLP 50% 0.67 LDA 0.81
Custom Wearable Custom Wearable RF 0.52 HC+MLP 0.50 RF 0.47
Custom Wearable CLSP ZeroShot - 0.83 - 0.60 - 0.54
Lab Based Device Wearable CLSP CNN 50% 0.62 CLSP MLP 25% 0.61 CLSP CNN 5% 0.62
Lab Based Device Custom Wearable CLSP CNN 50% 0.64 CLSP CNN 50% 0.63 CLSP CNN 5% 0.63
Lab Based Device Lab Based Device RF 0.53 RF 0.51 RF 0.52
Lab Based Device CLSP ZeroShot - 0.60 - 0.59 - 0.45
Wearable Lab Based Device CLSP CNN 50% 0.72 CLSP CNN 50% 0.73 CLSP CNN 50% 0.73
Wearable Custom Wearable CLSP CNN 25% 0.51 CLSP MLP 5% 0.58 LDA 0.53
Wearable Wearable HC+MLP 0.50 HC+MLP 0.55 HC+MLP 0.54
Wearable CLSP ZeroShot - 0.70 - 0.62 - 0.53

Table 16: For each device category (Wearables, Custom Wearable, and Lab-Based Device) and
modality (EDA, PPG, and EDA+PPG), the table identifies the top-performing model and its F1 score
for valence classification.

Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Stimulus-Label Expert-Annotated CLSP MLP 5% 0.64 RF 0.72 CLSP MLP 50% 0.65
Stimulus-Label Self-report RF 0.62 CLSP CNN 5% 0.44 CLSP CNN 5% 0.57
Stimulus-Label Stimulus-Label RF 0.54 RF 0.51 HC+MLP 0.55
Stimulus-Label CLSP ZeroShot - 0.60 - 0.37 - 0.50
Self-report Expert-Annotated CLSP MLP 5% 0.65 CLSP CNN 50% 0.64 CLSP MLP 5% 0.69
Self-report Stimulus-Label HC+MLP 0.57 CLSP CNN 50% 0.51 RF 0.63
Self-report Self-report HC+MLP 0.53 HC+MLP 0.52 HC+MLP 0.52
Self-report CLSP ZeroShot - 0.60 - 0.43 - 0.54
Expert-Annotated Self-report RF 0.87 LDA 0.69 RF 0.84
Expert-Annotated Stimulus-Label CLSP CNN 50% 0.79 CLSP MLP 50% 0.70 RF 0.82
Expert-Annotated Expert-Annotated RF 0.52 RF 0.28 HC+MLP 0.48
Expert-Annotated CLSP ZeroShot - 0.91 - 0.39 - 0.68

Table 17: For each labeling method category (Stimulus-Labels, Self-report, and Expert-Annotated)
and modality (EDA, PPG, and EDA+PPG), the table identifies the top-performing model and its F1
score for arousal classification.
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Testing Cohort Training Cohort EDA PPG EDA+PPG

Best Model F1 Best Model F1 Best Model F1
Stimulus-Label Expert-Annotated CLSP MLP 5% 0.65 CLSP CNN 50% 0.65 CLSP CNN 25% 0.65
Stimulus-Label Self-report CLSP CNN 25% 0.63 CLSP CNN 5% 0.61 CLSP CNN 5% 0.61
Stimulus-Label Stimulus-Label RF 0.61 RF 0.53 RF 0.52
Stimulus-Label CLSP ZeroShot - 0.63 - 0.59 - 0.48
Self-report Expert-Annotated CLSP MLP 50% 0.69 RF 0.72 CLSP CNN 50% 0.76
Self-report Stimulus-Label LDA 0.57 CLSP MLP 5% 0.59 LDA 0.56
Self-report Self-report RF 0.53 HC+MLP 0.48 HC+MLP 0.52
Self-report CLSP ZeroShot - 0.70 - 0.62 - 0.53
Expert-Annotated Self-report CLSP CNN 25% 0.83 CLSP CNN 50% 0.85 CLSP CNN 5% 0.87
Expert-Annotated Stimulus-Label LDA 0.87 RF 0.85 CLSP CNN 50% 0.74
Expert-Annotated Expert-Annotated HC+MLP 0.56 RF 0.42 HC+MLP 0.49
Expert-Annotated CLSP ZeroShot - 0.83 - 0.60 - 0.43

Table 18: For each labeling method category (Stimulus-Labels, Self-report, and Expert-Annotated)
and modality (EDA, PPG, and EDA+PPG), the table identifies the top-performing model and its F1
score for valence classification.

Testing Cohort Training Cohort EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

Male Female HC+MLP 0.56 LDA 0.51 LDA 0.54
Male Male RF 0.56 HC+MLP 0.51 RF 0.56
Male CLSP ZeroShot - 0.56 - 0.16 - 0.24
Female Male LDA 0.50 LDA 0.51 LDA 0.53
Female Female RF 0.52 HC+MLP 0.55 HC+MLP 0.56
Female CLSP ZeroShot - 0.54 - 0.15 - 0.25

Table 19: Best-performing models for arousal classification across gender groups and modalities.
For each dataset, gender group (Male, Female), and modality combination (EDA, PPG, EDA+PPG),
we report the model achieving the highest F1 score.

Testing Cohort Training Cohort EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

Male Female CLSP MLP 25% 0.69 RF 0.71 CLSP CNN 50% 0.70
Male Male HC+MLP 0.53 HC+MLP 0.52 RF 0.47
Male CLSP ZeroShot - 0.69 - 0.35 - 0.42
Female Male CLSP MLP 50% 0.71 CLSP CNN 50% 0.70 CLSP MLP 25% 0.70
Female Female HC+MLP 0.55 RF 0.49 HC+MLP 0.54
Female CLSP ZeroShot - 0.69 - 0.34 - 0.42

Table 20: Best-performing models for valence classification across gender groups and modalities.
For each dataset, gender group (Male, Female), and modality combination (EDA, PPG, EDA+PPG),
we report the model achieving the highest F1 score.
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Testing Cohort Training Cohort EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

Old Young LDA 0.51 HC+MLP 0.56 HC+MLP 0.56
Old Old RF 0.55 RF 0.55 RF 0.53
Old CLSP ZeroShot - 0.56 - 0.7 - 0.19
Young Old LDA 0.5 LDA 0.43 CLSP MLP 50% 0.47
Young Young HC+MLP 0.55 RF 0.53 HC+MLP 0.58
Young CLSP ZeroShot - 0.56 - 0.72 - 0.28

Table 21: Best-performing models for arousal classification across age groups and modalities. For
each dataset, age group (Young: 18–25 years, Old: 25+ years), and modality combination (EDA,
PPG, EDA+PPG), we report the model achieving the highest F1 score.

Testing Cohort Training Cohort EDA PPG EDA+PPG
Best Model F1 Best Model F1 Best Model F1

Old Young CLSP MLP 50% 0.73 CLSP CNN 50% 0.72 RF 0.73
Old Old RF 0.53 RF 0.57 RF 0.53
Old CLSP ZeroShot - 0.14 - 0.37 - 0.47
Young Old CLSP MLP 5% 0.72 RF 0.67 RF 0.69
Young Young RF 0.54 RF 0.51 RF 0.48
Young CLSP ZeroShot - 0.16 - 0.31 - 0.35

Table 22: Best-performing models for valence classification across age groups and modalities. For
each dataset, age group (Young: 18–25 years, Old: 25+ years), and modality combination (EDA,
PPG, EDA+PPG), we report the model achieving the highest F1 score.
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