
Published in Transactions on Machine Learning Research (01/2023)

Calibrate and Debias Layer-wise Sampling
for Graph Convolutional Networks

Yifan Chen1∗ Tianning Xu1∗ Dilek Hakkani-Tur2 Di Jin2 Yun Yang1 Ruoqing Zhu1

1 University of Illinois Urbana-Champaign 2 Amazon Alexa AI

{yifanc10, tx8, yy84, rqzhu}@illinois.edu {hakkanit, djinamzn}@amazon.com

Reviewed on OpenReview: https://openreview.net/forum?id=JyKNuoZGux

Abstract

Multiple sampling-based methods have been developed for approximating and accelerating
node embedding aggregation in graph convolutional networks (GCNs) training. Among
them, a layer-wise approach recursively performs importance sampling to select neighbors
jointly for existing nodes in each layer. This paper revisits the approach from a matrix
approximation perspective, and identifies two issues in the existing layer-wise sampling
methods: suboptimal sampling probabilities and estimation biases induced by sampling
without replacement. To address these issues, we accordingly propose two remedies: a new
principle for constructing sampling probabilities and an efficient debiasing algorithm. The
improvements are demonstrated by extensive analyses of estimation variance and experi-
ments on common benchmarks. Code and algorithm implementations are publicly available
at https://github.com/ychen-stat-ml/GCN-layer-wise-sampling.

1 Introduction

Graph Convolutional Networks (Kipf &Welling, 2017) are popular methods for learning node representations.
However, it is computationally challenging to train a GCN over large-scale graphs due to the inter-dependence
of nodes in a graph. In mini-batch gradient descent training for an L-layer GCN, the computation of
embeddings involves not only the nodes in the batch but also their L-hop neighbors, which is known as
the phenomenon of “neighbor explosion” (Zeng et al., 2020) or “neighbor expansion” (Chen et al., 2018a;
Huang et al., 2018). To alleviate such a computation issue for large-scale graphs, sampling-based methods
are proposed to accelerate the training and reduce the memory cost. These approaches can be categorized as
node-wise sampling approaches (Hamilton et al., 2017; Chen et al., 2018a), subgraph sampling approaches
(Zeng et al., 2020; Chiang et al., 2019; Cong et al., 2020), and layer-wise sampling approaches (Chen et al.,
2018b; Huang et al., 2018; Zou et al., 2019). We focus on layer-wise sampling in this work, which enjoys the
efficiency and variance reduction by sampling columns of renormalized Laplacian matrix in each layer.

This paper revisits the existing sampling schemes in layer-wise sampling methods. We identify two potential
drawbacks in the common practice of layer-wise sampling, especially on FastGCN (Chen et al., 2018b)
and LADIES (Zou et al., 2019). First, the sampling probabilities are suboptimal since a convenient while
unguaranteed assumption fails to hold on many common graph benchmarks, such as Reddit (Hamilton et al.,
2017) and OGB (Hu et al., 2020). Secondly, the previous implementations of layer-wise sampling methods
perform sampling without replacement, which deviates from their theoretical results, and introduce biases
in the estimation. Realizing the two issues, we accordingly propose the remedies with a new principle to
construct sampling probabilities and a debiasing algorithm, as well as the variance analyses for the two
propositions.

∗ Equal contribution. The majority of this work was done prior to the first author’s internship at Amazon Alexa AI.

1

https://openreview.net/forum?id=JyKNuoZGux
https://github.com/ychen-stat-ml/GCN-layer-wise-sampling

Published in Transactions on Machine Learning Research (01/2023)

To the best of our knowledge, our paper is the first to recognize and resolve these two issues, importance
sampling assumption and the practical sampling implementation, for layer-wise sampling on GCNs. Specif-
ically, we first investigate the distributions of embedding and weight matrices in GCNs and propose a more
conservative principle to construct importance sampling probabilities, which leverages the Principle of Max-
imum Entropy. Secondly, we recognize the bias induced by sampling without replacement and suggest a
debiasing algorithm supported by theoretical analysis, which closes the gap between theory and practice.
We demonstrate the improvement of our sampling method by evaluating both matrix approximation error
and the model prediction accuracy on common benchmarks. With our proposed remedies, GCNs consis-
tently converge faster in training. We believe our proposed debiasing method can be further adapted to
more general machine learning tasks involving importance sampling without replacement, and we discuss
the prospective applications in Section 7.

1.1 Background and Related Work

GCN. Graph Convolutional Networks (Kipf & Welling, 2017), as the name suggests, effectively incorporate
the technique of convolution filter into the graph domain (Wu et al., 2020; Bronstein et al., 2017). GCN
has achieved great success in learning tasks such as node classification and link prediction, with applications
ranging from recommender systems (Ying et al., 2018), traffic prediction (Cui et al., 2019; Rahimi et al.,
2018), and knowledge graphs (Schlichtkrull et al., 2018). Its mechanism will be detailed shortly in Section 2.1.

Sampling-based GCN Training. To name a few of sampling schemes, GraphSAGE (Hamilton et al.,
2017) first introduces the “node-wise” neighbor sampling scheme, where a fixed number of neighbors are
uniformly and independently sampled for each node involved, across every layer. To reduce variance in
node-wise sampling, VR-GCN (Chen et al., 2018a) applies a control variate based algorithm using historical
activation. Instead of sampling for each node separately, “layer-wise” sampling is a more collective approach:
the neighbors are jointly sampled for all the existing nodes in each layer. FastGCN (Chen et al., 2018b)
first introduces this scheme with importance sampling. AS-GCN (Huang et al., 2018) proposes an alterna-
tive sampling method which approximates the hidden layer to help estimate the probabilities in sampling
procedures. Then, Zou et al. (2019) propose a layer-dependent importance sampling scheme (LADIES) to
further reduce the variance in training, and aim to alleviate the issue of sparse connection (empty rows in the
sampled adjacency matrix) in FastGCN. In addition, for “subgraph” approaches, ClusterGCN (Chiang et al.,
2019) samples a dense subgraph associated with the nodes in a mini batch by graph clustering algorithm;
GraphSAINT (Zeng et al., 2020) introduces normalization and variance reduction in subgraph sampling.

To provide a more scalable improvement on sampling-based GCN training, we focus on history-oblivious
layer-wise sampling methods (e.g., FastGCN and LADIES), which do not rely on history information to
construct the sampling probabilities. Note that though some other sampling based methods, such as VR-
GCN and AS-GCN, enjoy attractive approximation accuracy by storing and leveraging historical information
of model hidden states, they introduce large time and space cost. For example, the training time of AS-GCN
can be “even longer than vanilla GCN” (Zeng et al., 2020). Moreover, they cannot perform sampling and
training separately due to the dependence of sampling probabilities on the training information.

Debiasing algorithms for weighted random sampling. In practice, layer-wise sampling is performed
by a sequential procedure named as weighted random sampling (WRS) (Efraimidis & Spirakis, 2006), which
realizes “sampling without replacement” while induces bias (analyzed in Section 5). Similar phenomena
have been noticed by some studies on stochastic gradient estimators (Liang et al., 2018; Liu et al., 2019;
Kool et al., 2020), which involve WRS as well; some debiasing algorithms are accordingly developed in those
works. In Section 5, we discuss the issues of directly applying existing algorithms to layer-wise sampling and
propose a more time-efficient debiasing method.

2 Notations and Preliminaries

We introduce necessary notations and backgrounds of GCNs and layer-wise sampling in this section.
Debiasing-related preliminaries are deferred to Section 5.

2

Published in Transactions on Machine Learning Research (01/2023)

2.1 Graph Convolutional Networks

The GCN architecture for semi-supervised node classification is introduced by Kipf & Welling (2017). Sup-
pose we have an undirected graph G = (V, E), where V is the set of n nodes and E is the set of E edges.
Denote node i in V as vi, where i ∈ [n] is the index of nodes in the graph and [n] denotes the set {1, 2, . . . , n}.
Each node vi ∈ V is associated with a feature vector xi ∈ Rp and a label vector yi ∈ Rq. In a transductive
setting, although we have access to the feature of every node in V and every edge in E , i.e. the n×n adjacency
matrix A, we can only observe the label of partial nodes Vtrain ⊂ V; predicting the labels of the rest nodes
in V − Vtrain therefore becomes a semi-supervised learning task.

A graph convolution layer is defined as:

Z(l+1) = PH(l)W (l), H(l) = σ(Z(l)), (1)

where σ is an activation function and P is obtained from normalizing the graph adjacency matrix A; H(l)

is the embedding matrix of the graph nodes in the l-th layer, and W (l) is the weight matrix of the same
layer. In particular, H(0) is the n× p feature matrix whose i-th row is xi. For mini-batch gradient descent
training, the training loss for an L-layer GCN is defined as 1

|Vbatch|
∑

vi∈Vbatch
`(yi, z

(L)
i), where ` is the loss

function, batch nodes Vbatch is a subset of Vtrain at each iteration. z(L)
i is the i-th row in Z(L), | · | denotes

the cardinality of a set.

In this paper, we set P = D̃−1/2(A + I)D̃−1/2, where D̃ is a diagonal matrix with Dii = 1 +
∑

iAij .
The matrix P is constructed as a renormalized Laplacian matrix to help alleviate overfitting and explod-
ing/vanishing gradients issues (Kipf & Welling, 2017), which is previously used by Kipf & Welling (2017);
Chen et al. (2018a); Cong et al. (2020).

2.2 Layer-wise Sampling

To address the “neighbor explosion” issue for graph neural networks, sampling methods are integrated into
the stochastic training. Motivated by the idea to approximate the matrix PH(l) in (1), FastGCN (Chen
et al., 2018b) applies an importance-sampling-based strategy. Instead of individually sampling neighbors for
each node in the l-th layer, they sample a set of s neighbors S(l) from V with importance sampling probability
pi, where pi ∝

∑n
j=1P

2
ji and

∑n
i=1 pi = 1. For the (l−1)-th layer, they naturally set V(l−1) = S(l). LADIES

(Zou et al., 2019) improves the importance sampling probability pi as

p
(l)
i ∝

∑
vj∈N (l)P

2
ji,∀i ∈ [n] (2)

where N (l) = ∪vi∈V(l)N (vi) and
∑n

i=1 p
(l)
i = 1. In this case, S(l), the nodes sampled for the l-th layer, are

guaranteed to be within the neighborhood of V(l). The whole procedure can be concluded by introducing a
diagonal matrix S(l) ∈ Rn×n and a row selection matrix Q(l) ∈ Rsl×n, which are defined as

Q
(l)
k,j =

{
1, j = i

(l)
k

0, else
, S

(l)
j,j =

{
(slp

(l)
i

(l)
k

)−1, j = i
(l)
k

0, else,
(3)

where sl is the sample size in the l-th layer and {i(l)
k }

sl

k=1 are the indices of rows selected in the l-
th layer. The forward propagation with layer-wise sampling can thus be equivalently represented as
Z̃(l+1) = Q(l+1)PS(l)H(l)W (l),H(l) = (Q(l))Tσ(Z̃(l)), where Z̃(l+1) is the approximation of the embedding
matrix for layer l.

3 Experimental Setup

History-oblivious layer-wise sampling methods, the subject of this work, rely on specific assumptions to
construct the sampling probabilities. A paradox here is that the original LADIES (the model we aim to
improve on) would automatically be optimal under its own assumptions. However, it is important to verify

3

Published in Transactions on Machine Learning Research (01/2023)

their assumptions on common real-world open benchmarks, where our major empirical evaluation will be
performed (c.f. Section 4). In advance of discussions on existing issues and corresponding remedies in
Section 4 and Section 5, we introduce the basic setups of main experiments and datasets across the paper.
Details about GCN model training are deferred to the related sections.

Table 1: Summary of datasets. Each undirected edge is counted once. Each node in ogbn-proteins has 112
binary labels. “Deg.” refers to the average degree of the graph. “Feat” refers to the number of features.
“Split Ratio” refers to the ratio of training/validation/test data.

Dataset Nodes Edges Deg. Feat. Classes Tasks Split Ratio Metric
Reddit 232,965 11,606,919 50 602 41 1 66/10/24 F1-score
ogbn-arxiv 160,343 1,166,243 13.7 128 40 1 54/18/28 Accuracy
ogbn-proteins 132,534 39,561,252 597.0 8 binary 112 65/16/19 ROC-AUC
ognb-mag 736,389 5,396,336 7.3 128 349 1 85/9/6 Accuracy
ogbn-products 2,449,029 61,859,140 50.5 100 47 1 8/2/90 Accuracy

Benchmarks. The distribution of the input graph will impact the effectiveness of sampling methods to
a great extent—we can always construct a graph in an adversarial manner to favor one while deteriorate
another. To overcome this issue, we conduct empirical experiments on 5 large real-world datasets to ensure
the fair comparison and the representative results. The datasets (see details in Table 1) involve: Reddit
(Hamilton et al., 2017), ogbn-arxiv, ogbn-proteins, ogbn-mag, and ogbn-products (Hu et al., 2020). Reddit
is a traditional large graph dataset used by Chen et al. (2018b); Zou et al. (2019); Chen et al. (2018a); Cong
et al. (2020); Zeng et al. (2020). Ogbn-arxiv, ogbn-proteins, ogbn-mag, and ogbn-products are proposed in
Open Graph Benchmarks (OGB) by Hu et al. (2020). Compared to traditional datasets, the OGB datasets
we use have a larger volume (up to the million-node scale) with a more challenging data split (Hu et al.,
2020). The metrics in Table 1 follow the choices of recent works and the recommendation by Hu et al. (2020).

Main experiments. To study the influence of the aforementioned issues, we evaluate the matrix approxi-
mation error (c.f. Section 4.3 and Figure 2) of different methods in one-step propagation. This is an intuitive
and useful metric to reflect the performance of the sampling strategy on approximating the original mini-
batch training. Since the updates of parameters in the training are not involved in the simple metric above,
in Section 6 we further evaluate the prediction accuracy on testing sets of both intermediate models during
training and final outputs, using the metrics in Table 1.

4 Reconsider Importance Sampling Probabilities in Layer-wise Sampling

The efficiency of layer-wise sampling relies on its importance sampling procedure, which helps approximate
node aggregations with much fewer nodes than involved. As expected, the choice of sampling probabilities
can significantly impact the ultimate prediction accuracy of GCNs, and different sampling paradigms more
or less seek to minimize the following variance (for the sake of notational brevity, from now on we omit the
superscript (l) when the objects are from the same layer)

E ‖QPSHW −QPHW ‖2F , (4)

where ‖ · ‖F denotes the Frobenius norm. Under the layer-dependent sampling framework, Zou et al. (2019)
show that the optimal sampling probability pi for node i satisfies (see Appendix C.1 for a derivation from a
perspective of approximate matrix multiplication)

pi ∝ ‖QP [i]‖ · ‖(HW)[i]‖, (5)

where for a matrix A, A[i] and A[i] respectively represent the i-th row/column of matrix A.

4.1 Current Strategies and Their Limitation

The optimal sampling probabilities (5) discussed above are usually unavailable during the mini-batch gradient
descent training due to a circular dependency: to sample the nodes in the `-th layer based the probabilities

4

Published in Transactions on Machine Learning Research (01/2023)

in Equation (5), we need the hidden embedding H(`) which in turn depends on the nodes not yet sampled
in the (` − 1)-th layer. In this case, FastGCN (Chen et al., 2018b) and LADIES (Zou et al., 2019) choose
to perform layer-wise importance sampling without the information from HW 1. In particular, FastGCN
(resp. LADIES) assumes ‖(HW)[i]‖ ∝ ‖P [i]‖ (resp. ‖QP [i]‖), and sets their sampling probabilities as
pi ∝ ‖P [i]‖2 (resp. ‖QP [i]‖2), ∀i ∈ [n].

The proportionality assumption above seems sensible considering the computation of the hidden embedding
H involves P . However, this assumption is unguaranteed because of the changing weight matrix W in
training, and no previous work (to our knowledge) scrutinizes whether this assumption generally holds. To
study the appropriateness of the core assumption, we conduct a linear regression 2

y ∼ β0 + β1x (6)

for each layer separately, where x ranging over ‖(HW)[i]‖’s is the `2 norm of a certain row in HW and y
over ‖P [i]‖ is the norm of the corresponding column in P .

Table 2: Regression coefficients in Equation (6) for 3-layer GCNs trained with LADIES and full-batch SGD
respectively. Negative β1’s are highlighted in boldface.

Method LADIES Full-batch
Dataset ogbn-arxiv reddit ogbn-proteins ogbn-mag ogbn-arxiv reddit ogbn-proteins ogbn-mag

Layer 1
β0 3.517 ± 0.002 11.34 ± 0.01 4.162 ± 0.001 3.687 ± 0.001 2.364 ± 0.002 29.53 ± 0.03 3.942 ± 0.001 3.282 ± 0.001
β1 -0.54 ± 0.01 8.03 ± 0.07 0.488 ± 0.004 -0.391 ± 0.004 -0.15 ± 0.01 15.66 ± 0.17 0.375 ± 0.004 -1.03 ± 0.03
R2 0.012 0.012 0.023 0.003 0.001 0.008 0.013 0.026

Layer 2
β0 6.21 ± 0.01 4.41 ± 0.01 26.95 ± 0.01 10.67 ± 0.01 4.01 ± 0.01 27.94 ± 0.02 23.46 ± 0.01 10.26 ± 0.01
β1 4.20 ± 0.03 4.59 ± 0.05 -38.18 ± 0.17 1.58 ± 0.03 4.47 ± 0.02 24.07 ± 0.02 -35.09 ± 0.15 -4.12 ± 0.01
R2 0.028 0.008 0.074 0.001 0.051 0.022 0.081 0.024

Layer 3
β0 22.21 ±0.02 4.72 ± 0.01 104.924 ± 0.03 29.86 ± 0.03 19.72±0.02 45.82 ± 0.03 174.72 ± 0.09 41.98 ± 0.02
β1 1.00±0.06 0.10 ± 0.03 -137.8 ± 0.4 -0.13 ± 0.08 2.16±0.07 9.49 ± 0.19 -367.2 ± 1.1 -29.14 ± 0.05
R2 < 0.001 < 0.001 0.160 < 0.001 0.001 0.002 0.153 0.100

Figure 1: Regression lines (orange) and scatter plots of ‖(HW)[i]‖ in 3-layer LADIES’s different layers on
ogbn-arxiv and ogbn-mag.

1This scheme decouples the sampling and the training procedure. We can save the training runtime on GPU by preparing
sampling on CPU in advance.

2We take the counterpart assumption ‖(HW)[i]‖ ∝ ‖QP [i]‖ in LADIES as a randomized version of the one ‖(HW)[i]‖ ∝
‖P [i]‖ in FastGCN (and therefore focus on the latter for the regression experiments), since ‖(HW)[i]‖’s are conceptually
independent of the subsequent row selection matrix Q. Supplementary regression experiments on ‖(HW)[i]‖ ‖QP [i]‖ are
collected in Appendix D.

5

Published in Transactions on Machine Learning Research (01/2023)

Figure 1 presents regression curves of each layer in LADIES on ogbn-arxiv and ogbn-mag. Table 2 summarizes
the regression coefficient β0, β1, and R2 of a 3-layer GCN trained by LADIES or regular mini-batch SGD
without node sampling (“full-batch” in short). The regression results demonstrate that the assumption
‖(HW)[i]‖ ∝ ‖P [i]‖ is violated on many real-world datasets from two-fold evidence: negative regression
coefficients and small R2’s. First, regression coefficients for full-batch SGD and LADIES show similar
patterns: negative slope β1’s appear across multiple layers and different datasets, such as layer 1 of ogbn-
arxiv, layer 2 of ogbn-protains, and both layers 1 and 3 of ogbn-mag. The negative correlation clearly violates
the assumption, ‖(HW)[i]‖ ∝ ‖P [i]‖. Secondly, the R2 (see Table 2) in the single variable regression is
corr2(x, y), which measures the proportion of y’s variance explained by x. A positive β1 with small R2

can only imply a positive but weak correlation between ‖(HW)[i]‖ and ‖P [i]‖, however, a weak correlation
cannot imply a proportionality relationship. For example, even though the β1 is positive for each layer in
Reddit data, corresponding R2’s are at the scale of 0.01. Consequently, the performance of LADIES on
Reddit is not surprisingly inferior to our method with new sampling probabilities (LADIES+flat in Table
4). Experimental setups are collected in Appendix A.4. Additional regression results for FastGCN and our
proposed methods are collected in Appendix D.

4.2 Proposed Sampling Probabilities

The small or even negative correlation between ‖(HW)[i]‖ and ‖P[i]‖ (‖QP[i]‖) implies the inappropriateness
of the proportionality assumption and the resulting sampling probabilities in FastGCN/LADIES. To address
this issue, we instead admit that we have limited prior knowledge ofHW under the history-oblivious setting,
and follow the Principle of Maximum Entropy to assume a uniform distribution of ‖(HW)[i]‖’s. With this
belief, we propose the following sampling probabilities:

pi ∝ ‖QP [i]‖, ∀i ∈ [n]. (7)

Compared to LADIES in Equation (2), our proposed sampling probabilities pi’s are more conservative. From
a matrix approximation perspective, we rewrite the target matrix product as QPIHW , and only aim to
approximate the known part QPI. It turns out that assuming the uniform distribution of the norms of
rows in HW can help improve both the variance of the matrix approximation and the prediction accuracy
of GCNs, as empirically shown in Section 4.3 and Section 6.

In addition to the empirical results, we compare the estimation variance of our probabilities with LADIES
in Lemma C.1 under a mild condition 3. Specifically, a common long-tail distribution of HW can justify
the strengths of our new probabilities. More discussion and visualization on the distribution of HW are
provided in Appendix C.

4.3 Matrix Approximation Error Evaluation

Figure 2: Matrix approximation errors of layer-wise sampling methods. The error curves of LADIES show
an abnormal U-shape on ogbn-arxiv and ogbn-mag datasets. “flat” and “debiased” denote our proposed
methods in Sections 4 and 5 respectively.

3We reiterate that the variance depends on the underlying distribution of the row norms of HW , and therefore no sampling
probabilities can always have smaller variance than others.

6

Published in Transactions on Machine Learning Research (01/2023)

To further justify our proposed sampling probabilities, we consider the following 1-layer embedding approx-
imation error, which evaluates the propagation approximation to the embedding aggregation of a batch:

‖Z̃(1)
batch − Z̃

(1)
sampling‖F = ‖QbatchPH

(0)W (0) −QbatchPSH
(0)W (0)‖F ,

where Z̃(1)
batch and Z̃(1)

sampling are the embedding at the first layer computed using all available neighbors and
a certain sampling method, respectively; S is the sampling matrix; Qbatch’s 0, 1 diagonal entries indicate if
a node is in the batch. The experiments are repeated 200 times, in which we regenerate the batch nodes
(shared by all sampling methods) and the sampling matrix for each method. The batch size is fixed as 512,
and the numbers of sampled neighbors ranges over 256, 512, 768, 1024, 1536, and 2048. W (0) is fixed and
inherited from the trained model reported in Section 6.

In Figure 2, the result of our proposed sampling probabilities (denoted as “LAIDES+flat”, blue solid line)
is consistently better than that of the original LADIES method (black dashed line) and of FastGCN (black
solid line) on every dataset. The debiasing method in this figure will be discussed shortly in the next section.

5 Debiased Sampling

We first make the clarification that in the derivation of previous layer-wise sampling strategies the neighbor
nodes are sampled with replacement, proven to be unbiased approximations of GCN embedding. However, in
their actual implementations, sampling is always performed without replacement, which induces biases since
the estimator remain the same as sampling with replacement. We illustrate the biases in Figure 2, where the
matrix approximation errors on ogbn-arxiv and ogbn-mag datasets (sparse graphs with few average degrees)
are U-shape for LADIES. The curve indicates that the errors even increase with the number of sub-samples,
and the approximation performance is heavily deteriorated by the biases.

In the following subsections, we dive into the implementation of FastGCN and LADIES, reveal the origin
of the biases, propose a new debiasing method for sampling without replacement, and study the statistical
properties of the debiased estimators.

Remark. We insist on sampling without replacement because it helps reduce the variance of the estimator.
For instance, current node-wise sampling GCNs also sample “without replacement”—they apply simple
random sampling (SRS, sampling with all-equal probabilities), which is guaranteed to shrink the variance
by a finite population correction (FPC) factor n−s

n−1 (Lohr, 2019, Section 2.3) 4.

5.1 Weighted Random Sampling (WRS)

The implementation of layer-wise importance sampling (without replacement) follows a sequential proce-
dure named as weighted random sampling (WRS) (Efraimidis & Spirakis, 2006, Algorithm D). Given a set
V = [n] representing the indices of n items {Xi}n

i=1
5 and the associated sampling probabilities {pi}n

i=1,
we sample s samples and denote the sampled indices as Ik for k = 1, 2, ..., s. With s sampled indices, Fast-
GCN/LADIES use the following importance sampling estimator to approximate the target sum of matrices∑n

i=1Xi (adapted to the notations in this section)

1
s

s∑
k=1

XIk
/pIk

, (8)

which is a weighted average of XIk
’s and induces biases when obtained through sampling without replace-

ment. We aim to preserve the linear form Ys :=
∑s

k=1 βkXIk
in debiasing, and develop new coefficients βk

for each XIk
to make Ys unbiased; the debiasing algorithm is officially presented in Section 5.3.

4s and n denote the sample size and the population size.
5In layer-wise sampling, Xi represents B[i]CT

[i], where for brevity QP (HW) is denoted as B (C) throughout the analysis.

7

Published in Transactions on Machine Learning Research (01/2023)

5.2 Analysis of Bias

To analyze the bias of Equation (8), we introduce the following auxiliary notations. In WRS, given the set
Sk of k previously sampled indices (0 ≤ k ≤ s − 1, S0 := ∅), the (k + 1)-th random index Ik+1 is sampled
from the set V − Sk of the rest n− k indices with probabilities

p
(0)
i := pi,∀i ∈ V = [n]; p

(k)
i := pi∑

j∈V−Sk
pj
,∀k ∈ [s− 1], i ∈ V − Sk.

With the notations introduced, we are now able to analyze the effect of applying Equation (8) while the
WRS algorithm is performed. The expectation of a certain summand XIk+1/pIk+1 will be

E
XIk+1

pIk+1

= E

E
XIk+1

p
(k)
Ik+1

p
(k)
Ik+1

pIk+1

| Fk

 = E

[
1∑

i∈V−Sk
pi

∑
i∈V−Sk

Xi

]
, (9)

where Fk is the σ-algebra generated by the random indices inside the corresponding set Sk,∀k = 0, 1, · · · , s−

1, and the second equation holds because
p

(k)
Ik+1

pIk+1
= 1∑

i∈V−Sk
pi

is Fk-measurable. The expectation is in general

unequal to the target
∑n

i=1Xi for k > 0, except for some extreme conditions, such as all-equal pi’s. The bias
in each summand (except for the first term with k = 0) accumulates and results in the biased estimation.

5.3 Debiasing Algorithms

We start with a review of existing works on debiasing algorithms for stochastic gradient estimators. Given
a sequence of random indices sampled through WRS, there are two common genres to assign coefficients to
summands in Equation (8). Both of the two genres relate to the stochastic sum-and-sample estimator (Liang
et al., 2018; Liu et al., 2019), which can be derived from Equation (9). Using the fact E XIk+1

pIk+1

∑
i∈V−Sk

pi =
E
[∑

i∈V−Sk
Xi

]
, a stochastic sum-and-sample estimator of

∑n
i=1Xi can be immediately constructed as 6

Πk+1 =
∑

j∈Sk

Xi +
XIk+1

p
(k)
Ik+1

,∀k = 0, 1, · · · s− 1. (10)

To minimize the variance, Liang et al. (2018); Liu et al. (2019) develop the first genre to focus on the last
estimator Πs and propose methods to pick the initial s− 1 random indices. Kool et al. (2020, Theorem 4)
turn to the second genre which utilize Rao-Blackwellization (Casella & Robert, 1996) of Πs.

In fast training for GCN, both of the two genres are somewhat inefficient from a practitioner’s perspec-
tive. The first genre works well when

∑
i∈Ss−1

pi is close to 1, otherwise the last term in Πs,
XIk+1

p
(k)
Ik+1

, will

bring in large variance and reduce the sample efficiency; for the second genre, the time cost to perform
Rao-Blackwellization (Kool et al., 2020) is extremely high (O(2s) even with approximation by numerical in-
tegration) and conflicts with the purpose of fast training. To overcome the issues of the two existing genres,
we propose an iterative method to fully utilize each estimator Πk+1 with acceptable runtime to decide the
coefficients for each term in Equation (8).

Denote our final estimator with s samples as Ys. Algorithm 1 returns the coefficients βk’s used in the
debiased estimator Ys =

∑s
k=1 βkXIk

. The main idea is to perform recursive estimation Y1,Y2, ... until Ys

and thus update β accordingly. To be more specific, we recursively perform the weighted averaging below:

Y0 := 0, Yk+1 := (1− αk+1)Yk + αk+1Πk+1,∀k = 0, 1, · · · , s− 1,

where α1 = 1 and αk+1 is a constant depending on k. Specifically, Y1 = Π1 = XI1/pI1 is unbiased and the
unbiasedness of Ys can be obtained by induction as each Πk+1 is unbiased as well. There can be variant
choices of αk+1’s. For example, the stochastic sum-and-sample estimator (10) sets all αk+1’s as 0 except for
αs = 1. In contrast, we intentionally specify αk+1 = n

(n−k)(k+1) , motivated by the preference that if all pi’s
are 1/n, the output coefficients of the algorithm will be all 1/s, the same as the ones in an SRS setting.

6The proof of its unbiasedness is brief and provided by Kool et al. (2020, Appendix C.1).

8

Published in Transactions on Machine Learning Research (01/2023)

Algorithm 1: Iterative updates of coefficients to construct the ultimate debiased estimator Ys.
Input: probabilities {pi}n

i=1, random indices {Ik+1}s−1
k=0 generated by WRS with {pi}n

i=1
Output: a length s coefficient vector β
Initialize β = 0 ∈ Rs, pS = 0 (sum of probabilities);
for k ← 0 to s− 1 do

αk+1 = n
(n−k)(k+1) ;

β[k+1] = αk+1(1− pS)/pIk+1 ;
for j ← 0 to k − 1 do

β[j+1] = (1− αk+1)β[j+1] + αk+1;
end
pS = pS + pIk+1 ;

end
return β;

5.4 Effects of Debiasing

We evaluate the debiasing algorithm again by matrix approximation error (see Section 4.3). As shown in
Figure 2, our proposed debiasing method can significantly improve the one-step matrix approximation error
on all datasets. In particular, by introducing the debiasing algorithm, the U-shape curve of LADIES in
Figure 2 no longer exists for debiased LADIES.

We also observe if the new sampling probabilities have already been applied (LADIES + flat in Figure 2),
an additional debiasing algorithm (LADIES + flat + debiased) only makes marginal improvement on sparse
graphs (ogbn-arxiv and ogbn-mag). The observation implies that the effect of debiasing and new sampling
probabilities may have overlaps.

We provide the following conjectures for this phenomenon. First, for the bias introduced by sampling
without replacement, it is significant only when the proportion of sampled nodes over all neighbor nodes
is large enough. With a fixed batch size while an increasing sample size, sparse graphs generally exhibit a
larger bias since they have a larger “sampling proportion” than dense graphs. Second, our proposed sampling
probabilities have a flatter distribution than LADIES, which resembles a uniform distribution and implies a
smaller bias (there is no bias in SRS). The phenomenon, therefore, implies an efficient practice to apply the
debiasing algorithm: users can decide whether to debias the estimation based on the ratio of the sampling
size to the batch size and the degrees in the graphs.

In addition to the effect on matrix approximation, the evidence that the debiasing algorithm can also
accelerate the convergence and improve the model prediction accuracy will be provided in Section 6.

5.5 Sampling Time

The iterative updates in Algorithm 1 induces additional O(s2) time complexity cost in sampling per batch,
as in the k-th iteration we need to update the coefficients for the first k random indices sampled. We first
remark the time complexity is comparable to the one of embedding aggregation in layer-wise training, as
shown in Appendix B. Moreover, since our layer-wise sampling procedure can be performed independently
on CPU, it will not retard the training on GPU 7. Note that this decoupling of sampling and training does
not hold for some node-wise or layer-wise sampling methods, such as VR-GCN, which requires up-to-date
embedding information.

The experimental results for sampling time in Table 3 further show that the additional cost of debiasing is
acceptable compared to FastGCN and LADIES. For example, comparing “LADIES + debiasing” to LADIES,
the sampling time only increases from 11.2 ms to 13.6 ms on ogbn-proteins. In contrast, vanilla node-wise
sampling takes 831 ms due to the overhead of row-wisely sampling the sparse Laplacian matrix.

7Technically the sampling results can be prepared in advance of the training on the GPU, and therefore we claim sampling
can be performed independently of training. Furthermore, we remark the sequential debiasing procedure is not a fit for GPU.

9

Published in Transactions on Machine Learning Research (01/2023)

Table 3: Average sampling time (in milliseconds) per batch for layer-wise methods and the vanilla node-wise
method. The experiment is conducted on CPU. The batch size is set as 512 and the sample size is set as
512/1024 (indicated in the following parentheses). The “f” and “d” in “LADIES+f+d” denotes “flat” and
“debiased” respectively. More experimental details are collected in Appendix A.3.

FastGCN LADIES LADIES+f LADIES+d LADIES+f+d Node-wise
Reddit (512) 10.6 ± 0.9 10.9 ± 0.3 10.0 ± 0.2 13.1 ± 0.3 13.1 ± 0.4 632.5 ± 4.3
Reddit (1024) 10.0 ± 0.6 11.8 ± 0.4 10.4 ± 0.1 17.1 ± 0.4 16.1 ± 0.6 637.0 ± 4.2
arxiv (512) 4.2 ± 0.1 8.3 ± 0.1 7.8 ± 0.1 11.7 ± 0.2 11.7 ± 0.5 585.2 ± 3.6
arxiv (1024) 6.9 ± 0.1 9.7 ± 0.1 9.0 ± 0.1 17.2 ± 0.3 16.5 ± 0.3 585.6 ± 3.1
mag (512) 16.8 ± 0.1 27 ± 0.1 24.5 ± 0.1 30.0 ± 0.03 27.8 ± 0.1 1084.3 ± 1.7
mag (1024) 18.9 ± 0.2 28.6 ± 0.2 27.7 ± 0.1 36.0 ± 0.2 34.9 ± 0.1 1119 ± 2.9
proteins (512) 11.1 ± 1 11.2 ± 0.3 10 ± 0.2 13.6 ± 0.2 12.6 ± 0.2 830.9 ± 5.3
proteins (1024) 8.9 ± 0.2 12.4 ± 0.1 11.4 ± 0.1 18.9 ± 0.2 18.0 ± 0.3 804.2 ± 4.6
products (512) 54.8 ± 0.7 83.4 ± 1.3 80.3 ± 0.4 83.7 ± 0.8 83.5 ± 0.6 2795.4 ± 4.7
products (1024) 57.1 ± 0.5 80.8 ± 0.8 78.7 ± 0.7 87.0 ± 0.6 85.4 ± 0.7 2737.7 ± 4.8

5.6 Analysis of Variance

In sampling without replacement, the selected samples are no longer independent, and therefore the classical
analysis in previous works (c.f. Lemma C.2 in Appendix C) cannot be applied to the variance of WRS-
based estimators. To quantify the variance under the WRS setting, we leverage a common technique in
experimental design—viewing {β(k)

i }n
i=1,∀k ∈ [s] as random variables. β(k)

i denote the coefficients assigned
to Xi’s when the k-th sample is drawn (if i /∈ Sk, β(k)

i := 0). This technique can derive the same result as in
the previous random indices (Ik’s) setting, while allow a finer analysis of the variance. We can rewrite the
variance in Equation (4) as 8

E ‖BSC −BC‖2F =
∑
j,k

Var
(

n∑
i=1

β
(s)
i B

[i]
j C[i],k

)
.

The variance above is determined by the covariance matrix Cov(β), whose (i, j)-th element is Cov(β(s)
i , β

(s)
j).

We provide the following proposition for the covariance matrix Cov(β) in Algorithm 1:

Theorem 1. For all k ∈ [s], let pSk
be the probability of having Sk as the first k samples, q̄(k)

i be the
probability of index i not in the k samples, and q̄(k)

i,j be the probability of both index i, j not in the k samples.
Define r(k)

i :=
∑

Sk 63i pSk
(1 −

∑
j∈Sk

pj), where
∑

Sk 63i iterates over all Sk that does not contain i. Then
Var(β(k+1)

i) ≥ 0 and Cov(β(k+1)
i , β

(k+1)
j) ≤ 0 are recursively given as:

(1− αk+1)2 Var(β(k)
i) +

(
r

(k)
i

pi
− α2

k+1q̄
(k)
i

)
, (11)

(1− αk+1)2 Cov(β(k)
i , β

(k)
j)− α2

k+1q̄
(k)
i,j . (12)

Furthermore, there exists a sequence {αk}s
k=1 only depending on k, n such that for all i, j, Var(β(k)

i) ≤
1
k (1

pi
− 1), |Cov(β(k)

i , β
(k)
j)| ≤ 1

k ,∀k ∈ [s].

Proof and discussions are collected in Appendix C.4. We remark that due to the fixed weights αs = 1 in
the stochastic sum-and-sample estimator (10), its (co)variance is usually larger than ours, especially when
s� n (intuitively the second term XIs/p

(s−1)
Is

in Equation (10) will cause large variance).

8We let B (C) have n columns (rows), and the j(k)-th element in the i-th column (row) is denoted as B[i]
j (C[i],k).

10

Published in Transactions on Machine Learning Research (01/2023)

6 Experiments

In this section, we empirically evaluate the performance of each method on five node prediction datasets:
Reddit, ogbn-arxiv, ogbn-proteins, ogbn-mag, and ogbn-products (c.f. Table 1). We denote “LADIES+flat”,
“LADIES+debiased”, and “LADIES+flat+debiased” respectively as the variants of LADIES with the im-
provements from Section 4, Section 5, and from both. We compare our methods to the original GCN with
mini-batch stochastic training (denoted by full-batch), two layer-wise sampling methods: FastGCN and
LADIES. Apart from that, we also implement several other fast GCN training methods, including Graph-
SAGE (Hamilton et al., 2017) (vanilla node-wise sampling while keep using the GCN architecture), VR-GCN
(Chen et al., 2018a), and a subgraph sampling method GraphSAINT (Zeng et al., 2020).

In training, we use a 2-layer GCN for each task trained with an ADAM optimizer. (Due to limited com-
putational resources, we have to use the shallow GCN since the full-batch method and node-wise sampling
methods require much more GPU memory even when L = 3.) The number of hidden variables is 256 and
the batch size is 512. For layer-wise sampling methods, we consider two settings for node sample size:

1. fixed as 512 (equal to the batch size);

2. an “increasing” setting (denoted with a suffix (2)) that double nodes will be sampled in the next layer.

For node-wise sampling methods (GraphSAGE, VR-GCN), the sample size per node is 2 (denoted with a
suffix (2)). For the subgraph sampling method GraphSAINT, the subgraph size is by default equal to the
batch size. The experimental results are reported in Table 4, in the form of “mean(±std.)”, computed based
on 5 runs. More details of the settings are deferred to Appendix A.1.

6.1 Model Convergence Trajectory

Figure 3: Metrics (detailed in Table 1) on the validation (dev) sets in each epoch. “f” and “d” refer to
the “flat” sampling probability and “debiasing” respectively. The layer-wise sampling methods follow the
“increasing” setting (denoted with a suffix (2) in Table 4).

We first compare the convergence rates of layer-wise methods. The convergence curves on ogbn-proteins
and ogbn-products are shown in Figure 3 (FastGCN is excluded for clearer illustration, due to its outlying
curve). Complete results of all methods (including node-wise and subgraph) on all five datasets are deferred
to Figure 4 in Appendix A.2.

As shown in Figure 3 (and Figure 4 in the appendix), our proposed improvements (LADIES + flat, LADIES
+ debias, LADIES + flat + debias) exhibit faster convergence rate than LADIES (the solid blue curve).
The observation implies both the new sampling probabilities (“flat”) and the debiasing algorithm can help
accelerate the convergence. Specifically, we note that the effect of debiasing is not as significant as choosing
a proper sampling scheme on some datasets (e.g. Reddit and ogbn-products).

11

Published in Transactions on Machine Learning Research (01/2023)

6.2 Prediction Accuracy

Table 4: Metrics (detailed in Table 1) on testing sets of benchmarks. The best results among layer-wise
sampling methods and all methods are both highlighted in boldface. The metrics are in percentage (%).
The averaged training time for one epoch is in milliseconds and measured on the GPU.

Metrics Epoch avg. train. time
Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products ogbn-arxiv ogbn-products

Full-batch 93.81±0.18 66.39±0.25 29.60±0.27 65.71±0.11 68.33±0.16 65.2 ± 3.97 703 ± 77.8
Node-wise (2) 92.13±0.27 64.51±0.30 29.05±0.45 65.76±0.18 68.71±0.07 22.0 ± 3.64 8.34 ± 1.21
VR-GCN (2) 94.62±0.04 67.49±0.25 28.99±0.40 67.45±0.02 70.90±0.28 86.8 ± 6.09 88.5 ± 2.51
GraphSAINT 89.47±0.83 60.58±0.62 24.77±0.88 66.33±0.07 62.77±1.04 23.1 ± 3.26 8.26 ± 1.11
FastGCN 44.46±2.30 25.44±0.82 7.13±0.48 52.44±1.88 26.98±0.42 24.1 ± 5.12 7.43 ± 1.04
LADIES 73.86±0.17 60.95±0.31 24.79±0.48 68.28±0.05 52.97±1.11 19.3 ± 3.25 10.3 ± 1.24
w/ flat 90.04±0.11 62.76±0.26 27.30±0.27 68.26±0.06 62.64±0.10 16.0 ± 2.37 8.03 ± 1.07
w/ debias 86.73±0.36 61.55±0.40 25.74±0.80 68.87±0.09 55.92±0.92 19.1 ± 3.45 8.44 ± 1.09
w/ flat & debias 89.34±0.40 61.90±0.43 27.41±0.28 67.64±0.15 62.57±0.22 14.6 ± 2.59 8.11 ± 1.09

FastGCN (2) 60.31±0.70 30.23±1.10 5.85±0.57 58.80±1.06 31.58±0.70 24.9 ± 5.09 8.34 ± 1.11
LADIES (2) 88.34±0.11 64.01±0.39 28.59±0.39 68.17±0.10 65.24±0.40 21.0 ± 4.00 11.2 ± 1.35
w/ flat 93.64±0.19 66.56±1.84 29.58±0.19 68.10±0.07 68.47±0.25 23.1 ± 4.04 13.1 ± 1.52
w/ debias 92.75±0.22 65.93±0.27 30.08±0.28 69.14±0.15 67.18±0.24 14.0 ± 1.94 8.54 ± 1.09
w/ flat & debias 93.59±0.09 66.22±0.10 29.88±0.34 67.75±0.11 68.49±0.06 21.0 ± 3.60 8.50 ± 1.15

The prediction accuracy (measured by corresponding metrics) on testing sets of different datasets is reported
in Table 4. Our proposed methods, which combine the new sampling probabilities and the debiasing algo-
rithm, are comparable to the full-batch training (no node sampling), showing consistent improvement over
existing layer-wise sampling methods, FastGCN and LADIES. On most benchmarks, the prediction per-
formance of our methods is better than the vanilla node-wise sampling method (GraphSAGE) and Graph-
SAINT.

In addition, we would like to remark on the overlapping effect for the flat sampling probabilities and the
debiasing algorithm. In Table 4, the accuracy of LADIES+flat+debias is better than LADIES+flat and
LADIES+debias on most benchmarks, but this relative improvement is not remarkable on several bench-
marks. This phenomenon is also observed in Figure 2 and Figure 3. The only exception is the ogbn-proteins
dataset, where LADIES+flat+debias is inferior to LADIES+flat and LADIES+debias. However, on this
dataset, LADIES and its variants even outperform “full-batch” GCN and VR-GCN. We tend to believe
GCN’s accuracy on ogbn-proteins is mainly impacted by factors other than the sampling variance.

We further remark on a seemingly strange phenomenon that some efficient GCNs have a higher prediction
accuracy than full-batch GCN on several datasets. We speculate the reason is that a good approximation
can recover the principal components in the original embedding matrix, restrain the noise via the sparse /
low-rank structure, and serve as implicit regularization. There are similar observations (Sanyal et al., 2018;
Chen et al., 2021) in Convolutional Neural Networks (CNN) and Transformers as well, that applying a low-
rank regularizer, such as SVD, to the representation of the intermediate layers can improve the prediction
accuracy of models.

Since LADIES improves upon FastGCN, alleviates the sparsity connection issue thereof, and performs con-
sistently better than FastGCN on our benchmarks, the variants of FastGCN with our methods (“Fast-
GCN+flat”, “FastGCN+debias”, and “FastGCN+flat+debias”) are not the focus of this paper. We
report their accuracy results in Appendix A for reference, where consistent improvements of “Fast-
GCN+flat+debias” over FastGCN are observed on most benchmarks. We also notice that in some cases,
the flat sampling probabilities and the debiasing algorithm bring insignificant improvements or even de-
creased accuracy. We conjugate that this is because FastGCN’s structural deficiency somewhat distorts the
convergence of GCN, as remarked by Zou et al. (2019). To be more specific, FastGCN does not apply a
layer-dependent sampling strategy, which leads to the failure to capture the dynamics of mini-batch SGD
and the overly sparse layer-wise connection. When the model does not converge well, the bias and variance
of sampling is no longer the dominant factor in model’s prediction accuracy.

12

Published in Transactions on Machine Learning Research (01/2023)

6.3 Training Time

In the right-most columns of Table 4 9, we report the training time for ogbn-arxiv and ogbn-product (complete
runtime results for 2-layer and 3-layer GCNs are respectively provided in Tables 5 and 6 in Appendix A.3,
along with the detailed timing settings). The difference between the runtime of our proposed methods and
LADIES is not significant, since these layer-wise sampling strategies have the same propagation procedure.
As for VR-GCN, a much heavier computational cost is required than the layer-wise methods as the expense
of involving historical embedding, which helps it achieve the best accuracy on three tasks; in particular, its
training time is even comparable to the full-batch method on ogbn-arxiv data.

Overall, we comment that based on the experimental results, our improvement in sampling probabilities and
the proposed debiasing algorithm lead to better accuracy than the other two classical layer-wise sampling
methods, FastGCN, and LADIES, while maintaining roughly the same computational cost.

7 Conclusion and Discussion

In this work, we revisit the existing layer-wise sampling strategies and propose two improvements. We
first show that following the Principle of Maximum Entropy, a conservative choice of sampling probabilities
outperforms the existing ones, whose proportionality assumption on embedding norms is in general unguar-
anteed. We further propose an efficient debiasing algorithm for layer-wise importance sampling through
iterative updates of coefficients for columns sampled, and provide statistical analysis. The empirical exper-
iments show our methods achieve high accuracy close to the SOTA node-wise sampling method, VR-GCN,
while significantly saving runtime on GCN training like other history-oblivious layer-wise sampling methods.

We remark our debiased importance sampling strategy can be extended to a broader class of graph neural
networks, such as node-wise sampling for GCN. Current node-wise sampling methods, e.g. GraphSAGE and
VR-GCN, uniformly sample neighbors of each node without replacement. To further improve the approxi-
mation accuracy, node-wise sampling can also introduce importance sampling with our debiasing algorithm.
Moreover, our debiasing algorithm can be applied to general machine learning involving sampling among a
finite number of elements. In addition to the batch sampling for stochastic gradient descent (SGD) train-
ing discussed in Section 5.3, the proposed debiasing method can also contribute to sampling-based efficient
attention, fast kernel ridge regression, etc.

Acknowledgments

We appreciate all the valuable feedback from the anonymous reviewers and the TMLR editors. Y. Yang’s
research was supported in part by U.S. NSF grant DMS-2210717. R. Zhu’s research was supported in part
by U.S. NSF grant DMS-2210657.

9The least average training time is not boldfaced, since the training time on GPU is sensitive to the hardware and has a
relatively large standard deviation the best result cannot significantly outperform the second-best one.

13

Published in Transactions on Machine Learning Research (01/2023)

References
Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

George Casella and Christian P Robert. Rao-blackwellisation of sampling schemes. Biometrika, 83(1):81–94,
1996.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pp. 941–949. PMLR, 2018a. URL http://proceedings.
mlr.press/v80/chen18p.html.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via impor-
tance sampling. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018b. URL
https://openreview.net/forum?id=rytstxWAW.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian kernel and
nystr\" om method. Advances in Neural Information Processing Systems, 34:2122–2135, 2021.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Ankur Teredesai, Vipin Kumar,
Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, pp. 257–266. ACM, 2019. doi: 10.1145/3292500.3330925. URL https://doi.org/10.
1145/3292500.3330925.

Weilin Cong, Rana Forsati, Mahmut T. Kandemir, and Mehrdad Mahdavi. Minimal variance sampling with
provable guarantees for fast training of graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang,
and B. Aditya Prakash (eds.), KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 1393–1403. ACM, 2020. URL
https://dl.acm.org/doi/10.1145/3394486.3403192.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. Traffic graph convolutional recurrent neural
network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions
on Intelligent Transportation Systems, 21(11):4883–4894, 2019.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i: Ap-
proximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

Pavlos S Efraimidis and Paul G Spirakis. Weighted random sampling with a reservoir. Information Processing
Letters, 97(5):181–185, 2006.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 1024–1034, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

14

http://proceedings.mlr.press/v80/chen18p.html
http://proceedings.mlr.press/v80/chen18p.html
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://dl.acm.org/doi/10.1145/3394486.3403192
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

Published in Transactions on Machine Learning Research (01/2023)

Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph rep-
resentation learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 4563–4572, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
01eee509ee2f68dc6014898c309e86bf-Abstract.html.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
SJU4ayYgl.

Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random variables by
sampling without replacement. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?
id=rklEj2EFvB.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, and Ni Lao. Memory augmented pol-
icy optimization for program synthesis and semantic parsing. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10015–10027, 2018. URL https://
proceedings.neurips.cc/paper/2018/hash/f4e369c0a468d3aeeda0593ba90b5e55-Abstract.html.

Runjing Liu, Jeffrey Regier, Nilesh Tripuraneni, Michael I. Jordan, and Jon D. McAuliffe. Rao-blackwellized
stochastic gradients for discrete distributions. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 4023–4031. PMLR,
2019. URL http://proceedings.mlr.press/v97/liu19c.html.

Sharon L Lohr. Sampling: design and analysis. Chapman and Hall/CRC, 2019.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin. Semi-supervised user geolocation via graph convolu-
tional networks. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 2009–2019, Melbourne, Australia, 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-1187. URL https://aclanthology.org/P18-1187.

Amartya Sanyal, Varun Kanade, Philip HS Torr, and Puneet K Dokania. Robustness via deep low-rank
representations. arXiv preprint arXiv:1804.07090, 2018. URL https://arxiv.org/abs/1804.07090.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In European semantic web conference, pp.
593–607. Springer, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Yike Guo and Faisal Farooq (eds.),
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2018, London, UK, August 19-23, 2018, pp. 974–983. ACM, 2018. doi: 10.1145/3219819.3219890.
URL https://doi.org/10.1145/3219819.3219890.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graph-
saint: Graph sampling based inductive learning method. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJe8pkHFwS.

15

https://proceedings.neurips.cc/paper/2018/hash/01eee509ee2f68dc6014898c309e86bf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/01eee509ee2f68dc6014898c309e86bf-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rklEj2EFvB
https://openreview.net/forum?id=rklEj2EFvB
https://proceedings.neurips.cc/paper/2018/hash/f4e369c0a468d3aeeda0593ba90b5e55-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f4e369c0a468d3aeeda0593ba90b5e55-Abstract.html
http://proceedings.mlr.press/v97/liu19c.html
https://aclanthology.org/P18-1187
https://arxiv.org/abs/1804.07090
https://doi.org/10.1145/3219819.3219890
https://openreview.net/forum?id=BJe8pkHFwS

Published in Transactions on Machine Learning Research (01/2023)

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 11247–11256, 2019. URL https://
proceedings.neurips.cc/paper/2019/hash/91ba4a4478a66bee9812b0804b6f9d1b-Abstract.html.

16

https://proceedings.neurips.cc/paper/2019/hash/91ba4a4478a66bee9812b0804b6f9d1b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/91ba4a4478a66bee9812b0804b6f9d1b-Abstract.html

Published in Transactions on Machine Learning Research (01/2023)

A Supplementary Experimental Setup and Results

A.1 Experimental Setup Details

We describe the additional details of experiment setups for Section 6. All the models are implemented by
PyTorch. We use one Tesla V100 SXM2 16GB GPU with 10 CPU threads to train all the models listed in
Section 6. Our implementation of full-batch method, FastGCN, and LADIES are adapted from the codes
by Zou et al. (2019); the implementation of vanilla node-wise sampling, VR-GCN, GraphSAINT is adapted
from the codes by Cong et al. (2020). For the vanilla node-wise sampling method, there are several variants
of GNN structures (Ying et al., 2018) while we fix the model structure as GCN in our experiments for fair
comparison. We use ELU as the activation function in the convolutional layer for all the models: ELU(x) = x
for x > 0, ELU(x) = exp(x)− 1 for x ≤ 0.

For the details in model training, the learning rate is 0.001 and the dropout rate is 0.2, which means 20
percents of hidden units are randomly dropped during the training. Validation and testing are performed
with full-batch inference (our experiments on those graph benchmarks are transductive: all the possible
neighbors are accessible during training) on validation and testing nodes. Note that some existing PyTorch
implementations of GCNs involve several ad-hoc tricks, such as row-normalizing sampled Laplacian matrix.

For the prediction accuracy evaluation experiments in Section 6, we stop training when the validation F1
score does not increase for 200 batches. For a fair comparison, we remove certain tricks in our experiments,
such as normalization of each row in the sampled Laplacian matrix in layer-wise sampling. Such a trick may
help in the practice, but it might not be compatible with some other methods and is out of the focus of
our study. We use the metrics in Table 1 to evaluate the accuracy of each method. Concretely, Reddit is a
multi-class classification task, and we use the Micro-F1 score with function “sklearn.metrics.f1_score”. For
OGB data, we use the built-in evaluator function in module ogb provided by Hu et al. (2020).

A.2 Model Convergence

Figure 4 is a supplementary to Figure 3. We present the convergence curve of all methods on every task.
The setting of each model is the same as in Figure 3.

A.3 Sampling Time and Training Time

We compare the sampling time per batch for 1-layer GCN with layer-wise sampling methods (FastGCN,
LADIES, and our proposed methods) and GraphSAGE by experiments on CPU. The time is presented in
milliseconds. The batch size is 512, and the number of sampled nodes is 512 or 1024. The average sampling
time (followed by standard deviation) over 200 batches is presented in Table 3. We note that the sampling
time may involve some overhead costs. For example, the input Laplacian matrix is Scipy-spare-matrix on
the CPU, while in sampling, it is converted to a PyTorch-sparse-matrix.

By Table 3, we conclude that the cost of debiasing algorithm is acceptable. Moreover, since the debiasing
only depends on the number of nodes sampled, its time cost will be dwarfed by sampling on very large
graphs. For example, sampling 512 nodes, the average batch sampling time for “LADIES”, “LADIES +
debiased”, “LADIES + flat + debiased”, are 8.3± 0.1, 11.7± 0.2, 11.7± 0.5 respectively on ogbn-arxiv while
83.4± 1.3 and 83.7± 0.8 and 83.5± 0.6 respectively on ogbn-products data. As we mentioned in Section 5.3,
the node-wise sampling takes a significantly longer time because individually sampling from each row in the
re-normalized Laplacian matrix (stored as a sparse matrix) leads to a large overhead cost.

We present the complete training time (per batch) of 2-layer and 3-layer GCNs in Tables 5 and 6 respectively.
The time is presented in millisecond and averaged over 110 batches, where we discard the first 20 and the
last 20 out of 150 total batches to disregard potential warm-up time for GPU. The other settings are kept
the same as our experiments of accuracy evaluation in Table 4. We note that the timing on GPU is sensitive
to the hardware and has a relatively large standard deviation.

As presented in Tables 5 and 6, our proposed methods have similar training time with LADIES due to the
same propagation scheme of GCN with layer-wise sampling strategy. VR-GCN generally shows superiority

17

Published in Transactions on Machine Learning Research (01/2023)

Figure 4: Metrics of each epoch on the validation set. The layer-wise sampling methods follow the “in-
creasing" setting (denoted with a suffix (2) in Table 4); for the node-wise sampling methods, the number of
neighbors is 2 per node.

18

Published in Transactions on Machine Learning Research (01/2023)

in prediction accuracy (see Table 4). However, it also takes a significantly longer time in training since its
propagation involves using and updating historical activation.

Table 5: Average training time (in milliseconds) per batch for a 2-layer GCN.

Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products
Full-batch 372 ± 21.5 65.2 ± 3.97 72.3 ± 8.25 1702 ± 67.0 703 ± 77.8
Node-wise (2) 8.13 ± 1.12 22.0 ± 3.64 17.3 ± 4.67 9.50 ± 1.29 8.34 ± 1.21
Node-wise (10) 11.3 ± 1.05 19.7 ± 2.84 22.0 ± 5.60 10.3 ± 1.29 11.7 ± 1.31
VR-GCN (2) 153 ± 17.3 86.8 ± 6.09 106 ± 12.4 239 ± 42.7 88.5 ± 2.51
VR-GCN (10) 302 ± 23.9 104 ± 8.47 175 ± 15.1 360 ± 45.6 402 ± 65.3
GraphSAINT 8.23 ± 1.14 23.1 ± 3.26 20.4 ± 5.98 8.34 ± 1.07 8.26 ± 1.11
FastGCN 9.47 ± 1.21 24.1 ± 5.12 23.3 ± 6.27 8.50 ± 1.22 7.43 ± 1.04
LADIES 7.95 ± 1.03 19.3 ± 3.25 16.7 ± 4.54 8.69 ± 1.11 10.3 ± 1.24
w/ flat 7.86 ± 1.04 16.0 ± 2.37 26.1 ± 6.54 9.00 ± 1.21 8.03 ± 1.07
w/ debiased 7.86 ± 1.11 19.1 ± 3.45 19.5 ± 5.67 8.21 ± 1.04 8.44 ± 1.09
w/ flat & debiased 8.01 ± 1.09 14.6 ± 2.59 20.5 ± 5.62 9.06 ± 1.14 8.11 ± 1.09
FastGCN (2) 9.47 ± 1.25 24.9 ± 5.09 20.8 ± 5.71 8.76 ± 1.06 8.34 ± 1.11
LADIES (2) 14.2 ± 4.68 21.0 ± 4.00 22.7 ± 6.05 8.83 ± 1.12 11.2 ± 1.35
w/ flat 8.70 ± 1.13 23.1 ± 4.04 21.9 ± 5.65 10.3 ± 1.24 13.1 ± 1.52
w/ debiased 8.75 ± 1.15 14.0 ± 1.94 16.3 ± 4.64 10.7 ± 1.29 8.54 ± 1.09
w/ flat & debiased 8.12 ± 1.13 21.0 ± 3.60 13.3 ± 4.15 12.5 ± 1.41 8.50 ± 1.15

Table 6: Average training time (in milliseconds) per batch for a 3-layer GCN.

Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products
Full-batch 1042.8 ± 30.1 148 ± 5.8 352.1 ± 11.5 3312.3 ± 82.1 4490.7 ± 102.6
Node-wise (2) 10.9 ± 1.3 27 ± 4.2 17.2 ± 4.3 11.5 ± 1.3 11.5 ± 1.1
Node-wise (10) 77.8 ± 12 34.9 ± 3.3 52.4 ± 6.7 24.6 ± 1.1 50.4 ± 1.1
VR-GCN (2) 379.7 ± 23.6 154.1 ± 12 218.7 ± 16.7 428.9 ± 53 473.6 ± 69.7
VR-GCN (10) 858.1 ± 32 224.9 ± 17.8 488.1 ± 34.7 1618.7 ± 67.3 2075 ± 112.8
GraphSAINT 9.5 ± 1.1 22.6 ± 3.2 21.2 ± 5.6 11.2 ± 1.3 10.5 ± 1.0
FastGCN 16.9 ± 6.3 30.8 ± 4.3 19 ± 4.8 13 ± 1.3 8.9 ± 1.0
LADIES 10.6 ± 1.3 27.6 ± 3.7 19.9 ± 4.8 11.1 ± 1.3 8.9 ± 1.0
w/ flat 10.1 ± 1.1 26.4 ± 3.9 12.1 ± 2.4 10.1 ± 1.2 9.9 ± 1.0
w/ debiased 10.1 ± 1.2 30 ± 4.1 22.5 ± 5.5 10.6 ± 1.2 10.6 ± 1.0
w/ flat & debiased 9.7 ± 1.1 27.1 ± 3.6 15.7 ± 4.3 10.9 ± 1.2 9.3 ± 1.0
FastGCN (2) 9.6 ± 1.2 27.4 ± 4.6 18.9 ± 4.7 9.8 ± 1.2 9.4 ± 1.1
LADIES (2) 10 ± 1.2 29 ± 4.1 19.2 ± 5.1 10.5 ± 1.2 10.2 ± 1.1
w/ flat 16.1 ± 4.9 27.2 ± 3.7 21.4 ± 5.8 10.4 ± 1.1 13.1 ± 1.4
w/ debiased 10.3 ± 1.1 24.7 ± 3.1 23.3 ± 5.8 10.5 ± 1.2 12.4 ± 1.3
w/ flat & debiased 10.7 ± 1.1 26.8 ± 4.4 24.8 ± 6.4 10.5 ± 1.1 9.9 ± 1.1

A.4 Regression Experimental Setup

For the regression experiments in Section 4.1, we train a 3-layer GCN with LADIES sampler or full-batch
sampler, with 256 hidden variables per layer. The batch size is 512. Early stopping training policy is
applied. The regression lines in Figure 1 are fitted based on all the (‖(HW)[i]‖, ‖P [i]‖) pairs collected
from converged 3-layer GCN models in 5 repeated experiments. To make the pattern of the scatter plot
clear, we only randomly sample 1000 pairs of data in each layer in each scatter plot. We also remark that
these experiments are conducted to check the assumption of importance sampling, rather than pursuing
SOTA performance. When we finish training the model, the norms of rows in HW are extracted through
a full-batch inference with all training nodes.

We collect additional regression experiments in Appendix D.

19

Published in Transactions on Machine Learning Research (01/2023)

Table 7: Testing metrics (detailed in Table 1) for FastGCN with flat sampling or/and debiasing on bench-
marks. The metrics are in percentage (%).

Accuracy Metrics
Reddit ogbn-arxiv ogbn-mag ogbn-proteins ogbn-products

LADIES 73.86 ± 0.17 60.95 ± 0.31 24.79 ± 0.48 68.28 ± 0.05 52.97 ± 1.11
FastGCN 44.46 ± 2.30 25.44± 0.82 7.13 ± 0.48 52.44 ± 1.88 26.98 ± 0.42
FastGCN w/ flat 53.78 ± 0.86 22.76 ± 0.69 5.69 ± 0.65 61.68 ± 0.50 32.72 ± 1.6
FastGCN w/ debias 44.27 ± 2.26 26.57 ± 2.52 4.66 ± 1.17 53.64 ± 1.33 26.77 ± 1.32
FastGCN w/ flat & debias 53.88 ± 0.94 24.56 ± 2.1 7.54 ± 0.31 60.30 ± 1.89 29.79 ± 2.19
LADIES (2) 88.34 ± 0.11 64.01 ± 0.39 28.59 ± 0.39 68.17 ± 0.10 65.24 ± 0.40
FastGCN (2) 60.31 ± 0.70 30.23 ± 1.10 5.85 ± 0.57 58.80 ± 1.06 31.58 ± 0.70
FastGCN (2) w/ flat 59.60 ± 1.07 26.68 ± 1.96 6.68 ± 0.03 64.04 ± 0.63 35.27 ± 1.14
FastGCN (2) w/ debias 51.11 ± 1.93 25.65 ± 1.02 5.83 ± 0.76 56.30 ± 2.49 27.38 ± 1.82
FastGCN (2) w/ flat & debias 60.22 ± 0.84 24.41 ± 1.02 6.06 ± 0.62 63.13 ± 0.57 34.47 ± 1.76

A.5 Supplementary Accuracy Results for FastGCN with flat sampling probabilities and debiasing

To complement the accuracy evaluation results in Table 4, we accordingly implement the variants of FastGCN
(“FastGCN w/ flat”, “FastGCN w/ debias”, and “FastGCN w/ flat & debias”) and perform the same
experiments (all the five datasets in Section 6.2) on them. We still follow the same settings (including all the
hyper-parameters in training) described at the beginning of Section 6: “FastGCN (2)” similarly refers to the
“increasing” setting, where “double nodes will be sampled in the next layer”. We summarize their accuracy
results in Table 7, where we also provide the accuracy of original FastGCN and LADIES for comparison.

By introducing flat sampling probabilities and debasing algorithms, we observe “FastGCN w/ flat & debias”
makes consistent improvements over FastGCN on most benchmarks. However, in some cases, the flat sam-
pling probabilities and the debiasing algorithms bring insignificant improvements or even decreased accuracy.
We provide a possible explanation for the phenomenon as follows. As illustrated in Table 7, FastGCN and
its variants have significantly worse performance than even vanilla LADIES on all the benchmarks, which
implies that the poor model convergence of FastGCN is mainly caused by a structural deficiency, the sparse
layer-wise connection (Zou et al., 2019), on these benchmarks; regarding the impact on the model accuracy,
the structural deficiency far outweighs the variance in sampling, and our improvement on sampling variance
cannot always lead to higher model accuracy.

B Time Complexity Analysis

Table 8: The time complexity for computation for L-layer GCN training by layer-wise sampling and node-wise
sampling. The first column refers to the matrix operation type, nodes aggregation or linear transformation.

Layer-wise Node-wise
Nodes Aggregation O(scpL) O(sbLp)
Linear Transformation O(sp2L) O(sbL−1p2)

We analyze the complexity of vanilla node-wise sampling and layer-wise sampling in this section. The analysis
is adapted from the work by Zou et al. (2019), but we show a lighter bound for layer-wise sampling. For l
such that 0 ≤ l ≤ L− 1, the propagation formulas for sampling based GCN can be formulated as:

Z̃(l+1) = P̄ (l)H̃(l)W (l),

where H̃(l) = Z̃(l) ∈ Rsl×p, P̄ (l) ∈ Rsl+1×sl , W (l) ∈ Rp×p. In particular, for LADIES, P̄ (l)
LADIES =

Q(l+1)PS(l).

For simplicity, we suppose that the hidden dimension in each layer is fixed as p, the same as the dimension of
H(0). The batch size and the numbers of nodes sampled in each layer are set all equal to a fixed constant s.

20

Published in Transactions on Machine Learning Research (01/2023)

We assume the number of sampled neighbors per node in node-wise sampling is b. We denote the maximal
degree of all the nodes in the graph as c. The computational cost of the propagation comes from two
parts: the linear transformation, a dense matrix product, H̃(l)W (l) and the node aggregation, a sparse
matrix product, P̄ (l)(H̃(l)W (l)). The time complexity is summarized in Table 8. We additionally comment
although the time cost of two parts both linearly depend on the number of nodes involved (number of
non-zero elements in Q(l+1)), the node aggregation part usually dominates since the sparse matrix product
involved is less efficient than the dense matrix product involved in a modern computer.

The linear transformation, H̃(l)W (l) is dense matrix production. The cost depends on the shape of two
matrices, and is given as O(slp

2). LADIES fixes sl as s for each layer, so O(slp
2) = O(sp2). For node-wise

sampling sl = sbL−l, since the number of node grows exponentially. Thus, by summation over all the layers,
we have the results in the second row in Table 8.

The node aggregation, P̄ (l)(H̃(l)W (l)) is a sparse matrix production, since P̄ (l) is sparse. For simplicity,
we denote H̃(l)W (l) as C(l) ∈ Rsl×p. Thus, the time complexity of this sparse matrix production becomes
O(nnz(Pl)p), where nnz(Pl) is the number of non-zero entries in P̄ (l). For layer-wise sampling, since we
sample s nodes for each layer and each node has at most c neighbors, so nnz(Pl) ≤ sc. For node-wise
sampling, since each node has b neighbors and the neighbors are not shared by all the nodes in each layer,
nnz(Pl) = bsl = sbL+1−l. By summation over all the layers, we attain the results in the first row of Table 8.

C Theoretical Analysis of Sampling Probabilities

C.1 Results in approximate matrix multiplication

In this section, we revisit approximate matrix multiplication to derive the previous layer-wise sampling
methods. Specifically, the sampling matrix S used in FastGCN and LADIES can be decomposed as S =
ΠΠT , where Π ∈ Rn×d is a sub-sampling sketching matrix defined as follows:
Definition C.1 (Sub-sampling sketching matrix). Consider a discrete distribution which draws i with prob-
ability pi > 0,∀i ∈ [n]. For a random matrix Π ∈ Rn×d, if Π has i.i.d. columns and each column Π(j) can
randomly be 1√

dpi

ei with probability pi, where ei is the i-th column of the n-by-n identity matrix In, then Π
is called a sub-sampling sketching matrix with sub-sampling probabilities {pi}n

i=1.

With this definition, we introduce a result in AMM to construct the sub-sampling sketching matrix, which
coincides with the conclusion in FastGCN and LADIES.
Theorem C.1 (Theorem 1 (Drineas et al., 2006)). Suppose B ∈ RnB×n, C ∈ Rn×nC , the number of sub-
sampled columns d ∈ Z+ such that 1 ≤ d ≤ n, and the sub-sampling probabilities {pi}n

i=1 are such that∑n
i=1 pi = 1 and such that for a quality coefficient β ∈ (0, 1]

pi ≥ β
‖B[i]‖‖C[i]‖∑n

i′=1 ‖B[i′]‖‖C[i′]‖
,∀i ∈ [n]. (13)

Construct a sub-sampling sketching matrix Π ∈ Rn×d with sub-sampling probabilities {pi}n
i=1 as in Defini-

tion C.1, and let BΠΠTC be an approximation to BC. Let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then
with probability at least 1− δ,

‖BC −BΠΠTC‖2F ≤
η2

βd
‖B‖2F ‖C‖2F . (14)

Remark. The theorem is closely related to Lemma 1 in Appendix B of LADIES, which studies the variance
E ‖BC −BSC‖2F . For the choice of sub-sampling probabilities, Equation (13) reproduces the conclusion in
FastGCN and LADIES, when we respectively take B as P and QP .

C.2 Comparison of Sampling Variance Between Our Sampling Probabilities and LADIES

Whether our choice of probabilities can outperform the LADIES depends on the distribution of the norms
of rows in HW . When ‖HW(i)‖ is not proportional to the corresponding `2 norm of column (QP)(i), our

21

Published in Transactions on Machine Learning Research (01/2023)

proposed probabilities can benefit the approximate matrix multiplication task more than the ones assuming
a relation of proportionality. We find the common long-tail distribution of numbers suffices to exert the
strengths of the new probabilities, which can be concluded as the following assumption:
Assumption 1. To simplify the notation, we denote B := QP and C := HW , where P is an n-by-n matrix
as defined above. Let m be the number of non-zero columns in B, and define C1 := ‖B‖2

F /m

(
∑n

i=1
‖B[i]‖/m)2 ≥ 1.

There also exists a constant C2 ≥ 1 such that 1
C2
‖C‖2F /n ≤ ‖C[i]‖2 ≤ C2‖C‖2F /n. Assume C1/C

2
2 ≥ 1.

With the assumption above, we show the variance of the approximation with our proposed probabilities is
smaller than the variance of LADIES by the following lemma.
Lemma C.1. We denote the sampling matrix with our probabilities in Equation (7) as S1, and denote the
sampling matrix with probabilities of LADIES in Equation (2) as S0. If Assumption 1 holds, then we have

E ‖BS1C −BC‖2F ≤ E ‖BS0C −BC‖2F .

Remark. Assumption 1 is related to the uniformity in the distributions of ‖B[i]‖’s and ‖C[i]‖’s. We
tentatively discuss the implication of the assumption in Appendix C.2. We remark the assumption indicates
it is unrealistic that the new probabilities can outperform the ones in LADIES, as distributions of datasets
can vary. Nevertheless, as shown in Section 6 it can be an effective attempt to improve the prediction
accuracy of LADIES by simply adopting the conservative sampling scheme.

To prove Lemma C.1, we first adapt a technical lemma (Zou et al., 2019, Lemma 1), which relates the
sampling matrix to the variance (expectation of squared Frobenius norm) of the approximate matrix multi-
plication.
Lemma C.2 (Adapted from Lemma 1 (Zou et al., 2019)). Given two matrices B ∈ RnB×n and C ∈ Rn×nC ,
for any i ∈ [n] define the positive probabilities pi’s such that

∑n
i=1 pi = 1. We further require the probability

pi = 0 if and only if the corresponding column B[i] or row C[i] is all-zero. The sub-sampling sketching matrix
Π ∈ Rn×d is generated accordingly. Let S := ΠΠT , it holds that

ES

[
‖BSC −BC‖2F

]
= 1
d

 ∑
i:pi>0

1
pi

∥∥∥B[i]
∥∥∥2
·
∥∥C[i]

∥∥2 − ‖BC‖2F

where d is the number of samples.

With the lemma above, the proof of Lemma C.1 is provided as follows.

Proof. Recall the notation in the main paper is simplified as B := QP ,C := HW . As the union of
neighbors of nodes in Q cannot cover all the nodes, some columns in B are all-zero, and we accordingly
define a Q-measurable matrix L as in Lemma C.2. We have

E
[
‖BS1C −BC‖2F

]
=EQ

[
ES1

(
‖BS1C −BC‖2F

∣∣Q)]
=1
d
EQ

 ∑
i:pi>0

1
pi

∥∥∥B[i]
∥∥∥2
·
∥∥C[i]

∥∥2 − ‖BC‖2F

 .
where the second equation holds as we apply Lemma C.2 to the inner expectation in the right-hand side of
the first line. Plugging pi ∝ ‖B[i]‖ (Equation (7) in the main paper) into the preceding probabilities pi’s,
we reach

E
[
‖BS1C −BC‖2F

]
=
EQ

[(∑
i:pi>0

∥∥B[i]
∥∥)(∑

i:pi>0
∥∥B[i]

∥∥∥∥C[i]
∥∥2
)]

d
−

EQ

[
‖BC‖2F

]
d

=1
d
EQ

[(
n∑

i=1

∥∥∥B[i]
∥∥∥)(n∑

i=1

∥∥∥B[i]
∥∥∥∥∥C[i]

∥∥2
)]
− 1
d
EQ

[
‖BC‖2F

]
.

22

Published in Transactions on Machine Learning Research (01/2023)

As computed by Zou et al. (2019), the variance of LADIES is similarly given as

E
[
‖BS0C −BC‖2F

]
= 1
d
EQ

 ∑
i:pi>0

∥∥∥B[i]
∥∥∥2
 ∑

i:pi>0

∥∥C[i]
∥∥2

− 1
d
EQ

[
‖BC‖2F

]
.

Consequently, to prove the lemma it suffices to show that ∑
i:pi>0

∥∥∥B[i]
∥∥∥
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥∥∥C[i]

∥∥2

 ≤
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥2
 ∑

i:pi>0

∥∥C[i]
∥∥2

 , (15)

and the inequality above follows with Assumption 1. Specifically, plugging the inequality ‖C[i]‖2 ≤
C2‖C‖2F /n,∀i ∈ [n] in the left-hand-side above, we have ∑

i:pi>0

∥∥∥B[i]
∥∥∥
 ∑

i:pi>0

∥∥∥B[i]
∥∥∥ ∥∥C[i]

∥∥2

 ≤ (n∑
i=1
‖B[i]‖

)2
C2

n
‖C‖2F = m

C1
‖B‖2F

C2

nm
m‖C‖2F ,

in which the last equation comes from the definition C1 := ‖B‖2
F /m

(
∑n

i=1
‖B[i]‖/m)2 . To close the proof, we utilize the

inequality 1
C2
‖C‖2F /n ≤ ‖C[i]‖2 and bound m‖C‖2F by nC2

∑
i:pi>0

∥∥C[i]
∥∥2. Finally we attain Equation (15)

with the core assumption C1
C2

2
≥ 1. ♦

Remark. In Assumption 1 we indeed implicitly assume ‖B[i]‖’s follow a long-tail distribution that most
norms are around the average while a few columns have large norms. The high non-uniformity makes the
average of squared norms much larger than the square of averaged norms. For ‖C[i]‖’s, considering the
normalization techniques (such as batch or layer normalization) to stabilize the scale of the parameters,
they tend to not vary widely, which implies a small C2. The numerical experiments on the comparison of
approximation error (see Figure 2) and the histograms of the norms in trained models shown in Figure 5
further validate the assumption. Based on the empirical analysis above, we claim the assumption is mild
and tends to hold at least for some datasets.

C.3 Distributions of the Matrix Rows / Columns Norm

Figure 5 demonstrates the distribution of ‖P [i]‖ and ‖(HW)[i]‖ (layer 1, 2, 3) for Reddit, ogbn-arxiv, ogbn-
proteins, and ogbn-mag datasets. The ‖(HW)[i]‖’s are obtained from the experiment in Section A.4. The
outliers larger than the 99.9% quantile or small than the 0.1% quantile are removed.

As shown in the histograms, our analysis regarding Assumption 1 tends to hold generally on these datasets.
For the norms of columns in P (as a replacement for QP for clarity), we observe there are some columns
with large norms far beyond the average. Those columns contribute a lot to the quadratic mean, which
results in a huge C1 in Assumption 1. In contrast, the norms of rows in HW concentrate around their
average, inducing a small C2. Those facts together with Assumption 1 and Lemma C.1 explain why our
proposed sampling probabilities are more proper for some real datasets.

C.4 Proof of Theorem 1

Proof. We first show Eβ(k)
i = 1,∀i ∈ [n], k ∈ [s]. As β(k)

i is constructed by Algorithm 1 to attain the
unbiased estimator, take Xi = 1,Xj = 0,∀j 6= i, and we have Eβ(k)

i = E
∑n

j=1 β
(k)
j Xj =

∑n
j=1Xj = 1,∀i ∈

[n], k ∈ [s].

With Eβ(k+1)
i at hand, we still need to compute E (β(k+1)

i)2 (and Eβ(k+1)
i β

(k+1)
j) to obtain the (co)variance.

To start the analysis, we recursively write β(k+1)
i as

β
(k+1)
i = 1{i∈Sk}[β

(k)
i (1− αk+1) + αk+1] + 1{i 6∈Sk}1{i∈Sk+1}

1−
∑

j∈Sk
pj

pi
αk+1 := πk+1

i (β(k)
i) + γ

(k+1)
i .

23

Published in Transactions on Machine Learning Research (01/2023)

Figure 5: Distributions of ‖P [i]‖’s and ‖(HW)[i]‖’s for Reddit, ogbn-arxiv, ogbn-protein and ogbn-mag.

24

Published in Transactions on Machine Learning Research (01/2023)

For E (β(k+1)
i)2, we notice the cross term 2πk+1

i (β(k)
i)γ(k+1)

i is always zero as 1{i∈Sk}1{i6∈Sk} := 0; as for the
first terms, utilizing the fact 1{i∈Sk}β

(k)
i = β

(k)
i we have

E
(
πk+1

i (β(k)
i)
)2

= E (β(k)
i)2(1− αk+1)2 + 2αk+1(1− αk+1) + qk

i α
2
k+1,

to obtain the last term,

E (γ(k+1)
i)2 = EE

(
1{i 6∈Sk}1{i∈Sk+1}

1−
∑

j∈Sk
pj

pi
αk+1|i 6∈ Sk

)
= E

[
1{i 6∈Sk} E

(
1{i∈Sk+1}

1−
∑

j∈Sk
pj

pi
αk+1|i 6∈ Sk

)]
= qk

i

∑
Sk 63i

pSk

qk
i

1−
∑

j∈Sk
pj

pi
α2

k+1 = rk
i

pi
α2

k+1.

For Eβ(k+1)
i β

(k+1)
j , we can similarly drop the last term E γ(k+1)

i γ
(k+1)
j as 1{i∈Sk}1{i 6∈Sk} := 0; as for the first

term Eπk+1
i (β(k)

i)πk+1
j (β(k)

j), we have

Eπk+1
i (β(k)

i)πk+1
j (β(k)

j) = Eβ(k)
i β

(k)
j (1− αk+1)2 + E

(
1{i∈Sk}β

(k)
j + 1{j∈Sk}β

(k)
i

)
αk+1(1− αk+1) + pk

i,jα
2
k+1,

where pk
i,j is the probability that both index i, j are in the first k samples; as for the next term

Eπk+1
i (β(k)

i)γ(k+1)
j , we first compute

Eβ(k)
i γ

(k+1)
j = EE

(
β

(k)
i 1{j 6∈Sk}1{j∈Sk+1}

1−
∑

j′∈Sk
pj′

pj
αk+1|Fk

)
= E

[
β

(k)
i 1{j 6∈Sk}

1−
∑

j′∈Sk
pj′

pj
αk+1 E

(
1{j∈Sk+1}|Fk

)]
= E

[
β

(k)
i 1{j 6∈Sk}

1−
∑

j′∈Sk
pj′

pj
αk+1

pj

1−
∑

j′∈Sk
pj′

]
= E

(
1{j 6∈Sk}β

(k)
i

)
αk+1,

and similarly we have

E1{i∈Sk}γ
(k+1)
j = EE

(
1{i∈Sk}1{j 6∈Sk}1{j∈Sk+1}

1−
∑

j′∈Sk
pj′

pj
αk+1|Fk

)
= E

[
1{i∈Sk}1{j 6∈Sk}

1−
∑

j′∈Sk
pj′

pj
αk+1 E

(
1{j∈Sk+1}|Fk

)]
= E

[
1{i∈Sk}1{j 6∈Sk}

1−
∑

j′∈Sk
pj′

pj
αk+1

pj

1−
∑

j′∈Sk
pj′

]
= E

(
1{j 6∈Sk}1{i∈Sk}

)
αk+1;

accordingly we can obtain

Eπk+1
i (β(k)

i)γ(k+1)
j = E

(
1{j 6∈Sk}β

(k)
i

)
αk+1(1− αk+1) + E

(
1{j 6∈Sk}1{i∈Sk}

)
α2

k+1,

and applying the same derivation as above we have

Eπk+1
j (β(k)

j)γ(k+1)
i = E

(
1{i6∈Sk}β

(k)
j

)
αk+1(1− αk+1) + E

(
1{i 6∈Sk}1{j∈Sk}

)
α2

k+1.

Combining all the pieces together, we obtain

Eβ(k+1)
i β

(k+1)
j = Eβ(k)

i β
(k)
j (1− αk+1)2 + 2αk+1(1− αk+1) +

(
pk

i,j + E
(
1{j 6∈Sk}1{i∈Sk} + 1{i 6∈Sk}1{j∈Sk}

))
α2

k+1

= Eβ(k)
i β

(k)
j (1− αk+1)2 + 2αk+1(1− αk+1) +

(
pk

i,j + E
(
1{j 6∈Sk}1{i∈Sk} + 1{i 6∈Sk}1{j∈Sk}

))
α2

k+1.

25

Published in Transactions on Machine Learning Research (01/2023)

With the derivation above, we have

E (β(k+1)
i)2 = E (β(k)

i)2(1− αk+1)2 + 2αk+1(1− αk+1) + (r
(k)
i

pi
+ qk

i)α2
k+1,

Eβ(k+1)
i β

(k+1)
j = Eβ(k)

i β
(k)
j (1− αk+1)2 + 2αk+1(1− αk+1) + qk

i,jα
2
k+1

where qk
i (= 1− q̄(k)

i) is the probability that index i is in the first k samples, and similarly qk
i,j(= 1− q̄(k)

i,j =
qk

i +qk
j −pk

i,j) is the probability that either index i or index j is in the first k samples. Plugging the expression
above into the following identities,

Var(β(k+1)
i) = E (β(k+1)

i)2 − E2 (β(k+1)
i)

Cov(β(k+1)
i , β

(k+1)
j) = Eβ(k+1)

i β
(k+1)
j − Eβ(k+1)

i Eβ(k+1)
j ,

we can then have the expression for the covariance stated in the main paper.

For the scale of the covariance, we prove the upper bound through induction. We can verify the upper
bounds hold for k = 1, and for the (co)variance with αk = 1

k , Var(β
(k+1)
i) and Cov(β(k+1)

i , β
(k+1)
j) now

respectively becomes

Var(β(k+1)
i) = k2

(k + 1)2Var(β
(k)
i) +

(
r

(k)
i

pi
− q̄(k)

i

)
1

(k + 1)2 ,

Cov(β(k+1)
i , β

(k+1)
j) = k2

(k + 1)2Cov(β(k)
i , β

(k)
j)− q̄(k)

i,j

1
(k + 1)2 .

Utilizing the induction conditions that for all i, j, we have

Var(β(k)
i) ≤ 1

k
(1
pi
− 1),

|Cov(β(k)
i , β

(k)
j)| ≤ 1

k
.

Along with the facts that r
(k)
i

pi
− q̄(k)

i ≤ q̄
(k)
i

pi
− q̄(k)

i ≤ 1
pi
− 1 and q̄(k)

i,j ≤ 1, we can finally achieve the inequality
that

Var(β(k+1)
i) ≤ 1

k + 1(1
pi
− 1),

|Cov(β(k+1)
i , β

(k+1)
j)| ≤ 1

k + 1 .

♦

Remark. The choice of αk = 1
k here is mainly for easing the proof, while may not be the optimal choice in

practice; indeed in SRS the αk’s are different than the ones used here.

D Supplementary Regression Results

D.1 Full Batch Training

In this subsection, we present the regression analysis for GCN with full-batch SGD training (without sam-
pling). Figure 6 shows a similar pattern, as supplementary to Figure 1. Here, the scatter plots make use of
all points. The assumption: ‖(HW)[i]‖ ∝ ‖P [i]‖ still does not hold. Note that we do not have the regression
result on the ogbn-product dataset, since the training of a 3-layer GCN fails due to memory limitation.

26

Published in Transactions on Machine Learning Research (01/2023)

Figure 6: Regression of ‖(HW)[i]‖ ∼ β0 + β1‖P [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by full-bacth sampler. The fitted regression line is in orange color.

27

Published in Transactions on Machine Learning Research (01/2023)

D.2 FastGCN/FastGCN+debiasing

In this subsection, we present the regression analysis for FastGCN/FastGCN+debiasing in this subsec-
tion. The regression results are illustrated in Figures 7 and 8; more details can be found in Table 9. The
distribution patterns of the (‖(HW)[i]‖, ‖P [i]‖) pairs in FastGCN/FastGCN+debiasing are similar to the
patterns in Figures 6 and 9; we can analogously draw the conclusion that for models trained by Fast-
GCN/FastGCN+debiasing, the assumption ‖(HW)[i]‖ ∝ ‖P [i]‖ tends to not hold.

Figure 7: Regression of ‖(HW)[i]‖ ∼ β0 + β1‖P [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by FastGCN sampler. The fitted regression line is in orange color.

Table 9: Regression coefficients for ‖(HW)[i]‖ ∼ β0 + β1‖P [i]‖. The data come from 3-layer GCNs trained
with FastGCN/FastGCN+d(ebiasing) respectively. No regression has high R2 and the R2 for positive β1’s
are highlighted in boldface.

Method Dataset Layer 1 Layer 2 Layer 3
β0 β1 R2 β0 β1 R2 β0 β1 R2

FastGCN

ogbn-arxiv 2.651 -0.165 0.005 1.627 0.981 0.017 1.640 0.123 <0.001
reddit 11.773 8.453 0.009 3.639 5.155 0.006 2.524 1.587 0.001
ogbn-proteins 2.853 0.457 0.022 4.692 -5.883 0.069 12.938 -22.552 0.098
ogbn-mag 2.278 -0.057 0.001 1.208 0.023 <0.001 0.938 -0.108 0.005

FastGCN+d

ogbn-arxiv 2.847 -0.164 0.004 1.984 1.277 0.021 2.385 0.111 <0.001
reddit 13.747 9.712 0.008 4.654 6.322 0.007 3.264 1.563 0.001
ogbn-proteins 3.090 0.397 0.017 5.372 -7.357 0.072 11.395 -20.179 0.102
ogbn-mag 2.310 -0.067 0.002 1.194 -0.009 <0.001 0.999 -0.147 0.006

28

Published in Transactions on Machine Learning Research (01/2023)

Figure 8: Regression of ‖(HW)[i]‖ ∼ β0 + β1‖P [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by FastGCN+debiasing sampler. The fitted regression line is in orange
color.

29

Published in Transactions on Machine Learning Research (01/2023)

D.3 LADIES: setting 1

This subsection presents regression plots for ‖(HW)[i]‖ ∼ ‖P [i]‖ as supplementary to Figure 1. Note that
a different regression setting ‖(HW)[i]‖ ∼ ‖QP [i]‖ is collected in Appendix D.4.

Figure 9: Regression of ‖(HW)[i]‖ ∼ β0 + β1‖P [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by LADIES. The fitted regression line is in orange color.

D.4 LADIES: setting 2

As remarked in the footnote in Section 4.1, we view the assumption ‖(HW)[i]‖ ∝ ‖QP [i]‖ in LADIES as a
randomized version of the one ‖(HW)[i]‖ ∝ ‖P [i]‖ and hence focus on the latter regression setting. However,
it may still be interesting to present regression analysis of ‖(HW)[i]‖ ∼ ‖QP [i]‖ in this subsection to study
the corresponding assumption ‖(HW)[i]‖ ∝ ‖QP [i]‖ in LADIES. Compared to the original assumption in
FastGCN, setting ‖QP [i]‖’s as the predictor causes some different patterns in the regression.

• There are more empty columns in QP than in P . For a single selection matrix, we have fewer
(x, y) pairs. To compensate, we pick 500 Q’s and record non-zero ‖QP [i]‖’s and corresponding
‖(HW)[i]‖’s as the regression input.

30

Published in Transactions on Machine Learning Research (01/2023)

• There is also a higher portion of high-leverage points after considering the selection matrix Q—the
points with large ‖QP [i]‖’s are fewer while they have higher influence on the coefficients (which is
not favored in regression analysis since they increase the standard error of the estimated coefficients).

The regression results are illustrated in Figures 10 and 11; more details can be found in Table 10. We note
the regression results still fail to support the proportionality assumption in LADIES: most β1’s are negative,
and even for the positive β1’s the R2 (the coefficient of determination, equal to the square of the correlation
coefficient in univariate linear regression) is small, which matches the observation in the figures that there
is no clear proportionality in the data.

Figure 10: Regression of ‖(HW)[i]‖ ∼ β0 +β1‖QP [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by LADIES sampler. The fitted regression line is in orange color.

31

Published in Transactions on Machine Learning Research (01/2023)

Figure 11: Regression of ‖(HW)[i]‖ ∼ β0 +β1‖QP [i]‖ on Reddit, ogbn-arxiv, ogbn-proteins, and ogbn-mag
datasets. 3-layer GCN is trained by LADIES+debiasing sampler. The fitted regression line is in orange
color.

Table 10: Regression coefficients for ‖(HW)[i]‖ ∼ β0 + β1‖QP [i]‖. The data come from 3-layer GCNs
trained with LADIES/LADIES+d(ebiasing) respectively. No regression has high R2 and the R2 for positive
β1 are highlighted in boldface.

Method Dataset Layer 1 Layer 2 Layer 3
β0 β1 R2 β0 β1 R2 β0 β1 R2

LADIES

ogbn-arxiv 3.819 -0.424 0.007 14.827 -20.853 0.048 32.079 -26.803 0.028
reddit 12.218 24.459 0.006 6.409 7.711 0.001 5.897 -8.366 0.002
ogbn-proteins 4.425 0.642 0.006 33.042 -139.554 0.033 113.204 -405.534 0.060
ogbn-mag 4.138 -0.797 0.011 20.193 -17.247 0.039 48.205 -19.879 0.011

LADIES+d

ogbn-arxiv 3.593 -0.538 0.011 6.503 4.125 0.025 19.388 1.374 0.001
reddit 22.122 13.941 0.008 21.783 13.231 0.004 37.739 1.320 <0.001
ogbn-proteins 4.025 0.296 0.012 24.889 -36.718 0.080 109.424 -197.488 0.152
ogbn-mag 4.184 -0.653 0.009 12.524 -0.920 0.001 31.837 0.118 <0.001

32

	Introduction
	Background and Related Work

	Notations and Preliminaries
	Graph Convolutional Networks
	Layer-wise Sampling

	Experimental Setup
	Reconsider Importance Sampling Probabilities in Layer-wise Sampling
	Current Strategies and Their Limitation
	Proposed Sampling Probabilities
	Matrix Approximation Error Evaluation

	Debiased Sampling
	Weighted Random Sampling (WRS)
	Analysis of Bias
	Debiasing Algorithms
	Effects of Debiasing
	Sampling Time
	Analysis of Variance

	Experiments
	Model Convergence Trajectory
	Prediction Accuracy
	Training Time

	Conclusion and Discussion
	Supplementary Experimental Setup and Results
	Experimental Setup Details
	Model Convergence
	Sampling Time and Training Time
	Regression Experimental Setup
	Supplementary Accuracy Results for FastGCN with flat sampling probabilities and debiasing

	Time Complexity Analysis
	Theoretical Analysis of Sampling Probabilities
	Results in approximate matrix multiplication
	Comparison of Sampling Variance Between Our Sampling Probabilities and LADIES
	Distributions of the Matrix Rows / Columns Norm
	Proof of Theorem 1

	Supplementary Regression Results
	Full Batch Training
	FastGCN/FastGCN+debiasing
	LADIES: setting 1
	LADIES: setting 2

