
Fine-Tuning Out-of-Vocabulary Item
Recommendation with User Sequence Imagination

Ruochen Liu1, Hao Chen2, Yuanchen Bei3, Qijie Shen4,
Fangwei Zhong5, Senzhang Wang1∗, Jianxin Wang1
1Central South University, 2City University of Macau,

3Zhejiang University, 4Alibaba Group, 5Beijing Normal University
{ruochen, szwang∗, jxwang}@csu.edu.cn, sundaychenhao@gmail.com

yuanchenbei@zju.edu.cn, qjshenxdu@gmail.com, fangweizhong@bnu.edu.cn

Abstract

Recommending out-of-vocabulary (OOV) items is a challenging problem since the
in-vocabulary (IV) items have well-trained behavioral embeddings but the OOV
items only have content features. Current OOV recommendation models often
generate ‘makeshift’ embeddings for OOV items from content features and then
jointly recommend with the ‘makeshift’ OOV item embeddings and the behavioral
IV item embeddings. However, merely using the ‘makeshift’ embedding will result
in suboptimal recommendation performance due to the substantial gap between the
content feature and the behavioral embeddings. To bridge the gap, we propose a
novel User Sequence IMagination (USIM) fine-tuning framework, which first
imagines the user sequences and then refines the generated OOV embeddings
with the user behavioral embeddings. Specifically, we frame the user sequence
imagination as a reinforcement learning problem and develop a recommendation-
focused reward function to evaluate to what extent a user can help recommend
the OOV items. Besides, we propose an embedding-driven transition function to
model the embedding transition after imaging a user. USIM has been deployed
on a prominent e-commerce platform for months, offering recommendations for
millions of OOV items and billions of users. Extensive experiments demonstrate
that USIM outperforms traditional generative models in OOV item recommendation
performance across traditional collaborative filtering and GNN-based collaborative
filtering models.

1 Introduction

Recommendation systems, such as collaborative filtering models, learn behavioral embeddings from
historical interactions to represent the behavioral characteristics of billions of users and items [1–4].
For instance, the embeddings of interacted user-item pairs have higher inner products, whereas those
of un-interacted pairs have lower inner products. However, besides the items with user interactions,
thousands of out-of-vocabulary (OOV) items—such as short videos, photos, and posts—are generated
or uploaded every second. In the age of AGI, the generation speed of AI-made OOV content,
including text, images, and videos, will far exceed the speed of human consumption. To avoid
being overwhelmed by the OOV content, it is essential to replicate how humans handle these items,
recommending them without disrupting in-vocabulary (IV) items.

Traditional OOV recommendation models usually generate ‘makeshift’ embeddings from the content
features and then use them to recommend OOV items. The research can be classified into two
categories. (a) Generative models aim to generate realistic embeddings. GAR [5] uses a generative

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) ‘Makeshift’ Embedding

…𝑢1 𝑢2

Well-trained
Embedding

Generated
Embedding

Generator

Content 
Feature

… Interacted 
Users

(b) User Sequence Imagination

Imagined Optimized
Embedding

…

𝑢1 𝑢𝑛…

Optimization

Imagined Users

Content 
Feature

Initialized
Embedding

Generator

Figure 1: Comparison between (a) traditional ‘makeshift’ embedding OOV recommendation frame-
work, and (b) user sequence imagination OOV recommendation framework.

adversarial structure to ensure the embedding distribution of generated OOV embeddings is similar
to IV embeddings. ALDI [6] distills knowledge from IV items to OOV items. (b) Dropout models
increase the robustness of recommender systems. Dropout [7] randomly substitutes IV embeddings
with “makeshift” ones to enhance system robustness. Heater [8] and CLCRec [9] further utilize a
mix of experts and contrastive learning techniques to improve OOV recommendation performance.

As shown on the left of Figure 1, current recommender systems typically learn the embeddings for
any given items by initializing/generating the embedding and then optimizing them through user-
sequence backpropagation. However, prevalent OOV recommendation models primarily concentrate
on generating improved or robust embeddings, overlooking the potential for further optimization
from imagining user sequences. This oversight limits these models due to the following issues.
1. Content-Behavior Gap. ‘Makeshift’ embeddings are generated from content features, while
behavioral embeddings are trained using backpropagation. The substantial difference between content
features and behavioral embeddings may lead to discrepancies between IV and OOV items, impacting
IV, OOV, or both. 2. Potential Suboptimality. Focusing only on embedding generation overlooks
potential improvements from backpropagation, which could finely tune the embeddings to adapt to
user preferences and current recommender systems, possibly leading to suboptimal recommendation
performance and a reduction in revenue.

While imagining the sequential optimization process for OOV item embeddings shows promise,
its implementation presents three challenges. 1. Absence of Historical Interactions. The lack of
historical user interactions for OOV item embeddings hinders the definition of a clear backpropagation
and optimization process. 2. Ambiguous Imagination Objectives. Formulating objectives, stopping
criteria, and user selection for imagining OOV item interactions remains an open challenge. 3.
Navigating the Vast User Space. Efficiently identifying suitable user sequences to imagine for OOV
items within the massive user space of recommender systems.

To address these challenges, we introduce an User Sequence Imagination (USIM) pipeline that
further optimizes the embedding of OOV items. It first imagines potential users who may interact with
the OOV item and then refines the item embeddings through backpropagation. Specifically, we pro-
pose a RL-based USIM solution, which formulates the sequential optimization as a Markov Decision
Process and introduces recommender-oriented PPO (RecPPO) to maximize the final recommendation
performance of OOV items. In summary, our contributions are as follows:

• We introduce USIM, a novel approach that fundamentally addresses the Out-of-Vocabulary (OOV)
problem by imagining user sequences and performing user-sequence backpropagation.

• We formally define the Reinforcement Learning (RL) formulation of USIM, including the formula-
tion of the Markov Decision Process (MDP) for user sequence imagination, and provide the state
transition function framework for user-sequence backpropagation.

• We implement USIM on a major e-commerce platform—Alibaba, successfully optimizing millions
of OOV items and recommending them to billions of users. The source code is publicly available
at https://github.com/Ruochen1003/USIM.

• We validate the effectiveness of our approach on two benchmark datasets using both traditional
collaborative filtering and graph-based collaborative filtering backbones. Extensive experiments
demonstrate that USIM outperforms existing state-of-the-art OOV recommendation models in
terms of OOV recommendation performance and overall recommendation quality.

2

https://github.com/Ruochen1003/USIM


2 Preliminaries

Notations. Let U and I denote the sets of users and items, respectively. We partition I into
in-vocabulary (IV) items Iiv (items with interaction history) and out-of-vocabulary (OOV) items
Ioov (items without interaction history). We denote the cardinality of these sets as |U|, |Iiv|, and
|Ioov|, respectively. For clarity in the following discussion, we also use Ui to represent the set of
users who have interacted with item i.

The embedding matrices for users, IV items, and OOV items are denoted as Eu ∈ R|U|×d, Eiv ∈
R|Iiv|×d, and Eoov ∈ R|Ioov|×d, respectively, where d represents the embedding dimension. For an
individual user u and item i, their corresponding embeddings are denoted as eu ∈ Rd and ei ∈ Rd.
Since OOV items lack behavioral embeddings initially, we leverage content features, denoting the
content feature vector of item i as ci.

Backpropagated Embedding of IV Items. The embeddings of IV items are initialized using stan-
dard initialization techniques such as Xavier initialization [10]. These embeddings are subsequently
optimized through backpropagation using historical interaction data [11, 4],

ei = ei −
∑
u∈Ui

∇L(u, i), (1)

where L represents the loss function (e.g., BPR loss).

Makeshift Embedding of OOV Items. Due to the absence of historical interactions for OOV
items, various approaches have been proposed to generate makeshift embeddings that enable joint
recommendation with IV items. These approaches can be broadly categorized into generative
models [6, 5, 12] and dropout models [9, 7], which transform content features ci into embeddings
through a generator function G,

ei = G(ci), (2)

where G is optimized using various objective functions, including similarity-based losses [12],
adversarial losses [5], and knowledge distillation losses [6].

MDP Formulation of Back Propagation. We formulate the OOV embedding optimization process
as a Markov Decision Process (MDP) to narrow the optimization gap between IV and OOV item
embeddings. This formulation enables simultaneous user imagination and embedding optimization
through backpropagation.

An MDP at time step t is defined by the quintuple (S,A, ρ, R, γ), where:

• S represents the state space, with each state s ∈ S capturing the environment configuration

• A denotes the action space, where each action a ∈ A represents a possible agent decision

• ρ : S ×A → S defines the state transition function, with st+1 = ρ(st, at)

• R : S ×A → R specifies the reward function, where rt = R(st, at)

• γ ∈ [0, 1] represents the discount factor for future rewards

3 Proposed User Sequence Imagination Model

3.1 Framework Overview

To bridge the fundamental gap between IV and OOV item embedding generation caused by disparate
interaction histories, we propose USIM, which fine-tunes OOV item embedding by imagining
appropriate user sequences. Specifically, in each step, USIM simulates a user interaction and
optimizes the item embedding accordingly. We formulate this process within a reinforcement learning
paradigm, as illustrated in Figure 2.

3



𝑠𝑡+1

𝑐𝑖

Random

Action

Agent

State Transition Function

ℎ𝑡

𝑙𝑡

Exploration Set Construction

Positive 

Interaction

Termination

Action

Reward Function

+

1 5 …3

5
𝑎𝑡

𝑟𝑡

7

3

2

…

5

→ 4.7

→ 3.3

→ 2.1

→ 2.7

7

3

2…

5

𝟑. 𝟓 ←

𝟐. 𝟔 ←

𝟐. 𝟓 ←

𝟒 ←

-

7

3

2

…

5

→ 4.7

→ 3.3

→ 2.1

→ 2.7

7

3

2…

5

𝟒. 𝟓 ←

𝟑. 𝟏 ←

𝟏. 𝟗 ←

𝟑 ←

-

Rec. Performance Reward

ℎ𝑡+1

Emb. Alignment Reward
ℎ𝑡

𝑒𝑖

𝐷

𝑒𝑖 𝐷′ 𝑒𝑖
ℎ𝑡 ℎ𝑡+1𝑒𝑖

𝑠𝑡
- 1

Countdown

Item

Termination

Generator

Interacted User

5

Optimize with 

Backpropagation
Content

Feature
Initialized

Embedding

Action Set:

Imagined User

Figure 2: The overview framework of USIM. USIM fine-tunes the generated OOV item embeddings
through sequential user interaction imagination, guided by exploration set construction, state transi-
tion, and a tailored reward mechanism.

State Space. At time step t, the state st encapsulates the essential information required for item
embedding optimization, defined as st = [ht, lt]. The state representation ht ∈ Rd, which is refined
through optimization, resides in the same embedding space as ei, and its final representation will
serve as the OOV item embedding. To specifically denote the state of item i at time step t, we define
si,t = [hi,t, li,t]. In contrast, st serves as a more general denotation. The initial state presentation is
obtained by the generator in Eq. (2) as hi,0 = G(ci). Details can refer to Appendix B.

The temporal component lt is used as a countdown mechanism, tracking the remaining optimization
steps to encourage efficient convergence [13]. Given a maximum action limit N , at time step t, the
countdown value is computed as lt = N − t.

Action Space. Given state st, the agent selects an action at from the action spaceA = U ∪ {aend},
where aend denotes the termination action. This selection process entails either imagining a user or
terminating the optimization process. The action embedding ea corresponds to the user embedding
from Eu when a ∈ U , and defaults to 0 for the termination action.

Policy Network. The agent’s decision-making process is governed by policy π(st), which maps
the current state st to a probability distribution over possible actions. To effectively utilize existing
embeddings while accommodating the special termination action, the policy distribution is given as,

π(at|st) =

{
(1− σ(W2s

⊤
t + c)) · exp(eatW1s

⊤
t )∑

a∈U exp(eaW1s⊤
t )

, if at ∈ U ;
σ(W2s

⊤
t + c), if at = aend,

(3)

where W1 ∈ Rd×(d+1), W2 ∈ Rd+1, and c are parameters, and σ represents the sigmoid function.

Reward and State Transition. The agent receives an immediate reward rt = R(st, at) after each
action, guiding the optimization trajectory. To align with the imagination process, we design an
efficient state transition function st+1 = ρ(st, at) that facilitates the progressive refinement from
content-based to interaction-based embeddings. The experience tuples (st, at, rt, st+1) are collected
in a replay buffer for subsequent training iterations.

3.2 State Transition Function

State transition involves modifying ht, which will ultimately be used as the OOV item embedding
and each step of the state transition corresponds to optimizing ht using the imagined user(last action
at). Therefore, to design a state transition function that aligns with this optimization process, we must

4



first determine the objective of this optimization. Considering that most current recommendation
algorithms calculate relevance scores between users and items for recommendations [11, 14, 4], we
adopt the following objective as our optimization goal,

min
ei

−Eu∈Ui
ŷu,i, (4)

where ŷu,i is predicted score between ei and eu.

Based on the above idea, we can view the user imagination process as the solution to the optimization
objective (Eq. (4)). Specifically, we assume that the users imagined by the agent are the users who
have interacted with this item, and by using backpropagation, we can optimize the content-based
initialized embeddings. Thus, the transition function ρh of ht can be written as follows,

ht+1 = ρh(ht, at) =

{
ht + λ∇ŷat,i if at ∈ U ;
ht if at = aend,

(5)

where λ is a hyperparameter and can be understood as the learning rate. If ŷat,i is computed using
dot product, the final transition function of ht can be written as follows,

ht+1 = ρh(ht, at) =

{
ht + λ · eat

if at ∈ U ;
ht if at = aend.

(6)

And lt can be updated as lt+1 = lt − 1.

3.3 Reward Function

The objective of the USIM is to optimize the initialized embeddings by imagining user sequences. To
facilitate this process, we design a reward function to guide the reinforcement learning approach. Our
reward function consists of three components.

Embedding Alignment Reward. We believe that the item embeddings generated by the IV model
represent the best solution for our optimization process. Consequently, our objective is to closely
align the final state representation with actual item embedding (i.e., the corresponding embedding
from the IV model). To achieve this, we calculate the reward based on the concept of similarity,

Remb(hi,t, at) = D(hi,t, ei)−D(hi,t+1, ei),hi,t+1 = ρh(hi,t, at), (7)

where D(·, ·) denotes the Euclidean distance between embeddings. This reward represents the change
in similarity between the state representation and the actual item embedding, before and after the
state transition.

Recommendaion Performance Reward. Although the embedding alignment reward encourages the
state representation ht to be close to the actual item embedding, it does not differentiate between
states when multiple representations are equally distant from the actual embedding. Additionally,
it does not fully utilize the insights from existing user interactions. Therefore, we design a reward
function based on recommendation performance as follows,

Rrec(hi,t, at) = f(hi,t, ei)− f(hi,t+1, ei),hi,t+1 = ρh(hi,t, at),

f(hi,t, ei) =
1

|Ui|
∑

uj∈Ui

|hi,t · euj − ei · euj |, (8)

where f(hi,t, ei) represents the predictive power of state representation hi,t for users in Ui. The final
performance reward is derived from the change in f before and after the state transition. This change
represents the variation in the embedding’s predictive capability.

Step Regulation. To encourage the agent to achieve the goal in as few steps as possible, we impose a
penalty for each action it takes. Therefore, the final reward function is as follows,

rt = R(si,t, at) = Remb(hi,t, at) +Rrec(hi,t, at)− p, (9)

where p is a hyperparameter that represents the penalty.

5



3.4 Exploration Set Construction

Given the large user base in the recommendation dataset, sampling actions solely by probability
during initial reinforcement learning often results in negative rewards, slowing convergence and
reducing performance. To explore actions more efficiently, we construct an exploration set according
to state st, comprising three components.

Positive Action. In the USIM framework (Section 3.2), the agent assumes that the imagined users
correspond to those who have interacted with the item, so these users are included in the exploration
set. While optimizing hi,t to match ei theoretically requires only the interaction set Ui, achieving
this often demands combining multiple actions a ∈ Ui, making exploration complex. To streamline
this, we select users most likely to bridge hi,t and ei, accelerating the process. The Positive Action
set Upos is constructed as follows,

Upos = Topk1
((ei − hi,t), eu) ∪ Ui, (10)

where Topk1
((ei − hi,t), eu) represents the set of k1 users with the highest cosine similarity to

ei − hi,t, forming a vector that directly points to the actual item embedding.

Random Action. Relying solely on the aforementioned action sets may overly restrict actions,
limiting state space coverage and reducing model generalization. Moreover, sampling actions with
negative rewards can also benefit training [15]. Thus, we augment the action set by randomly selecting
k2 actions from the remaining pool, denoted as Urad.

Termination Action. To enable the agent to learn when to terminate, we also incorporate the
termination action aend into the final action set. This inclusion allows the agent to determine the
appropriate timing for ending the optimization process.

For simplicity, we set k1 = k2 = k. And exploration set Asamp can be represented as follows,

Asamp = Upos ∪ Urad ∪ {aend}. (11)

During the training phase, as the sampling range is narrowed from the full action set A to a specific
action set Asamp, we rewrite the Eq. (3) as follows,

π(at|st) =


(1− σ(W2s

⊤
t + c)) · exp{eatW1s

⊤
t }∑

a∈Asamp\{aend} exp{eaW1s⊤
t } , if at ∈ Asamp \ {aend};

σ(W2s
⊤
t + c), if at = aend;

0, if at /∈ Asamp.
(12)

3.5 Training with RecPPO

We incorporate recommendation-specific supervision signals into PPO [16], referring to this enhanced
approach as Recommender-Oriented PPO (RecPPO), to train our USIM. In the scenario of OOV
item recommendation, the optimal action following certain states is clear, allowing the cumulative
expected rewards for these states to be calculated directly. When the state representation hi,t of
a specific item is equal to its item embedding ei, according to our designed reward function, the
expected value should be 0 because any subsequent actions, except for termination will lead to
negative rewards.

So we use these supervision signals to assist in training the value network Vω, the specific loss
function of the value network is defined as follows,

L(ω) = 1

|B|
∑

(st,rt,st+1)∈B

[
(rt + γVω(st+1)− Vω(st))

2
]
+

1

|I|
∑
i∈I

Vω([ei, random(0, N)])2,

(13)
where B denotes tuples sampled from the buffer pool, and random(0, N) is a random number between
0 and N . The first term of the loss is the Temporal Difference loss used in value network training,
while the second term includes our recommendation-oriented supervision signals. Regardless of
previous actions, when the state representation hi

t matches ei, the agent should terminate. Here,
random(0, N) acts as the timer for each termination state. As for the policy network, we train it using
the same method as PPO. The whole training process can be found in Appendix C.

6



4 Experiments

We conduct comprehensive experiments on two benchmark datasets aiming to address the following
three questions: RQ1: Can USIM achieve superior OOV item recommendation performance com-
pared to state-of-the-art OOV item recommendation models? RQ2: How key components of USIM
affect its performance? RQ3: Is the proposed USIM more effective than representative RL methods?
RQ4: What is the tendency of performance during USIM’s imagination process? RQ5: How does
USIM perform in real-world industrial recommendations? RQ6: How does USIM achieve efficiency
compared to other baselines?

4.1 Experimental Setup

Table 1: Overall, OOV, and IV item recommendation performance comparison over two representative
recommender backbones (MF and GNN). The best and second-best results in each column are
highlighted in bold font and underlined, ⋆⋆ indicates the statistical significance p < 0.01 compared
to the best-performed baseline, ⋆ indicates the statistical significance p < 0.05 compared to the
best-performed baseline.

Method
Overall Recommendation OOV Recommendation IV Recommendation

CiteULike MovieLens CiteULike MovieLens CiteULike MovieLens
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

M
F

DropoutNet 0.0973 0.0768 0.1148 0.1898 0.2442 0.1485 0.1352 0.1417 0.1560 0.0941 0.2577 0.2442
MTPR 0.1090 0.0822 0.1210 0.1936 0.2489 0.1427 0.1364 0.1408 0.1808 0.1021 0.2463 0.2233
Heater 0.1149 0.0881 0.1163 0.1901 0.2578 0.1532 0.0601 0.0734 0.1674 0.0999 0.2604 0.2640

CLCRec 0.1242 0.1047 0.1101 0.1556 0.2187 0.1331 0.0774 0.0751 0.2197 0.1411 0.2413 0.2089

DeepMusic 0.1451 0.1287 0.1359 0.2153 0.2194 0.1281 0.0978 0.1003 0.2838 0.1933 0.3023 0.2811
MetaEmb 0.1326 0.1210 0.1359 0.2153 0.2203 0.1307 0.1417 0.1445 0.2838 0.1933 0.3023 0.2811

GAR 0.1440 0.1132 0.0462 0.0812 0.2453 0.1479 0.0348 0.0510 0.2272 0.1438 0.1003 0.1003
ALDI 0.1584 0.1212 0.1360 0.2154 0.2622 0.1542 0.1258 0.1262 0.2838 0.1933 0.3023 0.2811
USIM 0.1926⋆⋆ 0.1530⋆⋆ 0.1369⋆ 0.2164⋆ 0.2753⋆⋆ 0.1647⋆⋆ 0.1401 0.1466⋆⋆ 0.2838 0.1933 0.3023 0.2811

%Improv. 19.00% 10.96% 0.66% 0.46% 5.00% 6.81% - 1.45% - - - -

G
N

N

DropoutNet 0.0914 0.0718 0.1205 0.1962 0.2337 0.136 0.1552 0.1506 0.1596 0.0949 0.2713 0.2530
MTPR 0.1066 0.0783 0.1217 0.1949 0.2309 0.1355 0.1412 0.1373 0.1749 0.0963 0.2708 0.2520
Heater 0.1116 0.0869 0.1236 0.2053 0.2467 0.1439 0.0366 0.0319 0.1703 0.1007 0.2746 0.2647

CLCRec 0.1303 0.1150 0.1127 0.1656 0.2315 0.1293 0.0535 0.0627 0.2260 0.1537 0.2515 0.2226

DeepMusic 0.1244 0.1058 0.1428 0.2353 0.1899 0.1131 0.1539 0.148 0.2685 0.1723 0.3183 0.3048
MetaEmb 0.1249 0.1088 0.1428 0.2353 0.2150 0.1249 0.1560 0.1567 0.2685 0.1723 0.3183 0.3048

GAR 0.1098 0.0863 0.0179 0.0311 0.2053 0.1024 0.0354 0.0451 0.2364 0.1485 0.0288 0.0268
ALDI 0.1371 0.1013 0.1429 0.2354 0.2466 0.1399 0.1358 0.144 0.2685 0.1723 0.3183 0.3048
USIM 0.1629⋆⋆ 0.1199⋆⋆ 0.1448⋆⋆ 0.2377⋆⋆ 0.2493⋆⋆ 0.1452⋆⋆ 0.1564 0.1638⋆⋆ 0.2685 0.1723 0.3183 0.3048

%Improv. 5.90% 4.26% 1.32% 0.98% 0.93% 1.65% 0.26% 4.53% - - - -

Datesets. We evaluate the performance of USIM on OOV items using the widely used datasets:
CiteULike [8] and MovieLens [17]. Specifically, CiteULike contains 5,551 users, 16,980 articles
(items), and 204,986 interactions. MovieLens comprises 6,040 users, 3,883 movies (items), and
1,000,210 interactions. Details about these datasets are shown in Appendix D.1.

Baselines.To assess the effectiveness and universality of USIM, we conduct a comparative analysis
with 8 leading-edge models in OOV item recommendations across two distinct datasets. These
models include two main groups. (i) Dropout-based methods: DropoutNet [7], MTPR [18], Heater
[8], and CLCRec [9]. (ii) Generative-based methods: DeepMusic [12], MetaEmb [19], GAR [5], and
ALDI [6]. Details about these models are shown in Appendix D.2. To further verify the generalization
ability, we adopted both the widely used collaborative filtering model MF [20] and GNN-based model
NGCF [3] as the recommender, respectively.

Evaluation Metrics. Following the evaluation of existing OOV recommendation [6, 9], we conduct
three different tasks in our experiments: (1) Overall Recommendation, (2) OOV Recommendation,
and (3) IV Recommendation. We employ the full-ranking evaluation approach to assess the per-
formance of overall, IV, and OOV recommendations. Following previous works [4, 3], we utilize
Recall@K and Normalized Discounted Cumulative Gain (NDCG@K) as metrics.

Implementation Details. We implement the baselines using their officially provided version. See
Appendix E for the detailed implementation. The best hyperparameters are found for each dataset.
For fairness, we use the same options and follow the designs in their articles for all baselines.

7



Table 2: Ablation study results between USIM with its four variants on CiteULike.

Variant
MF GNN

Overall OOV Overall OOV
Recall NDCG Recall NDCG Recall NDCG Recall NDCG

w/o ct 0.1742 0.1439 0.2336 0.1411 0.1590 0.1205 0.2363 0.1198
w/o ra 0.1754 0.1433 0.2341 0.1412 0.1368 0.1156 0.2411 0.1336
w/o es 0.1436 0.1279 0.2232 0.1316 0.1221 0.1000 0.1971 0.1103
w/o pr 0.1866 0.1510 0.2711 0.1596 0.1417 0.1175 0.2414 0.1344

USIM 0.1926 0.1530 0.2753 0.1647 0.1632 0.1245 0.2534 0.1478

4.2 Main Results (RQ1)

The main comparison results of overall, IV, and OOV item recommendation results can be found in
Table 1. From the results, we can have the following observations.

USIM can generally achieve significant improvements over state-of-the-art methods on both
overall and OOV item recommendations while keeping the IV item recommendation. From the
tables, we observe that the USIM achieves the highest average Recall and NDCG performance across
both MF and GNN recommenders. These comparison results verify the superiority of the imagined
embeddings over traditional one-step generated embeddings.

Dropout-based baselines have the performance drop in the IV item recommendation. We find
that the USIM and the generative-based models can keep the IV item recommendation. However,
dropout-based models will lead to a performance drop on IV items. This suggests that there is a
difference between OOV items and IV items. Pre-training representations of IV items in advance to
generate representations for OOV items may be better for retaining information for IV items.

4.3 Ablation Study (RQ2)

To validate the effectiveness of the individual components in our model, we compared the full
model against four variants: (i) w/o ct removes the cosine similarity-based top-k user selection
when constructing the positive action set. (ii) w/o ra removes the randomly sampled actions in the
exploration set. (iii) w/o es does not construct an exploration set and directly explores the entire
action set. (iv) w/o pr removes the performance reward, only using the similarity reward in the RL
processing. From the results in Table 2, we make the following observations.

Effectiveness of components in the exploration set construction. The w/o ct result indicates
that the cosine similarity-based selection of the top-k users can simplify the exploration process by
quickly identifying users related to the item embedding. Then, the performance of w/o ra reveals
the importance of including negative samples to provide a more comprehensive exploration signal,
preventing the agent from overestimating action values by only considering positive feedback. Further,
the poor performance of the w/o es approach highlights the challenge of effectively exploring an
extremely large action space, emphasizing the need for a well-designed exploration strategy to guide
the agent towards promising actions.

Effectiveness of components in the reward function, Removing the performance reward component
leads to inferior results. This suggests that the reward function should not only consider the distance
between the generated embedding and the target embedding but also explicitly incorporate the
downstream recommendation performance of the generated embedding.

4.4 Comparison with Representative RL Methods (RQ3)

In Figure 3, we compared our proposed model with our initialized MLP and two other traditional
reinforcement learning methods: Wolpertinger Policy [21] (WP) and Hierarchical Reinforcement
Learning [22](HRL). WP utilizes the similarity of action representations and value estimation to solve
the large discrete action space problem in reinforcement learning, while HRL employs a hierarchical
decomposition of action space and sub-task solution to improve exploration efficiency.

Our model significantly outperforms the other two methods in both OOV recommendation and
overall recommendation. Moreover, it can be observed that the other two methods do not show

8



MF GNN
0.120

0.128

0.136

0.144

0.152

ND
CG

MF GNN
0.12

0.13

0.14

0.15

0.16

0.095

0.101

0.107

0.113

0.119

Overall Recommendation

0.10

0.11

0.12

0.13

0.14

OOV Recommendation
MLP WP HRL USIM

Figure 3: Comparing USIM with other RL methods for overall and OOV recommendation perfor-
mance in CiteULike dataset.

0 1 2 3 4 5 6 7 8 9 10 11
steps

0.000

0.045

0.090

0.135

0.180

ND
CG

MF OOV Recommendation

Ours
Top@20
Random

0 1 2 3 4 5 6 7 8 9 10 11
steps

0.00

0.04

0.08

0.12

0.16 GNN OOV Recommendation

Ours
Top@20
Random

0 1 2 3 4 5 6 7 8 9 10 11
steps

0.00

0.04

0.08

0.12

0.16 MF Overall Recommendation

Ours
Top@20
Random

0 1 2 3 4 5 6 7 8 9 10 11
steps

0.0000

0.0325

0.0650

0.0975

0.1300 GNN Overall Recommendation

Ours
Top@20
Random

Figure 4: Performance analysis of different generation methods on the CiteUlike dataset.

apparent improvements compared to their initial states. This supports the effectiveness of our tailored
exploration method in improving performance in OOV recommendations.

4.5 Case Study (RQ4)

To investigate the performance trend of our proposed method during the optimization process, and to
validate the importance of the way of sampling in the embedding optimization process, we compare
USIM with the following two user selection strategies: randomly sampling users at each step, and
randomly selecting from the top 20 users with the highest relevance scores at each step. The results
are shown in Figure 4, and according to the result, we can draw the following conclusions.

(i) Our method outperforms the random selection of top-20 users and the entire user set in both OOV
and overall scenarios, indicating it can effectively identify users beneficial for optimization. However,
performance declines as more users are imagined, likely due to reduced exploration by the agent.

(ii) When randomly selecting users from the top 20, we can observe that the performance in OOV
recommendation increases after the first step. This suggests that sampling from high-scoring users is
more likely to select users who are beneficial to the optimization process. However, the performance
then continuously declines, indicating that this approach is not suitable for all states and has limited
help for the optimization process.

(iii) Randomly selecting a user at each step leads to a drastic and non-recoverable decline in perfor-
mance in both the OOV and overall scenarios after the first step. This suggests that in recommendation
scenarios, it is extremely difficult to sample users from the massive user set who are beneficial to the
optimization, and the majority of users are highly detrimental to the optimization process.

More experimental hyperparameter analysis can be found in Appendix F.

4.6 Online Evaluation (RQ5)

To evaluate the performance of USIM in an industrial setting, we conducted a two-week online
A/B test on a major e-commerce platform with 5% of users in each group. USIM was compared
against three baselines: Random, MetaEmb [19], and ALDI [6]. Details about our test platform and
evaluation metrics are provided in Appendix G. Table 3 presents the results of these online A/B tests.

These remarkable improvements across all metrics underscore the effectiveness of the USIM in
addressing the OOV item recommendation problem in real-world recommender systems. The

9



Table 3: Results of online A/B test in the industrial platform.

A/B Test OOV Item PV OOV Item PCTR OOV Item GMV
vs. Random 8.20% 2.80% 20.30%

vs. MetaEmb 6.55% 1.95% 14.95%
vs. ALDI 4.90% 1.10% 13.60%

consistent and substantial performance gains, particularly in OOV item GMV, highlight the practical
impact of our approach on business outcomes in e-commerce settings.

4.7 Efficiency Analysis (RQ6)

To evaluate the time efficiency of USIM, especially in comparison to SOTA baselines, we recorded
the total training time(Training Time), total convergence epochs(Converge Epochs), Time Per Epoch,
and Inference Time for USIM and each baseline on the CiteULike and MovieLens datasets. The
results are presented in Table 4. Based on these results, we can draw the following conclusions:

Table 4: Results of time efficiency.

Method Training Time Converge Epochs Time Per Epoch Inference Time

C
ite

U
L

ik
e MetaEmb 254s 28 9.07s 0.012s

ALDI 225s 51 4.41s 0.013s
Heater 841s 57 14.75s 0.074s

CLCRec 926s 70 13.22s 0.070s
USIM 484s 36 13.44s 0.031s

M
ov

ie
L

en
s MetaEmb 415s 11 37.72s 0.005s

ALDI 664s 50 13.28s 0.004s
Heater 1474s 20 73.7s 0.072s

CLCRec 3684s 59 62.44s 0.084s
USIM 330s 45 7.33s 0.045s

(i) USIM is Faster than Heater and CLCRec: USIM computes embeddings only for OOV items,
whereas Heater and CLCRec must compute embeddings for both OOV and IV items.

(ii) USIM is Comparable with MetaEmb and ALDI: USIM imagines sequences only for OOV
items, resulting in inference times comparable to MetaEmb and ALDI.

(iii) USIM is Efficient in Training: By fundamentally addressing OOV recommendation, USIM
converges in fewer epochs, making training more efficient.

More experiments about online recommendation efficiency can be found in Appendix H.

5 Conclusion

Recommending out-of-vocabulary (OOV) items is challenging due to the lack of well-trained be-
havioral embeddings. Current models use "makeshift" embeddings from content features, leading
to suboptimal performance. We introduced the User Sequence Imagination (USIM) framework to
refine OOV embeddings by imagining user sequences and incorporating behavioral embeddings. By
framing this as a reinforcement learning problem and creating a recommendation-focused reward
function, USIM effectively enhances OOV recommendations. Extensive experiments demonstrate its
superior performance and the ablation study further illustrates the effectiveness of USIM.

Acknowledgment

This research was funded by the National Science Foundation of China (No.62172443) and Hunan
Provincial Natural Science Foundation of China (No.2022JJ30053). This work was carried out in part
using computing resources at the High-Performance Computing Center of Central South University.

10



References
[1] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 974–983, 2018.

[2] Hao Chen, Yuanchen Bei, Qijie Shen, Yue Xu, Sheng Zhou, Wenbing Huang, Feiran Huang,
Senzhang Wang, and Xiao Huang. Macro graph neural networks for online billion-scale
recommender systems. In Proceedings of the ACM on Web Conference 2024, pages 3598–3608,
2024.

[3] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collabo-
rative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, page 165–174, 2019.

[4] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 639–648, 2020.

[5] Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng He, and Zhoujun
Li. Generative adversarial framework for cold-start item recommendation. In Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 2565–2571, 2022.

[6] Feiran Huang, Zefan Wang, Xiao Huang, Yufeng Qian, Zhetao Li, and Hao Chen. Aligning
distillation for cold-start item recommendation. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, page 1147–1157,
2023.

[7] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. Dropoutnet: addressing cold start
in recommender systems. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, page 4964–4973, 2017.

[8] Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. Recommendation for
new users and new items via randomized training and mixture-of-experts transformation. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, page 1121–1130, 2020.

[9] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng Chua. Con-
trastive learning for cold-start recommendation. In Proceedings of the 29th ACM International
Conference on Multimedia, page 5382–5390, 2021.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[11] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, page 452–461, 2009.

[12] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music
recommendation. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, page 2643–2651, 2013.

[13] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement
learning. In Proceedings of the 35th International Conference on Machine Learning, pages
4045–4054, 2018.

[14] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on information and knowledge management,
pages 1441–1450, 2019.

11



[15] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin. Recom-
mendations with negative feedback via pairwise deep reinforcement learning. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
page 1040–1048, 2018.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[17] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[18] Xiaoyu Du, Xiang Wang, Xiangnan He, Zechao Li, Jinhui Tang, and Tat-Seng Chua. How to
learn item representation for cold-start multimedia recommendation? In Proceedings of the
28th ACM International Conference on Multimedia, page 3469–3477, 2020.

[19] Yongchun Zhu, Ruobing Xie, Fuzhen Zhuang, Kaikai Ge, Ying Sun, Xu Zhang, Leyu Lin, and
Juan Cao. Learning to warm up cold item embeddings for cold-start recommendation with meta
scaling and shifting networks. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1167–1176, 2021.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[21] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[22] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings
of the AAAI conference on artificial intelligence, volume 31, 2017.

[23] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE international conference on data mining, pages 263–272, 2008.

[24] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[25] Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang, Peng He,
and Zhoujun Li. Label-aware graph convolutional networks. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, page 1977–1980, 2020.

[26] Hao Chen, Zhong Huang, Yue Xu, Zengde Deng, Feiran Huang, Peng He, and Zhoujun Li.
Neighbor enhanced graph convolutional networks for node classification and recommendation.
Knowledge-Based Systems, 246:108594, 2022.

[27] Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao Huang.
Knowledge-to-sql: Enhancing sql generation with data expert llm. arXiv preprint
arXiv:2402.11517, 2024.

[28] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018
IEEE international conference on data mining (ICDM), pages 197–206, 2018.

[29] Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In Proceedings of the eleventh ACM conference on
recommender systems, pages 306–310, 2017.

[30] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang, and Xiao
Huang. Next-generation database interfaces: A survey of llm-based text-to-sql. arXiv preprint
arXiv:2406.08426, 2024.

[31] Huachi Zhou, Hao Chen, Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang. Adaptive
popularity debiasing aggregator for graph collaborative filtering. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 7–17, 2023.

12



[32] Peiyan Zhang, Yuchen Yan, Xi Zhang, Liying Kang, Chaozhuo Li, Feiran Huang, Senzhang
Wang, and Sunghun Kim. Gpt4rec: Graph prompt tuning for streaming recommendation. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1774–1784, 2024.

[33] Yijie Zhang, Yuanchen Bei, Hao Chen, Qijie Shen, Zheng Yuan, Huan Gong, Senzhang Wang,
Feiran Huang, and Xiao Huang. Multi-behavior collaborative filtering with partial order graph
convolutional networks. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 6257–6268, 2024.

[34] Feiran Huang, Zhenghang Yang, Junyi Jiang, Yuanchen Bei, Yijie Zhang, and Hao Chen. Large
language model interaction simulator for cold-start item recommendation. arXiv preprint
arXiv:2402.09176, 2024.

[35] Xiaoxiao Xu, Chen Yang, Qian Yu, Zhiwei Fang, Jiaxing Wang, Chaosheng Fan, Yang He,
Changping Peng, Zhangang Lin, and Jingping Shao. Alleviating cold-start problem in ctr
prediction with a variational embedding learning framework. In Proceedings of the ACM Web
Conference 2022, page 27–35, 2022.

[36] Shaoyun Shi, Min Zhang, Xinxing Yu, Yongfeng Zhang, Bin Hao, Yiqun Liu, and Shaoping
Ma. Adaptive feature sampling for recommendation with missing content feature values.
In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, page 1451–1460, 2019.

[37] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. Warm up cold-start
advertisements: Improving ctr predictions via learning to learn id embeddings. In Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 695–704, 2019.

[38] Yuanfei Wang, fangwei zhong, Jing Xu, and Yizhou Wang. Tom2c: Target-oriented multi-agent
communication and cooperation with theory of mind. In International Conference on Learning
Representations, 2022.

[39] Long Ma, Yuanfei Wang, Fangwei Zhong, Song-Chun Zhu, and Yizhou Wang. Fast peer
adaptation with context-aware exploration. In Proceedings of the 41st International Conference
on Machine Learning, pages 33963–33982, 2024.

[40] Zhenyu Guan, Xiangyu Kong, Fangwei Zhong, and Yizhou Wang. Richelieu: Self-evolving
llm-based agents for ai diplomacy. arXiv preprint arXiv:2407.06813, 2024.

[41] Fangwei Zhong, Kui Wu, Hai Ci, Churan Wang, and Hao Chen. Empowering embodied visual
tracking with visual foundation models and offline rl. arXiv preprint arXiv:2404.09857, 2024.

[42] Yuanchen Bei, Sheng Zhou, Qiaoyu Tan, Hao Xu, Hao Chen, Zhao Li, and Jiajun Bu. Rein-
forcement neighborhood selection for unsupervised graph anomaly detection. In 2023 IEEE
International Conference on Data Mining (ICDM), pages 11–20, 2023.

[43] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. Generative adversarial
user model for reinforcement learning based recommendation system. In Proceedings of the
36th International Conference on Machine Learning, pages 1052–1061, 2019.

[44] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. Reinforcement
learning to optimize long-term user engagement in recommender systems. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
2810–2818, 2019.

[45] Lixin Zou, Long Xia, Pan Du, Zhuo Zhang, Ting Bai, Weidong Liu, Jian-Yun Nie, and Dawei
Yin. Pseudo dyna-q: A reinforcement learning framework for interactive recommendation.
In Proceedings of the 13th International Conference on Web Search and Data Mining, page
816–824, 2020.

[46] Xiangyu Zhao, Long Xia, Jiliang Tang, and Dawei Yin. "deep reinforcement learning for search,
recommendation, and online advertising: a survey" by xiangyu zhao, long xia, jiliang tang, and
dawei yin with martin vesely as coordinator. SIGWEB Newsl., 2019(Spring), 2019.

13



[47] Dong Liu and Chenyang Yang. A deep reinforcement learning approach to proactive content
pushing and recommendation for mobile users. IEEE Access, 7:83120–83136, 2019.

[48] Zefang Liu, Shuran Wen, and Yinzhu Quan. Deep reinforcement learning based group recom-
mender system. arXiv preprint arXiv:2106.06900, 2021.

14



A Related Works

General Recommendation. General recommendation systems typically predict which items users
will prefer by leveraging collaborative information. Based on how collaborative information is utilized,
general recommendation methods typically include approaches such as Matrix Factorization-based,
Graph-based, and Sequential recommendation. Matrix Factorization-based recommendation methods
derive user and item embeddings by decomposing the interaction matrix into two feature matrices
using Matrix Factorization techniques [11, 23, 24]. Graph-based recommendations incorporate graph
techniques [25] to model high-order relationships between users and items [4, 3, 26]. Sequential
recommendation methods focus on capturing the temporal patterns in user interactions, modeling
the order of users’ actions to predict their future preferences [27, 28, 14, 29–32]. However, these
methods are generally ineffective in addressing the OOV item,

Out-of-Vocabulary Item Recommendation. Out-of-vocabulary (OOV) item recommendation aims
to address the problem of recommending a completely new item that has no prior user interactions
with users [33, 34]. Its core idea lies in how to map the content information of the cold item into the
space defined by the warm item embeddings trained from interactions with users. To achieve this
goal, existing methods can be mainly categorized into two approaches. One category is the dropout
model, which learns a content map function using the dropout approach [18, 35, 36, 8, 7, 9]. The
other category is the generative model, which directly learns the relationship between the content of
the OOV item and the IV behavior embeddings to obtain the mapping function [6, 12, 37, 5].

Reinforcement Learning-based Recommendation. Reinforcement learning (RL) is a famous type
of learning strategy where an agent learns to make decisions by taking actions in an environment to
maximize some notion of cumulative reward, which is a widely used technique for modeling human
behavior [38–42]. Many studies also focus on simulating user behavior within the recommendation
community. Cascading DQN [43] uses GAN to learn and simulate real users from historical inter-
actions to obtain the reward function. In [15, 44], the simulator is trained on user historical data
to simulate user feedback. In Pseudo Dyna-Q [45], a world model (user simulator) is trained by
minimizing the error between online and offline rewards. Another common simulation approach
is based on collaborative filtering. LIRD [46]builds a memory with (s, a, r) tuples seen in the log
dataset and uses a similarity method based on cosine similarity to find the closest state-action pair
to the current state and recommended action. DRR [47] and DRGR [48] use the same intuition but
based on different factorizations, respectively.

B Details of initial model

Loss function Our initial model G is an MLP trained to minimize the Euclidean distance between
the output of G and the item embedding. Specifically, the loss function for G is defined as follows:

L(θ) = 1

|Iiv|
∑
i∈Iiv

∥ei −Gθ(ci)∥22. (14)

Training details The initial model shares the same training data as USIM. We use the Adam
optimizer with a learning rate of 0.001 and apply early stopping by monitoring NDCG@K on the
validation set. The batch size and regularization weight are set to 1024 and 0.001, respectively.

C Model Details

Our complete training process is shown in Algorithm 1.

D Experimental Details

D.1 Dataset Details

Datasets. We evaluate the USIM ’s performance on cold-start items using the CiteULike and
MovieLens datasets.

15



Algorithm 1: Training USIM
Input: Policy network π, Value network ω, episode length N , initial state generator G, experience
replay buffer D = ∅
for each iteration do

for each batch do
Initialize state s0 ← G(ci)
for t in range(N ) do

Sample action at according to Eq. equation 12
Receive reward rt according to Eq.equation 9
Transition to next state st+1 according to Eq.equation 6
Store transition in buffer: D ← D

⋃
(st, at, rt, st+1)

end for
for each gradient step do

Sample transitions from D for gradient calculation
Update the Policy network π using the PPO loss
Update the Value network ω with Eq. equation 13

end for
end for

end for
Output: Trained Policy π, Value network ω

• CiteULike2 [8] The dataset contains 5,551 users, 16,980 articles, and 204,986 interactions. On
CiteULike, registered users create scientific article libraries and save articles for future reference.
The goal is to leverage these libraries to recommend relevant new articles to each user. The articles
are represented by 300-dimensional vectors as item content features.

• MovieLens3 [17] MovieLens comprises 6,040 users, 3,883 items, and 1,000,210 interactions. The
content features of items are represented using 200-dimensional vectors.

In this paper, the content features of items are represented using 200-dimensional vectors. For each
dataset, 20% of items are designated as OOV items, with interactions split into a OOV validation set
and testing set (1:1 ratio). Records of the remaining 80% of items are divided into training, validation,
and testing sets, using an 8:1:1 ratio.

D.2 Baseline Details

Baselines.To assess the effectiveness and universality of USIM, we conducted a comparative analysis
with 8 leading-edge models in the domain of cold-start recommendations. This comparison was
carried out across two distinct datasets. The models we benchmarked against include two main
groups: (i) Dropout-based models: DropoutNet [7], MTPR [18], Heater [8], and CLCRec [9]. (ii)
Generative models: DeepMusic [12], MetaEmb [19], GAR [5], and ALDI [6].

• DeepMusic utilizes deep neural networks to model the mean squared error (MSE) difference
between generated and warm embeddings.

• MetaEmb trains a meta-learning-based generator for rapid convergence.

• GAR generates embeddings through a generative adversarial relationship with the warm recom-
mendation model.

• ALDI employs distillation, using warm items as "teachers" to transfer behavioral information to
cold items, referred to as "students".

• DropoutNet enhances cold-start robustness by randomly discarding embeddings.

• MTPR generates counterfactual cold embeddings considering dropout and Bayesian Personalized
Ranking (BPR).

2https://github.com/Zziwei/Heater--Cold-Start-Recommendation/tree/master/data
3https://grouplens.org/datasets/movielens/1m

16

https://github.com/Zziwei/Heater--Cold-Start-Recommendation/tree/master/data
https://grouplens.org/datasets/movielens/1m


10 20 30 40 50
k

0.150

0.155

0.160

0.165

ND
CG

MF
OOV
overall

5 7 9 11
N

0.13

0.14

0.15

0.16
MF

0.1 0.2 0.3
p

0.150

0.153

0.156

0.159

MF

OOV
overall

0.03 0.05 0.07 0.09
0.14

0.15

0.16

0.17
MF

OOV
overall

Figure 5: Hyperparameter analysis of MF backbone on CiteULike dataset

10 20 30 40 50
k

0.12

0.13

0.14

0.15

ND
CG

GNN
OOV
overall

5 7 9 11
N

0.108

0.120

0.132

0.144
GNN

OOV
overall

0.1 0.2 0.3
p

0.11

0.12

0.13

0.14

GNN

OOV
overall

0.03 0.05 0.07 0.09

0.11

0.12

0.13

0.14

GNN

OOV
overall

Figure 6: Hyperparameter analysis of GNN backbone on CiteULike dataset

• Heater improves DropoutNet by using a mix-of-experts network and considering embedding
similarity.

• CLCRec models cold-start recommendation using contrastive learning from an information-
theoretic perspective.

E Implementation Details

We implement the baselines using their official implementations. Specifically, for GAR, we use
the updated version provided in the official repository, which is evaluated under the same CLCRec
settings as used in our paper4. The embedding dimension is set to 200 for all models. We employ the
Adam optimizer with learning rates of 0.001 for the critic and 0.0005 for the actor. Early stopping is
applied by monitoring NDCG@K on the validation set. The training batch size and regularization
weight are set to 1024 and 0.001, respectively.The experiment was conducted on an NVIDIA GeForce
RTX 3090 with 24GB of memory. Hyperparameters are tuned using grid search, and the optimal
parameters are identified for each dataset. For fairness, we use the same settings and follow the
design choices in their respective articles for all baselines.

F Additional Experiments

We conducted a parameter analysis on the CiteULike dataset, and the results are shown in Figures 5
and 6. Except for the parameters, all other parameters exhibited the same trends on both the MF and
GNN backbones.

For the parameter k, the performance first increased and then decreased as k increased, reaching the
optimal values at 30 and 20, respectively.

For the parameter N , the OOV recommendation performance first increased and then decreased,
reaching the maximum at N = 9, while the overall recommendation performance consistently
decreased.

For the parameter p, the OOV performance first increased and then decreased, while the IV perfor-
mance first decreased and then increased.

For the parameter λ, on the MF backbone, the OOV performance consistently increased, while the
overall performance first increased and then decreased, reaching the optimal value at λ = 0.07. On
the GNN backbone, both the OOV and IV performances exhibited a trend of first increasing and then
decreasing.

4https://github.com/zfnWong/GAR

17

https://github.com/zfnWong/GAR


G Details of online test

Platform. We have implemented our USIM on the homepage of one of the largest e-commerce
platforms, which boasts hundreds of millions of users and billions of items. The homepage features a
feed recommendation system that recommends items to users. Thousands of new items are uploaded
every hour.

Framework. Our online implementation consists of two core components: 1. Online Recommen-
dation; and 2. USIM Imagination. We present our framework in Figure 7 . When an OOV item is
uploaded, we utilize the Large Language Model to embed the content features, including the product
name and description. We then employ the USIM structure to predict the most suitable user sequence
and optimize the embedding accordingly. Finally, we use the USIM-produced as the IV embeddings
in the online recommendation model.

Evaluation Metrics. We employed three tailored metrics to assess the performance of USIM
against existing baselines:

• Page Views (OOV item PV): The number of user clicks during the OOV period.
• Page Click-Through Rate (OOV item PCTR): The ratio of clicks to impressions during the OOV

period.
• Gross Merchandise Value (OOV item GMV): The total value of user purchases during the OOV

period.

OOV Items

Language Model

Online Recommendation Model

User Imagination

Content Embeddings

User Device

Offline OOV Cold-Start

Online Recommendation

Browse

Recommend

USIM

Embedding Updating

IV User

Embeddings

IV Item

Embeddings

…𝑢1 𝑢2 𝑢𝑘

Figure 7: Overall framework of online implementation.

H Online Recommendation Efficiency

To evaluate the online recommendation efficiency of USIM, we recorded the LLM-based content
feature extraction time (LLM Content Feature Extraction Time) and the inference time for OOV item
embeddings (OOV Time) of MetaEmb, ALDI and USIM. The results are shown in Table 5.

The results of the online recommendation efficiency indicate that USIM does not serve as a bottleneck
for online recommendation, as the LLM is the main time consumer while USIM’s speed remains
comparable to that of MetaEmb and ALDI. Additionally, the OOV recommendation is an offline,
one-time process that has no impact on online recommendations, as shown in Figure 7. And given
that the platform supports parallel processing, USIM computations for OOV items can be managed
efficiently.

I Limitation

One limitation of our proposed model is the large number of hyperparameters that need to be tuned.
Our model involves 4 key hyperparameters. Tuning these hyperparameters can be a time-consuming

18



Table 5: Results of online recommendation efficiency

Method LLM Content Feature Extraction Time OOV Time
MetaEmb 3.349s ± 3.214s 0.044s ± 0.012s

ALDI 3.349s ± 3.214s 0.047s ± 0.013s
USIM 3.349s ± 3.214s 0.102s ± 0.010s

and computationally expensive process, as it often requires extensive grid search or random search to
find the optimal configuration.

Another limitation is the slow generation speed of our model due to its autoregressive generation
approach. In our model, the output is generated sequentially, with each token being predicted
conditioned on the previously generated tokens. This autoregressive generation process can be
computationally intensive.

19



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitation We propose
the User Sequence IM agination (USIM) framework along with an RL-based solution to
maximize out-of-vocabulary (OOV) item recommendation performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitation in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20



Answer:[Yes]

Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
referenced.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describe the architecture clearly .

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Source code is available at https://anonymous.4open.science/r/USIM-D776.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are presented in the core of the paper. And full
details are provided appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in the appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have statistical significance in the main experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type of compute workers GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We checked and ensured that our paper conforms with the NeurlPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[NA]

there is no societal impact of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

23

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

We cite the original paper that produced the code package or dataset.We state which version
of the asset is used

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

24



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

25

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26


	Introduction
	Preliminaries
	Proposed User Sequence Imagination Model
	Framework Overview
	State Transition Function
	Reward Function
	Exploration Set Construction
	Training with RecPPO

	Experiments
	Experimental Setup
	Main Results (RQ1)
	Ablation Study (RQ2)
	Comparison with Representative RL Methods (RQ3)
	Case Study (RQ4)
	Online Evaluation (RQ5)
	Efficiency Analysis (RQ6)

	Conclusion
	Related Works
	Details of initial model
	Model Details
	Experimental Details
	Dataset Details
	Baseline Details

	Implementation Details
	Additional Experiments
	Details of online test
	Online Recommendation Efficiency
	Limitation

