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Abstract

The predominant method for computing confidence intervals (CI) in few-shot learning (FSL)
is based on sampling the tasks with replacement, i.e. allowing the same samples to appear in
multiple tasks. This makes the CI misleading in that it takes into account the randomness
of the sampler but not the data itself. To quantify the extent of this problem, we conduct
a comparative analysis between CIs computed with and without replacement. These re-
veal a notable underestimation by the predominant method. This observation calls for a
reevaluation of how we interpret confidence intervals and the resulting conclusions in FSL
comparative studies. Our research demonstrates that the use of paired tests can partially
address this issue. Additionally, we explore methods to further reduce the (size of the) CI by
strategically sampling tasks of a specific size. We also introduce a new optimized benchmark,
which can be accessed at https://github.com/RafLaf/FSL-benchmark-again.

1 Introduction

The recent surge of interest in few-shot learning (FSL), driven by its potential applications in many real-
world scenarios, has led to a proliferation of new methods and novel experimental protocols (Sung et al.,
2018; Snell et al., 2017; Bendou et al., 2022; Zhang et al., 2020). If in conventional machine learning it is
common to benchmark methods using a fixed split into training and validation sets, FSL presents unique
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challenges due to its reliance on extremely small and, consequently, biased training datasets. In fact, the
performance of FSL can dramatically depend on the choice of the given labeled training samples (Arnold
et al., 2021).

One question that FSL shares with conventional machine learning is that of the best performing methods.
Especially relevant to FSL, the high variance of measured performance based on the choice of labeled data has
led practitioners to quickly adopt the standard of aggregating statistics over a large number of artificially
generated tasks, stemming from a single (or a few distinct) dataset(s). The predominant approach is to
generate artificial few-shot tasks by randomly sampling the same dataset with replacement, i.e. permitting
the same samples to appear across multiple tasks. The outcome of these numerous tasks is the calculation of
an average accuracy and its associated confidence interval (CI) for each method, thereby providing researchers
with a statistically relevant basis for comparing the efficacy of different methods.

By allowing the same samples to appear in multiple tasks, the computed CIs account for the randomness
of the sampler but not the data itself. In fact, the computed CIs use the usual Lindeberg-Lévy Central
Limit Theorem (CLT). Hence, for these CIs to be statistically valid, the underlying random variables must
be independent and identically distributed (IID). This means that the currently reported CIs should be
understood as a likely range of outcomes if the experiment were reproduced using exactly the same data,
which we will refer to in the remainder of this paper as Closed CIs (CCIs). This contrasts with what is
often of interest in many areas of machine learning: the range of outcomes if the experiment were repeated
with data from the same underlying distribution, termed Open CIs (OCIs). Note that the latter could
be obtained simply by sampling tasks without replacement, but at the cost of considerably restricting the
number of different tasks one can generate for a given dataset. This limitation is even more severe if the
dataset is small, resulting in potentially larger CIs and inconclusive comparisons between methods.

CLIP DINO
NCC FT NCC FT

CLIP NCC 0 0 0 0 + + − 0 +
FT − 0 0 0 + + 0 0 +

DINO NCC + 0 0 + 0 + 0 0 −
FT + 0 0 + 0 0 0 0 0

Table 1: Comparison between different methods for few-
shot classification. Each entry consists of three elements:
[With Replacement (Closed), Without Replacement
(Open), Paired Tests (PT)]. Symbols + and − respec-
tively indicate significant differences (positive and negative)
between the row method and the column method while 0
is non-conclusive. Results derive from the DTD test split
(bottom left triangle) and Traffic Signs (top-right) split of
MetaDataset, with task sampling at 5 shots, 5 ways, and
15 queries. Note the inversion in bold. NCC (Nearest
Class Centroid), FT (Fine-tune) with CLIP and DINO as
feature extractors.

The purpose of this paper is to highlight
this crucial consideration when computing CIs.
We propose strategies to address this issue
and obtain meaningful comparisons while still
accounting for the randomness of the data.
These strategies rely on a) Paired Tests
(PT), where methods are evaluated on the
same set of generated tasks, and b) adequately
sizing tasks. Throughout the paper, we focus
on the specific case of few-shot classification in
vision, the most popular area of research in the
field of FSL.

Our investigation using Open Confidence In-
tervals (OCIs) can lead to conclusions that are
inconsistent with those obtained using the clas-
sical approach in the field of few-shot learn-
ing. In particular, we find that some meth-
ods previously reported as statistically signifi-
cantly outperforming others are actually indis-
tinguishable when using OCIs, and vice versa.
In addition, we show cases where the use of
CCIs lead to (statistically significant) conclu-
sions that are diametrically opposed to those
obtained using PT. One such example is given
in Table 1, where we compare different methods for few-shot classification depending on their used feature
extractor (here CLIP (Radford et al., 2021) or DINO (Caron et al., 2021)) and their adapting methods (here
Logistic Regression (LR), Nearest Class Centroid (NCC) or Fine-Tuning (FT)). In the table, we report three
conclusions for each pair of model and method combinations: the first is obtained from the methodology
described in Luo et al. (2023) where the authors used the predominant way to compute CIs, that is CCIs;
the second OCIs, and the third is based on PT. A conclusion that the row method is better than the column
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one is denoted with +, 0 means there is no conclusive statement, and − that the column method is the most
performing of the two. The upper triangular values in blue correspond to the Traffic Sign test split while
the rest of the table (in red) refers to the DTD test split in the Metadataset benchmark by Triantafillou
et al. (2019). Particularly striking results are found on the Traffic Signs dataset. Indeed, when studied with
replacement tests, CLIP with the NCC adapter underperforms DINO with Fine-tuning, yet this outcome
is reversed in paired test assessments. This clearly demonstrates the importance of distinguishing between
measurement methods, as failing to do so can lead to significant misinterpretations of results.

The main contributions of this work are:

– We highlight the importance of considering data replacement when computing CIs for FSL methods
comparison. Our study illustrates the impact on CI ranges when transitioning from closed to open
CIs on standard off-the-shelf vision datasets.

– By implementing paired evaluations, wherein multiple methods are compared on identically gener-
ated task sets, we demonstrate the ability to reach conclusive comparisons more frequently than
when relying on simple performances with OCIs.

– We investigate how to optimize task generation from a given dataset, taking into account its size and
number of classes, to reach small ranges of CIs and lead to more conclusive comparisons between
methods. The result is a benchmark that can be used for few-shot classification of images.

2 Closed CIs vs. Open CIs

In this section, we are interested in better quantifying the difference between CCIs and OCIs. For this
purpose, we define notations and outline algorithms for task sampling. We present a theoretical analysis of
the differences between CCIs and OCIs. Finally, we empirically compare their ranges on real datasets.

2.1 A mathematical description of the problem

2.1.1 Standard Evaluation and Notations

The predominant method of evaluation in the field of few-shot classification is described in Algorithm 1. A
few-shot classification task T = (K,S,Q) comprises a set of classes K, a support set S = {Sc}c∈K and a
query set Q = {Qc}c∈K where Sc,Qc denote the sets of support and query examples for each class c ∈ K.
Let K = |K| denote the number of ways (i.e. classes in a few-shot task), S = |Sc| the number of shots per
class, and Q = |Qc| the number of queries per class (for simplicity, we assume the classes to be balanced).
Few-shot evaluation is typically performed by constructing many tasks from a larger evaluation dataset. An
evaluation dataset D = (C,X ) comprises a set of classes C and examples for all classes X = {Xc}c∈C . Let
C = |C| ≥ K denote the number of classes, and N = |Xc| ≫ S + Q the number of examples per class.
As highlighted in the introduction, the rationale followed by the CI computation predominant method is to
consider D to be fixed and non-probabilistic.
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Algorithm 1 Predominant evaluation algorithm

1: procedure Evaluate(T, K, S, Q, C, {Xc}c∈C) ▷ T tasks, K ways, S shots, Q queries, set of
classes C, set of data samples {Xc}c∈C

2: for t = 1, . . . , T do
3: K ← take(K, shuffle(C))
4: for c ∈ K do
5: Sc,Qc ← split(S, take(S + Q, shuffle(Xc)))
6: end for
7: fS ← FewShotLearn(S) ▷ S := {Sc}c∈K
8: Āt ← 1

KQ

∑
c∈K

∑
x∈Qc

1[fS(x) = c]
9: end for

10: Ā←Mean(A) ▷ Mean(A) := 1
T

∑T
t=1 At

11: σA ←
√

Var(A) ▷ Var(A) := 1
T −1

∑T
t=1(At − Ā)2

12: σĀ ← σA/
√

T
13: return Ā± 1.96σĀ ▷ 1.96σĀ = r(plimit = 95%)σĀ

14: end procedure

The standard few-shot task sampler constructs T random tasks with K ways, S shots and Q queries from a
dataset D as outlined in Algorithm 1. This procedure introduces additional random variables (besides the
dataset itself) in the selection of classes and examples. Let Tt = (Kt,St,Qt) for t = 1, . . . , T denote the
sampling of tasks. The average accuracy on each task is obtained as:

At = 1
KQ

∑
c∈Kt

∑
x∈Qtc

1[fSt
(x) = c], (1)

where f is the evaluated model, conditioned by the support set.

Next, we turn to the actually reported metric which is the average accuracy over several tasks.

2.1.2 Computing Confidence Intervals

We compute the accuracy At of the method on each task, and then take the mean across tasks Ā =
1
T (A1 + · · ·+ AT ). As such, we obtain the following formula for the variance:

Var[Ā] = Var[A1] + · · ·+ Var[AT ]
T 2 = Var[A]

T
. (2)

Assuming a sufficient sample size and that the mean Ā is normally distributed according to the Central
Limit Theorem, the 95% confidence interval is obtained as Ā± 1.96σĀ using the formula for standard error
(standard deviation of the sample mean):

CI = 1.96σĀ = 1.96 σA√
T

. (3)

Note that in the case of a very small number of tasks, Student’s distributions can be used instead. Also, we
took the example of 95% CIs, which is arbitrary but very common in the literature. For more generality, we
consider a probability plimit in the following for all theoretical considerations, and stick with the 95% value
for experiments.

Note that, as the number of tasks becomes larger, it is inevitable that many tasks will re-use examples, since
tasks are constructed independently with replacement. Therefore, as T becomes large, the variance of the
sample mean will approach the conditional variance Var[Ā | D], and the confidence interval will represent
the likely range of outcomes if we were to repeat the experiment with a random set of tasks on the same
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dataset. In other words, it provides no insight into how well a method would generalize on a distribution.
On the other hand, if T is chosen small enough, there will be minimal re-use of examples and the assumption
of independence may approximately hold, although the confidence interval may be significantly larger.

We will now conduct an empirical evaluation of the disparity between closed (tasks sampled with replacement)
and open (tasks sampled without replacement) CIs on real datasets.

2.2 Are OCIs larger than CCIs? An empirical study

In contrast to Algorithm 1, the task sampling without replacement is presented in Algorithm 2 (see Ap-
pendix). Note that we make an explicit use of a Student’s law estimator in this algorithm as it is expected
that for some small datasets it can only generate but a few independent tasks. In the latter, the total number
of tasks T is determined directly by the sampling process, thanks to a specific stopping condition, based on
the exhaustion of the dataset. This is done in an effort to minimize the obtained CIs’ ranges. Since samples
cannot be sampled twice, we can consider that the classes and examples are drawn IID from an underlying
data distributions p(C) and p(X | C). This is why OCIs also account for the randomness of the data.

In our experiments, we utilize datasets from the Metadataset Benchmark as referenced in Triantafillou et al.
(2019). This benchmark comprises 10 datasets, out of which we employ 9, excluding Imagenet, to focus
on cross-domain results in line with the recent trend in the literature (Zhou et al., 2022b). These include
Omniglot (handwritten characters), Aircraft, CUB (birds), DTD (textures), Fungi, VGG Flowers, Traffic
Signs, Quickdraw (crowd-sourced drawings) and MSCOCO (common objects) (Lake et al., 2015; Maji et al.,
2013; Wah et al., 2011; Cimpoi et al., 2014; Schroeder & Cui, 2018; Nilsback & Zisserman, 2008; Houben
et al., 2013; Jongejan et al., 2016; Lin et al., 2014).

Luo et al. (2023) details few-shot accuracies for 2000 tasks with 5-shots, 5 ways, and 15 queries in a com-
prehensive table covering various works on the Metadataset datasets. Our study’s only difference lies in the
adoption of the T = 600 setting, a more prevalent choice in existing literature. If CCIs are found to be
narrower than OCIs with this smaller T , it will be even starker with T = 2000 tasks as shown in Equation 3.
Our primary reference for methods and models is the comprehensive compilation provided by Luo et al.
(2023), a foundational starting point for our experiments.

Our findings are detailed in Table 2, showcasing results across different few-shot methods and datasets.
Firstly, there is a noticeable homogeneity in CCIs, arising from the fixed number of tasks set at T = 600,
which contrasts with the variability observed in OCIs. Interestingly, CCIs are substantialy narrower than
OCIs for small datasets such as Aircraft and DTD. Conversely, in the case of larger datasets like Quickdraw,
CCIs become larger than OCIs due to T = 600 being insufficient to deplete the dataset. Indeed, Aircraft
and DTD’s test splits contain 1,500 and 840 samples respectively, whereas the test splits for MSCOCO and
Quickdraw have much larger sizes of 152,000 and 7.7 million samples respectively. Across various datasets,
models and methods, CCIs are on average 3.8 times larger than OCIs. These results highlight the imperative
need for accurate interpretation of Confidence Intervals, given the dramatic differences between OCIs and
CCIs ranges, that undoubtedly lead to disagreeing conclusions if misinterpreted.

We also notice that for cases where methods reach accuracies near 100%, like adaptation methods using
CLIP (unlike those using DINO) on the CUB dataset, both types of CIs become narrower. This is due to
accuracy saturation at 100%, which reduces the standard deviation of accuracies.

In the following, we delve into the conclusiveness of comparative studies using CCIs or OCIs.

2.3 Impact on Conclusiveness

First let us recall how confidence intervals are used to draw conclusions when comparing methods. Suppose we
have two variables of interest x1 and x2, with their corresponding plimit - confidence intervals (a generalized
version of 95%-CIs) [x̄1− δ1, x̄1 + δ1] and [x̄2− δ2, x̄2 + δ2]. To draw conclusions about the fact x1 is smaller
than x2, we proceed as follows: if the two intervals do not intersect, and x1 + δ1 < x̄2 − δ2, then:
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Model CLIP DINO
Sampling W. Repl. W/O. Repl. W. Repl. W/O. Repl.

Dataset Name Dataset Size Method

DTD 840 LR 79.59 ± 0.52 84.00 ± 4.50 83.29 ± 0.51 86.10 ± 4.66
FT 76.87 ± 0.56 80.76 ± 5.60 81.82 ± 0.51 84.19 ± 5.76

VGG Flower 1,425 LR 98.30 ± 0.23 99.39 ± 0.84 97.48 ± 0.26 97.58 ± 2.07
FT 98.33 ± 0.23 99.27 ± 0.93 97.13 ± 0.29 97.45 ± 1.98

Aircraft 1,500 LR 75.79 ± 0.85 69.90 ± 5.59 59.04 ± 0.93 53.62 ± 5.66
FT 74.70 ± 0.85 68.95 ± 5.82 54.58 ± 0.94 49.81 ± 5.17

CUB 1,770 LR 96.85 ± 0.28 97.24 ± 1.88 92.06 ± 0.43 89.69 ± 4.03
FT 96.68 ± 0.29 97.07 ± 1.83 89.16 ± 0.52 87.47 ± 4.64

Omniglot 13,180 LR 90.55 ± 0.49 91.04 ± 0.89 93.67 ± 0.38 94.12 ± 0.79
FT 92.06 ± 0.48 92.83 ± 0.91 94.70 ± 0.36 95.09 ± 0.70

Fungi 13,463 LR 70.86 ± 0.88 74.78 ± 1.89 77.26 ± 0.75 81.64 ± 1.41
FT 68.03 ± 0.95 71.87 ± 1.96 74.02 ± 0.83 78.88 ± 1.68

Traffic Signs 39,252 LR 82.99 ± 0.87 77.02 ± 0.92 83.63 ± 0.92 75.58 ± 1.17
FT 83.64 ± 0.85 76.69 ± 0.96 84.20 ± 0.92 74.93 ± 1.23

MSCOCO 151,545 LR 72.27 ± 0.78 67.97 ± 0.63 76.05 ± 0.72 72.02 ± 0.60
FT 70.22 ± 0.79 65.97 ± 0.64 75.18 ± 0.75 71.19 ± 0.61

Quickdraw 7,710,295 LR 75.79 ± 0.66 75.54 ± 0.36 74.54 ± 0.68 74.07 ± 0.38
FT 76.18 ± 0.69 75.93 ± 0.38 74.10 ± 0.70 73.61 ± 0.39

Table 2: Accuracies and associated CIs of methods on different datasets with and without replacement in
the sampling of tasks. The dataset size correspond to the number of images in each test split. FT and LR
respectively stand for Fine-tune and Logistic Regression.

P (x1 < x2) > P (x1 < x̄1 + δ1 ∧ x2 > x̄2 − δ2) =
(

1− 1− plimit

2

)2
> plimit , (4)

where the (1− plimit)/2 part comes from the symmetry of the Gaussian distribution.

With this in mind, the results listed in Table 2 can lead to different conclusions depending on whether CCIs
or OCIs are used. For example, using the DTD dataset, CCIs lead to conclusive comparisons between both
backbones and methods, whereas OCIs are inconclusive as they all intersect. Again, this should not be seen
as a contradiction, but rather as having different paradigms about the comparisons. CCIs compare methods
if they were reused on the same data, whereas OCIs focus on the underlying distribution. Next, we propose
two methods to improve conclusiveness when comparing methods, namely paired tests in Section 3 and task
sizing in Section 4.

3 Paired tests

3.1 Definitions

As an effort to reduce the ranges of Open Confidence Intervals (OCIs), we propose to make use of paired
tests. Indeed, as we pointed out in the introduction, FSL tasks have a vast diversity in difficulty, lead-
ing to a high variance in accuracy across tasks. It is noteworthy that a task deemed hard for method
A often aligns in difficulty for method B. This parallel in task difficulty across different methods was
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previously identified by Arnold et al. (2021), and our findings are in agreement, as illustrated in Fig-
ure 1, where we plot the accuracies on tasks generated from the Traffic Sign dataset and using two
different combinations of feature extractors and adaptation method. In the provided figure, a strong
correlation, quantified at 0.675, is evident between two distinct methods. This highlights the poten-
tial for reducing the variance in accuracies resulting from task sampling by employing paired testing.
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Correlation Coefficient: 0.675

Figure 1: Scatter plot of task accuracies using two
different combinations of feature extractor/adaptation
methods on the Traffic Signs benchmark.

Formally, let us denote ∆t = At−Bt the accuracy of
the method on task t relative to a method with ac-
curacy Bt, with ∆̄ = 1

T

∑T
t=1 ∆t the mean difference

across tasks. While the mean of differences is sim-
ply the difference of the means, E[∆̄] = E[Ā]−E[B̄],
the variance of the difference may be significantly re-
duced when the accuracies are positively correlated:

Var[∆̄] = Var
[

1
T

T∑
t=1

∆t

]
= 1

T
Var [At −Bt] (5)

since Var[X − Y ] = Var[X] + Var[Y ]− 2 Cov(X, Y ).

The lower variance of ∆t compared to At results in
a correspondingly smaller confidence interval, as de-
tailed in Equation 3. Consequently, this leads to sce-
narios where two methods can exhibit significant dif-
ferences when analyzed using paired testing despite
there being no significant differences when directly
comparing accuracies. We performed experiments
comparing various methods to fine-tuning (FT). Re-
sults are shown in Table 3, where each line corre-
sponds to a specific dataset and feature extractor and each column to a combination of an adaptation
method and a feature extractor. Two conclusions are depicted, the first being based on directly comparing
accuracies, and the second using paired tests instead. Note that in all cases, we rely on OCIs, that is to
say sampling without replacements. Let us also notice that paired tests never lead to contradictory con-
clusions with direct comparisons of accuracies, a direct consequence of previous remarks about the mean of
differences. Their difference lies in the ability to conclude or not.

The fine-tuning adaptation method is selected as the baseline in Table 3, primarily due to its substantial
computational cost. The cost of fine-tuning stems from the necessity to update the weights of the entire
feature extractor for each considered task. The objective is to determine if it surpasses more cost-effective
methods in performance. In comparative analyses excluding the comparison between CLIP and DINO and
focusing only on the same feature extractor, it is frequently noted that fine-tuning either underperforms
relative to other methods or the results are inconclusive. Indeed, fine-tuning significantly outperforms other
methods in only 4 out of 36 cases, while underperforming in 14 cases. The outcomes in the remaining instances
remain inconclusive. Consequently, we conclude that fine-tuning, in light of its considerable computational
overhead, is not particularly advantageous to consider. These results should be nuanced by the dependency
of fine-tuning on hyperparameters which makes any assertions about this method contingent upon a specific
set of hyperparameters (Kumar et al., 2022).

For each of the nine considered datasets, we have a total of 135 unique comparisons, taking into account only
distinct pairs of (model, methods) across two models and three methods. We found that 57 comparisons
were conclusive using direct comparison with OCI while 94 were conclusive using paired tests. Figure 6 in
the Appendix illustrates this.

Table 1 illustrates, on the DTD and Traffic signs dataset, that the three different approaches for computing
CIs discussed so far result in varied assessments of the significance of differences between two methods. On
all datasets, in 27 instances out of the 114 where the comparison with replacement was conclusive, that is
∼ 23% of such cases, a pattern emerges: a comparison initially classified as significantly different becomes
non-conclusive under sampling without replacement, and then conclusive again when a paired test is applied.
On 12 instances, ∼ 11% of previously considered cases, conclusiveness is not confirmed by the paired test.
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Model CLIP DINO
Method LR NCC FT LR NCC FT

Model Dataset

CLIP

Aircraft 00 00 ++ ++ ++
CUB 00 00 ++ ++ ++
DTD 0− 00 0− 0− 00
Fungi 0− 0− −− −− −−

MSCOCO −− 0− −− −− −−
Omniglot 0+ 00 0− −− −−

Quickdraw 0+ 00 ++ ++ ++
Traffic Signs 00 00 0+ ++ 0+
VGG Flower 00 00 0+ 0+ 0+

DINO

Aircraft −− −− −− 0− 00
CUB −− −− −− 0− 00
DTD 00 00 00 00 00
Fungi ++ ++ ++ 0− 0−

MSCOCO ++ ++ ++ 0− 0−
Omniglot ++ ++ ++ 0+ 00

Quickdraw −− −− −− 0− 0−
Traffic Signs 0− 0− 0− 0− 0+
VGG Flower 0− 0− 0− 00 00

Table 3: Impact of Paired Testing on Significance Relative to Simple Comparison. In this analysis, we
compare the Finetune (FT) method against all other methods across both CLIP and DINO models. The
initial character in each pair denotes the significance outcome determined without replacement, while the
subsequent character reflects the result derived with paired testing. Here, 0 represents a non-significant
difference, + indicates a significantly higher accuracy of the FT method, and − conveys a significantly lower
accuracy. The FT columns comparing CLIP and DINO are opposites of each other.

Particularly striking is one instance of inversion, where a method previously deemed significantly more accu-
rate than another was found to be significantly less accurate using a paired test. This reversal was observed
in the comparison of Fine-tuning on DINO versus NCC with CLIP features on the Traffic Signs dataset.
This implies that a method can significantly outperform another on a specific dataset, yet significantly un-
derperform when evaluated across the entire distribution. The dataset is thus a particular instance of data
that favors one method. This example powerfully exemplifies the need for clarity when interpreting CIs.

A natural question that arises from previous considerations is that of how to size tasks when performing
sampling without replacement, aiming to reduce the range of obtained CIs. In that matter, we consider the
size of the support set to be fixed at KS, leaving as the only free variable the number of queries per task
and per class Q. Indeed, increasing the number of queries will inevitably reduce the total number of tasks
we can construct, as shown in the following equation. Assuming a balanced dataset, we can estimate the
number of tasks T that can be sampled by exhausting the full dataset:

T ≈
⌊
|D|
|T |

⌋
≈

⌊
CN

K(Q + S)

⌋
, (6)

with |T | is the number of samples, accounting for both the support and query sets, in each task.

If increasing Q reduces the number of tasks, it also changes
√

Var(At) which is proportional to the CI. As
such, there exists a trade-off between the number of queries and the feasible number of tasks that can be
generated to minimize OCIs for any given dataset. Intuitively, measuring Ā with a small T (and consequently
a high Q) results in extensive CI ranges, a phenomenon depicted in Equation 3. Conversely, measuring with
Q = 1 may generate many tasks (large T ) with an extremely high variance because the accuracy per class
becomes either 0% or 100%. In the following, we aim to identify the optimal number of queries, denoted Q∗,
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that effectively minimizes the variance of the average accuracy Var(Ā) and thus the obtained CIs. We first
demonstrate mathematically the existence of such minimum by deriving Var(Ā).

4 Sizing tasks to narrow OCIs
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(Ā
)

Data
Model

Figure 2: Variance of the average accuracy vs.
the number of queries with synthetic data. The
two classes are represented as 1D Gaussians
N (−1, 1) and N (1, 1). The size of the dataset
is N = 1000 (500 samples per class). Tasks are
sampled according to Algorithm 2. The number
of shots is set to 5. We fit this with the model
described in Equation 10 and observe a strong fit
of the model with our experiment.

We show in the Appendix that Var(Ā) can be written as:

Var
(
Ā

)
= K

NC
(αQ + β

Q
+ γ), (7)

with α, β and γ also defined in the Appendix, and β > 0.

These parameters are difficult to estimate in particular
when dealing with real datasets and methods. If α ≤ 0,
then Var

(
Ā

)
is decreasing as a function of Q since Q ∈

N. In the following, we focus only on cases where α >
0. This choice is supported by empirical evidence, which
we will present later, indicating a U-shaped relationship
between the variance of Ā and Q for a certain range of
S. Assuming this, Var

(
Ā

)
reaches its minimum at Q∗ =√

β
α . Next, we study what this entails as S and N vary.

4.1 Effect of S and N on Q∗

Given the definition of α and β obtained in Equation 10,
we find that Q∗ is an increasing function of S and a con-
stant function of N . In this section, we show that these
results are confirmed empirically on real datasets.

We propose to study the aforementioned variance model
of Ā with respect to Q in a simplistic 1D representation of
samples. In our model, two class’ distribution are repre-
sented as two Gaussians (Ni = N (µi, σi) with i ∈ {1, 2}).
We then sample an artificial balanced dataset of fixed size
N . Next, we sample tasks within this artificial dataset until exhaustion with the procedure described in Algo-
rithm 2 setting K = C = 2. Using the NCC classifier we obtain a set of accuracies on which we can compute
the average accuracy Ā. This procedure consisting of instantiating the synthetic dataset from Gaussians
and measuring Ā is iterated. This yields a set of {Āj}j for a given set of parameters {S, Q, N,N1,N2} from
which we compute an empirical variance Var(Ā).

In Figure 2, we show the measured Var(Ā) vs Q. We use 1000 samples in the datasets, split between the
two classes. We set the number of shots to S = 5. The model in Equation 10 is fitted very precisely. The
discretisation effect seen at high Q is due to the low number of tasks. Next, we study the effect of S and N
and compare it to our experiments with synthetic data.

Increasing S shifts the curve’s minimum from Q∗ = 1 towards Q∗ → +∞ as depicted in Figure 3. This aligns
with our model’s predictions. At S = 1, opting for Q∗ = 1 effectively has two effects: (a) the high variance
of At due to small support and query sets increases the variance of Ā and (b) low Q allows a significantly
larger T , thus reducing the overall variance of Ā as shown in Equation 3. Conversely, for S ≥ 20, the setting
boils down to classical transfer learning. Indeed, the narrowest CI is attained with one task with a large
support and query set task. Finally, we find a third regime where, for a range of values of S, Q∗ is nontrivial.
It corresponds to what is shown in the S = 5 regime in Figure 3.

When increasing N , Q∗ should not be affected according to Equation 10. However, we observe a hardly
perceptible shift of Q∗ in Figure 3 when N is increased. We consider this effect to be sufficiently small and
therefore negligible. Next, we explore how these results extend to real-world datasets.
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Figure 3: Variance of the average accuracy Ā and number of tasks T across different settings of S and N ,
derived from synthetic datasets featuring two 1D Gaussian classes, N (−1, 1) and N (1, 1). The left pair of
graphs display results with a fixed number of shots (S = 5), while the right pair of graphs show results for
a constant sample size in the synthetic dataset (N = 1000).

4.1.1 Real Dataset Experiments

We now shift our focus to the findings derived from real image datasets. These datasets are often unbalanced
and exhibit a variety of class numbers. Our objective is to determine whether the earlier conclusions remain
valid in this context.

First, we observe that Q∗ does not depend on the size of datasets. However the size of the dataset scales
T which in turn scales CI95%. Similar to the results with synthetic data, we observe a discretisation of the
confidence interval in the high Q (low T ) regime.

We also observe a similar phenomenon with different regimes in 1, 5 and 10 shots in Figure 4. Our analysis
suggests that for tasks in the 1 shot regime, the best number of queries, Q, should be set to 1. For tasks
with S = 5 and S = 10, the best values for Q are approximately Q = 5 and Q = 7, respectively. Figure 4
also clearly shows that the predominent 15 queries is not optimal to narrow the OCI. We also show similar
values for Q∗ using DINOv2 instead of CLIP in the Appendix (Figure 5).

5 Benchmark Proposal

Building on previously obtained results, we propose a simple benchmark where Paired Tests are used and
the value of Q is chosen as the minimum found in the previous paragraph. Implicitly, we are assuming
that the minimum of ∆’s OCI is also reached at Q∗. More precisely, we are assuming the independence
of the covariance with respect to Q. These assumptions are backed by the improved number of conclusive
comparisons in Figure 6 when optimizing Q and using paired tests. Indeed, while PT yieled 94 conclusive
comparisions, PT with optimized Q yields a little more with 97 conclusive comparisons.

We present our results with the baselines adaptation methods previously studied in Table 6 using DINOv2
as our baseline model. Our experiments consistently show that, for a given model, fine-tuning tends to be
less effective than both logistic regression and the nearest class centroid methods. We also observe the choice
of model is primordial with a clear advantage of DINOv2 over CLIP and DINO on most datasets. Our
benchmark, including the code, seed values, task descriptions, and accuracy results, is available for use.

6 Related Work

Few-Shot Learning Since the seminal works of Vinyals et al. (2016) and Snell et al. (2017), the field
of few-shot learning has known many contributions. Most solutions rely on the use of a pretrained feature
extractor, trained on a generic abundant dataset (Wang et al., 2020; Bendou et al.; Antoniou et al., 2018).
The feature extractor can then be used as is on the target problem (Wang et al., 2019), or adapted before
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Figure 4: (Left) Confidence Interval ranges (Right) Corresponding number of tasks generated. In all graphs
the x-axis is the number of queries Q. These results represent averages from multiple trials, with the number
of trials tailored according to the Task Count (T ). Some curves are stopped before Q reaches 100 because
of the number of samples per class. We do not show Omniglot and Quickdraw for visibility.

classifying (Zhang et al., 2021). Most proposed methods differ in the way they combine the pretrained
feature extractor and their adaptation to the target problem Luo et al. (2023). Over the years, multiple
benchmarks have been proposed, including MiniImageNet (Vinyals et al., 2016), Omniglot (Lake et al., 2015)
and TieredImegenet (Ren et al., 2018). If initially, these benchmarks focused on the in-domain case, where
the feature extractor is trained on disjoint classes from the target problem, but all drawn from the same
initial dataset, the trend evolved with the introduction of Meta-dataset (Triantafillou et al., 2019) (MD)
and later COOP (Zhou et al., 2022a), where the feature extractor is trained on a large generic dataset and
applied to various other domains, including fine-grain problems, embodying a cross-domain evaluation.
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A few papers focus on the sampling of tasks of targeted difficulty for few-shot learning (Arnold et al., 2021;
Zhou et al., 2020). In Zhou et al. (2020), the authors claim that model performance can be improved by
sampling meta-learning tasks of increasing difficulty. In other works, failed meta-training tasks (deemed
hard) are sampled again (Sun et al., 2020) or previously misclassified samples/classes are more likely to be
sampled in following tasks Liu et al. (2020) to focus the model on difficult tasks. Estimating task difficulty
can itself be a difficult task, and several solutions have been proposed Arnold et al. (2021). The idea of
difficulty-based sampling proposed in Arnold et al. (2021) is relevant to this paper since it enables the
sampling of groups of tasks with homogeneous difficulty, effectively reducing the confidence interval ranges.
In contrast, our research adopts paired tests, a method that obviates the need for such dependencies and
provides a more universally applicable approach. Paired tests is not a novel contribution of our work. They
were introduced over a century ago to study the evolution of small populations with time (Student, 1908;
Hedberg & Ayers, 2015). In these seminal studies, the authors shown that individual differences provide
more statistical power and insights than changes in averages over the whole population.

Confidence Intervals Confidence intervals were established by Polish mathematician Jerzy Neyman (Ney-
man, 1937) in the early 1930’s coinciding with Fisher’s ideas although supported by a different framework.
They were more generally used and then required in medical research around the 1980’s. They require
assuming a specific model for the distribution of the considered data. In contrast, the bootstrap method,
introduced in DiCiccio & Efron (1996), offers a distribution-agnostic approach for estimating ranges. We
focused on traditional confidence intervals as they are better understood and more often implemented in the
literature of few-shot learning, but similar conclusions could be drawn using Boostrap instead.

Challenges in Statistical Interpretation and Methodological Biases This issue of misleading CIs
is not isolated to our domain. Belia et al. (2005) have similarly criticized the common misinterpretations
surrounding confidence intervals in broader scientific research. Moreover, the propensity to overlook or un-
derreport negative or null (non-conclusive) results further exacerbates the problem of biased interpretations.
Borji (2017) argues for the importance of acknowledging and analyzing negative results in computer vision.
Lastly, the impact of dataset biases on the evaluation metrics has been well-documented by Torralba & Efros
(2011). In their work, “Unbiased Look at Dataset Biases”, they identify and measure several biases such as
selection, capture and negative set. It serves as a critical reminder of how dataset-based results can differ
from those obtained in real-world distributions.

7 Limitations

A first limitation of our study we would like to point out is that for large datasets such as MSCOCO or
QuickDraw, the predominant method of CI calculation leads to intervals that are actually larger than our
proposed OCI. As such, on such large datasets using CCI may not be an unfair approximation.

Furthermore, our mathematical modeling only explains the origin of the minimum of CI with respect to Q
but does not provide a way to find it analytically since we cannot easily estimate α, β and γ in Equation 10.

As mentioned at the end of paragraph 2.2, saturation at 100% accuracy may negatively impact the compu-
tation of confidence intervals and particularly the value of paired tests CI in Equation 5.

Finally, we point out that paired tests introduce complexity as they require a fixed seed and necessitate
saving and publishing individual task accuracies when using the benchmark and comparing methods.

8 Conclusion

In our study, we demonstrated the stark contrast between Open and Closed measurements of method accu-
racy in Few-Shot Learning. Notably, OCIs take into account data randomness but are far wider than CCIs.
We identified two major approaches that contribute to narrowing the OCIs and subsequently introduced a
benchmark which uses these approaches. Our findings underscore the importance of using confidence inter-
vals that account for data randomness in evaluations, a practice we advocate extending beyond classification
and vision to encompass all domains employing task-based few-shot learning assessments.
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Model CLIP DINO DINOv2
Dataset Method LR LR LR NCC

Aircraft
1-shot 9.241 ± 4.274 25.931 ± 3.693 0.000 ± 1.161 -0.552 ± 1.091
5-shot 2.286 ± 7.402 16.143 ± 6.311 -2.286 ± 2.043 -1.286 ± 2.027
10-shot -0.816 ± 5.803 10.204 ± 5.083 -4.286 ± 2.568 -1.224 ± 2.565

CUB
1-shot 10.743 ± 2.067 25.486 ± 2.991 0.000 ± 0.000 0.000 ± 0.000
5-shot 2.545 ± 1.410 7.515 ± 2.150 0.121 ± 0.247 -0.121 ± 0.247
10-shot 1.008 ± 1.464 4.706 ± 3.114 0.000 ± 0.000 0.000 ± 0.000

DTD
1-shot 7.805 ± 4.722 5.122 ± 4.724 0.976 ± 1.941 0.488 ± 1.191
5-shot 8.750 ± 5.057 3.500 ± 4.109 -0.250 ± 1.979 0.000 ± 1.348
10-shot 4.762 ± 2.905 1.905 ± 4.392 -3.492 ± 3.253 -1.270 ± 1.937

Fungi
1-shot 15.357 ± 1.262 11.937 ± 1.174 -0.533 ± 0.507 0.235 ± 0.438
5-shot 10.247 ± 1.369 3.115 ± 1.225 -3.098 ± 0.658 -2.417 ± 0.677
10-shot 7.316 ± 1.286 0.584 ± 1.224 -2.879 ± 0.890 -1.753 ± 0.799

MSCOCO
1-shot 12.360 ± 1.013 8.820 ± 0.975 0.450 ± 0.377 0.180 ± 0.306
5-shot 9.952 ± 0.411 6.406 ± 0.389 -0.196 ± 0.187 0.172 ± 0.141
10-shot 8.181 ± 0.371 3.883 ± 0.354 -1.056 ± 0.204 -0.202 ± 0.158

Omniglot
1-shot -1.898 ± 1.227 -5.923 ± 1.163 -2.111 ± 0.793 -0.850 ± 0.755
5-shot 0.760 ± 1.016 -1.932 ± 0.954 -1.308 ± 0.564 -0.973 ± 0.628
10-shot 0.240 ± 1.136 -2.246 ± 1.027 -1.788 ± 0.669 -0.698 ± 0.733

Quickdraw
1-shot 4.590 ± 1.079 6.530 ± 1.049 -1.170 ± 0.547 1.760 ± 0.526
5-shot 6.016 ± 0.429 7.850 ± 0.449 -1.028 ± 0.210 -0.160 ± 0.235
10-shot 5.541 ± 0.331 6.454 ± 0.354 -1.109 ± 0.171 -0.266 ± 0.188

Traffic Signs
1-shot -1.770 ± 1.055 -0.600 ± 1.034 -0.920 ± 0.519 0.520 ± 0.467
5-shot -4.243 ± 0.820 -4.078 ± 0.673 -1.537 ± 0.396 -0.367 ± 0.395
10-shot -5.453 ± 0.948 -4.919 ± 0.781 -2.857 ± 0.453 -0.821 ± 0.443

VGG Flower
1-shot 4.576 ± 1.810 12.034 ± 2.243 0.000 ± 0.477 0.000 ± 0.000
5-shot 0.545 ± 0.829 2.182 ± 1.521 0.000 ± 0.000 -0.182 ± 0.378
10-shot 0.000 ± 0.000 1.039 ± 0.968 0.260 ± 0.579 0.260 ± 0.579

Table 4: Comparative differences in paired tests. This table contrasts the performance of DINOv2 with
Fine-tuning (FT) against DINOv2 combined with Nearest Class Centroid (NCC) or Logistic Regression
(LR), as well as the performance combinations of CLIP with DINO using LR.
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A Mathematical derivation of Var(Ā)

Suppose tasks are drawn IID without replacement, we write the variance of Ā as:

Var
(
Ā

)
= 1

T
Vart (At) , (8)

with At the accuracy for an arbitrary task t. By definition of the variance,

Var (At) = E[(At)2]− (E[At])2. (9)

For a given support set, the expected accuracy for some class c is denoted µt,c.

µt,c ≜ EQt(1[fSt(x) = c] | St).

Then the expectation of At becomes
E[At] = ESt

[µt,c],

Along the same lines, we can derive E[(At)2],

E[(At)2] = EStEQt [(At)2|St].

For a fixed St, 1[fSt
(x) = c] and 1[fSt

(x′) = c′] are not independent and their distribution will depend on
the classes c and c′. Using Equation 1, we obtain .

E[(At)2] = 1
(KQ)2

∑
c

∑
c′

∑
x

∑
x′

ESt
EQt

[1[fSt
(x) = c]1[fSt

(x′) = c′]].

We now separate cases where x = x′ from cases where c = c′ and finally cases where both are different.

E[(At)2] = 1
KQ

ESt
[µt,c] + Q− 1

KQ
ESt

[(µt,c)2] + 1
K2

∑
c

∑
c′ ̸=c

ESt
[µt,cµt,c′ ].

Using Equation 9, we find:

Var (At) = 1
KQ

ESt
[µt,c] + Q− 1

KQ
ESt

[(µt,c)2] + 1
K2

∑
c

∑
c′ ̸=c

ESt
[µt,cµt,c′ ]− (ESt

[µt,c])2.

Let us define some parameters,
m1 ≜ E[At] = 1

K

∑
c

ESt [µt,c],

m2 ≜
1
K

∑
c

ESt [(µt,c)2],

and
m3 ≜

1
K2

∑
c

∑
c′ ̸=c

ESt
[µt,cµt,c′ ].

We get that
E[(At)2] = 1

KQ
m1 + Q− 1

KQ
m2 + m3.

This gives
Var (At) = 1

KQ
m1 + Q− 1

KQ
m2 + m3 − (m1)2.
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Then, using Equation 6 (removing the rounding) and 8, we approximate:

Var
(
Ā

)
= K

NC
(αQ + β

Q
+ γ), (10)

with α = m2
K + m3 − (m1)2, β = S

K (m1 −m2) and γ = m1
K −

m2
K + S

K m2 + S(m3 − (m1)2).

First, let us notice that β > 0 since for µ ∈ [0, 1], µ2 < µ .

B Algorithms

Algorithm 1 samples tasks with replacement and computes CCIs with Equation 3 while Algorithm 2 samples
tasks without replacement and uses the student’s distribution to compute OCIs.

Algorithm 2 Full dataset no-replacement evaluation algorithm
1: procedure EvaluateUntilDepleted(K, S, Q, C, {Xc}c∈C) ▷ K ways, S shots, Q queries,

set of classes C, set of data samples {Xc}c∈C
2: Initialize T = {} ▷ List to store all tasks
3: while There are at least K classes in C with at least S + Q examples each do
4: K ← Randomly select K classes from C with at least S + Q examples
5: Initialize S = {} and Q = {}
6: for each c in K do
7: Sc ← Randomly select S examples from Xc

8: Qc ← Randomly select Q examples from Xc excluding Sc

9: Remove Sc and Qc from Xc

10: Add Sc to S
11: Add Qc to Q
12: end for
13: Add (S,Q) to T
14: end while
15: Initialize A = {} ▷ List to store all accuracies
16: for t ∈ T do
17: Add At to A ▷ Measure the accuracy of task t
18: end for
19: Ā = Mean(A)
20: δ95% = t(|A| − 1, 95%)

√
V ar(A)

|A| ▷ t is the critical value for the Student’t distribution
21: return Ā± δ95%
22: end procedure
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C Additional results on the benchmark

These results show the performance differences when taking DINO and CLIP with finetune as baselines.
Again finetuning mostly underperforms other adaptation methods.

Method LR NCC
Dataset Sampling

Aircraft
1-shot -0.690 ± 1.790 0.690 ± 1.519
5-shot -5.286 ± 2.802 -2.857 ± 2.731
10-shot -5.510 ± 3.391 -0.408 ± 3.290

CUB
1-shot -1.486 ± 1.467 0.914 ± 1.388
5-shot -2.182 ± 1.740 -0.970 ± 1.738
10-shot -4.874 ± 2.737 -3.529 ± 2.822

DTD
1-shot -1.220 ± 2.111 -0.488 ± 1.540
5-shot -1.750 ± 2.457 -0.250 ± 2.518
10-shot -2.540 ± 1.320 -1.587 ± 1.937

Fungi
1-shot -0.549 ± 0.561 1.427 ± 0.514
5-shot -3.166 ± 0.728 -1.770 ± 0.627
10-shot -3.658 ± 0.920 -3.009 ± 0.789

MSCOCO
1-shot 0.840 ± 0.389 0.000 ± 0.380
5-shot -0.846 ± 0.199 -0.210 ± 0.176
10-shot -2.488 ± 0.224 -0.695 ± 0.193

Omniglot
1-shot 2.976 ± 0.675 2.749 ± 0.724
5-shot 1.430 ± 0.484 -0.183 ± 0.556
10-shot 0.065 ± 0.560 -0.458 ± 0.656

Quickdraw
1-shot 1.800 ± 0.646 3.590 ± 0.691
5-shot -0.546 ± 0.267 -0.680 ± 0.303
10-shot -1.841 ± 0.223 -1.531 ± 0.260

Traffic Signs
1-shot 0.880 ± 0.429 1.310 ± 0.486
5-shot -0.900 ± 0.354 0.911 ± 0.372
10-shot -2.189 ± 0.400 0.725 ± 0.412

VGG Flower
1-shot -2.542 ± 1.755 1.695 ± 1.475
5-shot -0.545 ± 0.623 -0.909 ± 1.085
10-shot -0.519 ± 0.776 -0.519 ± 0.776

Table 5: Paired test difference between DINO with FT and LR and NCC on DINO. FT, NCC and LR
respectively stand for Fine-tuning, Nearest Class Centroid, Logistic Regression.
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Method LR NCC
Dataset Sampling

Aircraft
1-shot 0.828 ± 1.850 4.000 ± 2.033
5-shot 0.000 ± 1.934 0.571 ± 2.301
10-shot -3.469 ± 2.436 -5.510 ± 2.191

CUB
1-shot -0.229 ± 1.500 1.714 ± 1.313
5-shot -0.364 ± 0.962 -0.848 ± 1.266
10-shot -0.504 ± 0.934 -0.504 ± 1.297

DTD
1-shot -2.195 ± 2.184 2.195 ± 2.584
5-shot -2.500 ± 3.002 -2.000 ± 2.806
10-shot -5.079 ± 2.859 -4.444 ± 1.937

Fungi
1-shot -2.086 ± 0.747 0.439 ± 0.703
5-shot -3.217 ± 0.792 -2.826 ± 0.868
10-shot -4.394 ± 0.929 -4.069 ± 0.986

MSCOCO
1-shot -0.840 ± 0.536 1.670 ± 0.528
5-shot -2.090 ± 0.241 -0.970 ± 0.232
10-shot -3.099 ± 0.239 -1.503 ± 0.233

Omniglot
1-shot 4.723 ± 0.725 4.723 ± 0.799
5-shot 1.688 ± 0.606 0.532 ± 0.670
10-shot 0.371 ± 0.702 -0.087 ± 0.831

Quickdraw
1-shot 0.760 ± 0.731 4.940 ± 0.759
5-shot 0.226 ± 0.299 -0.284 ± 0.327
10-shot -0.376 ± 0.236 -0.754 ± 0.268

Traffic Signs
1-shot -0.500 ± 0.590 0.590 ± 0.606
5-shot -0.481 ± 0.373 -0.745 ± 0.449
10-shot -1.642 ± 0.418 -0.458 ± 0.478

VGG Flower
1-shot -1.356 ± 1.408 0.169 ± 1.305
5-shot -0.182 ± 0.665 0.000 ± 0.774
10-shot -0.519 ± 0.776 -0.519 ± 0.776

Table 6: Paired test difference between CLIP with FT and LR and NCC on CLIP. FT, NCC and LR
respectively stand for Fine-tuning, Nearest Class Centroid, Logistic Regression.
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D Is Q∗ Dependent on the Model Used?

We show in Figure 5 that the same values of Q∗ are found for DINO v2 instead of CLIP.

100 101 102

Q

100

101

102

1
sh

ot

CI95%

100 101 102

Q

100

101

102

103

104

T

Aircraft
CUB
DTD
Fungi
Omniglot
VGG Flower
MSCOCO

100 101 102

Q

100

101

102

5
sh

ot
s

CI95%

100 101 102

Q

100

101

102

103

T

Aircraft
CUB
DTD
Fungi
Omniglot
VGG Flower
MSCOCO

100 101 102

Q

100

101

102

10
sh

ot
s

CI95%

100 101 102

Q

100

101

102

103

T

Aircraft
CUB
DTD
Fungi
Omniglot
VGG Flower
MSCOCO

Figure 5: This figure shows that the value of Q∗ is not dependent on the model used. This experiment is
conducted using DINO v2 instead of CLIP. (Left) Confidence Interval ranges (Right) Corresponding number
of tasks generated. In all graphs the x-axis is the number of queries Q. These results represent averages from
multiple trials on DINO v2, with the number of trials tailored according to the Task Count (T ). Some curves
are stopped before Q reaches 100 because of the number of samples per class. We do not show Omniglot
and Quickdraw for visibility.
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E Statistics on Conclusiveness

no PT no PT + Opti Q PT PT + Opti Q
Comparision setting

0

200

400

600

800

N
um

be
r

of
co

nc
lu

si
ve

co
m

pa
ri

so
ns

Total number of comparisons

Figure 6: Effect of using paired tests comparisons between all possible pairs formed from combinations of
models and methods summed across datasets (with Omniglot removed for technical reasons) for 1, 5 and 10
shots. The number of conclusive comparisons is counted on the Y-axis. When Q is not optimized, we use
Q = 15.

This histogram illustrates that paired test and the optimization of the size of tasks yields the maximum
number of conclusive comparisons. Optimizing Q slightly improves the number of conclusive comparisons
compared to simple paired tests.
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