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Abstract
This paper introduces Graphon Attachment Net-
work Models (GAN-M), a novel framework for
modeling evolving networks with rich structural
dependencies, grounded in graphon theory. GAN-
M provides a flexible and interpretable founda-
tion for studying network formation by leveraging
graphon functions to define attachment probabili-
ties, thereby combining the strengths of graphons
with a temporal perspective. A key contribution
of this work is a methodology for learning struc-
tural changes in these networks over time. Our
approach uses graph counts—frequencies of sub-
structures such as triangles and stars—to capture
shifts in network topology. We propose a new
statistic designed to learn changes in the resulting
piecewise polynomial signals and develop an effi-
cient method for change detection, supported by
theoretical guarantees. Numerical experiments
demonstrate the effectiveness of our approach
across various network settings, highlighting its
potential for dynamic network analysis.

1. Introduction
The learning, understanding, and application of networks
have become increasingly crucial with the exponential
growth of datasets represented as networks or graphs. The
rise of large-scale networks has driven the development of
mathematical frameworks for analyzing and interpreting
these structures, with graph theory playing a central role
(Lovász, 2012). A significant breakthrough in this area is the
graphon framework—short for “graph functions”—which
provides a unified and powerful tool for understanding large
networks. This framework is particularly appealing due
to its functional characterization of network limits, repre-
sented as a bivariate function that captures the asymptotic
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properties of graphs. However, traditional graphon models
are inherently static, limiting their applicability to dynamic
systems where the network structure evolves over time.

A defining characteristic of many real-world networks is
their dynamic nature, where new nodes are introduced se-
quentially over time, leading to a final network with an
inherent node registration order. Such networks naturally
arise in various contexts, including the World Wide Web,
email communication, paper citation networks, and more,
where new participants continuously join the system. For a
comprehensive survey on dynamic graph models, we refer
to Zaki et al. (2016). A widely studied model for describing
this attachment process is the preferential attachment model
(Barabási & Albert, 1999). In this model, new nodes are
more likely to connect to existing nodes with higher de-
grees, encapsulating the “rich get richer” phenomenon. This
mechanism produces networks with degree distributions
that follow power laws, making it particularly suitable for
modeling certain types of real-world networks. Nonetheless,
preferential attachment focuses primarily on degree hetero-
geneity and overlooks higher-order structural dependencies
or temporal changes in the underlying network properties.

Motivated by the complementary strengths of graphons for
characterizing large networks and attachment models for
describing growth processes, we propose a novel framework
called the Graphon Attachment Network Model (GAN-
M). GAN-M models the attachment process using time-
evolving graphons, effectively bridging the gap between
static graphon theory and dynamic network growth. A defin-
ing advantage of this framework lies in flexibility: when the
underlying graphon remains constant, the resulting network
conforms to a standard graphon model. However, when
the graphon evolves over time, the framework introduces
structural changes, enabling the modeling of more complex
and realistic network dynamics. This capability provides
a unified approach to analyzing networks, addressing both
static and dynamic regimes, and opens the door to modeling
a broader range of real-world applications, such as evolving
citation networks or online social platforms.

Building on this foundation, we address the challenge
of learning changes in the dynamic process of graphons.
Change detection in such dynamic models has far-reaching
implications for network analysis and has garnered increas-
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ing attention in recent years. For example, within the pref-
erential attachment framework, several studies have inves-
tigated change-point detection (Bhamidi et al., 2018; Bet
et al., 2023; Kaddouri et al., 2024). Similarly, learning
change points in time series of networks has been explored
extensively (Lévy-Leduc & Roueff, 2009; Peel & Clauset,
2015; Wang et al., 2021; Zhang et al., 2024; Fan & Wu,
2024). We refer to Aminikhanghahi & Cook (2017); Chen
& Chu (2023); Zhou et al. (2024) for reviews on change-
point detection methods. However, these approaches are
largely confined to static networks or rely on assumptions
of independence, making them unsuitable for dynamic net-
works characterized by cumulative growth and evolving
graphon structures. Our work extends these efforts by de-
veloping methodologies tailored to the GAN-M framework,
providing a novel perspective on dynamic networks and
their structural evolution.

From a methodological perspective, classical change-point
detection methods such as CUSUM and MOSUM are not
directly applicable to our setting due to three fundamen-
tal challenges: (i) the adjacency matrices of the networks
vary in size at different time points, reflecting the dynamic
growth of the network, (ii) all edges in Gt persist in Gt′

for t′ ≥ t, leading to cumulative and irreversible network
growth over time, and (iii) At the time points after the first
change, the networks are generated by a mixture of mul-
tiple graphon functions. These properties fundamentally
distinguish our problem from classical change-point detec-
tion tasks, making it difficult to find suitable benchmark
methods in simulations, and necessitate new methodologi-
cal developments.

To address these challenges, we focus on subgraph counts,
a well-established tool in network analysis (Bickel et al.,
2011; Shao et al., 2022). A key conceptual contribution of
our work, as established in Lemma 2.6, is that the expected
counts of fixed subgraphs in GAN-M evolve as piecewise
polynomial functions, where the order of the polynomial is
determined by the size of the subgraph. This critical obser-
vation reframes the problem of learning structural changes
as identifying shifts in the coefficients of a piecewise polyno-
mial mean function, which represents a significant departure
from classical approaches.

However, learning changes in piecewise polynomial trends
presents a unique challenge: classical CUSUM or MOSUM
statistics are designed for mean shifts in independent or
weakly dependent data and do not account for the evolving
polynomial structure. Moreover, subgraph counts across
time points exhibit strong dependencies, as they are in-
fluenced by the cumulative growth of the network. This
strong dependence invalidates the independence assump-
tions underpinning most existing methods, rendering them
unsuitable for our context.

To overcome these obstacles, we propose a novel extension
of the CUSUM framework tailored to polynomial trends in
highly dependent data. This statistic, which we term WE-
SUM (Weighted Sum), incorporates weights to effectively
account for the polynomial nature of subgraph evolution
and the dependencies across time points. A key strength
of WESUM lies in its robustness to dependence, making it
well suited for dynamic network settings.

We provide rigorous theoretical guarantees for WESUM, in-
cluding detection bounds and consistency for change-point
estimation, and establish rates that highlight its efficiency
in dynamic network analysis. Extensive simulation studies
validate the effectiveness of our approach, demonstrating
its superiority in identifying structural changes in dynamic
and evolving networks compared to classical methods. By
bridging graphon theory with dynamic network modeling,
our work introduces a fundamentally new class of change-
point detection methodologies, providing powerful tools for
understanding and analyzing complex network evolution.

The remainder of this paper is structured as follows. Sec-
tion 2 outlines the problem setup, providing a detailed de-
scription of the graphon attachment network with change-
points and its subgraph count properties. In Section 3, we
introduce our proposed statistics and present the correspond-
ing theoretical results. Section 4 presents the findings from
our simulation studies. Section 6 concludes the paper and
discusses potential directions for future research. Finally,
detailed algorithms, simulation settings, and all technical
proofs are provided in the appendix.

Notations: For a graph G, let V (G) and E(G) denote its
set of nodes and edges, respectively. For a vector x ∈ Rp,
the norm is defined as ∥x∥ =

(∑p
i=1 x

2
i

)1/2
. For a set S,

|S| denotes the number of elements in S. For a real number
x, ⌈x⌉ represents the smallest integer greater than or equal
to x, and ⌊x⌋ represents the largest integer smaller than or
equal to x. Let I(·) denote the indicator function. For two
positive real numbers a and b, we write a ∧ b = min(a, b)
and a ∨ b = max(a, b). For two sequences of positive
real numbers an and bn, we say an = O(bn) if there exist
positive constants N and C such that an/bn ≤ C for n > N
and an ≍ bn if an = O(bn) and bn = O(an).

2. Problem Setup
We introduce the Graphon Attachment Network Model
(GAN-M), which combines the dynamic growth process
of networks with the flexibility of graphon-based attach-
ment probabilities.

Definition 2.1 (Graphon Attachment Network Model). Let
Gt denote the graph at time t, with At as its adjacency
matrix, for 1 ≤ t ≤ T . The model begins with an initial
simple graph G1 containing m nodes (m ≥ 1), where each
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node is assigned a random value U1, U2, . . . , Um ∼ U(0, 1),
drawn independently.

For t > 1, the graph Gt is formed recursively. Given the
values U1, . . . , Um+t−2 and the adjacency matrix At−1, the
adjacency matrix At is updated by attachment as follows:

• Preserve all existing edges: for 1 ≤ i, j ≤ m+ t− 2,
set At(i, j) = At−1(i, j).

• Assign At(m + t − 1,m + t − 1) = 0, ensuring no
self-loops for the new node.

• Draw Um+t−1 ∼ U(0, 1), independently of all random
variables generated in the previous steps.

• Form edges between the new node j := m+ t− 1 and
each existing node i (1 ≤ i ≤ m+t−2) independently,
with probability:

P(At(i, j) = 1 | Ui, Uj) = hT,t(Ui, Uj),

where hT,t : [0, 1]2 → [0, 1] is a symmetric measur-
able function defining the attachment probability.

Definition 2.1 focuses on undirected simple graphs but can
be readily extended to directed graphs with minimal modi-
fications. The GAN-M framework models the attachment
process such that new edges form only between the new
node and existing nodes, reflecting a growth mechanism
similar to the preferential attachment model. However, un-
like the preferential attachment model, GAN-M incorporates
a graphon-based approach, where the symmetric measur-
able function hT,t, referred to as a graphon, governs the
attachment probabilities. This integration allows GAN-M
to capture complex and evolving network structures effec-
tively.

The GAN-M framework generalizes several well-
established network models, offering significant flexibility.
Specifically, when hT,t = h for a fixed function h, GAN-M
reduces to the traditional graphon network (Lovász, 2012).
Furthermore, by setting hT,t = ρTh, where ρT → 0, the
model generates a sparse graphon network. Additionally,
the model encompasses Lp-graphons as introduced by
Borgs et al. (2019; 2018). The flexibility of GAN-M is fur-
ther enhanced by allowing the initial graph to be any simple
finite graph, enabling the network to evolve from a wide
range of starting configurations. This feature accommodates
various real-world scenarios by incorporating pre-existing
structures. A similar approach, where the network starts
with a seeded graph, is also employed in the preferential
attachment model (Bubeck et al., 2015; Hormozdiari et al.,
2007).
Remark 2.2. The fitness model (Caldarelli et al., 2002)
shares certain connections with the graphon model. In the

fitness model, the link function can depend not only on
the fitness values of nodes i and j but also on additional
factors, such as the maximum fitness in the entire network
or a threshold related to the network size. In this paper, we
ground our model within graphon theory, as the graphon
function can be viewed as a graph limit (Lovász, 2012).
Moreover, our GAN-M extends the graphon model in two
key aspects: (i) the graphon function is allowed to depend
on T, t; and (ii) GAN-M allows the specification of an initial
sample graph G1.

A notable strength of the GAN-M lies in its triangular ar-
ray structure, which allows hT,t to adapt to the final net-
work size T . This adaptability enables GAN-M to gener-
ate networks with pronounced degree heterogeneity, where
the maximum, average, and minimum node degrees dif-
fer substantially. Such heterogeneity reflects real-world
network characteristics (Ke & Wang, 2024). For exam-
ple, in Scenario 1 of Section A.2, we set hT,t(x, y) =
T−0.6(xy)−0.9 ∧ 1, showcasing the model’s ability to pro-
duce networks with diverse degree distributions. This versa-
tility underscores the model’s capacity to represent complex
network dynamics and structural diversity.

A key innovation in GAN-M is the evolution of the graphon
hT,t over time, allowing attachment probabilities to change
as the network grows. This raises a fundamental question:

Do structural changes in the function hT,t result in shifts in
the stochastic behavior of Gt and vice versa?

In real-world networks, such changes often signal shifts in
underlying dynamics, such as variations in user behavior,
modifications to system policies, or external influences on
network growth. Learning and interpreting these changes
is crucial for applications such as social network analysis,
epidemic modeling, and communication networks, where
the nature of connections evolves over time.

Thus, we can formalize the change detection problem
as follows. Assume the existence of time points η =
{η0, . . . , ηK+1}, where 1 = η0 < η1 < · · · < ηK <
ηK+1 = T + 1, at which the graphon functions hT,t un-
dergo changes. Specifically, hT,t differs from hT,t−1 if and
only if t = ηk for some 1 ≤ k ≤ K. The precise notion
of “difference” between graphon functions is clarified in the
following remark.
Remark 2.3 (Identifiability of a graphon). Identifiability
issues are inherent in any graphon model. For instance,
consider two graphons: h1(x, y) = xy and h2(x, y) =
(1 − x)(1 − y). Although h1 ̸= h2 for almost all (x, y) ∈
[0, 1]2, they are “essentially the same” because the ran-
dom variables Ui and 1 − Ui are interchangeable under
measure-preserving transformations. More formally, let
φ : [0, 1] → [0, 1] be a measure-preserving map, and de-
fine hφ

1 (x, y) = h1(φ(x), φ(y)). Then, for every graph H ,
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the homomorphism densities hom(H,hφ
1 ) and hom(H,h1)

are identical, where hom(H,h1) is the homomorphism den-
sity defined in (1) in Section 2.1. Consequently, the two
graphons are indistinguishable.

Following Lovász (2012), we measure the difference be-
tween two graphons h1 and h2 using the cut norm:

δ□(h1, h2)

= inf
φ∈Φ

sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

[h1(x, y)− h2(φ(x), φ(y))] dx dy

∣∣∣∣ ,
where Φ denotes the set of all invertible measure-preserving
maps. We say that h1 and h2 differ if δ□(h1, h2) ̸= 0.

Thus, when we state that hT,t differs from hT,t−1, we mean
that δ□(hT,t, hT,t−1) ̸= 0.
Remark 2.4 (Networks observed within intervals). In the
definition of the GAN-M, we assume that the time stamps
of each network Gt are available; however, this may not
always be the case in practice. In many real-world scenarios,
networks are observed at fixed intervals, with multiple nodes
added after each period. In such cases, we can treat these
newly added nodes as belonging to the same time step t.
We can then reorder these nodes arbitrarily, “unfold” them
for analysis, and later “collapse” them back after learning
the point of change. This approach is illustrated in Figure 1.
Since the localization error in change-point detection cannot
be smaller than Op(1), the theoretical results presented in
this paper hold as long as the number of nodes entering
the network at each time step (which may vary) remains
bounded. We also note that a similar collapsing technique is
employed in the preferential attachment model and its asso-
ciated branching process; for further details, see Garavaglia
& van der Hofstad (2018) and Garavaglia et al. (2022).
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Figure 1. A diagram illustrating the process of the “unfold and
collapse” method when multiple nodes enter the network at the
same time.

2.1. Subgraph Counts

Our objective is to learn K, the number of change points,
and η, their locations, from the final observation GT and
its adjacency matrix AT . Intuitively, a change in Gt corre-
sponds to a change in At, which manifests in observable

features of the network at time t. Therefore, it is natural
to consider various statistics of the network, and the partic-
ular statistic we focus on is the moments of the network,
specifically subgraph counts (Bickel et al., 2011).

For a given graphon hT,t and a deterministic simple graph
H (e.g., H = ), we define the homomorphism density as:

hom(H,hT,t) =

∫
[0,1]|V (H)|

∏
ij∈E(H)

hT,t(xi, xj)
∏

i∈V (H)

dxi,

(1)
where V (H) and E(H) represent the node and edge sets of
H , respectively.

Next, suppose that Gt is a graphon attachment network at
time t (where t ≥ |V (H)|). We define the subgraph count
of H in Gt as:

NH(Gt) =
∑

φ:V (H)→V (Gt)

∏
uv∈E(H)

I(φ(u), φ(v) ∈ E(Gt)),

where φ denotes an injective mapping from V (H) to
V (Gt).
Remark 2.5 (Cut Norm and Homomorphism Density). Sub-
graph counts provide a natural and effective approach for
learning changes in our model, as they are directly related
to the cut norm and homomorphism density (Lovász, 2012,
Corollary 10.34 and Lemma 10.32). Specifically, the fol-
lowing properties hold:

1. δ□(hT,1, hT,2) = 0 ⇐⇒ hom(H,hT,1) =
hom(H,hT,2) for every simple graph H .

2. Let k be a positive integer. If for every simple
graph H with k nodes, we have |hom(H,hT,1) −
hom(H,hT,2)| ≤ 2−k2

, then δ□(hT,1, hT,2) ≤
50√
log(k)

.

The subgraph counts NH(Gt) defined above satisfy the fol-
lowing key property, which is essential for the development
of our main methodology:
Lemma 2.6. In the context of this paper, suppose that ηk ≤
t < ηk+1 for some 0 ≤ k ≤ K. Then, we have

E[NH(Gt)] = (t−ηk)
|V (H)| hom(H,hT,ηk+1

)+Q|V (H)|−1(t),

where Q|V (H)|−1(t) is a polynomial of degree |V (H)| − 1
in t.

This lemma is central to our approach, as it provides a
clear and precise approximation for the expected subgraph
counts at each time step t, accounting for potential structural
changes in the network. The polynomial term Q|V (H)|−1(t)
captures the gradual transition in network structure, while
the leading term (t − ηk)

|V (H)| hom(H,hT,ηk+1
) directly

links the subgraph counts to the change in the graphon
function hT,t at the change points. This relationship is
pivotal in learning structural changes in the graph over time.
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2.2. Why Not CUSUM?

CUSUM is a popular method for change-point detection.
Let us first review the CUSUM statistic. Consider a sample
Xr, where r ∈ (s, e] is an integer indexing the time of
X . To identify a change point within (s, e], the CUSUM
procedure constructs a statistic of the form

X̃t
s,e =

1√
e− s

t∑
r=s+1

√
e− t

t− s
Xr −

e∑
r=t+1

√
t− s

e− t
Xr.

(2)

The appeal of the CUSUM procedure lies in its ability to
identify a time point t ∈ (s, e] such that |EX̃t

s,e| is maxi-
mized. Moreover, the method is highly visualizable, making
it intuitive and easy to interpret in practical applications.

However, the CUSUM method is not applicable in the con-
text of this paper. First, the size of Gt increases over time,
which makes it impossible to directly use the adjacency
matrix Ar as Xr in (2). Secondly, the CUSUM statistic is
designed to detect changes in piecewise constant signals,
while our subgraph count NH(Gr) has a piecewise polyno-
mial expectation. Direct application of CUSUM would lead
to failure, as the population version of the statistic at the true
change-point location is no longer maximized. Therefore, it
is necessary to develop a new statistic tailored for learning
changes in piecewise polynomial signals, while retaining
the structure and advantages of the CUSUM framework.

3. Learning Changes via WESUM
We introduce the WESUM (Weighted SUM) statistic, a
novel extension of the classical CUSUM framework, specif-
ically designed to address the challenges posed by graphon
attachment networks. Unlike standard methods, WESUM
utilizes subgraph counts NH(Gt) to learn structural changes
in the dynamic and cumulative growth of networks. By
handling issues such as evolving network sizes and strong
dependencies, WESUM provides an interpretable and ef-
ficient solution, marking a significant advancement in the
analysis of time-evolving graphons.

3.1. WESUM

The construction of WESUM is guided by two key princi-
ples. First, the coefficients of weights must be orthogonal
to the polynomial vector up to order |V (H)|, ensuring that
polynomial trends are removed. Second, the statistic should
attain its maximum at the change point, allowing for precise
localization. With these objectives in mind, we define the
statistic as follows:

X̃t
s,e(H) =

√√√√|V (H)|∑
k=0

(
X̃t,k

s,e(H)
)2

, (3)

where

X̃t,k
s,e(H) =

e∑
r=s+1

w̃t,k
s,e(r)NH(Gr), 0 ≤ k ≤ |V (H)|,

(4)
and the coefficients {w̃t,k

s,e(r)}er=s+1 are determined through
a projection procedure. For clarity, the subscripts for s, t,
and e are omitted in the following:

ak = (0, · · · , 0, 1k, 2k, · · · , (e− t)k)⊤,

U0 =


1 s+ 1 (s+ 1)2 · · · (s+ 1)|V (H)|

1 s+ 2 (s+ 2)2 · · · (s+ 2)|V (H)|

...
...

...
...

...
1 e e2 · · · e|V (H)|

 ,

Uk = (Uk−1, ak−1),

PUk
= Uk(U

⊤
k Uk)

−1U⊤
k ,

Wk = (I − PUk
)ak.

If Wk ̸= 0, we set

(w̃t,k
s,e(s+ 1), · · · , w̃t,k

s,e(e))
⊤ =

Wk√
W⊤

k Wk

, (5)

otherwise, the vector is set to zero.

To understand the connection between the statistic in (3)
and the classical CUSUM statistic, we summarize some
key properties below. Detailed proofs are provided in the
appendix:

1. Reduction to CUSUM: When |V (H)| = 0, the statis-
tic X̃t

s,e(H) reduces to the classical CUSUM statistic,
which is designed to learn changes in piecewise con-
stant signals.

2. Orthogonality of Coefficients: The coefficients
w̃t,k

s,e(r) satisfy:

e∑
r=s+1

(
w̃t,k

s,e(r)
)2

= 1,

e∑
r=s+1

rmw̃t,k
s,e(r) = 0,

for all 0 ≤ m ≤ |V (H)|. These conditions ensure that
the coefficients are orthogonal to polynomial trends
up to order |V (H)|, thereby maintaining the classical
CUSUM property.

3. Maximum at Change Point: When (s, e] contains
exactly one change point ηk, the population version of
the statistic (denoted f̃ t

s,e(H)) satisfies:

f̃ηk
s,e(H) = max

t∈(s,e]
f̃ t
s,e(H),

ensuring that the statistic highlights the change point,
and the location can be precisely localized using
argmax in Algorithm 2 in Section A.1.
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In summary, the WESUM statistic retains the interpretability
and effectiveness of the classical CUSUM procedure, while
extending its utility to higher-order trends and complex
network structures.

3.2. Algorithms

Building on the construction of WESUM, we adapt stan-
dard multiple change-point detection algorithms, originally
designed for the CUSUM statistic, by replacing it with our
proposed statistic. Specifically, we employ the random in-
terval distillation procedure from Fan & Wu (2024), along
with the seeded intervals method from Kovács et al. (2023),
to enhance computational efficiency. Detailed descriptions
of these algorithms can be found in Algorithm 1 and Algo-
rithm 2, provided in Appendix A.1.

In summary, the proposed change-point detection algorithm
proceeds as follows:

1. Line 2-12 in Algorithm 1: Construct an initial set of in-
tervals I = {(sm, em]}Mm=1 based on seeded intervals.

2. Line 13-18 in Algorithm 1: For each interval
(sm, em] ∈ I , compute the maximum value of the
statistic, maxt:sm<t≤em |X̃t

sm,em |, and retain those in-
tervals where the computed value exceeds a predeter-
mined threshold τ .

3. Line 19-33 in Algorithm 1: Apply the distillation
method from Fan & Wu (2024) to refine the retained
intervals, resulting in a set of disjoint intervals S∗ =

{[lk, rk]}K̂k=1. The cardinality |S∗| learns the total
number of change-points, K̂.

4. Algorithm 2: Expand each interval [lk, rk] to [s̃k, ẽk],
and learn the location of the k-th change-point as η̂k =
argmaxt:lk<t≤rk |X̃t

s̃k,ẽk
|.

The time complexity of Algorithm 1 and Algorithm 2 is
O(T log(T )), ensuring that the method is efficient and scal-
able for large networks.

3.3. Theoretical Results

Denote ∆ = mink=1,··· ,K−1{ηk+1−ηk}∧ (η1−1)∧ (T +
1− ηK) as the minimal spacing between change-points or
boundary points. Let H be a deterministic finite simple
graph, and let κk = |hom(H,hT,ηk

)− hom(H,hT,ηk−1
)|

for 1 ≤ k ≤ K denote the jumping magnitude at each
change-point. The key theoretical guarantee for the consis-
tency of change-point detection and localization is stated in
the following theorem:

Theorem 3.1. Assume the following conditions hold:

(i) There exists a constant c0 > 0 such that

min
k

κk∆
|V (H)|+1/2 ≥ c0T

|V (H)|−1/2 log(T ). (6)

(ii) The threshold τ in Algorithm 1 satis-
fies C0T

|V (H)|−1/2 log1/2(T ) < τ <

C1 mink κk∆
|V (H)|+1/2−C0T

|V (H)|−1/2 log1/2(T ),
where C0 and C1 are sufficiently large positive con-
stants.

Under these conditions, the learned K̂ and η̂1, . . . , η̂K̂ ob-
tained from Algorithm 1 and Algorithm 2 satisfy

P

(
K̂ = K, max

1≤k≤K
|η̂k − ηk| ≤ ϵ

)
≥ 1− C2T

−1,

where

ϵ = C3

(
T |V (H)|−1/2

√
log(T )

mink κk

) 1
|V (H)|+1/2

,

and C2, C3 > 0 are constants.

A few comments on this theorem are in order:

1. Signal-to-Noise Ratio Condition: Equation (6) estab-
lishes a signal-to-noise ratio condition, which links the
minimal jump magnitude (mink κk) and spacing (∆) to
the sample size (T ). This ensures that the signal is suf-
ficiently distinguishable from noise. Notably, equation
(6) does not necessitate the boundedness of any term
in it; instead, it only requires that the combined terms
collectively satisfy the signal-to-noise ratio condition.

2. Correlations in Subgraph Counts: Due to strong cor-
relations between NH(Gt) and NH(Gt−1), the term
T |V (H)|−1/2 appears in (6), reflecting the impact of
temporal dependencies in the data.

3. Minimal Spacing and Jump Magnitude: When the
number of change-points (K) is bounded and mink κk

is bounded away from zero, the minimal spacing ∆
can be as small as T (|V (H)|−1/2)/(|V (H)|+1/2) log(T ).
Conversely, if ∆ ≍ T , the jump magnitude (mink κk)
can be as small as log(T )/T . These results highlight
the flexibility of our method in accommodating varying
levels of sparsity and signal strength.

4. Consistency and Localization Error: The theorem
guarantees that, with high probability, the learned num-
ber of change-points (K̂) equals the true number (K).
Additionally, the localization rate ϵ/∆ decreases as T
increases, satisfying ϵ/∆ = o(1) by (6). This ensures
consistency, a fundamental property in change-point
detection, as discussed in Fan & Wu (2024) and Yu
et al. (2022).
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Figure 2. An illustrative example of the change-point detection procedure. Let T = 300 and η = 200, with hT,t(x, y) = (x− y)2 for
1 ≤ t ≤ 200, and hT,t(x, y) = 1/6 for 201 ≤ t ≤ 300. The left panel shows a sample network, displaying only induced subgraphs at
10k + 1 for k = 0, . . . , 29. The middle panel plots the subgraph counts NH(Gt) for H = △ (triangle) alongside their expected values.
Using Algorithm 1 with τ = T 2.5√log T , we estimate K̂ = 1 and S∗ = {[87, 225]}. Finally, applying Algorithm 2, we localize the
change-point at η̂ = 202, close to the true value η = 200.
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Figure 3. Plots of w̃t,k
s,e(r) for s = 0, e = 1000, and several values of t. Left figure: t = 500; Right figure: t = 750.

5. Choice of H: From (6), it is evident that a smaller size
for H leads to a better detection bound. Therefore, we
recommend using smaller subgraphs, such as , , or

, for change-point detection, which aligns with the
findings in our simulations.

Remark 3.2 (Utilizing multiple subgraphs). A natural ques-
tion arises regarding which subgraphs are most suitable for
learning changes. While determining the optimal choice of
subgraphs may be an interesting avenue for further explo-
ration, we can instead consider using multiple subgraphs
simultaneously, such as H = , , or . In this case,
we aggregate the information from these subgraphs by re-
taining an interval if the statistic corresponding to at least
one of the subgraphs exceeds its pre-specified threshold.
This approach enables the simultaneous use of different
graph structures in the change-point detection process. The
subsequent steps of the procedure, including the distilla-
tion method (line 19-33 in Algorithm 1) and change-point
localization (Algorithm 2), remain unchanged. It is straight-
forward to verify that, under this aggregation of subgraphs,
Theorem 3.1 still holds, ensuring both consistency and ac-
curate localization of change-points.

4. Simulation Studies
In this section, we evaluate the performance of the proposed
method through a series of simulation experiments. We
use three commonly adopted evaluation metrics from the
literature (e.g., Wang et al. (2021), Wang et al. (2020)):

• The difference between the learned and true number of
change-points, K̂ −K, where K̂ denotes the number
of learned change-points and K represents the true
number.

• The normalized Hausdorff distance H(η̂, η)/T , where
H(η̂, η) is defined as

H(η̂, η) = max

{
max
x∈η

min
y∈η̂

|x− y|,max
y∈η̂

min
x∈η

|x− y|
}
,

where a smaller value of H(η̂, η)/T indicates better
performance.

• The Averaged Rand Index (ARI), as defined by Rand
(1971) and Hubert & Arabie (1985), which ranges from
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Table 1. Summary of results for Scenarios 1-4.

Scenario Parameter(s) Subgraph K̂ −K H(η̂, η)/T
(×10−2) ARI≤ −1 0 ≥ 1

1 (With Degree
Heterogeneity)

α = 0.75
0 92 8 9.40 0.85
1 97 2 8.07 0.86

0.65 0 95 5 4.64 0.92
0 99 1 5.47 0.90

0.5 0 98 2 1.93 0.96
0 99 1 4.40 0.92

2
(Triangle Detection)

T = 200 5 95 0 9.94 0.87
400 0 94 6 7.11 0.88

3 (SBM)

(C1, C2)
=(0.12, 0.04)

0 100 0 0.26 1.00
2 95 3 1.65 0.98
0 90 10 18.81 0.87

(0.14, 0.04)
0 100 0 0.24 1.00
0 100 0 0.63 0.99
0 97 3 17.94 0.87

4 (RDPG)

(C1, . . . , C4)
= (0.06, 0.02,
0.04, 0.01)

0 91 9 1.58 0.98
1 89 10 2.71 0.97
19 81 0 6.77 0.92

(0.07, 0.02,
0.05, 0.01)

0 97 3 0.57 0.99
0 87 13 2.49 0.97
13 85 2 6.13 0.94

0 to 1. A higher ARI value indicates a more accurate
estimation.

For the subgraphs, we choose H = , , or , as these
are commonly used in the literature (e.g., Maugis et al.
(2020), Shao et al. (2022)). The threshold τ in Algorithm 1
is chosen based on a data-driven approach inspired by Fan
& Wu (2024). Specifically, we use

τ = max
j=1,...,T−h

max
j<t<j+h

|X̃t
j,j+h(H)| log(T ),

where h = ⌊3 log T ⌋ or ⌊6 log T ⌋. When we suspect severe
degree heterogeneity, we use h = ⌊6 log T ⌋; otherwise, we
use h = ⌊3 log T ⌋.

Due to space constraints, the specific settings for the four
simulations are provided in Appendix A.2. In each simula-
tion setting, we repeat the experiment 100 times and report
the mean values for H(η̂, η)/T , ARI, and the difference
K̂ −K.

From the results in Tables 1, we observe that in Scenario 1,
as α decreases (i.e., the magnitude of the jump increases),
the detection accuracy improves for both and . A
similar trend is evident in Scenario 2. It is important to
note that in Scenario 2, the jump magnitude mink κk is
generally small, which necessitates a sufficiently large sam-
ple size for accurate estimation, even when the number of
change-points K is known in advance. In Scenarios 3 and 4,
larger signal levels enhance estimation accuracy. However,

the convergence rate appears to be slower for larger sub-
graphs. Thus, we recommend using the smallest subgraphs,
such as triangles, in practical applications. Overall, these
findings highlight the effectiveness of our method across a
wide range of network settings, including dense, sparse, and
degree-heterogeneous networks.

5. A real data example
The email-Eu-core network data (Paranjape et al., 2017)
was constructed using email communications from a large
European research institution. This dataset captures all
email interactions among members over a period of 803
days, involving 986 individuals (nodes). In our analysis,
individuals are added to the network sequentially based on
the timestamp of their first email interaction with colleagues.
Two individuals are connected in the network if they have
exchanged emails. The dataset is particularly suitable for the
GAN-M model, as it exhibits a growing number of nodes,
with incoming nodes having a likelihood of establishing
connections with existing nodes.

The network exhibits substantial variability in node de-
grees. Specifically, the maximum degree is 345, the
mean degree is 22, and the minimum degree is 1, high-
lighting the heterogeneous nature of the nodes. As
recommended in Section 4, we set the threshold as
τ = maxj=1,...,T−h maxj<t<j+h |X̃t

j,j+h(H)| log(T ),
with h = ⌊6 log(T )⌋. We applied our algorithm using
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Figure 4. The counted subgraphs, along with the change-point detection results, are presented from left to right using line segments,
triangles, and rectangles as the selected subgraph structures, respectively.

subgraph patterns, including line segments, triangles, and
rectangles. For line segments, three change points were
detected at nodes 166, 422, and 759. For triangles, two
change points were identified at nodes 432 and 795. Sim-
ilarly, for rectangles, two change points were detected at
nodes 434 and 795. We visualize the counted subgraphs,
including line segments, triangles, and rectangles, along
with the change-point detection results in Figure 4.

Figure 4 provides valuable insights into the observed shifts.
For triangles and rectangles, the rate of subgraph count
growth before the first change point is notably higher than
that after it. This likely reflects an initial surge in network ac-
tivity, where frequent interactions and tasks lead to a denser
connection structure in the early stages. The second change
point, occurring at node 795, marks a significant increase in
subgraph counts. This shift may correspond to the entry of a
key figure into the network, altering connectivity dynamics
and driving the observed structural change.

For line segment subgraphs, the last two detected change
points closely align with those identified using triangles
and rectangles, demonstrating the robustness of our method
across different subgraph selections. However, an additional
change point is detected at node 166, providing a more
detailed view of early-stage connectivity changes. This
observation supports the notion that subgraphs with fewer
nodes can be more effective in capturing structural shifts.

6. Summary
In this paper, we introduce the graphon attachment network
model, a novel and dynamic extension of traditional static
networks, offering a robust framework for modeling and
understanding the evolution of complex networks over time.
By demonstrating that expected subgraph counts exhibit a
piecewise polynomial structure, we provide a powerful new
tool for learning structural changes in evolving networks.
Building on this insight, we develop the WESUM statis-
tic, a novel method specifically designed to learn depen-
dent changes in piecewise polynomial signals, effectively

addressing the long-standing challenge of change-point de-
tection in dynamic networks.

Our approach is underpinned by rigorous theoretical guar-
antees, including consistency and convergence rates, which
affirm the robustness of the method across a range of scenar-
ios. Moreover, the performance of our technique is validated
through extensive simulation studies, highlighting its supe-
rior accuracy and adaptability in diverse network settings.

This work opens up several exciting avenues for future re-
search. Notably, the extension of our statistic to learn abrupt
changes in graphons holds great promise for applications
in more intricate dependency structures, such as locally sta-
tionary processes. Furthermore, the deeper exploration of
graphon attachment networks and the development of gen-
eralized models for dynamic networks are essential steps
toward advancing the field.
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A. Appendix
A.1. Algorithms

Algorithm 1 takes the subgraph counts {NH(Gt)} and threshold τ as inputs and outputs the learned number of change-points
K̂ and a set of intervals S∗. These intervals are then used to learn the locations of change-points via Algorithm 2. The
algorithm consists of several steps:

In Lines 2-7, we utilize the original seeded intervals from Kovács et al. (2023). In Lines 8-12, these intervals are modified by
inserting equally spaced points and partitioning them to ensure that each change-point is well-positioned within an interval,
as described in Lemma A.1. This modification is primarily for technical proof purposes. The total length of all intervals in I
is O(T log T ), which ensures that the method is efficient in practice.
Lemma A.1. Let ∆ = mink=1,...,K−1{ηk+1 − ηk} ∧ (η1 − 1) ∧ (T + 1 − ηK) represent the minimal spacing between
change-points. If ∆ → ∞ as T → ∞, then for any ηk, 1 ≤ k ≤ K, there exists an interval (s, e] ∈ I such that
ηk − 0.125∆ < s < ηk − 0.025∆ and ηk + 0.025∆ < e < ηk + 0.125∆.

In Lines 13-18, we gather the intervals (sm, em] ∈ S where maxt:sm<t<em |X̃t
sm,em | > τ , aiming to exclude intervals that

contain no change-points. In Lines 19-33, we select endpoints from S to form new intervals. This step, which does not
involve NH(Gt) or τ , is based on the general approach described in Fan & Wu (2024).

To localize the change-points, we take argmax within the slightly lengthened intervals. Intuitively, as discussed in
Section 3.1, in the population version, we have f̃ηk

s,e(H) = maxt f̃
t
s,e(H) when the interval (s, e] contains only one change-

point ηk. Thus, taking the argmax in the sample version provides an estimator η̂k close to ηk. This approach is a natural
extension of CUSUM methods.

A.2. Settings of Simulation Studies

Scenario 1: Model with Degree Heterogeneity. We set T = 400 and η = 300, and define the graphon function hT,t(x, y)
as follows:

hT,t(x, y) =

{
1 ∧ T−0.6(xy)−α, t < 300,

1 ∧ T−0.6(xy)−0.9, t ≥ 300,
(7)

where α = 0.75, 0.65, 0.5. This graphon is designed to induce degree heterogeneity in the resulting network. To illustrate
this, we summarize the degree quantiles from a sampled network generated by three different graphons: (I) hT,t(x, y) =
1∧ T−0.6(xy)−0.9, (II) hT,t(x, y) = 1∧ T−0.6(xy)−0.5, and (III) a mixture of the two graphons, corresponding to α = 0.5
in (7), in Table 2. The table shows significant variability in the minimum, maximum, and average degrees, with a small
subset of nodes displaying exceptionally high degrees. These results demonstrate the presence of degree heterogeneity, a
feature commonly observed in real-world networks.

Table 2. Quantiles of node degrees in a sample network generated under Scenario 1.
Model T Min 25% Quantile Mean Median 75% Quantile Max

(I)
400 17 35 65.81 46 76 378

1000 31 60 126.03 81 132 999
4000 55 99 240.94 147 242 3999

(II)
400 11 22.75 34.07 29 39 169

1000 17 35.75 58.93 45 63.25 567
4000 35 63 103.67 76 106 1901

(III)
400 24 47 91.82 68 112 399

1000 55 86.75 182.59 116 204 999
4000 107 161 376.79 220 367 3999

Scenario 2: Triangle Detection. We set T = 200, 400, and η = 0.8T , and define the graphon function hT,t(x, y) as
follows:

hT,t(x, y) =

{
(0.5+x)2(0.5+y)2

1.84 , t < η,

0.1118, t ≥ η.
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Algorithm 1 Random Interval Distillation for Piecewise Polynomial Signals
1: Input: {NH(Gt)}Tt=1, τ
2: For 1 ≤ k ≤ ⌈log√2(T )⌉, let
3: nk = 2⌈2(k−1)/2⌉ − 1,
4: Lk = T2(k−1)/2,
5: Jk = T−Lk

nk−1 ,
6: Ik = ∪nk

i=1{(⌊(i− 1)Jk⌋, ⌈(i− 1)Jk + Lk⌉]}.
7: Let I∗ = ∪Ik and use the notation I∗ = {(s∗m, e∗m)}M∗

m=1. Let I = ∅.
8: while 1 ≤ m ≤ M∗ do
9: Let b(i)m = ⌊((44− i)s∗m + ie∗m)/44⌋, for i = 0, 1, . . . , 44.

10: Add all intervals (b(i)m , b
(j)
m ] with i < j into the set I .

11: end while
12: Use the notation I = {(sm, em]}Mm=1.
13: S = ∅.
14: while 1 ≤ m ≤ M do
15: if maxt:sm<t<em |X̃t

sm,em | > τ then
16: S = S ∪ {(sm, em]}.
17: end if
18: end while
19: S̃ = S, i = 1.
20: while |S̃| > 0 do
21: ri = min{v : ∃u, (u, v] ∈ S̃}.
22: v∗ = ri, u∗ = max{u : (u, v∗] ∈ S̃}.
23: S̃ = S̃ \ {(u, v] ∈ S̃ : (u, v] ∩ (u∗, v∗) ̸= ∅}.
24: i = i+ 1.
25: end while
26: K̂0 = i− 1, S̃ = S, i = 1.
27: while |S̃| > 0 do
28: lK̂0+1−i = max{u : ∃v, (u, v] ∈ S̃}.
29: u∗ = lK̂0+1−i, v

∗ = min{v : (u∗, v] ∈ S̃}.
30: S̃ = S̃ \ {(u, v] ∈ S̃ : (u, v] ∩ (u∗, v∗) ̸= ∅}.
31: i = i+ 1.
32: end while
33: K̂ = i− 1, S∗ = {[lj , rj ]}K̂j=1.
34: Output: K̂ and S∗.

Algorithm 2 Localization Procedure
1: Input: {NH(Gt)}Tt=1, S∗ from Algorithm 1
2: i = 1, K̂ = |S∗|. Suppose S∗ = {[lk, rk]}K̂k=1.

3: Let ∆̂ = min2≤k≤K̂

(
lk+rk

2 − lk−1+rk−1

2

)
∧
(
T + 1− lK̂+rK̂

2

)
∧
(
l1+r1

2 − 1
)

4: while i ≤ K̂ do
5: si = ⌊li − ∆̂/2⌋, ei = ⌊ri + ∆̂/2⌋
6: η̂i = argmaxt:li<t≤ri |X̃

t
si,ei |

7: i = i+ 1
8: end while
9: Output: η̂ = {η̂1, · · · , η̂K̂}

In this scenario, we observe that hom( , hT,t) remains constant for all t. As a result, is not suitable for learning the
change point at η. Instead, we use to learn the structural change in this case.

Scenario 3: Stochastic Block Model. We set T = 450 with change-points at η = {0.3T, 0.5T, 0.8T}, meaning the

14



Graphon Attachment Network Models

change-points are unequally spaced. The graphon function hT,t(x, y) is defined as:

hT,t(x, y) =

C1(1 + 1.5I(x, y)),
if t < 0.3T or

0.5T ≤ t < 0.8T
C2(1 + 1.5I(x, y)), elsewhere

where I(x, y) = I(⌈3x⌉ = ⌈3y⌉). We set the parameter values (C1, C2) = (0.12, 0.04) and (0.14, 0.04).

Scenario 4: Random Dot Product Graph. We set T = 450 with change-points at η = {0.4T, 0.7T, 0.9T}, indicating
unequally spaced change-points. The graphon function hT,t(x, y) is defined as:

hT,t(x, y) =

C1 + C3xy,
if t < 0.4T or

0.7T ≤ t < 0.9T

C2 + C4xy, elsewhere.

We set the parameters as (C1, C2, C3, C4) = (0.06, 0.02, 0.04, 0.01) for the first case, and (C1, C2, C3, C4) =
(0.07, 0.02, 0.05, 0.01) for the second. It is important to note that the graphs in this scenario are sparse.

A.3. Sensitivity

Table 3. Results for sensitivity analysis, Scenarios 3.

Scenario Parameter(s) Subgraph K̂ −K H(η̂, η)/T
(×10−2) ARI≤ −1 0 ≥ 1

3 (SBM)

(C1, C2)
=(0.12, 0.04)

0 100 0 0.26 1.00
2 95 3 1.65 0.98
0 100 0 0.31 1.00
0 90 10 18.81 0.87
0 90 10 19.01 0.87

(0.14, 0.04)

0 100 0 0.24 1.00
0 100 0 0.63 0.99
0 100 0 0.24 1.00
0 97 3 17.94 0.87
0 96 4 18.76 0.87

To show that our algorithm is robust to different choices of subgraphs, we repeat the experiment in Scenario 3 (SBM model)
and evaluate five types of subgraphs: line segments, triangles, connected triples, rectangles, and closed paths of length 4.
The results indicate that triangles and connected triples yield similar outcomes, while rectangles and closed paths of length 4
also show comparable results. Additionally, triangles slightly outperform rectangles. This suggests that in application of our
algorithm, the number of nodes is more significant than the specific shapes of the subgraphs.

A.4. Additional simulations with larger sizes

To demonstrate that our algorithm can handle large sample sizes, we repeat the experiment in Scenario 3 (SBM model) with
a sample size of T = 800. We present the results of our algorithm under different threshold choices in Table 4. Recall that
the threshold is defined as

τ = max
j=1,...,T−h

max
j<t<j+h

|X̃t
j,j+h(H)| log(T ) with h = ⌈k log T ⌉. (8)

We conduct experiments with k = 4, 5, 6. It turns out that our algorithm performs well.

A.5. Broader literature

In the literature, the graphon model has been widely employed in areas such as graph classification (Han et al., 2022; Duan
et al., 2024), graph neural networks (Ruiz et al., 2020; 2021), and large-scale network learning (Chan & Airoldi, 2014; Xu,
2018; Fan et al., 2025). In addition, it has been used to explain phenomena such as the asymptotic normality of subgraph
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Table 4. Results for larger network sizes with sensitivity analysis, Scenarios 3, T = 800.

Scenario Threshold (see (8)) Parameter(s) Subgraph K̂ −K H(η̂, η)/T
(×10−2) ARI≤ −1 0 ≥ 1

3 (SBM)

k = 4

(C1, C2)
=(0.12, 0.04)

0 100 0 0.14 1.00
0 97 3 0.32 1.00

(0.14, 0.04)
0 100 0 0.14 1.00
0 98 2 0.22 1.00

k = 5

(C1, C2)
=(0.12, 0.04)

0 100 0 0.13 1.00
0 100 0 0.30 1.00

(0.14, 0.04)
0 100 0 0.13 1.00
0 100 0 0.23 1.00

k = 6

(C1, C2)
=(0.12, 0.04)

0 100 0 0.15 1.00
7 93 0 1.75 0.99

(0.14, 0.04)
0 100 0 0.14 1.00
3 97 0 0.97 0.99

counts (Bickel et al., 2011) and to facilitate hypothesis testing for graph equivalence (Maugis et al., 2020). For an overview
of the development of its theory, we refer to Lovász (2012); Borgs & Chayes (2017).

For change point detection methods, probabilistic approaches include Jiang et al. (2023); Padilla et al. (2022); Follain et al.
(2022); Wu & Zhou (2024); Zhang et al. (2024), whereas deep learning-based approaches include De Ryck et al. (2021);
Chen et al. (2021); Li et al. (2024) and those in Shafique et al. (2022); Bai et al. (2023). We refer to Truong et al. (2020);
Zhou et al. (2024) for a review.

There are also works that investigated (heuristic) methods for detecting change points in dynamic networks, or explored the
topological consequences of various network growth models (e.g., Leskovec et al. (2007); Sun et al. (2007); Rossi et al.
(2013); Peel & Clauset (2015)).

A.6. The “positive feedback” mechanism and potential extensions of GAN-M

The positive feedback associated with node degrees, as suggested by a reviewer, is a compelling issue that represents an
important mechanism beyond the graphon framework. Positive feedback implies that when a node forms a link to an
existing node x, it increases the probability that subsequently added nodes will also form edges to x. Networks exhibiting
positive feedback are prevalent in a variety of applications (Crespi, 2004; Hornung & Barkai, 2008; Gallagher & West,
2009). Current research on this topic largely focuses on preferential attachment models, see Newman (2001); Poncela et al.
(2008) for a comprehensive review.

Our model has the potential to be extended to incorporate such a positive feedback mechanism, and we outline a possible
implementation:
Remark A.2 (A hybrid model of Graphon Attachment Network and Preferential Attachment). Let Gt denote the graph at time
t, with At as its adjacency matrix, for 1 ≤ t ≤ T . Let dt(i) denote the degree of the node i in Gt, i.e., dt(i) =

∑
j At(i, j).

The model begins with an initial simple graph G1 containing m nodes (m ≥ 1), where each node is assigned a random
value U1, U2, . . . , Um ∼ U(0, 1), drawn independently.

For t > 1, the graph Gt is formed recursively. Given the values U1, . . . , Um+t−2 and the adjacency matrix At−1, the
adjacency matrix At is updated as follows:

1. Preserve all existing edges: for 1 ≤ i, j ≤ m+ t− 2, set At(i, j) = At−1(i, j). Assign At(m+ t− 1,m+ t− 1) = 0,
ensuring no self-loops for the new node.

2. Draw Vm+t−1 ∼ Bernoulli(p) independently of all random variables generated in the previous steps, with p being a
pre-specified parameter.

3. If Vm+t−1 = 1: Draw Um+t−1 ∼ U(0, 1), independently of all random variables generated in the previous steps.
Form edges between the new node j := m+ t− 1 and each existing node i (1 ≤ i ≤ m+ t− 2) independently, with
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probability:
P(At(i, j) = 1 | Ui, Uj) = hT,t(Ui, Uj),

where hT,t : [0, 1]
2 → [0, 1] is a symmetric measurable function defining the attachment probability.

4. If Vm+t−1 = 0: Select a node i from the existing nodes according to the following rule: the probability of selecting
each node is proportional to its degree. Form an edge between node i and the new node m+ t− 1.

The above model is a hybrid of the GAN-M and the preferential attachment model, retaining certain characteristics of the
latter, which allows the model to incorporate a positive feedback mechanism. We leave further investigation into its dynamic
properties and change-point detection for future work.

A.7. Proofs

Proof of Lemma 2.6. Since the size of the initial graph m is fixed, we can assume without loss of generality that m = 1.
Additionally, assume without loss of generality that V (Gt) = {1, 2, · · · , t}. With a slight abuse of notation, when we refer
to t1, t2 ∈ V (Gt), we are referring to the indices t1, t2 and time t1, t2 simultaneously, so t1 ∨ t2 is well-defined. We have

E(NH(Gt) | U1, · · · , Ut) =
∑

φ:V (H)→V (Gt)

∏
uv∈E(H)

P(φ(u)φ(v) ∈ E(Gt) | U1, · · · , Ut)

=
∑

φ:V (H)→V (Gt)

∏
uv∈E(H)

hT,φ(u)∨φ(v)(Uφ(u), Uφ(v)).

Consequently,

E(NH(Gt)) =
∑

φ:V (H)→V (Gt)

∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,φ(u)∨φ(v)(Uφ(u), Uφ(v))
∏

u∈V (H)

dUφ(u)

=

|V (H)|∑
m0=0

∑
φ:|{u∈V (H):φ(u)≤ηk}|=m0

∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,φ(u)∨φ(v)(Uφ(u), Uφ(v))
∏

u∈V (H)

dUφ(u). (9)

Note that ∑
φ:|{u∈V (H):φ(u)≤ηk}|=0

∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,φ(u)∨φ(v)(Uφ(u), Uφ(v))
∏

u∈V (H)

dUφ(u)

=
∑

φ:|{u∈V (H):φ(u)≤ηk}|=0

∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,t(Uφ(u), Uφ(v))
∏

u∈V (H)

dUφ(u)

=


|V (H)|−1∏
m1=0

(t− ηk −m1)


∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,ηk+1
(Uu, Uv)

∏
u∈V (H)

dUu

=


|V (H)|−1∏
m1=0

(t− ηk −m1)

hom(H,hT,ηk+1
)

= (t− ηk)
|V (H)| hom(H,hT,ηk+1

) +Q0
|V (H)|−1(t),

where Q0
|V (H)|−1(t) is a polynomial of order |V (H)| − 1 with respect to t.

Similarly, for m0 ≥ 1, ∑
φ:|{u∈V (H):φ(u)≤ηk}|=m0

∫
[0,1]|V (H)|

∏
uv∈E(H)

hT,φ(u)∨φ(v)(Uφ(u), Uφ(v))
∏

u∈V (H)

dUφ(u)

= Qm0

|V (H)|−m0
(t),
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where Qm0

|V (H)|−m0
(t) is a polynomial of order |V (H)| −m0 with respect to t. Then, by (9), we have

E(NH(Gt)) = (t− ηk)
|V (H)| hom(H,hT,ηk+1

) +Q|V (H)|−1(t),

where Q|V (H)|−1(t) is a polynomial of order |V (H)| − 1 with respect to t.

Proof of Lemma A.1. We follow the notations in Algorithm 1. Recall that ∆ is the minimal spacing of change-points. By
the proof of Theorem C.1 in Kovács et al. (2023), for each ηk, there exists an interval (s∗m, e∗m] ∈ I∗ such that s∗m ≥ ηk −∆,
e∗m ≤ ηk +∆, e∗m − s∗m ≥ ∆, and ∣∣∣∣s∗m + e∗m

2
− ηk

∣∣∣∣ ≤ 3

8
(e∗m − s∗m).

Thus, we have e∗m ≥ ηk + ∆
8 and s∗m ≤ ηk − ∆

8 .

Next, consider the set of 45 chosen points {b(i)m : i = 0, . . . , 44} from (s∗m, e∗m]. We have

|b(i)m − b(j)m | ≤
⌈
e∗m − s∗m

44

⌉
≤
⌈
∆

22

⌉
for all i ̸= j. Therefore, the subinterval [ηk + 0.025∆, ηk + ∆

8 ] contains at least
⌈
0.1∆
⌈ ∆
22 ⌉

⌉
− 1 ≥ 1 points from the set

{b(i)m : i = 0, . . . , 44} for sufficiently large ∆. Similarly, there is at least 1 point in the set {b(i)m : i = 0, . . . , 44} that falls
into the subinterval [ηk − 0.125∆, ηk − 0.025∆].

Thus, there exist bi
∗

m ∈ [ηk − 0.125∆, ηk − 0.025∆] and bj
∗

m ∈ [ηk + 0.025∆, ηk + 0.125∆].

Proof of Theorem 3.1. We divide the proof into two parts. In Step 1, we show that

P

{K̂ = K},
K̂⋂
j=1

{
[lj , rj ] covers ηj and rj − lj ≤

∆

4

} ≥ 1− T−1

where the intervals [lj , rj ] are obtained by Algorithm 1. In Step 2, we prove the final result.

Let f̃ t,k
s,e (H) =

∑T
r=1 w̃

t,k
s,e(r)ENH(Gr) and f̃ t

s,e(H) =

√∑|V (H)|
k=0 (f̃ t,k

s,e (H))2.

Step 1. By Lemma A.6, we have
P(A) ≥ 1− T−1

where

A =

{
sup

s,t,e:s<t<e

∣∣∣X̃t
s,e(H)− f̃ t

s,e(H)
∣∣∣ ≤ CT |V (H)|−1/2

√
log(T )

}
.

All the analysis in the rest of this proof is conducted on the event A. For (s, e] ∈ I , when (s, e] contains no change-point, by
construction, f̃ t,k

s,e (H) = 0 for all 0 ≤ k ≤ |V (H)|, so f̃ t
s,e(H) = 0. Then, A implies

sup
s<t<e

X̃t
s,e(H) ≤ CT |V (H)|−1/2

√
log(T ).

Thus, choosing τ > CT |V (H)|−1/2
√
log(T ) excludes intervals without change-points.

For the change-point ηk, by Lemma A.1, there exists an interval (s, e] ∈ I in Algorithm 1 such that

ηk − 0.125∆ < s < ηk − 0.025∆, ηk + 0.025∆ < e < ηk + 0.125∆.

Moreover, by Lemma 2.6, ENH(Gt) is a polynomial function of degree |V (H)| in t, with the leading coefficient given by
hom(H,hT,ηk

) for s < t < ηk, and by hom(H,hT,ηk+1
) for ηk ≤ t ≤ e. Then, by Lemma A.3, we have

f̃ηk
s,e(H) ≥ c0|hom(H,hT,ηk

)− hom(H,hT,ηk+1
)|∆|V (H)|+1/2
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where c0 is a constant that depends only on |V (H)|. As a result, this interval can be retained as long as the event A occurs,
and we choose a τ < c0|hom(H,hT,ηk

)− hom(H,hT,ηk+1
)|∆|V (H)|+1/2 − CT |V (H)|−1/2

√
log(T ).

The remaining part of this step follows directly from the properties of random interval distillation described in Lines 19-32
of Algorithm 1. A detailed proof can be derived by following the argument presented in Theorem 3.1 of Fan & Wu (2024).
Finally, we obtain

P

{K̂ = K},
K̂⋂
j=1

{
[lj , rj ] covers ηj and rj − lj ≤

∆

4

} ≥ 1− T−1.

Step 2. By the arguments in Step 1, for ηk, with high probability, we have that [lk, rk] covers ηk and rk − lk ≤ ∆/4.
Following the same argument as in Theorem 3.1 of Fan & Wu (2024), there exists an interval (s, e] ∈ I such that ηk ≤ rk ≤ e,
s ≤ lk ≤ ηk, |e−ηk| ≤ ∆/8, and |s−ηk| ≤ ∆/8. Thus, we have rk ≤ ηk+∆/8 and lk ≥ ηk−∆/8. Recall the definition
of ∆̂ in Line 3 of Algorithm 2. By construction, it is straightforward to verify that 7∆/8 ≤ ∆̂ ≤ 9∆/8. Therefore, we have
sk = ⌊lk − ∆̂/2⌋ ∈ [ηk − 11∆/16, ηk − 7∆/16] and ek = ⌊rk + ∆̂/2⌋ ∈ [ηk + 7∆/16, ηk + 11∆/16].

Assume without loss of generality that η̂k < ηk. Similar to the proof of Lemma A.3, let l = |V (H)|, and let ⟨a, b⟩ = a⊤b
for two vectors a and b. Let u0, u1, . . . , ul be the orthogonalized and normalized vectors based on the columns of U0

(defined in (5)). Let abm = (0, . . . , 0, 1m, . . . , (ek − b)m)⊤ for sk + 1 ≤ b ≤ ek, and let W b
m be the coefficients from (5)

based on abm. Let wb
m = W b

m/
√
(W b

m)⊤W b
m.

By construction in (5), for any b, the vectors u0, u1, . . . , ul, w
b
0, . . . , w

b
l are mutually orthogonal. Let Xr = NH(Gr) for

notational simplicity. Then, for sk < b ≤ ek, we have

(X̃b
sk,ek

)2 =

l∑
i=0

⟨X|(sk+1):ek , w
b
i ⟩2 = C3 +

l∑
i=0

⟨X|(sk+1):ek , ui⟩2 +
l∑

i=0

⟨X|(sk+1):ek , w
b
i ⟩2,

where C3 is a constant that depends on sk, ek, and X|(sk+1):ek is the vector (Xsk+1, . . . , Xek)
⊤. By the nature of orthogonal

projection, we derive that

(X̃b
sk,ek

)2 = C3 + ∥PV X|(sk+1):ek∥
2 = C3 + ∥PV1

X|(sk+1):ek∥
2 = C3 + ∥PV b

2
X|(sk+1):b∥2 + ∥P

V
ek−b

3

X|(b+1):ek∥
2,

where V = (u0, . . . , ul, w
b
0, . . . , w

b
l ),

V1 =



1 sk + 1 (sk + 1)2 · · · (sk + 1)l 0 0 · · · 0
1 sk + 2 (sk + 2)2 · · · (sk + 2)l 0 0 · · · 0
...

...
...

...
...

...
...

...
...

1 b b2 · · · bl 0 0 · · · 0
1 b+ 1 (b+ 1)2 · · · (b+ 1)l 1 12 · · · 1l

...
...

...
...

...
...

...
...

...
1 ek e2k · · · elk 1 ek − b · · · (ek − b)l


,

V b
2 =


1 sk + 1 (sk + 1)2 · · · (sk + 1)l

1 sk + 2 (sk + 2)2 · · · (sk + 2)l

...
...

...
...

...
1 b b2 · · · bl

 , V ek−b
3 =


1 1 12 · · · 1l

1 2 22 · · · 2l

...
...

...
...

...
1 (ek − b) (ek − b)2 · · · (ek − b)l

 .

Since (X̃ η̂k
sk,ek

)2 ≥ (X̃ηk
sk,ek

)2 by Algorithm 2, we derive that

∥P
V

η̂k
2

X|(sk+1):η̂k
∥2 + ∥P

V
ek−η̂k
3

X|η̂k+1:e∥2 ≥ ∥PV
ηk
2

X|(sk+1):ηk
∥2 + ∥P

V
ek−ηk
3

X|ηk+1:ek∥2. (10)

Note that span(V b
2 ) = span(V b−sk

3 ), and as a result, by subtracting the term (recall that we assume η̂k < ηk),

∥P
V

η̂k−sk
3

X|(sk+1):η̂k
∥2 + ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

X|(ηk+1):ek∥
2
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from both sides of (10), we have

∥P
V

ek−η̂k
3

X|(η̂k+1):ek∥
2 − ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2 − ∥P

V
ek−ηk
3

X|(ηk+1):ek∥
2

≥ ∥P
V

ηk−sk
3

X|(sk+1):ηk
∥2 − ∥P

V
η̂k−sk
3

X|(sk+1):η̂k
∥2 − ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2. (11)

For the right-hand side, recall that we assume η̂k < ηk. Moreover, note that EX is a polynomial on [u, v] for all u < v < ηk,
implying EX|u:v ∈ span(V v−u+1

3 ). Consequently, (I − PV v−u+1
3

)EX = 0. This gives

∥P
V

ηk−sk
3

X|(sk+1):ηk
∥2 − ∥P

V
η̂k−sk
3

X|(sk+1):η̂k
∥2 − ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2

= ∥X|(sk+1):ηk
∥2 − ∥(I − P

V
ηk−sk
3

)X|(sk+1):ηk
∥2 − ∥X|(sk+1):η̂k

∥2

+ ∥(I − P
V

η̂k−sk
3

)X|(sk+1):η̂k
∥2 − ∥X|(η̂k+1):ηk

∥2 + ∥(I − P
V

ηk−η̂k
3

)X|(η̂k+1):ηk
∥2

= −∥(I − P
V

ηk−sk
3

)(X − EX)|(sk+1):ηk
∥2 + ∥(I − P

V
η̂k−sk
3

)(X − EX)|(sk+1):η̂k
∥2

+ ∥(I − P
V

ηk−η̂k
3

)(X − EX)|(η̂k+1):ηk
∥2

= ∥P
V

ηk−sk
3

(X − EX)|(sk+1):ηk
∥2 − ∥P

V
η̂k−sk
3

(X − EX)|(sk+1):η̂k
∥2

− ∥P
V

ηk−η̂k
3

(X − EX)|(η̂k+1):ηk
∥2. (12)

For ∥P
V

η̂k−sk
3

(X − EX)|(sk+1):η̂k
∥2, note that with probability greater than 1− CT−1,

∥P
V

η̂k−sk
3

(X − EX)|(sk+1):η̂k
∥2 = ∥V η̂k−sk

3 ((V η̂k−sk
3 )⊤V η̂k−sk

3 )−1(V η̂k−sk
3 )⊤(X − EX)|(sk+1):η̂k

∥2

= ∥((V η̂k−sk
3 )⊤V η̂k−sk

3 )−1/2(V η̂k−sk
3 )⊤(X − EX)|(sk+1):η̂k

∥2

=

l+1∑
i=1

(
e⊤i ((V

η̂k−sk
3 )⊤V η̂k−sk

3 )−1/2(V η̂k−sk
3 )⊤(X − EX)|(sk+1):η̂k

)2
≤ C4T

2|V (H)|−1 log(T ), (13)

where C4 is a constant, ei = (0, . . . , 0, 1, 0, . . . , 0)⊤, and the last inequality follows from Lemma A.7, noting that
∥e⊤i ((V

η̂k−sk
3 )⊤V η̂k−sk

3 )−1/2(V η̂k−sk
3 )⊤∥2 = 1 for all 1 ≤ i ≤ l+1. The other two terms in (12) can be handled similarly.

Thus, we have

(12) ≥ −2C4T
2|V (H)|−1. (14)

For the left-hand side of (11), by Lemma 6 in (Yu et al., 2022), we have

∥P
V

ek−η̂k
3

X|(η̂k+1):ek∥
2 − ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2 − ∥P

V
ek−ηk
3

X|(ηk+1):ek∥
2

≤ −
∣∣∣√−∥P

V
ek−η̂k
3

EX|(η̂k+1):ek∥2 + ∥P
V

ηk−η̂k
3

EX|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

EX|(ηk+1):ek∥2

−
√
−∥P

V
ek−η̂k
3

(X − EX)|(η̂k+1):ek∥2 + ∥P
V

ηk−η̂k
3

(X − EX)|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

(X − EX)|(ηk+1):ek∥2
∣∣∣2 .

(15)

Recall that κk = |hom(H,hT,ηk
)− hom(H,hT,ηk−1

)| for 1 ≤ k ≤ K. By Proposition 8 in Yu et al. (2022), we have

− ∥P
V

ek−η̂k
3

EX|(η̂k+1):ek∥
2 + ∥P

V
ηk−η̂k
3

EX|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

EX|(ηk+1):ek∥
2

≥ clκ
2
k

[
|ek − ηk|2l+1 ∧ |η̂k − ηk|2l+1

]
≥ clκ

2
k

[
|7∆/16|2l+1 ∧ |η̂k − ηk|2l+1

]
, (16)

where cl is a constant that depends only on l. Furthermore, by following the arguments in (13), we have that with probability
greater than 1− C/T ,

− ∥P
V

ek−η̂k
3

(X − EX)|(η̂k+1):ek∥
2 + ∥P

V
ηk−η̂k
3

(X − EX)|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

(X − EX)|(ηk+1):ek∥
2

≤ 2C4T
2|V (H)|−1 log(T ). (17)
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Assume for the contradiction that for any constant C8 > 0, there exists T0 ∈ N such that for all T > T0,

|η̂k − ηk| ≥ C8

(
T 2|V (H)|−1 log(T )

mink κ2
k

) 1
2|V (H)|+1

. (18)

Then by (18), (16), and (6), we have

clκ
2
k

[
|7∆/16|2l+1 ∧ |η̂k − ηk|2l+1

]
≥ 8C4T

2|V (H)|−1 log(T ),

where cl is the constant in (16). This implies that

∥P
V

ek−η̂k
3

X|(η̂k+1):ek∥
2 − ∥P

V
ηk−η̂k
3

X|(η̂k+1):ηk
∥2 − ∥P

V
ek−ηk
3

X|(ηk+1):ek∥
2

≤ −1

4

∣∣∣√−∥P
V

ek−η̂k
3

EX|(η̂k+1):ek∥2 + ∥P
V

ηk−η̂k
3

EX|(η̂k+1):ηk
∥2 + ∥P

V
ek−ηk
3

EX|(ηk+1):ek∥2
∣∣∣2

≤ −1

4
clκ

2
k

[
|7∆/16|2l+1 ∧ |η̂k − ηk|2l+1

]
. (19)

where we use the inequalities in (15), (16) and (17). Then by (11), (12), (14), and (19), we have

κ2
k

[
|7∆/16|2l+1 ∧ |η̂k − ηk|2l+1

]
≤ 8C4

cl
T 2|V (H)|−1 log(T ).

This gives
κ2
k

[
|7∆/16|2l+1 ∧ |η̂k − ηk|2l+1

]
= 8C4c

−1
l T 2|V (H)|−1 log(T ).

Note that |ηk − η̂k| ≤ |lk − ηk| ≤ ∆/8 ≤ 7∆/16, therefore,

κ2
k|η̂k − ηk|2l+1 =

8C4

cl
T 2|V (H)|−1 log(T ),

|ηk − η̂k| ≤
(
8C4

cl

T 2|V (H)|−1 log(T )

mink κ2
k

) 1
2l+1

.

The above result contradicts (18). Recall that l = |V (H)|, and the result follows.

A.8. Lemmas

Lemma A.3. Let f(t), 0 ≤ t ≤ T , be a function such that

f(t) =

l∑
j=0

a0jt
j +

l∑
j=0

a1j(t− η)jI(t ≥ η),

where a0j , a1j are coefficients satisfying a1l ̸= 0, and l + 1 < η ≤ T − l is a change-point. For an integer t ∈ [1, T ], let

f̃ t,k
0,T =

∑T
r=1 w̃

t,k
0,T (r)f(r) for 0 ≤ k ≤ l, and define f̃ t

0,T =
√∑l

k=0(f̃
t,k
0,T )

2, where the coefficients w̃t,k
0,T (r) are defined

in (5). Then the following hold:

1. For every 1 ≤ t ≤ T , we have f̃η
0,T ≥ f̃ t

0,T .

2. For every η + l ≤ t ≤ T , we have

(f̃η
0,T )

2 − (f̃ t
0,T )

2 ≥ cla
2
1l

[
η2l+1 ∧ (t− η)2l+1

]
,

where cl > 0 is a constant that depends only on l.

3.
f̃η
0,T ≥

√
cl|a1l|∆

2l+1
2 ,

where ∆ = η ∧ (T − η) and cl > 0 is a constant that depends only on l.
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Remark A.4. For simplicity, we prove the result for f̃ t
0,T with 0 < t ≤ T , but the same result holds for f̃ t

s,e with
0 ≤ s < t ≤ e ≤ T .

Proof. Let ⟨a, b⟩ = a⊤b for two vectors a and b. Let u0, u1, · · · , ul denote the orthogonalized and normalized vectors
based on the columns of U0 (defined in (5)) with s = 0, e = T . Let abk = (0, · · · , 0, 1k, · · · , (T − b)k) for 1 ≤ b ≤ T ,

and let W b
k be the coefficients from (5) based on abk. Let wb

k =
W b

k√
(W b

k )
⊤W b

k

. By the construction in (5), for any b, the

vectors u0, u1, · · · , ul, w
b
0, · · · , wb

l are mutually orthogonal. In the following proof, we use f as a shorthand for the vector
(f(1), f(2), · · · , f(T ))⊤. Note that for any b,

f̃ b
0,T =

√√√√ l∑
i=0

⟨f, wb
i ⟩2.

Proof of the first result: Note that f ∈ span{u0, u1, · · · , ul, w
η
0 , · · · , w

η
l }. Then we have

f =

l∑
i=0

⟨f, ui⟩ui +

l∑
i=0

⟨f, wη
i ⟩w

η
i , (20)

∥f∥22 =

l∑
i=0

⟨f, ui⟩2 +
l∑

i=0

⟨f, wη
i ⟩

2.

On the other hand, for b ̸= η, f is not necessarily a linear combination of u0, u1, · · · , ul, w
b
0, · · · , wb

l . Therefore,

∥f∥22 ≥
l∑

i=0

⟨f, ui⟩2 +
l∑

i=0

⟨f, wb
i ⟩2.

As a result,
∑l

i=0⟨f, w
η
i ⟩2 ≥

∑l
i=0⟨f, wb

i ⟩2, and the first result follows.

Proof of the second result: By (20), we have

⟨f, wb
0⟩ =

l∑
i=0

⟨f, wη
i ⟩⟨w

η
i , w

b
0⟩,

⟨f, wb
1⟩ =

l∑
i=0

⟨f, wη
i ⟩⟨w

η
i , w

b
1⟩,

...

⟨f, wb
l ⟩ =

l∑
i=0

⟨f, wη
i ⟩⟨w

η
i , w

b
l ⟩.

Then

⟨f, wb
0⟩2 =

l∑
i=0

⟨f, wη
i ⟩⟨f, w

b
0⟩⟨w

η
i , w

b
0⟩,

⟨f, wb
1⟩2 =

l∑
i=0

⟨f, wη
i ⟩⟨f, w

b
1⟩⟨w

η
i , w

b
1⟩,

...

⟨f, wb
l ⟩2 =

l∑
i=0

⟨f, wη
i ⟩⟨f, w

b
l ⟩⟨w

η
i , w

b
l ⟩.
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Therefore,

(f̃η
0,T )

2 − (f̃ b
0,T )

2

=

l∑
i=0

⟨f, wη
i ⟩

2 −
l∑

i=0

⟨f, wb
i ⟩2

=

l∑
i=0

⟨f, wη
i ⟩

2 +

l∑
i=0

⟨f, wb
i ⟩2 − 2

l∑
i=0

l∑
j=0

⟨f, wη
i ⟩⟨f, w

b
j⟩⟨w

η
i , w

b
j⟩

=

∥∥∥∥∥
l∑

i=0

⟨f, wη
i ⟩w

η
i −

l∑
i=0

⟨f, wb
i ⟩wb

i

∥∥∥∥∥
2

2

=

∥∥∥∥∥f −
l∑

i=0

⟨f, ui⟩ui −
l∑

i=0

⟨f, wb
i ⟩wb

i

∥∥∥∥∥
2

2

.

Note that the above quantity is the residual of f projecting onto u0, · · · , ul, w
b
0, · · · , wb

l , and consequently, onto
u0, · · · , ul, a

b
0, · · · , abl . Then for b ≥ η + l, we have

(f̃η
0,T )

2 − (f̃ b
0,T )

2

= min
c0,··· ,cl,cl+1,··· ,c2l+1

∥∥∥∥∥f −
l∑

i=0

cl+1+ia
b
i −

l∑
i=0

ci(1
i, · · · , T i)⊤

∥∥∥∥∥
2

2

≥ min
c0,··· ,cl

∥∥∥∥∥(f(1), · · · , f(b))⊤ −
l∑

i=0

ci(1
i, · · · , bi)⊤

∥∥∥∥∥
2

2

. (21)

By (21), and since η > l + 1, b ≥ η + l, we apply Proposition 8 in Yu et al. (2022) to obtain

min
c0,··· ,cl

∥∥∥∥∥(f(1), · · · , f(b))⊤ −
l∑

i=0

ci(1
i, · · · , bi)⊤

∥∥∥∥∥
2

2

≥ c̃la
2
1l

[
η2l+1 ∧ (b− η)2l+1

]
,

where c̃l > 0 is a constant depending on l. Thus, the result follows.

Proof of the third result: By taking b = T in the second result and noting that f̃T
0,T = 0 from (5), the result follows.

Lemma A.5. For w̃t,k
s,e defined in (5), we have for any ε > 0,

P

(
sup

s,t,e,k

∣∣∣∣∣
e∑

r=s+1

w̃t,k
s,e(r)(NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

)
≤ Cm1T

3 exp

(
− ε2

Cm2T 2|V (H)|−1

)
.

Proof. Recall that m is the size of the initial graph. Define AT (φ(u), φ(v)) = I(φ(u)φ(v) ∈ E(Gr)). For the triple
(s, t, e), we have

e∑
r=s+1

w̃t,k
s,e(r)NH(Gr) =

e∑
r=s+1

w̃t,k
s,e(r)

∑
φ:V (H)→V (Gr)

∏
uv∈E(H)

I(φ(u)φ(v) ∈ E(Gr))

=

e∑
r=s+1

w̃t,k
s,e(r)

∑
φ:V (H)→V (Gr)

∏
uv∈E(H)

AT (φ(u), φ(v)),

where the sum is over the possible assignments of φ : V (H) → V (Gr). Let

gs,t,e(AT (1, 2), . . . , AT (T +m− 2, T +m− 1)) =

e∑
r=s+1

w̃t,k
s,e(r)

∑
φ:V (H)→V (Gr)

∏
uv∈E(H)

AT (φ(u), φ(v)).
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For 1 ≤ u ̸= v ≤ T +m− 1, we derive that

|gs,t,e(AT (1, 2), · · · , AT (u, v), · · · , AT (T +m− 2, T +m− 1))

− gs,t,e(AT (1, 2), · · · , |1−AT (u, v)|, · · · , AT (T +m− 2, T +m− 1))|

≤
e∑

r=s+1

|w̃t,k
s,e(r)|

∑
φ:V (H)→V (Gr)

∑
i,j∈V (H)

(I(φ(i)φ(j) = uv) + I(φ(i)φ(j) = vu))

≤ 2

e∑
r=s+1

|w̃t,k
s,e(r)|

∑
φ:V (H)→V (Gr)

∑
i,j∈V (H)

I(φ(i)φ(j) = uv)I(u ≤ e, v ≤ e)

≤ 2

e∑
r=s+1

|w̃t,k
s,e(r)||V (Gr)||V (H)|−2I(u ≤ e, v ≤ e)

≤ 2

√√√√ e∑
r=s+1

(w̃t,k
s,e(r))2

√√√√ e∑
r=s+1

(
r|V (H)|−2

)2
I(u ≤ e, v ≤ e)

≤ 2e|V (H)|−3/2I(u ≤ e, v ≤ e). (22)

Here, we applied the Cauchy-Schwarz inequality and the fact that
∑e

r=s+1(w̃
t,k
s,e(r))

2 = 1. Moreover, we have

T+m−2∑
u=1

T+m−1∑
v=u+1

(
2e|V (H)|−3/2

)2
I(u ≤ e, v ≤ e) ≤ 4(T +m− 1)2|V (H)|−1. (23)

By combining (22) and (23) and using McDiarmid’s inequality, we get for any ε > 0,

P

(∣∣∣∣∣
e∑

r=s+1

w̃t,k
s,e(r)(NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

∣∣∣∣U1, . . . , UT

)
≤ 2 exp

(
− ε2

2(T +m− 1)2|V (H)|−1

)
.

Consequently, we have

P

(∣∣∣∣∣
e∑

r=s+1

w̃t,k
s,e(r)(NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− ε2

2(T +m− 1)2|V (H)|−1

)
,

P

(
sup

s,t,e,k

∣∣∣∣∣
e∑

r=s+1

w̃t,k
s,e(r)(NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

)
≤ 2|V (H)|(T +m− 1)3 exp

(
− ε2

2(T +m− 1)2|V (H)|−1

)
.

Since m is fixed, the result follows.

Lemma A.6. Recall X̃t
s,e(H) defined in (3), and let

f̃ t,k
s,e (H) =

e∑
r=s+1

w̃t,k
s,e(r)ENH(Gr), f̃ t

s,e(H) =

√√√√|V (H)|∑
k=0

(f̃ t,k
s,e (H))2.

Then, for some large constant C > 0,

P
(

sup
s,t,e:s<t<e

∣∣∣X̃t
s,e(H)− f̃ t

s,e(H)
∣∣∣ ≤ CT |V (H)|−1/2 log1/2(T )

)
≥ 1− T−1.

Proof. Let εr = NH(Gr)− ENH(Gr), ε̃t,ks,e(H) = X̃t,k
s,e(H)− f̃ t,k

s,e (H), and

ε̃ts,e(H) =

√√√√|V (H)|∑
k=0

(ε̃t,ks,e(H))2.
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Thus, ε̃t,ks,e =
∑e

r=s+1 w̃
t,k
s,e(r)εr. By Lemma A.5, we have for any ε > 0,

P

(
sup

s,t,e,k

∣∣∣∣∣
e∑

r=s+1

w̃t,k
s,e(r)(NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

)
≤ Cm1T

3 exp

(
− ε2

Cm2T 2|V (H)|−1

)
.

Note that |X̃t
s,e(H)− f̃ t

s,e(H)| ≤ ε̃ts,e(H). Therefore, we have

P
(

sup
s<t<e

∣∣∣X̃t
s,e(H)− f̃ t

s,e(H)
∣∣∣ ≥ ϵ

)
≤ P

 sup
s,t,e:s<t<e

∣∣∣∣∣∣
|V (H)|∑
k=0

(ε̃t,ks,e(H))2

∣∣∣∣∣∣ ≥ ϵ2


≤ P

(
sup

s,t,e,k

∣∣ε̃t,ks,e(H)
∣∣ ≥ c1ϵ

)

≤ Cm1T
3 exp

(
− c2ϵ

2

T 2|V (H)|−1

)
,

where c1, c2, Cm1 are positive constants. Finally, for

Cm1T
3 exp

(
− c2ε

2

T 2|V (H)|−1

)
≤ T−1,

we can choose ε = CT |V (H)|−1/2 log1/2(T ) for some constant C > 0.

Lemma A.7. Suppose that as+1, as+2, . . . , ae is a sequence of real numbers such that
∑e

r=s+1 a
2
r = 1. Then, for any

ε > 0, we have

P

(∣∣∣∣∣
e∑

r=s+1

ar (NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ ε

)
≤ C5 exp

(
− ε2

C6T 2|V (H)|−1

)
,

where C5, C6 > 0 are constants. Consequently, we have

P

(∣∣∣∣∣
e∑

r=s+1

ar (NH(Gr)− ENH(Gr))

∣∣∣∣∣ ≥ C7T
|V (H)|−1/2

√
log(T )

)
≤ 1

T
,

for some constant C7 > 0.

Proof. The proof follows directly from the proof of Lemma A.5.
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