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ABSTRACT

We consider the problem of ranking a set of items from pairwise comparisons
among them when the underlying preferences are intransitive in nature. Intransi-
tivity is a common occurrence in real world data sets and we introduce a flexible
and natural parametric model for pairwise comparisons that we call the Distin-
guishing Feature Model (DF) to capture this. Under this model, the items have
an unknown but fixed embedding and the pairwise comparison between a pair
of items depends probabilisitically on the feature in the embedding that can best
distinguish the items. We study several theoretical properties including how it
generalizes the popular transitive Bradley-Terry-Luce model. With just an embed-
ding dimension d = 3, we show that the proposed model can capture arbitrarily
long cyclic dependencies. Furthermore, we explicitly show the type of preference
relations that cannot be modelled under the DF model for d = 3. On the algo-
rithmic side, we propose a Siamese type neural network based algorithm which
can learn to predict well under the DF model while at the same time being inter-
pretable in the sense that the embeddings learnt can be extracted directly from the
learnt model. Our experimental results show that the model outperforms standard
baselines in both synthetic and real world ranking datasets.

1 INTRODUCTION

We consider the problem of learning to rank from pairwise comparisons where one is given a set
of pairwise comparisons over a bunch of items and the goal is to obtain a good global ranking over
these items. Typically, one assumes a statistical model for comparisons where when a pair of items
i and j are compared, item ¢ is preferred to item j with some underlying fixed but unknown proba-
bility P;;. The goodness of a ranking over the items is then given by how closely the ranking aligns
with the underlying probability matrix P typically in terms of pairwise agreement. Different pair-
wise comparison models make different parametric assumptions about P and attempt to learn the
parameters of the model. A typical score based assumption leads to the popular Bradley-Terry-Luce

Model (BTL) where P;; = wb"f’w] where w; € R is the score of item ¢. In such a model, it is

known that one can learn effectively from O(nlogn) pairs uniformly chosen from the set of all (Z)
pairs and where each chosen pair is compared only O(log n) times. While the sample complexity of
learning is attractive, the downside of the BTL model is that it can model only transitive preferences
i.e., for any three items ¢, j, k, P;; > 0.5 & Pj, > 0.5 = F;; > 0.5. Real world preferences are
almost always intransitive and hence the transitive models are often not good enough for modelling
them. There are several hypotheses as to why human reasoning oftentimes lead to intransitivity.
While some argue using the inherent irrationality in human judgement, other it by saying that hu-
mans often associate items with multiple features or scores and decide to prefer one over the other
based on some function of all these features. The latter explanation is what we will lean towards in
this work.

In this work, we propose a flexible model for pairwise comparisons called the Distinguishing Fea-
ture (DF) model. The DF model is based on the simple hypothesis that when two items are being
compared by a human, there are several implicit features of these items that are considered and the
preference is decided based on the most distinguishing feature among all features. For instance,
if the items being compared are mobile phones, the scores/features to be considered may include
price, battery life, weight and/or some weighted combination of these (all normalized to have the
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same scale) and the comparison between two mobile phones will depend only on the distinguishing
feature i.e, the feature whose absolute difference of scores is the largest. Once the distinguishing
feature is identified, the preference is a probabilistic choice that depends on the exact values of the
items for the distinguishing feature. We stress that the features that the model uses are implicit
i.e., they are not necessarily known to an algorithm that attempts to learn a ranking from pairwise
comparisons. As we will see, this is a key property that makes the model much more flexible than
recently proposed models such as the salient feature model where the features are assumed to be
known.

We investigate the proposed DF model by first theoretically understanding the type of preferences
that can be realized under the model. We first show that even with just 3 features per item, the DF
model can model intransitive preferences i.e., cyclic preferences of arbitrary lengths. We explicitly
identify a preference tournament on 8 nodes that cannot be realized using only 3 features. We also
explore the representation power of the DF model by mapping it to a edge colouring problem on
tournaments and derive several interesting sufficient conditions on the coloring that ensures repre-
sentability.

On the learning side, we develop an explainable neural network based algorithm (DF-Learn) to learn
the implicit features from pairwise comparisons generated according to the DF model. DF-Learn is
competitive when compared to a standard black box neural network model in terms of it’s prediction
accuracy while at the same time is designed such that the features corresponding to each item can
be easily extracted from the architecture. Furthermore, we demonstrate that DF-Learn requires very
few number of comparisons to learn a good predictive model, thus being sample efficient.

Finally, we demonstrate the power of the DF model on both synthetic and real world datasets. As
we will see in the experimental results, the DF learn algorithm performs exceedingly well in terms
of ranking quality and prediction accuracy when compared to the state of the art models including
the Salient Feature model based algorithm and Rank Centrality.

2 RELATED WORK

The problem of ranking from pairwise comparisons has been studied extensively for several decades
in several areas including theoretical computer science, AI/ML, social choice, operations research,
etc. We focus here on work that is relevant to our approach.

Prior work on learning from Transitive pairwise Comparisons Models: A vast number
of works have considered learning from transitive pairwise models especially focusing on the
Bradley-Terry-Luce (BTL) model. We discuss here only those approaches that are closely related
to either our models or our approaches.The classical statistics approach is to pose the problem
in the estimation framework and it is known that the maximum likelihood estimator for the BTL
scores asymptotically converges to the underlying parameters of the model. [Shah et al.|(2015) work
in a min-max framework and give tight upper and lower bounds for estimation of the underlying
parameter vector when data is generated from the BTL or closely related Thurstone model and
Hajek et al.| (2014) work in the partial ranking setting. Spectral ranking was studied in [Negahban
et al. (2015) where Rank-centrality, an algorithm that produces good rankings from O(nlog(n)?)
comparisons was introduced. Several improvements to the vanilla spectral ranking have appeared
such as the accelerated spectral ranking |/Agarwal et al.[(2018). Rajkumar & Agarwal| (2014) study
several algorithms including the Borda count algorithm and give statistical performance guarantees
for optimal recovery. Matrix completion based approaches for rank aggregation were explored in
Gleich & Lim| (2011). The work in [Rajkumar & Agarwal| (2016) is where the low rank pairwise
comparison model was introduced and a matrix completion based algorithm was developed.
However, the model considered low rank preferences with an additional transitivity constraint and
showed sample complexity bound for recovering an almost optimal ranking for the same. In this
work, we remove the transitivity restriction for rank 2 models and allow for potential cycles.

Prior work on Intransitive Preference Modelling: While the BTL model can be seen as
using a 1 dimensional embedding of the item using a score vector, studies have considered higher
dimensional embeddings. A 2 dimensional embedding was considered in [2]. While their model
can give rise to cyclic tournaments, it is not clear what type of cycles are possible. [6; [7] propose



Under review as a conference paper at ICLR 2023

the Majority vote model which is a random utility model (RUM) with a d dimensional feature
embedding for each item. The Majority vote model is powerful enough to produce arbitrarily
long cycles and can express any probability sub-matrix over a fixed triplet. The Blade-Chest
inner (BCI) model [3] embeds each item into two d dimensional vectors (blade vector and a
chest vector) and a score vector s where the probability of ¢ being preferred over j depends on
< ichest, Jblade > — < %blades Jehest > +5; — S;. [10]. Previous work [4110] have proposed matrix
completion based algorithms to obtain optimal ranking for the LRPR type models assuming
transitivity of preferences. In this work, we make no such assumptions. More recently, the context
dependent salient feature model was introduced where the preference probabilities for a pair of
items depends on a subset of items that are specific to the pair. In this work, we don’t require
features to be available alongwith the items. However, if features are available, our algorithms will
still learn an embedding from the feature space to an embedding space automatically.

3 PROBLEM SETTING AND PRELIMINARIES

Let [n] = {1,2,...,n} be a set of items that need to be ranked. We assume that the learner is given
a set of m pairwise comparisons {i, jx,yr} where k = 1,...,m, ix, jr € [n] and y; € {0,1} for
all k. For each k, (i, ji) refers to the pair of items that were compared and y;, = 1 indicates that
item ¢, was preferred to j; and y;, = O indicates otherwise. The goal of the learner is to produce a
good global ranking over the set of items.

Probability Preference Matrix: We assume that whenever two items ¢ and j are compared,
item ¢ is preferred to item j with probability P;;. Thus for all k, y;, is a Bernoulli random variable
with proability P;, ;,. We refer to the matrix P € [0, 1]"*™ as the probability preference matrix.
We have P;; + Pj; = 1 Vi, j. We assume that P;; # 0.5 Vi # j.

Performance Measure: Let S,, denote the set of all permutations/rankings on n items. Given a
ranking o € S,,, the performance measure of ¢ with respect to the underlying probability preference
matrix P is given by the pairwise disagreement error which is defined as follows:

dis(0,P) = = I((Py; > 0.5 & o(i) < o(j)) [| I(Py; < 0.5 & (i) > 0(j))) (1)

(2) <

Here o (i) is the rank of the i-th item and I(-) is the indicator function. In words, the pairwise
disagreement error captures the fraction of pairs (¢, 7) for which the permutation o ranks item 4
above item 7 whereas the probability of item ¢ being preferred over item j is less than 0.5 and vice
versa.

An algorithm that outputs a ranking can in general not be able to achieve 0 pairwise disagreement
error no matter which ranking it outputs. This is true if the underlying P has cyclic or intransitive
preferences. In general, even if the underlying P is known, finding the o that minimizes the pairwise
disagreement error is a NP-hard problem . Thus, we will not restrict our algorithms to only output a
ranking but allow for algorithms to predict pairwise probabilities for any given pair of items. Note
that such algorithms may be able to predict cyclic dependencies correctly. Thus, another measure
that we will use to measure the performance of an algorithm is the fraction of pa1rw1se preferences
predlcted incorrectly. Let P be the predlcted probability preference matrix where P; ; 1s the predicted
pairwise preference probability for the pair (7, j). The pairwise probability disagreement is defined
as below:

L D I((Py > 0.5 &Py < 0.5) || I((Py <0.5&P; >05))  (2)

@ i<j

disProb(P,P) =

Note that dis(c, P) = disProb(P,P) for algorithms which only output rankings EI whereas they
may be different for algorithms which learn to predict probabilities given any pair of items.

'This is true because for algorithms that output only a ranking o, we assume P;; = I(o(i) < o()).
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4 DISTINGUISHING FEATURE (DF) MODEL FOR PAIRWISE COMPARISONS

We now introduce the distinguishing feature model for pairwise comparisons. The model assumes
that each item 1 is associated with an embedding e; € R? in some dimension d. When two items i
and j are compared, a two step procedure if followed to decide the preferred item. In the first step,
the feature which contributes to the highest absolute difference is calculated as follows:

k* = arg max leix — ejkl
In the above equation, ties are broken arbitrarily.

In the second step, the preference probability is calculated as follows:

Pij = ¢(eir — ejr+)
where ¢ is a probability link function that satisfies ¢(0) = 0.5, lim ¢(z) =1land lim ¢(z) =0
T—r00 T—r—00

and ¢(x) € [0,1]Vz € R. A simple example of a probability link function is the logit function
1

defined as ¢(z) = 1=

We say that a probability preference matrix P satisfies the Distinguishing Feature model with di-
mension d if there exists a set of d dimensional embeddings for the items such that F;; can be
obtained as described above for all 4, j.

5 THEORETICAL ASPECTS OF DF MODEL

In this section, we prove several theoretical properties of the Dinstinguishing Feature model. We
begin by setting some notation that will be useful to state our results.

Let P € [0,1]™*" be a probability preference matrix. We denote by T(P) the tournament on n
nodes associated with P where T'(P) is a complete directed graph and there is an edge from node 4
to node j in T(P) if and only if P;; > 0.5. For a general tournament T, we will say ¢ > j if and
only if there is an edge from 7 to j in T.

We first begin with a couple of results that show that our model can effectively subsume several
popular and recent models for pairwise comparisons including the BTL model and the context de-
pendent Salient feature model.

Theorem 1. For d = 1, the Distinguishing Feature model with the logit link function is exactly same
as the Bradley-Terry-Luce model.

Proof. When d = 1, the only feature present is indeed the distinguishing feature as well. Thus,
the feature can be thought of as a score for each item and the item with the higher score dominates
the one with lower score. The exact probability with which it dominates is given by logit(s; — s;)
where s € R" is the score vector. This is indeed equivalent to a BTL model where the score for the
i-th item is given by e’ for every item <. O

Next, we take a closer look at the preferences that can be modelled using the DF model. One of the
important ways of understanding a particular model for pairwise comparisons is to understand the
set of tournaments that are achievable under the model. In this section, we will show several results
which will illustrate the flexibility of the DF model in representing tournaments. We start with a
result on 3 cycles.

Theorem 2. Let P € [0, 1]"*" be a probability preference matrix that satisfies the Distinguishing
Feature model with dimension d. If T(P) contains a cycle, then d > 3.

Proof. We already argued in Theorem [l that dimension 1 corresponds to the BTL model and it
is known that the BTL model cannot model cyclic relations. Thus, assume there are only two
dimensions. Let three items be represented using the embedding (z1,y1), (22,y2), (23,y3).
Given, |zl — 22| >= |yl — y2|, 21 > 22, and |22 — 23| >= |y2 — y3|, 22 > =3, we will show that
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Figure 1: A 8 node tournament that cannot be realized by the Distinguishing Feature Model with
d=3

|zl — 23| < |yl — y3|,y3 > y1. Suppose, 3 < 22 < x1, then either y2 lies between y1 and y3 or
it doesn’t lie between them. We have the following cases.

Casel: yl < y2 < y3: Lety3—yl = (y3—y2)+(y2—yl) > (x1—23) = (z1—22)+ (22— x3).
But, (y2 — y1) < (21 — 22) => (y3 — y2) > (22 — 2:3). which is a contradiction.

Case2: y2 <yl <ydoryl <y3 <y2
y2 <yl <y3 = (y3—92) > (y3—yl) > (z1 — 23) = (z1 — 22) + (22 — x3)
(z1 —22) >0 = (y3 —y2) > (22 — x3), which contradicts our previous assumption.
A similar argument shows the case y1 < y3 < y2 also leads to a contradiction.
O

While the above theorem shows that we need at least 3 dimensional embeddings to model cycles,
we next show that d = 3 is already powerful enough to model arbitrarily long cycles.

Theorem 3. The DF model can capture arbitrarily long cycles with just 3 dimensions.

The proof of the above theorem is in the appendix.

The main result of this section is the following theorem where we explicitly characterize the tourna-
ment that cannot be modelled using the DF model with only 3 dimension.

Theorem 4. Let T/ be the tournament on 8 nodes described in Figure|Sl There does not exist
any probability preference matrix P € [0,1]3%® that satisfies the DF model with d = 3 such that
T(P) = T/or®,

Proof Sketch: We defer the proof to appendix. The idea is to start with a three cycle which needs
3 different dimensions due to Theorem 2] Given the nature of the tournament, this will immediately
impose restrictions on dimensions of the other edges. A careful case by case argument will show
that there is no possible way to use just three dimensions to obtain this tournament.

Remark: The above theorem shows that tournaments with complicated cyclic dependencies are
those that end up being forbidden by the DF-Model even for dimension d = 3. In practice, we
don’t expect tournaments to have complicated cyclic dependencies and hence the above theorem
can be seen as a reassurance that the DF model is a good enough model to capture most useful
cyclic dependencies in practice.

6 LEARNING UNDER THE DF MODEL

In this section, we turn to the question of learning under the DF model. We propose a simple algo-
rithm DF-Learn which is based on a Siamese type neural network architecture as shown in Figure
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Figure 2: DFLearn - A Siamese style architecture for learning under the Distinguishing Feature
Model

[2l The network takes as input a pair of items represented using either their features if available or
using a one-hot representation and learns embeddings of each item via a shared input to embedding
network. The embeddings are then passed into a DF-Model compute module which computes the
difference of scores for these embeddings corresponding to the most distinguishing feature, which
is then converted into a probability of one item being preferred over another using a link function.
Given a pairwise comparison dataset, the network is trained in the usual Siamese network training
fashion to obtain the weights. The Siamese nature of the architecture ensures P;; + P;; = 1 for all

i,7.
7 EXPERIMENTS

In this section, we describe our experimental results on synthetic as well as real world datasets. We
begin by describing our experimental setup.

7.1 SYNTHETIC DATA EXPERIMENTAL SETUP:

We perform experiments on synthetic data by generating probability preferences over n = 100 items
using three different models as described below.

* BTL Model: A score vector s € R'%0 is generated at random from a uniform distribution
in [0, 1].

+ Salient Feature Model (SF): The embeddings in R? for items are generated randomly
where each component is drawn from a Gaussian distribution with mean 0 and standard
deviation ﬁ. Furthermore, each component of the weights are drawn according to a 0
mean Gaussian with standard deviation %.

* Distinguishing Feature Model (DF): The embeddings are generated in the same manner

as the SF model. There are no weights associated with the DF model.

We run the following three algorithms for data generated according to each of the above models.
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Figure 3: Experimental Results on pairwise prediction accuracy on Synthetic Data for all three
algorithms considered. Left - Data generated according to BTL model, Middle - SF Model and
Right - DF Model.

* Rank Centrality - This algorithm computes a Markov chain transition probability ma-
trix from the training pairwise comparisons and outputs the stationary distribution of the
Markov chain as the score vector.

e SF-MLE - This algorithm computes the maximum likelihood estimator for the weights
under the context dependent Salient Features model.

* DF-Learn - This is the algorithm proposed in this work. The architecture is as shown
in Figure [2] where the weight shared neural network is a fully connected network with 3
hidden layers and ReLu activation.

Remark: While the Rank Centrality algorithm and the DF learn algorithm does not require any
features, the SF-MLE algorithm requires features to learn from data. However, the BTL model
and the DF model do not have any explicit feature information. Thus, when we run the SF-MLE
algorithm, we use the one-hot encoding of the items as the features.

7.2  SYNTHETIC DATA - EXPERIMENTAL RESULTS

For each of the model generating the data and for each of the algorithms considered above, we test
the performance using various measures discussed below.

7.2.1 PAIRWISE PREDICTION ACCURACY

The basic performance measure we use in the pairwise prediction accuracy as a function of the
number of unique pairs considered during training. As there are 100 items, there are (120) = 4950
unique pairs in total. We vary the number of pairs during training from 500 in steps of 500 until 4000
pairs. The number of times each pair is compared is fixed to be 7 which is equal to [log(n)] as n =
100 for these experiments. In each case, the accuracy is measured with respect to the pairs not seen
in the training data. The results are presented in Figure [3| As can be seen, the DF-learn algorithm
performs better than both the Rank Centrality and SF-MLE algorithms when the underlying model
generating the data is either BTL or the DF model. When the underlying model is the SF-Model,
the SF-MLE algorithm has an unfair advantage as it uses the features (embeddings) whereas both
RC and DF-learn are not privy to the features. Even under such model mis-specification and the
unavailability of features, the DF-learn algorithm still achives around 70— 75% accuracy irrespective
of the size of the training data. In contrast, when the data is generated according to the DF-model,
the SF-MLE algorithm is unable to adapt to the model mis-specification and performs only as well
as a coin toss (i.e., accuracy stays around 50%). Thus, we conclude from these experiments that
the DF-learn algorithm is able to perform well not only when the data adheres to the model but also
under model mis-specification.

7.2.2 KENDALL-TAU CORRELATION

We next measure the Kendall-Tau correlation of global rankings on n items obtained from the algo-
rithms and compare it with the global rankings obtained from the underlying ground truth probability
preferences.
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Figure 4: Experimental Results on Kendall Tau correlation on Synthetic Data for all three algorithms
considered. Left - Data generated according to BTL model, Middle - SF Model and Right - DF
Model.

Ground Truth Ranking: For the BTL model, the ground truth ranking is obtained by sorting the
true scores in descending order. For the SF model, the ground truth ranking is obtained by sorting
the scores where the score of item i is the w” f; where w is the weight vector and f; is the feature
vector corresponding to item ¢. For the DF model it is obtained by the Copeland procedure i.e.,
associating the score of an item as the number items it beats with probability greater than 0.5 in
pairwise contests. The Copeland score is known to be a 5-approximation of the NP-hard problem of
obtaining the ranking that minimizes pairwise disagreement error with the ground truth preference
matrix.

Ranking Output by Algorithm: For the RC algorithm, the scores output by the algorithm is sorted
to obtain the predicted ranking. For SF-MLE, the scores are obtained similar to ground truth but
now by using the estimated w vector and the features. For DF learn, all pairwise probabilities are
computed and a ranking is obtained by sorting the Copeland scores as described earlier.

The Kendall Tau correlation computes how well the output ranking aligns with the ground-truth
ranking. We plot this for various models and algorithms in Figure d] As can be seen again, the
correlations improve with number of pairs seen in training data for all three algorithms. The DF-
learn model has much better correlation with ground-truth for BTL and DF models and beats the
other two algorithms irrespective of the number of pairs compared. However, for SF model, as
before the SF-MLE algorithm uses features and so has an unfair advantage which shows up in the
Kendall Tau correlation as well.

7.2.3 EFFECT OF DIMENSION ON CYCLES CAPTURED

We next test what fractions of 3-cycles are captured by the DF-learn model as we vary the learning
dimension when the ground-truth dimension is 10. Note that the RC algorithm cannot capture any
cycles and the fraction will always be 0. The result is shown in Figure [5] (left). As the dimension
increases, the fraction of cycles captured increases indicating that the algorithm is able to predict
intransitive preferences well on unseen data.

7.2.4 EFFECT OF DIMENSION ON ACCURACY

We test the effect of learning dimension and prediction accuracy. Again the ground-truth dimension
is fixed to be 10 while we vary the learning dimension and the number of training pairs. The result is
shown in Figure[5](right). As can be seen, increasing the dimension tends to help increase prediction
accuracy in general.

7.3 REALWORD DATA - SETUP

To test the performance of our algorithm on real world data, we did the experiments using the
following datasets.

 Jester: This is a dataset of ratings of jokes given by several users. The ratings are converted
into pairwise comparisons. Number of jokes n = 100 and number of pairs compared
m = 891404.
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Figure 5: (left) Dimension vs Cycles; (right) Dimension vs accuracy for the DF model

RC SF-MLE DF-Learn
Jester 0.813(0.009) | 0.726(0.003) | 0.864 (0.004)
MovieLens 0.638(0.003) | 0.600(0.003) | 0.669 (0.003)
DoTA 0.645 (0.015) | 0.533(0.013) | 0.640(0.013)
StarCraft II: WoL. | 0.635(0.004) | 0.546(0.005) | 0.651 (0.005)
StartCraft II: HoTs | 0.657(0.005) | 0.574(0.005) | 0.689 (0.006)

Table 1: Table showing accuracy of different algorithms for various real world datasets. RC -
Rank Centrality, SF-MLE - Maximum Likelihood estimation for Salient Feature Model, DF-Learn
- Distinguishing Feature Model proposed in this paper.

* MovieLens: This dataset contains realworld ratings of movies. We consider n = 1682
movies and m = 139982 comaprisons among them derived from ratings.

* DoTA: This dataset contains match-ups of players of the online video game. Number of
players considered n = 757 and number of matches considered m = 10, 442.

 StarCraft II: WoL Similar to DoTA dataset where pairwise match results of online video
games are considered for n = 4381 with m = 61657 matches.

* StartCraft II: HoTs Another pairwise matches dataset with n = 2287 users and m =
28582 matches.

7.4 REALWORD DATA - RESULTS

For each of the above dataset, the pairwise comparisons were split in ratio of 70 : 30 for train and
test respectively. The algorithms were run on the train set and they were tested for accuracy of
prediction on the test set. The accuracy for various datasets are shown in Table[7.4] As can be seen,
the DF-Learn algorithm beats the baselines in four out of five datasets.

8 CONCLUSION

In this work, we proposed the distinguishing feature model for pairwise comparisons. We analysed
certain theoretical properties of the class of tournaments that can be obtained via this model,
developed an algorithm called DF-Learn to learn from pairwise comparisons generated according
to this model and showed superior experimental results on both real world and synthetic data as
compared to standard baselines. Future work include understanding the exact class of tournaments
that can be modelled under the DF model.

Ethical Considerations: There are no major ethical considerations of this work. However,
any learning algorithm needs to be aware of potential risks involved due to data/algorithmic bias.
The current work proposes a new model for pairwise comparisons and fairness/bias considerations
of the proposed model is deferred to future work.
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Proof of Theorem [4

Proof. Consider the tournament in Figure[5] We begin by fixing a part of the dimension assignment
wlog as follows,

1— > 2(1),2— > 3(2),3— > 1(3) where i— > j(k) means that node i beats node j and the
distinguishing feature dimension is k. Note that we have i— > j(1),j— > k(l) = i— > k().
Also from theorem 2] we know that for any three cycle, all three dimension must be used. We will
now look at all possibilities given that the above assignment was fixed wlog.

‘We can consider

1)2— > 4(2),4— > 1(3) or
2)2— > 4(3),4— > 1(2)
3)7—>3(lor2)

If 2— > 4(3),4— > 1(2), then 5— > 2 is | because 2— > 3 = 2,2— > 4 = 3. If
2— > 4(2),4— > 1(3), then 5— > 2is 1 or 3.

1) Let 2— > 4(3),4— > 1(2),7— > 3(1) =>1->7=26—>2=1=>7->5=3
(because it is the common edge of 5— > 2— > 7— > 55— > 1— > 7— > 5),5— > 1 = 1. Now,
4—>5=27T—->5=3=>5—>8=1=> 8- >4 = 3. So, 3— > 8 has no color left to be
assigned to.

2)Let2— > 4(3),4— > 1(2),7— >3(2) =>1->7=1. (@ If 7— > 5 =3, then 5— > 8 = 1.
Now, 8— > 7 has no color left.
b If7—>5=2=>5—>8=3/1.

Leth— >8=3,=>8->7=1,8->4=1,1->8=33->8=3,6->1=27—>
6 = 3, but 2— > 7 = 3(invalid)

Lets- >8=1,=>8 >7=38 >4=31->8=13->8=1,2->7=37->
6=2,6->1=38->6=206->3=3 but3— >5=3 (invalid)

3) Let 2— > 4(2),4— > 1(3), 7— > 3(2),5— > 2(1). Then, 3— > 5(3),4— > 5(3),1— > 7(1).

If7— > 5(3)and 5— > 8 =1 =>8— > 7 =2, but 7— > 3(2) (invalid)
If7— >5(3)and5— >8=2=>8->7=13->8=38->4=11->8=26— >
1=3,7—>6=2, but2— > 7 = 2 (invalid)

If7—>5=2then5— >8=1,8—>7=38->4=21->8=13->8=16->3=
2,8~ >6=3,6->1=27—>6=3,but2— > 7 = 3 (invalid)

4)Let 2— > 4(2),4— > 1(3)
1,4— >5=1,5—>8 =
2,8— > 6 = 1 (invalid)

3(2),5— > 2(3). Then, 1— >7=1,7—>5=2,3— > 5
1,3—>8=238->4=21->8=16- >3

5)Let2— > 4(2),4— > 1(3),7— > 3(1),5— > 2(1). Then, 1— > 7=2,7— >5=3,2— > 7=
2,3—>5=3,4—>5=3.

If 5— > 8 = 2, then 8— > 7 = 1 (invalid).

If5—>8=1,then8— >7=2,3—>8=3,8—>4=21->8=1,8—>6=2,6—>1=
3,7—->6=1,6—>3=1,5—>6=2,6— >4 =1 (invalid)

6) Let 2— > 4(2),4— > 1(3),7— > 3(1),5— > 2(3). Then,3— >5=1,4—>5=1,1- > 7=
2,7—->5=1,

If5—>8=2,8—>7=3,3— > 8 = 2 (invalid).
f5->8=38->7=23->8=3,6->3=28->6=1,8->4=2,1->8=
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1(invalid).

Proof of Theorem

Proof. We know that we can capture a 3-cycle using 3 dimensions. If |21 — 22| >= |yl — y2| and
|xl—22| >= |21—22| and 21 > 22, then | beats 2in 1. If |y2—y3| >= |22—23| and |y2—y3| >=
|22 — 23| and y2 > y3, then 2 beats 3 in 2. Hence, |23 — 21| >= |23 —z1|, |23 — 21| >= |y3 — y1]
and 23 > z1 so that 3 beats 1 in 3. (1,2, 3) becomes the order of the coordinates for the chosen
features wlog.

Let, z1 > 22 > x3,yl > y2 > y3 and 23 > 22 > z1.

=> (21 — 22) >= (y1 — y2) and (z1 — 22) >= (22 — z1).

(y2 — y3) >= (22 — 23) and (y2 — y3) >= (23 — 22).

23 —z1 = (z3—z2)+(z2—zl) >=zl — 23 = (21 — 22) + (22 — 23)
(21 — 22) >= (22 — 21) => (22 — 23) <= (23 — 22)

23—z1 = (23—22)+(z —z1)>=yl —y3 = (yl —y2) + (y2 — y3)
(y2 —y3) >= (23 — 22) => (y1 — y2) <= (22 — z1).
=>23—21=(23—22)+ (22— 21) >= (22 — 23) + (y1 — y2).

rl = yland 23 = y3 = x1 — 23 = yl — y3. Now, If we add a node 4 such that z4 =
(214-23)/2,24 = (x1+23)/2,y4 = (y1+y3)/2, then (23— z4) >= (x4 —2x3) and (23 —24) >=
(y4 — y3). Similarly, (24 — 21) >= (21 — 24) and (24 — 21) >= (y1 — y4) So, 3 beats 4 in 3 and
4 beats 1 in 3.

Similarly, if we add another node 5 to the set of nodes and bisect the intervals (z1, 24), (24, z1) and
(y4,y1) to add the 2 directed edges 4 beats 5, 4— > 5) and (5 beats 1, 5— > 1), then both 4— > 5
and 5— > 1 can be realized in 3.

It is easy to see that a cycle of length n >= 3 can be formed in 3-D by creating the features like
this. O
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