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Abstract

We present CIFLEX (Contextual Instruction001
FLow with EXecution), a novel execution sys-002
tem for efficient sub-task handling in multi-003
turn interactions with a single on-device large004
language model (LLM). As LLMs become005
increasingly capable, a single model is ex-006
pected to handle diverse sub-tasks that more007
effectively and comprehensively support an-008
swering user requests. Naive approach repro-009
cesses the entire conversation context when010
switching between main and sub-tasks (e.g.,011
query rewriting, summarization), incurring sig-012
nificant computational overhead. CIFLEX miti-013
gates this overhead by reusing the key-value014
(KV) cache from the main task and inject-015
ing only task-specific instructions into isolated016
side paths. After sub-task execution, the model017
rolls back to the main path via cached con-018
text, thereby avoiding redundant prefill compu-019
tation. To support sub-task selection, we also020
develop a hierarchical classification strategy021
tailored for small-scale models, decomposing022
multi-choice decisions into binary ones. Exper-023
iments show that CIFLEX significantly reduces024
computational costs without degrading task per-025
formance, enabling scalable and efficient multi-026
task dialogue on-device.027

1 Introduction028

As Large language models (LLMs) (Dubey et al.,029

2024; Achiam et al., 2023; Yang et al., 2024a;030

Jiang et al., 2023) engage in more multi-turn in-031

teractions (Hassan and Graham, 2024; Guan et al.,032

2025; Laban et al., 2025a), user poses various and033

complex requests. As such, a variety of sub-tasks,034

such as query rewriting (), API call or complex rea-035

soning (), are necessary for better supporting user036

request in the middle of a multi-turn interaction ses-037

sion. Moreover, the LLM should keep aware of the038

historical context of the multi-turn conversation for039

correct sub-task executions as well as reliable an-040

swer for the main request. However, in edge device,041

while maintaining the context of conversation in a 042

main model, deploying additional side-task specific 043

models for every sub-task is impractical due to its 044

memory and compute constraints. Encouragingly, 045

LLMs progresses at a remarkable pace, and thus a 046

single LLM is expected to handle a variety of tasks. 047

Despite the rapid progress of the versatility of a 048

single LLM, it has paid limited attention to the effi- 049

ciency of the scenarios where sub-task execution 050

and decision-making operate over long, multi-turn 051

conversations under an LLM. Explicitly including 052

sub-task execution within the conversation history 053

leads to not only excessively long contexts but also 054

exposes unnecessary internal processing steps to 055

the user. Then, as a naive approach, one could per- 056

form sub-task execution by reloading the entire 057

conversation history and inserting new task-specific 058

instructions whenever switching from the main task 059

to a sub-task. However, this incurs substantial com- 060

putational and memory overhead due to repeated 061

prefill operations, which is particularly problematic 062

for on-device deployment. For example, in a con- 063

versation of around 20 turns, the prefill required 064

can be 300 times more tokens than the generation. 065

As the number of turns grows, the cost of manag- 066

ing context and instructions across multiple tasks 067

becomes a dominant bottleneck, especially when 068

such operations are repeated throughout a session. 069

Decoder-based LLMs (Dubey et al., 2024; 070

Achiam et al., 2023; Yang et al., 2024a; Jiang et al., 071

2023) can alleviate redundancy during generation 072

via key-value (KV) caching, which stores inter- 073

mediate token representations to avoid recomputa- 074

tion over previously seen inputs. Recently, several 075

works (Lyu et al., 2025a; Liu et al., 2024a) have 076

attempted to exploit KV cache sharing across differ- 077

ently fine-tuned models to reduce overhead. While 078

promising, these methods have not been explored 079

in the context of long-horizon, multi-turn conversa- 080

tions, where cache reuse between different models 081

becomes more fragile and error-prone. In our own 082
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observations, we found that sharing KV caches083

between differently fine-tuned models becomes in-084

creasingly problematic as the conversation grows085

longer, due to subtle drifts in behavior and context086

representation. Given the rapidly improving gener-087

alization ability of recent LLMs on diverse tasks,088

we argue that employing a single LLM is more ro-089

bust and cache-efficient when managing instruction090

flow with keeping the conversation history across091

main and side tasks.092

To this end, we propose CIFLEX (Contextual093

Instruction FLow with EXecution), a novel exe-094

cution strategy that extends the utility of KV cache095

from token-level reuse to task-level reuse. Rather096

than reloading the entire context for every sub-task,097

CIFLEX checkpoints the KV cache of the main con-098

versation flow and reuses it by injecting only task-099

specific instructions into a side path. Sub-tasks are100

then executed efficiently on top of the preserved101

context without redundant processing. After execu-102

tion, the model seamlessly rolls back to the main103

path using the cached state, avoiding the compu-104

tational cost of full prefilled context. Additionally,105

we propose a hierarchical sub-task classification106

framework designed for smaller-scale LLMs. In-107

stead of relying on multi-class selection, which is108

often unreliable for device-scale models—we per-109

form a sequence of binary classifications in side110

paths, guided by our contextual instruction flow.111

Since there have been no works considering112

sub-task execution in multi-turn conversations,113

we present long multi-turn conversation datasets114

(e.g., TopiOCQA-Task+ and QReCC-Task+) by115

combining various task-specific datasets for conver-116

sational search, math problem solving, API calls,117

and casual chats. Then, through extensive experi-118

ments, we show that CIFLEX achieves significant119

computational savings while sacrificing less per-120

formance, offering a practical and scalable solu-121

tion for multi-task dialogue systems in resource-122

constrained environments.123

2 CIFLEX: Contextual Instruction FLow124

with EXecution125

2.1 Problem Formulation126

In a multi-turn interaction which is the main task m,127

an LLM M (here, we consider edge device-scaled128

model such as LLaMA3 3.1 8B) generates an an-129

swer a(t) for the given user query q(t) at each turn t.130

This main question and answer flow is represented131

by 132

a(t) = m(M, C
(t)
main, q

(t)), (1) 133

where C
(t)
main denotes the conversational context of 134

m at turn t, consisting of the main task instruction 135

Imain and all previous turns: 136

C
(t)
main ={

{Imain} if t = 1,

{Imain, {(q(t
′), r(t

′), a(t
′))}t−1

t′=1} otherwise,
(2) 137

where r(t) represents turn-specific context such as 138

the external retrieval knowledge, which is optional 139

but can lead to substantial increase |C(t)
main|. 140

To produce correct answer a(t), the LLM can op- 141

tionally execute a proper auxiliary sub-task which 142

supports the main answer but is not directly ex- 143

posed to the user. The sub-tasks are designed to sup- 144

port m, and are represented as a set {s1, . . . , sN}, 145

where sn denotes the nth sub-task. Each sub-task 146

produces an intermediate output o(t)sn based on its 147

own context: 148

o(t)sn = sn(M, C(t)
sn , q

(t)), (3) 149

where a sub-task-specific instruction Isn is used in 150

place of Imain in C
(t)
sn . 151

Also, before executing any sub-task sn, a clas- 152

sification sub-task µ needs to be performed to de- 153

termine which sub-task is necessary for the current 154

turn. This classification task is also treated as an- 155

other sub-task. 156

Then, in a single-LLM setting, whenever switch- 157

ing from the sub-tasks to the main task, the conver- 158

sational context should be re-prefilled even though 159

much of the context is redundant across tasks and 160

turns. This repeated context reloading imposes sig- 161

nificant computational overhead, which motivates 162

our proposed approach for efficient sub-task execu- 163

tion. 164

2.2 Methodology 165

To enable efficient sub-task execution, we pro- 166

pose Contextual Instruction Flow with Execution 167

dubbed CIFLEX. Fig. 1 illustrates the overall flow. 168

We also provide the set of prompt templates in 169

Appendix. 170

Sub-Task Execution & Rollback. Once a user 171

query qt is issued, we create a checkpoint at that 172

moment—preserving the key-value (KV) cache of 173

the entire main path up to qt. For instance, when 174
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Figure 1: Overall framework of the proposed CIFLEX.

t = 1175

K(1)
main = KVCache

(
C

(1)
main, q

(1)
)
. (4)176

Based on this cached state, we branch into the177

appropriate sub-task path. Instead of reprocessing178

the full conversation context, we prefill only the179

sub-task instruction Isn on top of the preserved KV180

cache.181

o(1)sn = sn(M, Isn ; K
(1)
main) (5)182

The sub-task sn is then executed efficiently. Em-183

pirically, we observe that although the main instruc-184

tion Imain is implicitly retained via the KV cache,185

the sub-task reliably adheres to Isn , without inter-186

ference from Imain.187

After completing the sub-task, we evict the KV188

cache related to the sub-task instruction (e.g., Isn)189

or complex reasoning process and, if necessary,190

retain the cache associated with the sub-task’s final191

output o(1)sn .192

K(1)
rollback = K(1)

main ⊕ KVCache
(
o(1)sn

)
(6)193

where ⊕ denotes concatenation operation. We can194

then roll back to the main path and the model to195

continue the main task without re-prefilling the full196

conversational history.197

a(1) = m(M;K(1)
rollback)). (7)198

Model
LLaMA

(8B)
Mistral

(7B)
Qwen
(7B)

GPT-4
(>100B)

Acc (%) 33.93 44.31 42.13 98.21

Table 1: Challenge of multi-choice sub-task classifica-
tion set-up on smaller-scaled models. Accuracy (%)
are reported on dataset extended from TopiocQA.

Here, r(1) can be prefilled, if necessary, i.e. a(1) = 199

m(M, r(1);K(1)
rollback)). 200

Notice that, when t > 1, the KV cache is shared 201

across turns as well, then it is simply updated after 202

the model outputs a(t): 203

K(t+1)
main = K(t)

rollback⊕K(t)
a ⊕KVCache

(
q(t+1)

)
(8) 204

where K(t)
a is the added KV cache during answering 205

in the main task. Therefore, only the KV cache for 206

q(t+1) is computed in prefill. 207

This structured mechanism is what we refer to as 208

contextual instruction flow, where the shared con- 209

versational context is reused, and only task-specific 210

instructions are attached or evicted to enable ef- 211

ficient task switching. This contextual instruction 212

flow allows substantially reducing the overall com- 213

putational cost of switching the main and sub-tasks 214

during multi-turn conversations with a single LLM. 215

Sub-Task Classification. As described in Sec- 216

tion 2.1, the objective of sub-task classification is 217
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to determine which sub-task should be executed. In218

our work, it is also formulated using the proposed219

contextual instruction flow strategy.220

As shown in Table 1, small-scale language mod-221

els struggle to comprehend the definitions of mul-222

tiple sub-tasks simultaneously, failing to make ac-223

curate selections under a multi-choice setup. To224

address this limitation, we propose a hierarchical225

selection strategy.226

Specifically, we first assign priorities to the avail-227

able sub-tasks using a larger LLM, offline. Then,228

at runtime, the on-device model performs binary229

classification per sub-task in descending order of230

priority, varying only the class-specific instruction231

in the contextual instruction.232

c(t)sn = µn(M, Iµn ; K
(t)
main) (9)233

Then, if a sub-task with higher priority is classi-234

fied as necessary, the hierarchical process is termi-235

nated, and the selected sub-task sn̂ is executed.236

It is important to note that these classification de-237

cisions are also made using the same single LLM238

instance. As a result, executing multiple binary239

classifications can lead to a significant increase in240

prefilling cost. However, thanks to our contextual241

instruction flow design, only the task-specific clas-242

sification instructions need to be prefetched, which243

minimizes redundant computation and ensures effi-244

cient task routing.245

3 Multi-turn Dataset Construction246

Following (Yi et al., 2024), we consider broadly247

two kinds of conversations: task-oriented conversa-248

tion (conversational search, math problem, multi-249

modal question) and open-domain conversation (ca-250

sual chat). Then, sub-tasks are mapped as follows:251

(1) Conversational Search - Query Rewriting.252

We employ TopiOCQA (Adlakha et al., 2022) and253

QReCC (Anantha et al., 2021), both of which con-254

sist of multi-turn conversational queries. These255

datasets contain context-dependent questions in-256

volving pronouns, ellipses, and coreference, requir-257

ing disambiguation based on prior conversation258

turns. Hence, in the sub-task, LLM clarifies the259

original question into a standalone question. Then,260

an off-the-shelf retriever (e.g., BGE-Large (Xiao261

et al., 2023)) retrieves evidence passages which is262

given to the main task.263

(2) Math Problem - Reasoning & Answer.264

To this end, we incorporate the GSM8K265

dataset (Cobbe et al., 2021), which provides both 266

problem statements and detailed reasoning steps. 267

We randomly sample math problems and concate- 268

nate them naturally into existing TopiOCQA and 269

QReCC, respectively. In the side-path execution 270

flow, the LLM is in-context learned, and outputs 271

the reasoning and answer are generated. Then, only 272

the final answer is returned to the main path. This 273

design helps reduce the contextual burden on the 274

main flow while enabling intermediate computation 275

in the sub-task flow. 276

(3) Multi-Modal - API Call. Here, we exploit 277

the Gorilla dataset (Patil et al., 2023), which con- 278

tains API specifications and their expected invoca- 279

tion patterns. Based on a randomly selected API, 280

then a larger LLM (e.g., LLaMA3.1 70B (Dubey 281

et al., 2024), GPT4 (Achiam et al., 2023)) generates 282

a multi-modal question like “What is the color of 283

the whale in the Pacific Ocean [Image]?”. In sub- 284

task, LLM is instructed to select a proper API call. 285

Then, the textual description for the multi-modal 286

input from an off-the-shelf model is returned to the 287

main task. 288

(4) On-going Casual Chat - No Sub-Task. In 289

practice, not every user query requires a sub-task. 290

To reflect such cases, we include examples where 291

the user is in the middle of casual conversation 292

with the assistant and no sub-task execution is nec- 293

essary. Specifically, we append several turns of 294

casual, non-task-oriented turns—covering topics 295

such as weather, hobbies, or daily life—on top of 296

task-oriented interactions from categories (1)–(3). 297

These casual turns are generated using a larger 298

LLM. These cases serve as negative examples for 299

sub-task classification and help balance the task 300

distribution. 301

(5) Last Casual Chat - Chat Summary. On 302

edge devices, AI assistants are often personalized to 303

the user, making it crucial to understand user pref- 304

erences and behavior across interactions. To sup- 305

port this, we introduce a summarization sub-task 306

that captures the essence of a casual conversation 307

once it concludes. Namely, in the sub-task, LLM 308

is instructed to summarize the user’s behavior or 309

interests based on the conversation. This summary 310

may be saved in an external knowledge hub. 311

- Commonly, to ensure a coherent multi-turn 312

flow and maintain topic consistency, we include 313

the full conversation history from TopiOCQA or 314
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QReCC within the prompt when generating addi-315

tional casual chat or API-related turns using large316

LLMs (the corresponding prompts are included in317

Appendix). This allows the generated content to318

remain contextually grounded and avoids unnatu-319

ral topic shifts across turns. Finally, since we use320

two different conversational search datasets, the321

resulting multi-turn, multi-task datasets are dubbed322

TopiOCQA-Task+ and QReCC-Task+, respec-323

tively, which enable us to evaluate our proposed324

execution framework (CIFLEX) in a unified yet di-325

verse conversational setting. We provide more de-326

tails in Appendix.327

4 Experimental Results328

4.1 Baselines329

To show the effectiveness of our method, we com-330

pare the proposed CIFLEX with three baselines:331

-Full Re-load: We assume a single LLM is332

runnable due to the resource constraints of edge de-333

vices. Hence, in this baseline, all the conversation334

history is re-loaded (pre-filled as textual inputs)335

whenever main or sub-tasks are switched without336

considering KV cache reuse across tasks.337

-Recent Re-load: For less computational burden338

of re-loading the entire conversation history, only339

the recent several turns are retained, discarding the340

earlier turns. Here, the recent five turns are used.341

-Seamless: To mitigate the burden of the re-342

loading, we can execute all the tasks in a single343

flow without task switching. Here, all the sub-task344

execution instructions and results are included in345

the main task seamlessly.346

-Chain-of-Model (CoM) (Lyu et al., 2025a):347

In this baseline, we train the sub-task-specific348

LoRA adapters (Hu et al., 2021) starting from the349

same pre-trained model, and CoM employs learn-350

able prompt tokens to increase adaptability across351

the differently-trained models in sharing the KV-352

caches of common parts.353

4.2 Evaluation Metrics354

Sub-Task Classification. To evaluate the effective-355

ness of the proposed per-task binary classification,356

we measure the accuracy of the classification re-357

sults. Each sub-task is independently predicted in358

its own path, and overall classification performance359

is reported as the average accuracy across tasks.360

Sub-Task Execution. For the query rewriting361

sub-task, we use the rewritten query to retrieve362

passages via an off-the-shelf retriever, BGE-363

Large (Xiao et al., 2023). Since both TopiOCQA364

and QReCC provide ground-truth retrieval anno- 365

tations, we report standard information retrieval 366

metrics: nDCG@3 reflects relevance and order of 367

top-3 results, and Hit@k indicates whether any rel- 368

evant passage is retrieved within the top-k passages 369

where we set k = 5. Since the chat summary and 370

API call have no static, fixed ground truth, we uti- 371

lize the GPT-eval metric, the coherence (Zhong 372

et al., 2023). This means the side-task output is 373

evaluated if it is aligned logically and contextually 374

with the corresponding side-task instruction. The 375

detailed metric prompt is included in Appendix. 376

For the math problem, the sub-task output is di- 377

rectly used in the main task; therefore, we assess it 378

as part of the main task’s answer. 379

Main-Task Execution. We utilize the GPT- 380

eval metrics, coherence and correctness, based 381

on (Zhong et al., 2023). Correctness metric is used 382

only for the task with the static, fixed ground-truth, 383

i.e. math problem. 384

4.3 Target models 385

For the edge-device model, we employ LLaMA3.1- 386

8B-Inst (Dubey et al., 2024), Mistral-v0.2-Inst 387

7B (Jiang et al., 2023), Qwen2.5-Inst-7B (Yang 388

et al., 2024a) models. 389

4.4 Results 390

Sub-Task Classification. As described in Sec. 3, 391

each user query is classified into one of five sub- 392

task categories: query rewriting, math solving (rea- 393

soning & answer), API call, chat summary, and 394

no sub-task. Following our per-task binary clas- 395

sification with task priority strategy, we assign a 396

fixed priority order to the five classes based on their 397

class-wise recall rates measured by a larger oracle 398

model. Classes with clearer semantic boundaries re- 399

ceive higher priority, while more ambiguous classes 400

are ranked lower. Specifically, the priority order is: 401

API call → Math solving → Query rewriting → 402

Summarization → None. In cases where multiple 403

sub-tasks are simultaneously detected, the one with 404

higher priority is selected (e.g., API call over query 405

rewriting). As shown in Table 2, for all the models 406

and datasets, the proposed approach significantly 407

outperforms the multi-choice strategy, which often 408

struggles to detect the correct sub-task. 409

Also, in terms of the efficiency, Fig. 2 plots the 410

required total number of pre-fill tokens up to a 411

given turn. Although the per-task classification is 412

effective, it requires an extremely high number of 413

tokens (193.6K for 22 turns) without applying the 414
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Dataset Method
On-device-scale model Server-scale model

LLaMA3.1-Instruct Mistral-Instruct-v0.2 Qwen2.5-Instruct GPT-4
(8B) (7B) (8B) (>100B)

TopiOCQA-Task+
Multi-choice 33.93 44.31 42.13 98.21
Per-task binary 88.01 83.68 84.4 98.55

QReCC-Task+
Multi-choice 51.83 57.66 59.06 96.52
Per-task binary 82.04 80.68 83.97 97.31

Table 2: Sub-task classification results. Accuracy (%) are reported on multi-choice strategy and the proposed
per-task binary classification varying models on TopiOCQA-Task+ and QReCC-Task+. The best results are in bold.

Figure 2: Total prefilled tokens for sub-task classification until each turn in LLaMA3.1-Instruct (8B) on
TopiOCA-Task+.

proposed CIFLEX. With CIFLEX, per-task binary415

(orange) even uses slightly less pre-fill tokens than416

multi-choice (dark gray), since the instructions of417

sub-tasks are designed to include shared parts (see418

the Appendix). Hence, our per-task classification419

with CIFLEX is highly effective and efficient.420

Sub & Main-Task Execution. We compare the421

proposed CIFLEX against the four baselines intro-422

duced in Sec. 4.1. As shown in Table 3, the Seam-423

less baseline exhibits poor performance across both424

sub-tasks and the main task. This degradation indi-425

cates that accumulated main & sub-task execution426

history interfere with LLM’s contextual understand-427

ing ability,highlighting the necessity of indepen-428

dent sub-task execution in separate flows.429

The Full Re-load baseline yields reliable per-430

formance owing to prefilling clean task-specific431

instructions, but at the significant cost of context432

re-loading overhead, as in Fig. 3. Compared to the433

Full Re-load, the Recent Re-load baseline reduces434

prefilling cost by reloading only the truncated re-435

cent turns; however, it still requires much more436

prefilling tokens than our CIFLEX. Moreover, it suf-437

fers from performance degradation. Although the438

CoM (Lyu et al., 2025a) learns models to increase439

the adaptability of KV caches across different mod-440

els, its performance is lower than the single model441

inference (ours). We can see that cache-sharing442

across heterogeneous models becomes fragile and 443

error-prone as the number of turns increases. 444

In contrast, the proposed CIFLEX achieves com- 445

parable or superior performance to the Full Re- 446

load, while incurring significantly less prefilling 447

cost, as in the orange of Fig. 3. This demonstrates 448

that CIFLEX strikes an effective balance in terms of 449

both accuracy and efficiency in multi-turn, multi- 450

task execution under a single LLM. More analyses 451

are in Appendix. 452

On-Device Latency: Table 4 shows the on-device 453

latency of prefilling and generation. We measured 454

this latency on the mobile edge device equipped 455

with Snapdragon® 8 Elite chipset. Here, prefill- 456

ing latency encompasses the latencies of sub-task 457

classification, sub-task execution, and main task ex- 458

ecution for each turn. Similarly, generation latency 459

is computed. Technically, the generation latency is 460

about 50 times that of the prefilling latency. Never- 461

theless, in the baseline, the prefilling latency dras- 462

tically increases beyond generation latency as the 463

number of turns grows. This underscores the impor- 464

tance of an efficient prefilling strategy in multi-turn 465

interactions. Our method achieves very low latency, 466

which is even lower than typical generation latency, 467

making it suitable for practical use. Also, as the 468

per-task classification can be batch-processed, then 469

the latency is further reduced where the classifica- 470
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Sub-Task Main Task

Query Rewrite Chat Summary Answering
Dataset Model Method (ACC, DCG)) (Cohere) (Cohere, Correct)

TopiOCQA-Task+

LLaMA3.1-Instruct
(8B)

Full Re-load (63.04, 31.07) 98.77 (86.45, 56.50)
Recent Re-load (62.53, 30.83) 98.65 (85.90, 56.20)
Seamless (57.13, 21.34) 97.85 (83.30, 54.10)
CoM (Lyu et al., 2025a) (61.41, 29.82) 98.55 (85.40, 55.20)
Proposed (63.04, 31.34) 98.92 (87.57, 55.59)

Mistral-Instruct-v0.2
(8B)

Full Re-load (61.10, 29.84) 99.46 (82.26, 54.30)
Recent Re-load (59.42,27.81) 99.30 (81.10, 53.60)
Seamless (53.13, 22.45) 98.50 (78.90, 52.40)
CoM (Lyu et al., 2025a) (59.91,29.31) 99.15 (81.00, 53.25)
Proposed (61.45, 29.83) 99.75 (83.75, 52.75)

Qwen2.5-Instruct
(8B)

Full Re-load (64.29, 32.18) 99.75 (75.86, 57.11)
Recent Re-load (63.70, 31.85) 99.65 (75.50, 56.80)
Seamless (58.20, 29.60) 98.85 (73.10, 54.90)
CoM (Lyu et al., 2025a) (62.90, 31.30) 99.40 (74.50, 55.80)
Proposed (63.12, 31.59) 99.51 (74.18, 55.57)

QReCC-Task+

LLaMA3.1-Instruct
(8B)

Full Re-load (77.37, 28.12) 97.97 (74.81, 65.45)
Recent Re-load (76.70, 27.70) 97.51 (73.88, 64.32)
Seamless (71.50, 24.90) 96.11 (71.04, 60.12)
CoM (Lyu et al., 2025a) (75.90, 27.30) 97.04 (74.43, 64.10)
Proposed (77.43, 27.59) 97.74 (75.32, 65.04)

Mistral-Instruct-v0.2
(8B)

Full Re-load (74.91, 46.72) 97.14 (66.94, 57.38)
Recent Re-load (73.80, 45.10) 96.04 (65.82, 55.76)
Seamless (68.10, 41.00) 95.53 (62.11, 52.71)
CoM (Lyu et al., 2025a) (73.90, 44.90) 96.22 (65.32, 55.05)
Proposed (76.04, 48.48) 96.99 (67.08, 57.95)

Qwen2.5-Instruct
(8B)

Full Re-load (77.08, 49.26) 99.72 (80.17, 70.55)
Recent Re-load (75.90, 47.90) 98.55 (77.31, 68.00)
Seamless (69.80, 43.20) 96.42 (74.13, 64.19)
CoM (Lyu et al., 2025a) (74.80, 46.60) 98.60 (78.51, 68.72)
Proposed (76.04, 48.48) 99.68 (79.57, 69.12)

Table 3: Evaluation results (%) for sub-task & main-task execution on TopiOCQA-Task+ and QReCC-Task+.
Sub-tasks of API call and math problem are evaluated as answering quality (correctness) in the main task.

Method Stage
Turn

2 5 10 15 Last

Full Re-load
Prefill 4.35 25.38 86.90 165.76 331.76
Generation 1.94 8.27 18.47 25.13 39.43

Proposed
Prefill 1.26 5.06 11.30 15.88 23.51
Prefill (bp) 0.95 3.84 8.56 11.60 16.79
Generation 2.02 8.34 18.80 25.52 41.15

Table 4: Latency (↓) in terms of seconds on edge de-
vice for LLaMA3.1-Instruct (8B). ‘bp’ denotes the
batch processing in sub-task classification.

tion latency was reduced by half compared to the471

case without batch processing.472

5 Related Works473

Efficient LLM Inference. To reduce the computa-474

tional and memory overhead in inference, several475

works have explored various strategies addressing476

KV caches. Approaches targeting task-agnostic in- 477

ference efficiency are based on a single LLM. Then, 478

they enhance KV cache efficiency via strategies 479

such as sharing KV caches across layers (Yang 480

et al., 2024b), computing KV caches for a subset of 481

layers (Wu and Tu, 2024), and saving KV caches 482

for fast GPU-to-CPU offloading (Lee et al., 2025). 483

In contrast, methods assuming different tasks uti- 484

lize two or more task-specific models. They lever- 485

age fine-tuning or model adaptation to facilitate 486

KV cache sharing and reuse. FTHSS (Lyu et al., 487

2025b) exploited learnable prompt tokens for KV 488

cache sharing in LLMs. Similarly, DroidSpeak (Liu 489

et al., 2024b) optimizes context sharing in fine- 490

tuned LLMs by selectively recomputing critical 491

layers while reusing non-critical KV cache seg- 492

ments. KVLINK (Yang et al., 2025) pre-computes 493

and reuses KV caches for document segments, em- 494
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(a) Sub-Task (b) Main-Task

Figure 3: Turn-wise prefilled tokens for main-task and sub-task execution until each turns in LLaMA3.1-
Instruct (8B) on TopiOCA-Task+.

ploying mixed-data fine-tuning. While efficient,495

these methods require model modifications, often496

fine-tuning. Their applicability in multi-turn inter-497

actions, however, remains underexplored.498

Multi-turn Conversation. In LLM, the multi-499

turn conversation can be categorized into task-500

oriented dialogue (TOD) and open-domain dia-501

logue (ODD) (Yi et al., 2024). In TOD, LLMs502

assist users in achieving specific goals, often re-503

quiring structured interaction and the potential man-504

agement of external APIs or retrieval of external505

knowledge if necessary. ODD focuses on engag-506

ing in free-form, natural conversations without a507

predefined task constraint.508

While these distinctions exist, LLMs exhibit sub-509

stantial performance drop in multi-turn conversa-510

tions (Laban et al., 2025b), which stems from the in-511

herent difficulty for LLMs in effectively managing512

the dialogue flow over turns. Effectively handling513

multi-turn conversations necessitates sophisticated514

capabilities (Laban et al., 2025b)—understanding515

history, interpreting past exchanges, and adapt-516

ing to evolving user objectives—which introduce517

complexities like maintaining coherence, ensur-518

ing alignment with shifting intentions, and mitigat-519

ing cumulative errors and contextual drift. Mixed520

TOD/ODD dialogues present further complexities,521

Such interactions necessitate capabilities like dy-522

namic task classification, instruction adaptation523

based on the identified task, and potentially sub-524

task execution for TOD. Nevertheless, compre-525

hensive datasets designed to capture the nuances526

of these complex multi-turn interactions have not527

yet curated. In this work, we carefully designed528

datasets for assessing LLMs on such complex529

multi-turn scenarios.530

6 Conclusions 531

We introduced CIFLEX, a new multi-turn inter- 532

actions strategy that enables efficient multiple 533

sub-task handling under a single on-device LLM. 534

CIFLEX reduces redundant computation by reusing 535

KV cache from the main conversation flow and 536

executing sub-tasks through instruction-only pre- 537

filling in side paths. After execution, the model 538

seamlessly returns to the main path using the 539

preserved cache, eliminating costly prefill opera- 540

tions. To support sub-task selection, we proposed 541

a hierarchical classification strategy that decom- 542

poses multi-choice decisions into binary ones, mak- 543

ing it suitable for small-scale models. For val- 544

idation, we present novel multi-turn, multi-task 545

datasets (TopiOCQA-Task+ & QReCC-Task+). Ex- 546

periments demonstrated that CIFLEX notably low- 547

ers computational cost while maintaining task per- 548

formance, highlighting its practicality for scalable, 549

on-device conversation systems. 550

7 Limitations 551

While CIFLEX demonstrates strong efficiency gains 552

and robust task handling within multi-turn conver- 553

sations, several limitations remain in multi-turn 554

conversation system. Due to the current limita- 555

tions of LVMs, results from image or audio API 556

calls are approximated using textual descriptions 557

in LLM. For retrieval sub-tasks, we rely on off- 558

the-shelf retrievers. Future advances in the related 559

fields may enable seamless integration as a com- 560

plete multi-turn conversation with AI assistants. 561

Also, our datasets, while covering multi-turn in- 562

teractions, could be extended to include further 563

longer conversational trajectories. Lastly, although 564

CIFLEX significantly reduces prefill latency, gener- 565

ation latency remains a dominant cost, which could 566

be mitigated through further optimization in future 567

edge hardware. 568
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- Appendix -
CIFLEX: Contextual Instruction Flow for Sub-task Execution in Multi-Turn

Interactions with a Single On-Device LLM

A Without r(t)684

In conversational search (RAG), retrieved passages685

r(t) often constitute a large portion of the conversa-686

tion history. While reducing prefill tokens by omit-687

ting passages at each turn (maintaining only the688

full Q&A history) is possible, we observed a se-689

vere degradation in retrieval performance: ACC690

and DCG scores dropped from 63.04/31.34 to691

50.12/20.70.692

B Token Cost Analysis on QReCC-Task+693

As shown in 4, we can see the similar trend of694

the prefill-token efficiency with TopioCQA-Task+695

in sub-task classification, and sub and main task696

execution.697

C Prompt for Evaluation Metric698

Correctness metric

Given the description for a dialogue, evaluates if the
response can be considered as a correct response of the
dialogue\n(labels: (0 : wrong, 0.5 : partial, 1 : correct)\
n You should return only digit 0, 0.5, or 1. \nresponse: {
response}\n detailed dialogue description: {answer}

699

Coherence metric

Each dialogue is multi-turn conversation between user and
AI assistant. Assesses whether the response is naturally
and coherently structured, connecting the prompt\n (labels:
0 : not coherent, 0.5 : partially coherent, 1 : coherent)

.\n You should return only digit 0, 0.5, or 1.\nprompt: {
prompt}\nresponse: {response}

700

D Inference Prompt Templates701

We also provide the prompt templates used for in-702

ference (sub-task classification, sub-task execution,703

main-task execution) in Fig. 5, 6, 7. In the side-704

task, we designed that a large parts is shared across705

sub-tasks as shown in 7.706

E Dataset707

E.1 Data Curation Prompt708

We fully provide the dataset curation prompt in Fig.709

8, 9, 10, 11.710

E.2 More Details711

In addition, for RAG and math problem solving712

turns, we use the original datasets themselves713

where math problems are randomly sampled for714

(a) Sub-task Classification

(b) Sub-task execution

(c) Main-task execution

Figure 4: Turn-wise prefilled tokens for sub-task clas-
sification, and main-task and sub-task execution un-
til each turns in LLaMA3.1-Instruct (8B) on QReCC-
Task+ dataset.

each conversational search (RAG) dialogue. Fi- 715

nally, the curated multi-turn conversation is a series 716

of RAG questions, multi-modal questions, casual 717

chat (start, on-going, ending), and math solving. 718

Notice that, as rewriting and retrieval augmented 719

generation (RAG) is more challenging than other 720

tasks, this kind of turns are about 40% in each se- 721

ries of turns. 722

For fairness, we employed the LLaMA3.1- 723

Instruct (70B) for the generated turns since we use 724

the GPT4 for the evaluation. 725

11



Prompt template for main task

A multi-trun or single-turn conversation between user and AI assistant is given. \
Answer the last user question. Ensure that only answer the last user question. If a context is provided for the last question,
use the context as the major source for the answer. \
Answer should be less than 50 words. Do not output conversation history or other unnecessary words as "Here is..."

#question1: {question_1}
#answer1: {answer_1}
.
.
.
#question{n}: {question_n}

Figure 5: Prompt template for main-task execution.

Prompt template for sub-task clssi. (per-task binary)

Your new goal: for the target last user question, discern if the following sub-task is required or not.

Answer format: Ensure to provide your answer as ONLY "Yes" or "No" without adding unnecessary words or reasons, descriptions.
i.e. "#Answer: ["Yes" or "No"]"

Sub-task:
{Sub-task description}.

Figure 6: Prompt template for turns for answering in sub-task.

Prompt template for sub-task execution

Note that, now you are a helpful, respectful and honest assistant for a following sub-task.

Sub-task:
{Sub-task description}.

Figure 7: Prompt template for turns for sub-task execution (ours).
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Dataset: Prompt template for API calling turn

You are a helpful conversation simulator between User and AI assistant. \
Given a series of previous conversation (question and answers are seperated by [SEP]), make a follow-up user interaction and AI
assistant response based on a hypothetical image.

Assume the image has been processed by a vision-language API (e.g., LLaVA), and the API has returned a detailed textual image
description.

Your task is to generate:
1. A realistic **LLaVA-style textual image description sentences**, which clearly and explicitly mentions visual content.
2. A **casual user question** that refers to the image
3. An **AI assistant answer** that responds to the question based only on the given textual description.

---

### Guidelines

- The **user question** must:
- Explicitly or implicitly refer to the image.
- Be casual and natural in tone.

- The **assistant answer** must:
- Use only information that is **present** in the image description.

- Avoid interpretation, speculation, or reasoning.

---

### Format:

##Textual Image Description: [Generated description]

##User Question: [User - 128) * 64 + (‘ - 128) ‰s question that can be answered with no inference, just by reading the
description]
##AI Assistant Answer: [Answer using only what - 128) * 64 + (‘ - 128) ‰s stated in the description]

---

### Example:

##Textual Image Description: A small white dog is sitting on a blue couch with a red blanket draped over one side. A green ball
lies on the floor in front of the couch, and sunlight is coming in through a nearby window.

##User Question: What color is the couch in this image?
##AI Assistant Answer: The couch is blue.

---

Now generate more examples in this format, strictly following the instructions above.

### Previous Conversation: {conversation_history}

Output:

Figure 8: Prompt template data curation for API call turns.
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Dataset: Prompt template for start of casual conversation

You are a helpful conversation simulator between User and AI assistant. \
Given a series of previous conversation (question and answers are separated by [SEP]), make a follow-up user interaction and AI
assistant response. \

In the previous conversation, to answer the user questions, information retrieval or API calls are required. \
However, from now on, it’s different. The follow-up user interaction should be non-knowledge intensive and not necessarily in
the form of a question. \

It should be a casual chat, focusing on topics such as user’s daily life or sentiment. \
The user interaction can be a statement, a greeting, or any other form of casual conversation starter.

The user interaction and AI assistant response should consist of concise one or two sentences.

Make a single turn of user interaction and AI assistant response where each of them is seperated by [SEP]:
[User interaction] [SEP] [AI assistant response]

### Previous Conversation:
{conversation_history}

Output:

Figure 9: Prompt template data curation for starting casual chat turns.

Dataset: Prompt template for on-going casual conversation

You are a helpful conversation simulator between User and AI assistant. \
Given a series of previous conversation (question and answers are separated by [SEP]), make a follow-up user interaction and AI
assistant response. \

Similar to the last conversation, the follow-up user interaction and AI assistant response should be casual chat with no need
of knowledge retrieval. \
Namely, it should be a casual chat, focusing on topics such as user’s daily life or sentiment. \

Also, it is not necessarily in the form of a question. \

The user interaction and AI assistant response should consist of concise one or two sentences.

Make a single turn of user interaction and AI assistant response where each of them is seperated by [SEP]:
[User interaction] [SEP] [AI assistant response]

### Previous Conversation:

{conversation_history}

Output:

Figure 10: Prompt template data curation for on-going casual chat turns.

Dataset-Prompt template for finishing casual conversation

You are a helpful conversation simulator between User and AI assistant. \
Given a series of previous conversation (question and answers are separated by [SEP]), make the final turn of user interaction
and AI assistant response. \
Crucially, the final turn must imply that the conversation is ending.
The user interaction and AI assistant response should consist of concise one or two sentences.

Make a single turn of questions and answers where each of them is seperated by [SEP]:
[User interaction] [SEP] [AI assistant response]

### Previous Conversation:
{conversation_history}

Output:

Figure 11: Prompt template data curation for finishing casual chat turns.
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