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ABSTRACT

Remarkable progress in zero-shot learning (ZSL) has been achieved using genera-
tive models. However, existing generative ZSL methods merely generate (imagine)
the visual features from scratch guided by the strong class semantic vectors anno-
tated by experts, resulting in suboptimal generative performance and limited scene
generalization. To address these and advance ZSL, we propose an inductive varia-
tional autoencoder for generative zero-shot learning, dubbed GenZSL. Mimicking
human-level concept learning, GenZSL operates by inducting new class samples
from similar seen classes using weak class semantic vectors derived from target
class names (i.e., CLIP text embedding). To ensure the generation of informative
samples for training an effective ZSL classifier, our GenZSL incorporates two key
strategies. Firstly, it employs class diversity promotion to enhance the diversity
of class semantic vectors. Secondly, it utilizes target class-guided information
boosting criteria to optimize the model. Extensive experiments conducted on three
popular benchmark datasets showcase the superiority and potential of our GenZSL
with significant efficacy and efficiency over f-VAEGAN, e.g., 24.7% performance
gains and more than 60× faster training speed on AWA2. Codes are available at
https://anonymous.4open.science/r/GenZSL.

1 INSTRUCTION

Zero-shot learning (ZSL) enables the recognition of unseen classes by transferring semantic knowl-
edge from some seen classes to unseen ones [35; 27]. Recently, generative models such as generative
adversarial networks (GANs) [17], variational autoencoders (VAEs) [25], and normalizing flows [16]
have been successfully applied in ZSL, achieving significant performance improvements. These
models synthesize images or visual features of unseen classes to alleviate the lack of samples for those
classes [2; 52; 54; 7; 34; 8]. Given that GAN architectures can generate higher-quality visual sample
features, there’s a growing trend in synthesizing features using GANs [52; 54; 7; 34]. However,
existing generative ZSL methods typically generate (imagine) visual features from scratch (e.g.,
Gaussian noises) guided by strong class semantic vectors [52; 54; 7; 34; 64; 11]. This approach often
fails to produce reliable feature samples and generalize to various scene tasks, as illustrated in Figure
1 (a). The shortcomings arise from: i) the generator learning from scratch without sufficient data to
capture the high-dimensional data distribution, and ii) the reliance on expert-annotated class semantic
vectors, which are time-consuming and labor-intensive to collect for various scene generalizations.
Hence, there’s a pressing need to explore novel generative paradigms for the ZSL task.

Cognitive psychologist often frame the process of learning new concepts as "the problem of induction"
[5; 1]. For instance, children typically induce novel concepts from a few familiar objects, guided by
certain priors [45; 26]. Essentially, rich concepts can be induced "compositionally" from simpler
primitives under a Bayesian criterion, and the model "learns to learn" by developing hierarchical
priors that facilitate the learning of new concepts based on previous experiences with related concepts.
These priors represent a learned inductive bias that abstracts the key regularities and dimensions of
variation across both types of concepts and instances of a concept within a given domain. Following
this paradigm, our objective is to devise a novel generative zero-shot learning (ZSL) model capable
of generating (inducing) new/target classes based on samples from similar/referent seen classes. As
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Figure 1: Motivation illustration. (a) Existing generative ZSL methods merely generate (imagine)
the visual features from scratch guided by the expert-annotated class semantic vectors, resulting
in suboptimal generative performance and weak scene generalization. For example, the generator
inevitably generates similar classes of "Zebra" or others, e.g., "Donkey". (b) Our GenZSL generates
(induces) the reliable visual features of unseen classes from the similar seen classes with the clues of
class semantic vector extracted by CLIP text encoder, e.g., from "Horse" to "Zebra".

illustrated in Figure 1 (b), our generative ZSL model can generate informative samples of new classes
(e.g., "Zebra") by inducing them from referent seen classes (e.g., "Horse", "Tiger", and "Panda").

Indeed, there are two challenges in targeting this goal. Firstly, addressing the issue of weak class
semantic vectors. These vectors, extracted from sources like the CLIP text encoder [37], often lack
specific class information, such as attributes, compared to vectors annotated by experts. As a result,
they may not effectively guide generative methods. Furthermore, these vectors can be misaligned
in the vision-language space. For instance, the text embedding of a class name might be close to
embeddings of unrelated classes but distant from image embeddings [21; 44]. How can we enhance
the diversity of weak class semantic vectors to distinguish between various classes effectively, thereby
avoiding the problem of generating visual features that are too similar to other classes? Secondly,
ensuring that a novel generative method evolves samples of referent classes into target classes with the
guidance of weak class semantic vectors is equally challenging. This involves transforming samples
of seen classes into samples that accurately represent unseen classes, guided only by the limited
information provided by weak class semantic vectors. How can we achieve this transformation
reliably and effectively within a generative ZSL framework?

To guide the induction towards creating informative samples for training effective ZSL classifiers, we
propose a novel inductive variational autoencoder for generative ZSL, namely GenZSL. Specifically,
GenZSL considers two criteria, i.e., class diversity promotion and target class-guided information
boosting. In addressing the first criterion, we reduce redundant information from class semantic
vectors by eliminating their major components. This process enables all class semantic vectors to
become nearly perpendicular to each other but keep the origin relationships between all classes, thus
enhancing the diversity among them. For the second one, we design a target class-guided information
boosting loss to guide GenZSL to synthesize the visual features belonging to target classes.

Our main contributions are summarized in the following:

i) We propose an induction-based GenZSL for generative ZSL, which can synthesize the samples of
unseen classes based on the weak class semantic vectors inducting from the similar seen classes. To
the best of our knowledge, GenZSL stands as the first inductive generative method, offering a unique
and innovative solution distinct from existing approaches.

ii) We enable GenZSL to synthesize informative samples by improving class diversity between
various class semantic vectors and designing the target class-guided information boosting criteria.

iii) We conduct extensive experiments on three wide-use ZSL benchmarks (e.g., CUB [49], SUN
[36], and AWA2 [53]), results demonstrate the significant efficacy and efficiency over the existing
ZSL methods, e.g., 24.7% performance gains and more than 60× faster training speed on AWA2.
More importantly, our GenZSL can be flexibly extended on various scene tasks without the guidance
of expert-annotated attributes.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Zero-Shot Learning. Zero-shot learning is proposed to tackle the classification problem when
some classes are unknown. To recognize the unseen classes, the side-information/semantic (e.g.,
attribute descriptions [28], DNA information [4]) is utilized to bridge the gap between seen and
unseen classes. As such, the key task of ZSL is to conduct effective interactions between visual and
semantic domains. Typically, there are two methodologies to target on this goal, i.e., embedding-
based methods that learn visual→semantic mapping [51; 56; 63; 47; 19], and generative methods
that learn semantic→visual mapping [54; 7; 23; 64; 13]. Considering the semantic representations,
embedding-based methods focus recently on learning the region-based visual features rather than
the holistic visual features [22; 56; 9; 10; 12]. Since these methods learn the ZSL classifier only on
seen classes, inevitably resulting in the models overfitting to seen classes. To tackle this challenge,
generative ZSL methods employ the generative models (e.g., VAE, and GAN) to generate the unseen
features for data augmentation, and thus ZSL is converted to a supervised classification task. As such,
the generative ZSL methods have shown significant performance and become very popular recently.
Furthermore, Li et al. [29] introduces Stable Diffusion to perform zero-shot classification without
any additional training by leveraging the ELBO as an approximate class-conditional log-likelihood.

However, existing generative ZSL methods simply imagine the visual feature from a Gaussian
distribution with the guidance of a strong class semantic vector. Thus, they are limited in i) there
lacks enough data for training a generative model to learn the high-dimension data distribution,
resulting in undesirable generation performance; ii) they rely on the strong condition guidance (e.g.,
expert-annotated attributes) for synthesizing target classes, so they cannot easily generalize to various
scenes. As such, we propose a novel generative method to create informative samples of unseen
classes for advancing ZSL via induction rather than imagination.

Generative Model for Data Augmentation. Synthesizing new data using a generative model for
data augmentation is a promising direction [61; 24; 20]. Many recent studies [3; 18; 57; 50] explored
generative models to generate new data for model training. However, these methods fail to ensure that
the synthesized data bring sufficient new information and accurate labels for the target small datasets.
Because they imagine the new data from scratch (e.g., Gaussian distribution), which is infeasible with
very limited/diverse training data. Zhang et al. [60] introduce GIF to expanding small-scale datasets
with guided imagination using pre-trained large-scale generative models, e.g., Stable Diffusion [39]
or DALL-E2 [38]. Although GIF can expand a small dataset into a larger labeled one in a fully
automatic manner without involving human annotators, it requires anchor samples for imagination.
As such, these imagination-based generative models are not feasible for ZSL tasks. In contrast,
we introduce a novel generative method to synthesize new informative data for ZSL via induction
inspired by the human perception process [5; 1].

3 INDUCTIVE VARIATIONAL AUTOENCODER FOR ZSL

Problem Setting. The problem setting of ZSL and notations are defined in the following. Assume
that data of seen classes Ds = {(xsi , ysi )} has Cs classes, where xsi ∈ X denotes the i-th visual
feature extracted from the CLIP visual encoder [37], and ysi ∈ Ys is the corresponding class label.
Ds is further divided into training set Ds

tr and test set Ds
te following [53]. The unseen classes Cu has

unlabeled samples Du
te = {(xui , yui )}, where xui ∈ X are the visual samples of unseen classes, and

yui ∈ Yu are the corresponding labels. A set of class semantic vectors of the class c ∈ Cs ∪ Cu = C
are extracted from CLIP text encoder, defined as zc. In the conventional zero-shot learning (CZSL)
setting, we learn a classifier only classifying unseen classes, i.e., fCZSL : X → Y U , while we learn
a classifier for both seen and unseen classes in the generalized zero-shot learning (GZSL) setting, i.e.,
fGZSL : X → Y U ∪ Y S .

Pipeline Overview. To enable the generative ZSL method to synthesize high-quality visual fea-
tures with good scene generalization, we propose an inductive variational autoencoder for ZSL
(namely GenZSL). Towarding to creating informative new samples for unseen classes, GenZSL
considers two important criteria, i.e., class diversity promotion and target class-guided informa-
tion boosting. As shown in Fig. 2, GenZSL first takes class diversity promotion to reduce the
redundant information from class semantic vectors by removing their major components, enabling
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…

…

Top-k Referent Class Samples

Top-1 Top-2 Top-k

Inductive Variational Autoencoder

Figure 2: Pipeline of our GenZSL. GenZSL first takes class diversity promotion to reduce the
redundant information from class semantic vectors, and to improve the identity for all class semantic
vectors. Then, it employs a semantically similar sample selection module to select the top-k referent
class from the seen classes for each target class as training inputs. Based on the referent samples,
GenZSL learns an inductive variational autoencoder to create the new informative feature samples
for unseen classes via induction optimized by target class-guided information boosting criteria.

all class semantic vectors nearly perpendicular to each other. Based on the refined class seman-
tic vectors, GenZSL employs a semantically similar sample selection module to select the top-
k referent class from the seen classes for each target class. Subsequently, GenZSL learns the
inductive variational autoencoder (IVAE) with the Kullback-Leibler divergence (KL) loss, tar-
get class reconstruction loss, and target class-guided information boosting loss, which ensures
GenZSL inducts the target class samples from their similar class samples. After training, Gen-
ZSL takes IVAE to synthesize visual features of unseen classes to learn a supervised classifier.

(b) CLIP w/ Class Diversity Promotion(a) CLIP text encoder

Mean Similarity (0.5726) Mean Similarity (1.825 )

Figure 3: Class semantic vectors’ similarity heatmaps
are extracted by CLIP text encoder and CLIP with class
diversity promotion on the CUB dataset. The similarity
heatmaps on SUN and AWA2 are presented in Appendix
B.

3.1 CLASS DIVERSITY PROMOTION

To avoid the ZSL model relying on the
expert-annotated class semantic vectors,
we adopt CLIP [37] text encoder to ex-
tract the class semantic vectors, i.e., text
embedding of the class names. How-
ever, we observed that the CLIP text en-
coder fails to capture discriminative class
information, especially on fine-grained
datasets. As shown in Fig. 3(a), the
class semantic vectors have high simi-
larity with other classes, that is, all class
semantic vectors are highly adjacent to
ones of other classes. If we directly take
such class semantic vectors as conditions
to guide GenZSL, it inevitably causes the
synthesized visual features confusion as
the class semantic vectors with limited diversity.

As such, we introduce class diversity promotion (CDP) to improve the diversity of class semantic
vectors. CDP reduces the redundant information from class semantic vectors by removing their
major components, enabling all class semantic vectors nearly perpendicular to each other but to
keep the original class relationships. Specifically, we take Singular Value Decomposition to get the
orthonormal basis of the span of class semantic vectors Z = [z1, z2, · · · , zC ], i.e., U, S, V = svd(Z),
where U = [e1, e2, · · · , eC ] is the orthonormal basis. As suggested in Principal Component Analysis,
the first dimension e1 of the outer-space basis U will be the major component, which overlaps on
most class semantic vectors [z1, z2, · · · , zC ]. We directly remove the major component e1 to define
the new projection matrix P = U

′
U
′> with U

′
= [e2, e3, · · · , eC ]. Accordingly, we obtain the

refined class semantic vectors, formulated as:

Z̃ = P · Z = {z̃1, z̃2, · · · , z̃C} (1)

4
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As shown in Fig. 3(b), we make the refined class semantic vectors nearly perpendicular to each other,
such as the mean similarity between various classes drops from 0.5726 to 1.825e−5 on the CUB
dataset. As such, the refined class semantic vectors will be the significant conditions for induction.

3.2 SEMANTICALLY SIMILAR SAMPLE SELECTION

In this paper, we are interested in semantically similar samples as they can serve as reliable known
data for inducing new samples of other similar classes. Specifically, we select the semantically similar
samples in seen classes (defined a referent class samples) with respect to the target seen/unseen
classes ctarget during training/testing, respectively. According to the cosine similarity, we define
similar samples as the referent ones whose class semantic vectors z̃c

s

is top-k closed to the target
class semantic vectors z̃target, formulated as:

crefer = arg max
top−k(cs)

z̃target × z̃cs

‖z̃target‖ · ‖z̃cs‖
, (2)

where k is the number of referent classes with respect to the corresponding target classes. Accordingly,
we can obtain a set of referent samples to the target seen/unseen classes from seen classes for
training/testing, respectively.

3.3 INDUCTIVE VARIATIONAL AUTOENCODER

Network Components. Our GenZSL aims to generate informative new samples for novel classes
by inducing from seen classes. To achieve this, we devise a novel generative model called the
inductive variational autoencoder (IVAE). We formulate the induction of new samples for target
classes x̂ from reference samples xrefer as x̂ = IV AE(xrefer + o, z̃target), where o represents the
perturbation applied to xrefer to enable IVAE to variationally generate x̂ distinct from xrefer.

Specifically, IVAE consists of an inductive encoder (IE) and an inductive decoder (ID). The IE and
ID are the Multi-Layer Perceptron (MLP) networks. The IE encodes the referent samples xrefer
into latent space o conditioned by the target class semantic vectors z̃target, i.e., o = δ · N (0, 1) + µ,
where µ, δ = IE(xrefer, z̃target). Subsequently, The ID further comprises hidden layers with a
progressively larger number of nodes that decode the latent features to be a reconstruction of the
target classes samples xtarget guided by z̃target, formulated as x̂ = ID(o, z̃target). This is different
to VAE which ultimately reconstructs the data back to its original input xrefer.

Network Optimization. Similar to the conditional VAE [43], our IVAE includes the KL loss LKL

and the target class reconstruction loss LTR, formulated as:
LIV AE = LKL − LTR

= KL(q(o | x, z̃target)‖p(o | z̃target))− Eq(o|xrefer,z̃target)[log p(x
target | o, z̃target)],

(3)

where q(o | x, z̃target) is modeled by IE(xrefer, z̃target), p(o | z̃target) is assumed to be N (0, 1),
and p(xtarget | o, z̃target) is represented by ID(o, z̃target). Essentially, LTR towards the target class-
guided information boosting criteria in vision-level, encouraging IVAE to synthesize high-quality
target class samples.

To ensure IVAE evolves the referent samples to belong to target classes, GenZSL further employs a
target class-guided information boosting loss LBoost for optimization. Considering CLIP’s full prior
knowledge, LBoost aims to improve the information entropy between the synthesized visual features
of target classes x̂target and their corresponding class semantic vectors z̃target, formulated as:

LBoost = −
exp (< x̂target, z̃target > /τ)∑Cs

j=1 exp (< x̂target, z̃target > /τ)
, (4)

where τ is the temperature parameter and set to 0.07. Indeed, LBoost and LTR cooperatively ensure
IVAE to synthesize desirable target class samples from semantic- and vision-level, respectively.

As such, the total optimization loss function can be written as:
Ltotal = LIV AE + λLBoost, (5)

where λ is a weight to control the LBoost, enabling model optimization to be more effective.
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3.4 ZSL CLASSIFICATION

After training, we first take the pre-trained IVAE to synthesize visual features for unseen classes:

x̂u = ID(o, z̃c
u

), where o = δ · N (0, 1) + µ, and µ, δ = IE(xrefer, z̃c
u

). (6)

Different from the standard VAEs that synthesize samples from scratch (e.g., Gaussian noise), we
synthesize the visual features of unseen classes inducting from referent seen class samples and take
Gaussian noise as variations. As such, our GenZSL can more easily create informative new samples
for unseen classes.

Then, we take the synthesized unseen visual features (and the real visual features of seen classes
xs ∈ Ds

tr ) to learn a classifier (e.g., softmax), i.e., fczsl : X → Ys ∪ Yu in the CZSL setting (and
fgzsl : X → Ys ∪ Yu in the GZSL setting). Once the classifier is trained, we use the real sample in
the test set Du

te to test the model further. The details of the testing process are shown in Appendix A.

4 EXPERIMENTS

Datasets. We evaluate our GenZSL on three well-known ZSL benchmark datasets, i.e., two fine-
grained datasets ( CUB [49] and SUN [36]) and one coarse-grained dataset (AWA2 [53]). CUB has
11,788 images of 200 bird classes (seen/unseen classes = 150/50). SUN contains 14,340 images of
717 scene classes (seen/unseen classes = 645/72). AWA2 consists of 37,322 images of 50 animal
classes (seen/unseen classes = 40/10).

Evaluation Protocols. During testing, we adopt the unified evaluation protocols following [53].
The top-1 accuracy of the unseen class (denoted as acc) is used for evaluating the CZSL performance.
In the GZSL setting, the top-1 accuracy on seen and unseen classes is adopted, denoted as S and U ,
respectively. Meanwhile, their harmonic mean (defined as H = (2× S ×U)/(S +U)) is a better
protocols in the GZSL.

Implementation Details. We use the training splits proposed in [52]. Meanwhile, the visual
features with 512 dimensions are extracted from the CLIP vision encoder [37]. The IE and ID are
the MLP networks. The specific network settings are fc(512)− fc(1024)− fc(2048)−ReLu and
fc(512) − fc(1024) − fc(2048) − ReLu − fc(512) for IE and ID, respectively. We synthesize
1600, 800, and 5000 features per unseen class to train the classifier for CUB, SUN, and AWA2
datasets, respectively. We empirically set the loss weight λ as 0.1 for CUB and AWA2, and 0.001
for SUN. The top-2 similar classes serve as the referent classes for inductions on all datasets.
Furthermore, to enlarge the reference of the referent samples for effective model training, we take
mixup technique [59] to randomly fuse the samples of various referent classes for data augmentation,
i.e., xrefer = 0.8 ·xctop−1

+0.2 ·xctop−2

. All experiments are performed on a single NVIDIA TITAN
X with 11G memory. We employ Pytorch to implement our experiments.

4.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

Table 1: Comparison with generative ZSL methods
on three datasets under CZSL setting.

Methods CUB SUN AWA2
acc acc acc

CLSWGAN [52] 57.3 60.8 68.2
f-VAEGAN [54] 61.0 64.7 71.1
CADA-VAE [40] 59.8 61.7 63.0
LisGAN [30] 58.8 61.7 70.6
IZF-NBC [41] 59.6 63.0 71.9
LsrGAN [46] 60.3 62.5 66.4
HSVA [8] 62.8 63.8 70.6
GG [6] 60.3 62.7 70.1
f-VAEGAN+DSP [11] 62.8 68.6 71.6
GenZSL (Ours) 63.3 73.5 92.2

We first compare our GenZSL with the vari-
ous imagination-based generative ZSL methods
(e.g., VAE [40; 8], GAN [52; 30; 46], VAEGAN
[54; 11], normalizing flow [41], and gaussian
feature generator [6]) under the CZSL. Table 1
shows the evaluation results on three datasets.
Our GenZSL consistently achieves the best re-
sults with the acc values of 63.3%, 73.5%,
and 92.2% on CUB, SUN, and AWA2, respec-
tively. Notably, our GenZSL obtains the perfor-
mance gains by 20.3% at least on AWA2 over
the imagination-based generative ZSL methods.
These competitive results demonstrate the su-
periority and potential of our induction-based

6
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Table 2: State-of-the-art comparisons for ZSL methods on CUB, SUN, and AWA2 under GZSL
settings. Embedding-based methods are categorized as †, and generative methods are categorized as
‡. ∗ denotes ZSL methods using attribute features to refine visual features. The best and second-best
results are marked in Red and Blue, respectively.

Methods Venue CUB SUN AWA2
U S H U S H U S H

†

SGMA [63] NeurIPS’19 36.7 71.3 48.5 – – – 37.6 87.1 52.5
AREN [55] CVPR’19 38.9 78.7 52.1 19.0 38.8 25.5 15.6 92.9 26.7
CRnet [58] ICML’19 45.5 56.8 50.5 34.1 36.5 35.3 52.6 78.8 63.1
APN∗ [56] NeurIPS’20 65.3 69.3 67.2 41.9 34.0 37.6 56.5 78.0 65.5
DAZLE∗ [22] CVPR’20 56.7 59.6 58.1 52.3 24.3 33.2 60.3 75.7 67.1
CN [42] ICLR’21 49.9 50.7 50.3 44.7 41.6 43.1 60.2 77.1 67.6
TransZero∗ [9] AAAI’22 69.3 68.3 68.8 52.6 33.4 40.8 61.3 82.3 70.2
MSDN∗ [10] CVPR’22 68.7 67.5 68.1 52.2 34.2 41.3 62.0 74.5 67.7
I2DFormer [32] NeurIPS’22 35.3 57.6 43.8 – – – 66.8 76.8 71.5
I2MVFormer-Wiki [33] CVPR’23 32.4 63.1 42.8 – – – 66.6 82.9 73.8
ICIS [15] ICCV’23 45.8 73.7 56.5 45.2 25.6 32.7 35.6 93.3 51.6

‡

CLSWGAN [52] CVPR’18 43.7 57.7 49.7 36.6 42.6 39.4 52.1 68.9 59.4
f-VAEGAN [54] CVPR’19 48.7 58.0 52.9 45.1 38.0 41.3 57.6 70.6 63.5
LisGAN [30] CVPR’19 46.5 57.9 51.6 42.9 37.8 40.2 52.6 76.3 62.3
LsrGAN [46] ECCV’20 48.1 59.1 53.0 44.8 37.7 40.9 54.6 74.6 63.0
AGZSL [14] ICLR’21 48.3 58.9 53.1 29.9 40.2 34.3 65.1 78.9 71.3
HSVA [8] NeurIPS’21 52.7 58.3 55.3 48.6 39.0 43.3 59.3 76.6 66.8
FREE+ESZSL [64] ICLR’22 51.6 60.4 55.7 48.2 36.5 41.5 51.3 78.0 61.8
CLSWGAN + DSP [11] ICML’23 51.4 63.8 56.9 48.3 43.0 45.5 60.0 86.0 70.7
GenZSL Ours 53.5 61.9 57.4 50.6 43.8 47.0 86.1 88.7 87.4

Table 3: Results of ablation study for our GenZSL on CUB and AWA2.

Methods
CUB AWA2

CZSL GZSL CZSL GZSL
acc U S H acc U S H

GenZSL w/o CDP 60.9 48.2 64.6 55.2 90.7 82.3 87.9 85.0
GenZSL w/o LTR 48.3 20.1 37.5 26.2 87.5 39.9 83.1 53.9
GenZSL w/o LBoost 61.1 47.7 66.4 55.5 90.5 75.3 91.4 82.6
GenZSL w/o CDP&LBoost 60.0 42.5 69.3 52.7 87.7 89.0 75.3 81.6
GenZSL (full) 63.3 53.5 61.9 57.4 92.2 86.1 88.7 87.4

generative method, which significantly synthe-
sizes informative new samples for unseen classes.

Besides evaluating the CZSL performance, we also take our GenZSL to compare with the state-of-
the-art ZSL methods under the GZSL setting, including the embedding-based methods and generative
methods. Results are shown in Table 2. Compared to the embedding-based methods, our GenZSL
achieves the best performance on harmonic mean on SUN and AWA2, and competitive results
on CUB. It’s worth noting that ZSL methods using attribute features to refine visual features can
significantly improve their performances on CUB, e.g., APN [56], TransZero [9]. Because they can
localize the specific attributes for visual representations. When taking our GenZSL to compare with
the imagination-based generative methods, GenZSL performs best results of H=57.4%, H=47.0%
and H=87.4% on CUB, SUN and AWA2, respectively. Notably, our GenZSL relies solely on
weak class semantic vectors, while the compared methods utilize strong ones annotated by experts.
This indicates that GenZSL is more adaptable to generalizing across various scenes. These results
consistently demonstrate our induction-based GenZSL is a desirable generative paradigm for ZSL.

4.2 ABLATION STUDY

Various Model Components of Our GenZSL. To gain further insights into GenZSL, we conducted
ablation studies to evaluate the effect of various model components, specifically class diversity
promotion (CDP), the target class reconstruction loss LTR, and the target class-guided information
boosting loss LBoosting, on the CUB and AWA2 datasets. The ablation results are summarized in
Table 3. When GenZSL lacks CDP to consider class diversity criteria, there is a notable degradation in
performance. This is attributed to the inability of class semantic vectors extracted from the CLIP text
encoder to capture discriminative class information, resulting in weak diversity among class semantic
vectors. Moreover, if GenZSL does not incorporate LTR for target class information boosting, there is
a significant drop in performance, with the harmonic mean decreasing by 30.8% and 33.5% on CUB
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(a) f-VAEGAN (b) Our GenZSL

Figure 4: Qualitative evaluation with t-SNE visualization. The sample features from f-VAEGAN
[54] are shown on the left, and from our GenZSL are shown on the right. We use 10 colors to denote
randomly selected 10 classes from CUB. The "×" and "◦" are denoted as the real and synthesized
sample features, respectively. The synthesized sample features and the real features distribute
differently on the left while distributing similarly on the right. The t-SNE visualization on the SUN
and AWA2 datasets is shown in Appendix D.

and AWA2, respectively. These findings underscore the importance of LTR as a fundamental loss for
target class-guided information boosting, ensuring that our IVAE accurately induces referent samples
to target class samples. Furthermore, LBoosting enhances the induction process at the semantic
level, complementing LTR. Overall, these results demonstrate the effects of various components of
GenZSL and underscore the significance of the two criteria for induction.

Table 4: Results of various models using weak
class semantic vectors as side-information on
CUB.

Methods CUB
U S H

CLIP [37] 55.2 54.8 55.0
CoOp [62] 49.2 63.8 55.6
CoOp + SHIP [48] 55.3 58.9 57.1
f-VAEGAN [54] 22.5 82.2 35.3
TF-VAEGAN [34] 21.1 84.4 34.0
GenZSL (Ours) 53.5 61.9 57.4

Various Models with Weak Class Semantic
Vectors. We conducted a comparative analy-
sis of various models utilizing weak class se-
mantic vectors extracted from the CLIP text en-
coder. These models include large-scale visual-
language-based ZSL methods such as CLIP
[37], CoOp [62], and CoOp + SHIP [48], as
well as classical generative ZSL methods like
f-VAEGAN [54] and TF-VAEGAN [34]. The
results are presented in Table 4. Compared to
large-scale visual-language methods, our Gen-
ZSL demonstrates substantial improvements, in-
dicating the effectiveness of our inductive generative paradigm as a desirable ZSL model. When
imagination-based generative ZSL methods utilize weak class semantic vectors as side information,
GenZSL achieves significant performance gains, with a minimum increase of 22.1% in harmonic
mean over these methods. Additionally, we observed that when imagination-based generative ZSL
methods use weak class semantic vectors, their performances experience more significant drops
compared to when they utilize strong class semantic vectors. For instance, the harmonic mean
of f-VAEGAN decreases from 52.9% to 35.3%. These findings highlight the superiority of our
induction-based generative method over imagination-based approaches in ZSL, as it can synthesize
high-quality sample features for unseen classes with feasible scene generalization. Moreover, our
work bridges the gap between large-scale visual-language ZSL methods and classical ZSL methods,
leveraging the advantages of both approaches to achieve improved performance in ZSL tasks. More
discussions are in Appendix C.

4.3 QUALITATIVE EVALUATION

We conducted a qualitative evaluation to intuitively showcase the performance of imagination-based
generative ZSL methods (e.g., f-VAEGAN [54]) and our induction-based approach (GenZSL). The
t-SNE visualization [31] of real and synthesized sample features is presented in Fig. 4. We randomly
selected 10 classes from CUB and visualized the sample features generated by f-VAEGAN and
GenZSL. Fig. 4(a) illustrates that sample features synthesized by f-VAEGAN and real features
exhibit significant differences, indicating that the synthesized visual features may not facilitate

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.01 0.1 0.2 0.5

45

50

55

60

65

Ac
cu

ra
cy

(%
)

S U H

1 2 4 8top-k

50

55

58

60

66

Ac
cu

ra
cy

(%
)

S U H

800 1600 2400 3200Nsyn

45

55

60

62

64

70

Ac
cu

ra
cy

(%
)

S U H

(a) Varying λ effect (b) Varying top-k effect (c) Varying Nsyn effect

Figure 6: Hyper-parameter analysis. We show the performance variations on CUB by adjusting the
value of loss weight λ in (a), the number of the top referent classes top-k in (b), and the number of
synthesized samples of each unseen class Nsyn in (c).

reliable classification for ZSL. In contrast, Fig. 4(b) demonstrates that our GenZSL synthesizes
informative samples for unseen classes that closely match real sample features. This visualization
confirms that GenZSL is a desirable generative ZSL model, and the induction-based generative
paradigm holds value for ZSL tasks.

4.4 INDUCTION vs IMAGINATION
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Figure 5: Induction vs Imagination
on AWA2 dataset.

We analyze the efficiency and efficacy of induction-based gen-
erative ZSL (e.g., our GenZSL) and imagination-based gen-
erative ZSL (e.g., f-VAEGAN [54]) on AWA2. Results are
shown in Fig. 5. We find that our GenZSL eases the opti-
mization by providing faster convergence at the early stage,
while f-VAEGAN towards convergence slowly. For example,
GenZSL achieves the best GZSL performance with a remark-
able ≥ 60× acceleration in training speed than f-VAEGAN.
Meanwhile, our GenZSL obtains better performance both in
the GZSL and CZSL settings than f-VAEGAN. These demon-
strate the efficiency and efficacy of our GenZSL and the great
potential of the induction-based generative paradigm.

4.5 HYPER-PARAMETER ANALYSIS.
We analyze the effects of different hyper-parameters of our GenZSL on the CUB dataset. These
hyper-parameters include the loss weight λ in Eq. 5, the number of the top referent classes top-k, and
the number of synthesized samples for each unseen class Nsyn. Fig. 6 shows the CZSL and GZSL
performances using different hyper-parameters. In (a), the results indicate that GenZSL is robust to
varying values of λ and achieves good performance when λ is relatively small (i.e., λ = 0.1). This is
because LBoost is a semantic-level toward target class-guided information boosting criteria, which
is a supplement to the vision-level one (e.g., LLR). In (b), we evaluate the top similar classes as
referent classes varying k = {1, 2, 4, 8}. We find that our GenZSL uses the top− 2 referent classes
to obtain better performance, which brings the mixup technique for data augmentation. In (c), our
GenZSL is shown robust to Nsyn when it is not set in a large number. The Nsyn can be set as 1600 to
balance between the data amount and the ZSL performance. Overall, Fig. 6 shows that our GenZSL
is robust to overcome hyper-parameter variations. The hyper-parameter analysis on SUN and AWA2
are presented in Appendix E. Accordingly, we empirically set these hyper-parameters {λ, k,Nsyn}
as {0.1, 2, 1600}, {0.001, 2, 800} and {0.1, 2, 5000} for CUB, SUN and AWA2, respectively.

5 LIMITATION DISCUSSION

The potential limitations of our GenZSL includes:

• If there lacks enough similar seen classes as reference, IVAE may need more learning time
to evolve the referent samples to be target samples;

• The CLIP text embedding of class name lacks informative class information, which hampers
the knowledge transfer of GenZSL.

9
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6 CONCLUSION

In this work, we propose an inductive variational autoencoder as a new generative model for zero-shot
learning, namely GenZSL. Inspired by human perception, GenZSL operates on an induction-based
approach to synthesize informative and high-quality sample features for unseen classes. To achieve
this, we introduce class diversity promotion to enhance the diversity and discrimination of class
semantic vectors. Additionally, we design two losses targeting the criteria of target class-guided
information boosting to optimize the model. Through qualitative and quantitative analyses, we
demonstrate that GenZSL consistently outperforms existing generative ZSL methods in terms of
efficacy and efficiency. We hope that our induction-based generative method offers new insights into
zero-shot learning and other generation tasks, paving the way for further advancements in these areas.
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APPENDIX

Appendix organization:

• Appendix A: Testing process of GenZSL.
• Appendix B: Class semantic vectors’ similarity heatmaps.
• Appendix C: Generative ZSL with weak class semantic vectors.
• Appendix D: t-SNE visualization on SUN and AWA2.
• Appendix E: Hyper-parameter analysis on SUN and AWA2.

A TESTING PROCESS OF GENZSL

We present the testing process of GenZSL in Fig. 7. Different to the standard VAE that samples the
new data from Gaussian noise, our GenZSL inducts the informative new sample features for unseen
classes from the similar seen classes and takes Gaussian noises to enable IVAE to synthesize variable
and diverse samples. Then, we take the synthesized unseen class samples x̂u to learn a supervised
classifier (e.g., softmax), which is used for ZSL evaluation further.

Inductive Encoder Inductive Decoder…

Top-1 Top-2 Top-k

… Classifier

Figure 7: Testing process of GenZSL.

B CLASS SEMANTIC VECTORS’ SIMILARITY HEATMAPS

We show the lass semantic vectors’ similarity heatmaps of SUN and AWA2 in Fig. 8. Results
show that our CDP effectively improves the discrimination and diversity for class semantic vectors,
avoiding the confusion of synthesized visual features between various classes. For example, the mean
similarity of class semantic vectors on AWA2 is reduced from 0.7609 to 0.0005. As such, the class
semantic vectors served as a distinct conditions for effective generation.

(b) CLIP w/ CDP(a) CLIP text encoder (d) CLIP w/ CDP(c) CLIP text encoder

Mean Similarity (0.7312) Mean Similarity (9 ) Mean Similarity (0.7609) Mean Similarity (0.0005)

Figure 8: Class semantic vectors’ similarity heatmaps are extracted by CLIP text encoder and CLIP
with class diversity promotion on SUN (a,b) and AWA2 (c,d).

C GENERATIVE ZSL METHODS WITH WEAK CLASS SEMANTIC VECTORS

We provide the results of imagination-based ZSL (e.g., f-VAEGAN [54]) and induction-based
generative ZSL (e.g., GenZSL) using weak class semantic vectors (e.g., CLIP text embeddings of
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class names) on SUN and AWA2. Results are shown in Table 5. We find that i) the performances
of f-VAEGAN drop heavily on SUN (acc : 64.7% → 45.2%; H : 41.3% → 33.3%) and AWA2
(acc : 71.1% → 67.1%; H : 63.5% → 59.8%) when it uses the weak class semantic vector
rather than the strong one (e.g., expert-annotated attributes); ii) our GenZSL achieves significant
performance gains over f-VAEGAN. These demonstrate that induction-based generative model is
more feasible for ZSL than the imagination-based ones.

Table 5: Results of various generative ZSL methods with weak class semantic vectors on SUN and
AWA2.

Methods
SUN AWA2

CZSL GZSL CZSL GZSL
acc U S H acc U S H

f-VAEGAN (strong) 64.7 45.1 38.0 41.3 71.1 57.6 70.6 63.5
f-VEAGAN (weak) 45.2 32.4 34.3 33.3 67.0 43.3 83.2 59.8
GenZSL (weak) 73.5 50.6 43.8 47.0 92.2 86.1 88.7 87.4
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(a) f-VAEGAN on SUN (b) Our GenZSL on SUN
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(c) f-VAEGAN on AWA2 (d) Our GenZSL on AWA2

Figure 9: Qualitative evaluation with t-SNE visualization. The sample features from f-VAEGAN
[54] are shown on the left, and from our GenZSL are shown on the right. We use 10 colors to denote
randomly selected 10 classes from SUN (a,b) and AWA2 (c,d). The "×" and "◦" are denoted as the
real and synthesized sample features, respectively. The synthesized sample features and the real
features distribute differently on the left while distributing similarly on the right.

D T-SNE VISUALIZATION ON SUN AND AWA2

As shown in Fig. 9, t-SNE visualizations of visual features learned by the f-VAEGAN [54] and
our GenZSL on SUN (a,b) and AWA2 (c,d). Analogously, the visual features generated by f-
VAEGAN are also far away from their corresponding real ones, and the discrimination of these
real/synthesized visual features is undesirable. In contrast, our GenZSL synthesize visual features
close to their corresponding real ones. As such, our GenZSL significantly improves the performances
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Figure 10: Hyper-parameter analysis. We show the performance variations loss weight λ, the number
of the top referent classes top-k, and the number of synthesized samples of each unseen class Nsyn

on SUN (a,b,c) and AWA2 (d,e,f).

of f-VAEGAN on CUB and SUN. This demonstrates that GenZSL is a effective generative ZSL
model.

E HYPER-PARAMETER ANALYSIS ON SUN AND AWA2

We analyze the effects of different hyper-parameters of our GenZSL on SUN and AWA2 datasets.
These hyper-parameters include the loss weight λ in Eq. 5, the number of the top referent classes
top-k, and the number of synthesized samples for each unseen class Nsyn. Fig. 6 shows the GZSL
performances of using different hyper-parameters. We observe that our GenZSL is robust and easy to
train. We empirically set these hyper-parameters {λ, k,Nsyn} as {0.001, 2, 800} and {0.1, 2, 5000}
for SUN and AWA2, respectively.
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