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Abstract

A machine learning model, under the influence of observed or unobserved con-
founders in the training data, can learn spurious correlations and fail to generalize
when deployed. For image classifiers, augmenting a training dataset using coun-
terfactual examples has been empirically shown to break spurious correlations.
However, the counterfactual generation task itself becomes more difficult as the
level of confounding increases. Existing methods for counterfactual generation
under confounding consider a fixed set of interventions (e.g., texture, rotation) and
are not flexible enough to capture diverse data-generating processes. We formally
characterize the adverse effects of confounding on any downstream tasks and show
that the correlation between generative factors can be used to quantitatively measure
confounding. To minimize such correlation, we propose a counterfactual generation
method that learns to modify the value of any attribute in an image and generate
new images. Our method is computationally efficient, simple to implement, and
works well for any number of generative factors and confounding variables. Our
experimental results on both synthetic (MNIST variants) and real-world (CelebA)
datasets show the usefulness of our approach.

1 Introduction
A confounder is a variable that causally influences two or more variables that are not necessarily
directly causally dependent [26]. Often, the presence of confounders in a data-generating process is
the reason for spurious correlations among variables in the observational data. The bias caused by such
confounders is inevitable in observational data, making it challenging to identify invariant features
representative of a target variable [33, 24, 39]. Removing the effects of confounding in trained machine
learning models has shown to be helpful in various applications such as disentanglement, domain
generalization, counterfactual generation, algorithmic fairness, etc. [35, 19, 2, 45, 42, 34, 11, 6, 32, 9].
Recent years have seen a few efforts to handle the spurious correlations caused by confounding
effects in observational data [36, 34, 11, 32]. However, these methods either make strong assumptions
on the underlying causal generative process or require strong supervision. In this paper, we study the
adversarial effect of confounding in observational data on a classifier’s performance and propose a
mechanism to marginalize such effects by counterfactual data augmentation.

The causal generative processes considered throughout this paper are shown in Figure 1(a). We
assume that a set of generative factors (attributes) Z1, Z2, . . . , Zn (e.g., background, shape, texture)
and a label Y (e.g., cow) cause a real-world observation X (e.g., an image of a cow in a particular
background) through an unknown causal mechanism g [28]. To study the effects of confounding,
we consider Y, Z1, Z2, . . . , Zn to be confounded by a set of confounding variables C1, . . . , Cm
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(e.g., certain breeds of cows appear only in certain shapes or colors and appear only in certain
countries). Such causal generative processes have been considered earlier for other kinds of tasks
such as disentanglement [35, 37, 32].

Figure 1: (a) causal data generating process considered in this
paper (CONIC = Ours); (b) causal data generating process
considered in CGN [34].

A related recent effort by [34] pro-
poses Counterfactual Generative Net-
works (CGN) to address this prob-
lem using a data augmentation ap-
proach. This work assumes each im-
age to be composed of three Indepen-
dent Causal Mechanisms (ICMs) [29]
responsible for three fixed factors of
variations: shape, texture, and back-
ground (as represented by Z1, Z2, and
Z3 in Figure 1(b). This work then
trains a generative model that learns
three ICMs for shape, texture, and
background separately, and combines
them in a deterministic fashion to gen-
erate observations. However, fixing
the architecture to specific number
and types of mechanisms (shape, texture, background) is not generalizable, and may not directly
be applicable to settings where the number of underlying generative factors is unknown. It is also
computationally expensive to train different generative models for each aspect of an image such as
texture, shape or background.

In this work, we begin with quantifying confounding in observational data that is generated by an
underlying causal graph of the form shown in Figure 1(a). We then provide a counterfactual data
augmentation methodology called CONIC (COunterfactual geNeratIon under Confounding). We
hypothesize that the counterfactual images generated using the proposed CONIC method provide a
mechanism to marginalize the causal mechanisms responsible for spurious correlations (i.e., causal
arrows from Ci to Zj for some i, j). We take a generative modeling approach and propose a neural
network architecture based on conditional CycleGAN [46] to generate counterfactual images. Our
contributions include:

• We formally quantify confounding in causal generative processes of the form in Fig 1(a), and study
the relationship between correlation and confounding between any pair of generative factors.

• We present a counterfactual data augmentation methodology to generate counterfactual instances
of observed data, that can work even under highly confounded data (∼ 95% confounding) and
provides a mechanism to marginalize the causal mechanisms responsible for confounding.

• We modify conditional CycleGAN to improve the quality of generated counterfactuals. Our method
is computationally efficient and easy to implement.

• Following previous work, we perform extensive experiments on well-known benchmarks – three
MNIST variants and CelebA datasets – to showcase the usefulness of our proposed methodology
in improving the accuracy of a downstream classifier.

2 Related Work
Counterfactual Inference: [27], in his seminal text on causality, provided a three-step procedure for
generation of a counterfactual data instance, given an observed instance: (i) Abduction: abduct/recover
the values of exogenous noise variables; (ii) Action: perform the required intervention; and (iii) Pre-
diction: generate the counterfactual instance. One however needs access to the underlying structural
causal model (SCM) to perform the above steps for counterfactual generation. Since real-world data
do not come with an underlying SCM, many recent efforts have focused on modeling the underlying
causal mechanisms generating data under various assumptions [21, 18, 7, 47, 30, 41, 3, 25].

Generating Counterfactuals by Learning ICMs: In a more recent effort, assuming any real-world
image is generated with three independent causal mechanisms for shape, texture, background, and
a composition mechanism of the first three, [34] developed Counterfactual Generative Networks
(CGN) that generate counterfactual images of a given image. CGN trains three Generative Adversarial
Networks (GANs) [13] to learn shape, texture, background mechanisms and combine these three
mechanisms using a composition mechanism g as g(shape, texture, background) = shape ⊙
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texture+(1−shape)⊙background where⊙ is the Hadamard product. However, such deterministic
nature of the architecture is not generalizable to the case where the number of underlying generative
factors are unknown and it is computationally infeasible to train generative models for specific aspect
of an image such as texture/background.

Disentanglement and Data Augmentation: The spurious correlations among generative factors
have been considered in disentanglement [10, 38]. The general idea in these efforts is to separate the
causal predictive features from non-causal/spurious predictive features to predict an outcome. Our
goal is different from disentanglement, and we focus on the performance of a downstream classifier
instead of separating the sources of generative factors. Traditional data augmentation methods such
as rotation, scaling, corruption, etc. [15, 8, 44, 43] do not consider the causal generative process and
hence they can not remove the confounding in the images via data augmentation.

A similar effort to our paper is by [11] who use CycleGAN to generate counterfactual data points.
However, they focus on the performance of a subgroup (a subset of data with specific properties)
which is different from our goal of controlling confounding in the entire dataset. Another recent work
by [39] considers spurious correlations among generative factors and uses CycleGAN to generate
counterfactual images. Compared to these efforts, rather than using CycleGAN directly, we propose a
CycleGAN-based architecture that is optimized for controlled generation using contrastive losses.

3 Information Theoretic Measure of Confounding
Background and Problem Formulation: Let {Z1, Z2, . . . , Zn} be a set of random variables de-
noting the generative factors of an observed data point X , and Y be the label of the observation X .
Each generative factor Zi (e.g., color) can take on a value form a discrete set of values {z1i , . . . , zdi }
(e.g., red, green etc.). Let the set S = {Y, Z1, . . . , Zn} generates N real-world observations {Xi}Ni=1
through an unknown causal mechanism g (Fig. 1). Each Xi can be thought of as an observation
generated using the causal mechanism g with certain intervention on the variables in the set S. Vari-
ables in S may potentially be confounded by a set of confounders C = {C1, . . . , Cm} that denote
real-world confounding such as selection bias. Let D be the dataset of real-world observations along
with corresponding values taken by {Y, Z1, . . . , Zn}. From a causal effect perspective, each variable
in S has a direct causal influence on the observation X (e.g., the causal edge Zi → X) and also has
non-causal influence on X via the confounding variables C1, . . . , Cm (e.g., Zi ← Cj → Zk → X
for some Cj and Zk). These paths via the confounding variables, in which there is an incoming arrow
to the variables in S, are also referred to as backdoor paths [26].

In any downstream application where D is used to train a model (e.g., classification), it is desirable to
minimize or remove the effect of confounding variable to ensure that a model is not exploiting the
spurious correlations in the data to arrive at a decision. In this paper, we present a method to remove
the effect of such confounding variables using counterfactual data augmentation. We first study the
relationship between confounding and the correlation between a pair of generative factors.

Definition 3.1. (Directed Information [31, 40]). In a causal directed acyclic graph (DAG) G =
(V, E), where V denotes the set of variables and E denotes the set of directed edges denoting the
direction of causal influence among the variables in V , the directed information from a variable
Zi ∈ V to another variable Zj ∈ V is denoted by I(Zi → Zj). It is defined as follows.

I(Zi → Zj) := DKL(p(Zi|Zj)||p(Zi|do(Zj))|p(Zj)) := Ep(Zi,Zj) log
p(Zi|Zj)

p(Zi|do(Zj))
(1)

Using Definition 3.1, it is easy to see that the variables Zi and Zj are unconfounded if and only if
I(Zj → Zi) = 0. Non zero directed information I(Zj → Zi) entails that, p(Zi|Zj) ̸= p(Zi|do(Zj))
and hence the presence of confounding (if there is no confounder, p(Zi|Zj) should be equal to
p(Zi|do(Zj))). Also, it is important to note that the directed information is not symmetric (i.e.,
I(Zi → Zj) ̸= I(Zj → Zi)) [17]. We use this fact in defining the measure of confounding below.
Since we need to quantify the notion of confounding (as opposed to no confounding), we use directed
information to quantify confounding as defined below.

Definition 3.2. (An Information Theoretic Measure of Confounding.) In a causal directed acyclic
graph (DAG) G = (V, E), where V denotes the set of variables and E denotes the set of directed
edges denoting the direction of causal influence among the variables in V , the amount of confounding
between a pair of variables Zi ∈ V and Zj ∈ V is equal to I(Zi → Zj) + I(Zj → Zi).
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Since directed information is not symmetric, we define the measure of confounding to include the
directed information from one variable to the other for a given pair of variables Zi, Zj . We now relate
the quantity I(Zi → Zj) + I(Zj → Zi) with the correlation between generative factors so that it
is easy to quantify the amount of confounding in observational data. Before that, we present the
following proposition which will be used in the proof of the subsequent proposition.
Proposition 3.1. In causal processes of the form 1(a), p(Zi|do(Zj)) is equal to p(Zi).

Proposition 3.2. For causal generative processes of the form 1(a), the correlation between a pair of
generative factors (Zi, Zj) is proportional to the amount of confounding between Zi and Zj .

Proofs are provided in Appendix. Using the connection between the confounding and correlation
in causal graph 1(a), our objective is to generate counterfactual data such that the resultant dataset
after augmentation has no spurious correlations between generative factors. If we observe spurious
correlation between two generative factors Zi, Zj when they take on the values zi and zj respectively,
generating counterfactual instances w.r.t. Zj with the intervention do(Zj = z′j) and adding the
counterfactual instances to original data breaks the correlation between Zi, Zj . We now present our
algorithm to generate counterfactual images in a systematic manner.

4 CONIC: Methodology
We propose a way to systematically generate counterfactual data that can marginalize the effect of
any confounding edge Ci → Zj in Fig. 1 (a) as explained below.

Removing The Confounding Effect of Ci → Zj: In the causal graphs of the form 1(a), for paths
of the form Zj ← Ci → Zl, we call the edges Ci → Zj and Ci → Zl as confounding edges since
together, their existence is the reason for confounding in the data. Also, let (zpj , z

q
l ) is one pair of

attribute values taken by the variable pair (Zj , Zl) under extreme confounding (e.g., in the training
set of colored MNIST dataset, correlation coefficient of 0.99 between color and digit is observed such
that whenever color is red, digit is 7 etc.). To remove the effect of the confounding edge Ci → Zj

w.r.t. the another confounding edge Ci → Zl (recall that confounding between Zj , Zl is present if
and only if there exists a pair of causal arrows Ci → Zj and Ci → Zl for some i; due to this reason
we consider the confounding effect of the confounding edge Ci → Zj w.r.t. another confounding
edge Ci → Zl), we consider two subsets T1, T2 of the observational data D which are constructed as
follows. T1 consists of the set of instances for which Zj ̸= zpj and Zl = zql , T2 consists of the set of
instances for which Zj = zpj and Zl = zql . The size of T1 is usually much smaller than the size of T2

because of high correlation between Zj and Zl (e.g., there are more red 7’s than non-red 7’s).

Algorithm 1: Counterfactual Generation to Remove the
Effect of Confounding Edge Ci → Zj

Result: Counterfactual images that remove the
confounding effect caused by the edge Ci → Zj

Input: D = {Xi}Ni=1,
Nodes = {Zl|Ci → Zj&Ci → Zl}
Initialize: cf_images = []

for each Zl ∈ Nodes do
T1 = {X ∈ D|Zj ̸= zpj&Zl = zql }
T2 = {X ∈ D|Zj = zpj&Zl = zql }
M = conditionalCycleGAN(T1, T2)
Factual_Imgs = {X ∈ D|Zj ̸= zpj&Zl ̸= zql }
Counterfactuals =M(Factual_Imgs)
cf_images.append(Counterfactuals)

end
return cf_images

Now, we learn a mappingM from the
set T1 to the set T2 that changes the at-
tribute Zj while fixing the value of Zl

at zql . That is, for any given instance
X ∈ T1, for which Zj ̸= zpj ,Mmaps
X to a different instance X ′ in which
the value of the generative factor Zj

is changed to zpj (e.g.,M takes red 9
as input and returns red 7 as output).
This mappingM can be thought of as
a function performing the 3-step coun-
terfactual inference: learning the un-
derlying generative factors, perform-
ing the intervention do(Zj = zpj ) and
then generating the counterfactual in-
stance X ′. Now, given an instance X
for which Zj ̸= zpj and Zl ̸= zql , us-
ing M, we can generate counterfac-
tual instance X ′ in which Zj = zpj
and Zl ̸= zql . These counterfactual instances, when augmented with the original observed dataset
D, removes the effect of the confounding edge Ci → Zj w.r.t. the edge Ci → Zl. That is, the
counterfactual instances, when augmented with original data, breaks the correlation between Zj

and Zl. This process can now be repeated systematically for each confounding edge to generate
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counterfactual instances that remove the spurious correlations. The overall procedure to generate
counterfactual instances is summarized in Algorithm 1.

Earlier works use CycleGAN to generate counterfactual images that differ from
original image by a single attribute/feature [39, 11]. Given two domains/sets of
images that differ w.r.t. only one generative factor Zj , a CycleGAN can learn
to translate between the two domains by changing the attribute value of Zj .

Figure 2: Architecture of the proposed modified
conditional CycleGAN. Pre-trained modules are
shown in green color and target attribute is shown
in blue color. For simplicity, we only show one
pass of conditional CycleGAN (translation from
T1 to T2) in this figure.

In this case, one can think of CycleGAN as
a function performing the required interven-
tion Zj and generating counterfactual instance
without modeling the underlying causal process.
Concretely, CycleGAN is an architecture used
to perform unsupervised domain translation us-
ing unpaired images. In a CycleGAN, a gener-
ator G1 first transforms a given image X from
a domain/set T1 into X ′ so that X ′ appears
to come from another domain/set T2 such that
certain features from input X are preserved in
the output X ′. A discriminator DT2 then classi-
fies whether the translated image X ′ is original
(i.e., sampled from T2) or fake (i.e., generated
by G1). A second generator G2 transforms the
image X ′ back to original image X to ensure
that G1 is using the contents of X to generate
X ′. The same procedure is repeated to trans-
late images from domain T2 into domain T1. The loss function of CycleGAN can be written
as LCycleGAN = LGAN (G1, DT2

, X,X ′) + LGAN (G2, DT1
, X ′, X) + Lcycle(G1, G2) Where

LGAN is simple Generative Adversarial Network (GAN) [12] loss and Lcycle is cycle consistency
loss measuring how well the output of G2 is matching with the original input X . For example,
Lcycle(G1, G2) = EX∼D[||G2(G1(X)) −X||1] can ensure that G2(G1(X)) = X . We use condi-
tional variant of CycleGAN to leverage the supervision in terms of attribute values. For each generator,
along with input, we also feed a desired target attribute as shown in the Figure 2.

To improve the quality of counterfactual images generated by conditional CycleGAN under extreme
confounding, we propose a modification to conditional CycleGAN as detailed below. As discussed
earlier, X ′, the output of G1, can be thought of as a counterfactual image of X . When changing
the feature Zj of X , we keep the feature Zl fixed. That is, the representation for Zj in both X and
X ′ should be different and the representation for Zl in both X and X ′ should be same. To ensure
this, as shown in Figure 2, along with two generators G1, G2 and a discriminator DT2 that are part
of conditional CycleGAN, we add two pre-trained discriminators L1, L2 (shown in green color in
Fig. 2). L1 takes two images X,X ′ as input and returns high penalty if the representation of Zj is
similar in X,X ′ and small penalty otherwise. L2 takes two images X,X ′ as input and returns high
penalty if the representation of Zl is different and small penalty otherwise. Thus, our overall objective
to generate good quality counterfactual images is to train the modified conditional CycleGAN by
minimizing the following objective.

Lconic = LCycleGAN − Lcon(L1(X), L1(G1(X))) + Lcon(L2(X), L2(G1(X)))

− Lcon(L1(X
′), L1(G2(X

′))) + Lcon(L2(X
′), L2(G2(X

′)))
(2)

Where Lcon is the contrastive loss [14]. For a pair of images (X,X ′), Lcon defined Lcon(X,X ′) =
AD2 + (1−A)max(ϵ−D, 0)2 Where A = 1 if X,X ′ belong to same class (or have same attribute
values), A = 0 if X,X ′ belong to different classes (or have different attribute values). D is the
distance between the representations of X,X ′ (e.g., Euclidean distance). ϵ is the margin of error
allowed between two representations of the images of different classes. L1 and L2 are pre-trained
models and the parameters of L1 and L2 are fixed. That is, the loss values returned by Lcontrastive

are only used to update the trainable parameters of conditional CycleGAN.

A Downstream Task - Image Classification: To measure the goodness of counterfactual generation,
we consider the classification task on the unconfounded test set as a downstream task. Let Daug =
{(Xi, Yi)}Mi=1 be the augmented dataset of original data D and corresponding counterfactual data
points. Using Daug , we minimize Laug := E(X,y)∼Daug [l(fθ(X), y)]. Where l is cross entropy loss.
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To further improve the performance of a classifier using Daug, for each pair of images Xi, Xj we
minimize Lcon(Xi, Xj) on the logits in the final layer. Now, the final objective to optimize for
classification task is to minimizeL = Laug + λE(Xi,Xj)∼(Daug×Daug)[Lcontrastive(Xi, Xj)] Where
λ > 0 is a regularization hyperparameter.

5 Experiments and Results
We now present the experimental results on both synthetic (MNIST variants) and real world (CelebA)
datasets. Having access to the ground truth generative factors (i.e., Z1, . . . , Zn), we artificially create
confounding in the training data and we leave test data to be unconfounded (i.e., no correlation among
generative factors). We compare CONIC with various baselines including Empirical Risk Minimizer
(ERM), Conditional GAN (CGAN) [12], Conditional VAE (CVAE) [20], Conditional-β-VAE (C-β-
VAE) [16], AugMix [15], CutMix [43], Invariant Risk Minimization (IRM) [1], and Counterfactual
Generative Networks (CGN) [34].

MNIST Variants: We construct the following three synthetic datasets based on MNIST dataset [22]
and its colored, texture, and morpho (where the digit thickness is controlled; Fig. 3) variants [1,
4, 34]: (i) colored morpho MNIST (CM-MNIST), (ii) double colored morpho MNIST (DCM-
MNIST), and (iii) wildlife morpho MNIST (WLM-MNIST). We consider extreme confounding
among generative factors as explained below. For the experimental results shown in Table 1, in
the training set of CM-MNIST dataset, the correlation coefficient between digit label and digit
color r(label, color) is 0.95 and the digits from 0 to 4 are thin and digits from 5 to 9 are thick
(see Figure 3). That is, r(label, thin) = 1 if the digit is in [0,1,2,3,4] else r(label, thick) = 1.
In the training set of DCM-MNIST dataset, digit label, digit color, and background color jointly
take a fixed set of values 95% of the time. That is, r(label, color) = r(color, background) =
r(label, background) = 0.95 and the digits from 0 to 4 are thin and digits from 5 to 9 are thick.

Model CM-MNIST DCM-MNIST WLM-MNIST CelebA
ERM 46.41± 0.81% 43.31 ± 2.30% 28.28 ± 0.70% 70.64 ± 6.93%
CGAN 41.86 ± 1.79% 30.66 ± 3.86% 17.50 ± 0.85% 70.99 ± 2.35%
CVAE 49.58 ± 1.50% 41.99 ± 1.10% 34.19 ± 1.58% 71.50 ± 1.82%
C-β-VAE 51.22 ± 1.00% 51.58 ± 2.36% 33.90 ± 1.87% 74.29 ± 0.65%
AugMix 47.36 ± 0.01% 44.85 ± 0.02% 26.30 ± 1.30% 71.93 ± 4.64%
CutMix 20.44 ± 1.22% 23.10 ± 2.98% 12.08 ± 1.59% 73.66 ± 0.76%
IRM 55.25 ± 0.89% 49.71 ± 0.71% 50.26 ± 0.48% 72.30 ± 2.71%
CGN 42.15 ± 3.89% 47.50 ± 2.18% 43.84 ± 0.25% 69.25 ± 0.29%

CONIC 65.57 ± 0.34% 92.41 ± 0.26% 77.72± 1.00% 79.56 ± 1.28%

Table 1: Test set accuracy results on MNIST variants and CelebA

In the training set of WLM-MNIST
dataset digit shape, digit texture, and
background texture jointly take a fixed
set of attribute values 95% of the time
and the digits from 0 to 4 are thin and
digits from 5 to 9 are thick. Table 1
shows the results in which CONIC
outperforms all the baselines. See Ap-
pendix for comparison of augmented
images by various baselines. Coninc
uses only 10000, 15000, 15000 counterfactual images in CM-MNIST, DCM-MNIST, and WLM-
MNIST experiments respectively to get improved performance.

CelebA: Unlike MNIST variants, CelebA [23] dataset implicitly contains confounding (e.g., the
percentage of males with blond hair is different from the percentage of females with blond hair, in
addition to the difference in the total number of males and females in the dataset). In this experiment,
we consider the performance of a classifier trained on the augmented data that predicts hair color
given an image. Our test set is the set of males with blond hair. We train models on the train set
and test the performance on the set of males with blond hair. Since the number of males with blond
hair is very low in the dataset (approximately 4% of males have blond hair), we show that the
augmenting the train set with only 10000 images of males with blond hair improves the performance
over baselines (see Table 1) whereas other baselines require more than 50000 augmented images
to get minor improvement over ERM. Given a male image with non-blond hair, CONIC generates
the counterfactual image with blond hair without changing the male attribute (see Appendix for
sample counterfactual images). We also note that the deterministic models such as CGN fail when
they are applied to a different task where the number and type of generative factors are not fixed
and are difficult to separate (e.g., CelebA). CGN results in table 1 are obtained with only 1000
counterfactual images as augmented data points. When we increase the number of counterfactual
instances, performance of CGN reduces further.

6 Conclusions
We studied the adverse effects of confounding in observational data on the performance of a classifier.
We showed the relationship between confounding and correlation in the causal processes considered,
and we proposed a methodology to remove the correlation between the target variable and generative
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factors that works even when the dataset is highly confounded. Specifically, we proposed a counter-
factual data augmentation method that systematically removes the confounding effect rather than
addressing the confounding problem through random augmentations. Using the generated counterfac-
tuals leads to substantial increase in a downstream classifier’s accuracy. That said, we observed that
the counterfactual quality can still be improved, which will be interesting future work.
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Appendix

A Proof of Propositions

Proposition 3.1. In causal processes of the form 1(a), p(Zi|do(Zj)) is equal to p(Zi).

Proof. In causal processes of the form 1(a), let C ′ denote the set of all confounding variables that are
part of some backdoor path from Zi to Zj . That is C ′ = {C|Zi ← C → Zj} for some i, j. Then we
can evaluate the quantity p(Zi|do(Zj)) as

p(Zi|do(Zj)) =
∑
C′

p(Zi|Zj , C
′)p(C ′) =

∑
C′

p(Zi|C ′)p(C ′) =
∑
C′

p(Zi, C
′) = p(Zi)

Where the first equality is because of the adjustment formula [26] and the second equality is because
of the fact that Y is a collider in causal graph 1(a) and hence conditioned on C ′, Zi is independent of
Zj .

Proposition 3.2. For causal generative processes of the form 1(a), the correlation between a pair of
generative factors (Zi, Zj) is proportional to the amount of confounding between Zi and Zj .

Proof. Expanding the quantity I(Zi → Zj) + I(Zj → Zi), we get the following,

I(Zi → Zj) + I(Zj → Zi) = EZi,Zj

[
log(

p(Zi|Zj)

p(Zi|do(Zj))
)

]
+ EZi,Zj

[
log(

p(Zj |Zi)

p(Zj |do(Zi))
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj |Zi)

p(Zi|do(Zj))p(Zj |do(Zi))
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj |Zi)

p(Zi)p(Zj)
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj)p(Zj |Zi)p(Zi)

p(Zi)p(Zj)p(Zi)p(Zj)
)

]
= EZi,Zj

[
log(

p(Zi, Zj)p(Zj , Zi)

p(Zi)2p(Zj)2
)

]
= 2× EZi,Zj

[
log(

p(Zi, Zj)

p(Zi)p(Zj)
)

]
= 2× I(Zi;Zj)

(3)

Where the third equality is due to Proposition 3.1. Since non-zero mutual information implies positive
correlation, we see that the amount of confounding between Zi and Zj is directly proportional to the
correlation between Zi and Zj . Hence, we use the correlation as a measure of confounding between
generative factors in the causal processes of the form 1(a).

B Time Complexity Analysis:

Apart from its simple methodology, CONIC brings additional advantages in terms of computing
time required to train the model that generates counterfactual images. As shown in Table 2, the
time required to run our method to generate counterfactual images w.r.t. a generative factor Zj is
significantly less than CGN that learns deterministic causal mechanisms as discussed in Section 2.
Even though we used CycleGAN in this work, for the cases where the number of generative factors
are more, StarGAN [5] can be used to minimize the time required to learn the mappings from one
domain to another domain [39, 11].

Dataset CONIC CGN

CM-MNIST 2.76 ± 0.19 103 ± 1.50
DCM-MNIST 2.22 ± 0.01 103 ± 2.04
WLM-MNIST 1.22 ± 0.01 111 ± 2.50

Table 2: Run time (in minutes) of CONIC compared to CGN on MNIST variants
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Figure 3: Left: sample thin morpho MNIST images and corresponding labels. Right: Sample thick morpho
MNIST images and corresponding labels.

Figure 4: Top: CelebA original images of males with non-blond hair color. Bottom: Counterfactual
images of males with blond hair generated using Algorithm 1

11



CM-MNIST Samples DCM-MNIST Samples WLM-MNIST Samples

CM-MNIST CONIC DCM-MNIST CONIC WLM-MNIST CONIC

CM-MNIST CUTMix DCM-MNIST CUTMix WLM-MNIST CUTMix

CM-MNIST AUGMix DCM-MNIST AUGMix WLM-MNIST AUGMix

CM-MNIST CGN DCM-MNIST CGN WLM-MNIST CGN

Figure 5: Sample images from MNIST variants and augmented images by various methods.
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